
Physica D 460 (2024) 134095

Available online 15 February 2024
0167-2789/© 2024 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

A kernel framework for learning differential equations and their solution
operators
Da Long a, Nicole Mrvaljević b, Shandian Zhe a, Bamdad Hosseini b,∗

a School of Computing, University of Utah, Salt Lake City, UT, 84112, United States of America
b Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, United States of America

A R T I C L E I N F O

Keywords:
Equation discovery
Operator learning
Reproducing kernel Hilbert spaces
Physics informed machine learning

A B S T R A C T

This article presents a three-step kernel framework for regression of the functional form of differential equations
(DEs) and learning their solution operators. Given a training set consisting of pairs of noisy DE solutions
and source/boundary terms on a mesh: (i) kernel smoothing is utilized to denoise the data and approximate
derivatives of the solution; (ii) This information is then used in a kernel regression model to learn the functional
form of the DE; (iii) The learned DE is then used within a numerical solver to approximate the solution of the
DE with a new source term or initial data, thereby constituting an operator learning framework. Numerical
experiments compare the method to state-of-the-art algorithms. In DE learning our framework matches the
performance of Sparse Identification of nonlinear Dynamical Systems (SINDy) while in operator learning the
method has superior performance compared to well-established neural network methods in low training data
regimes.

1. Introduction

Differential equations (DEs) are ubiquitous in natural sciences such
as physics [1], social sciences [2], biology [3] and engineering [4,5].
To some extent, DEs are the main subject of interest in the emergent
field of Physics Informed Learning (PIL) [638] where machine learning
(ML) is leveraged for the simulation or inference of physical processes
and phenomenon. Traditionally, DEs are designed or discovered by
experts based on mathematical and physical intuition, a process that
relies on human expertise, data, and mathematical analysis. Once the
DE is accepted as a model it is often solved using computer algorithms
to simulate a real-world process of interest. Recent advances in ML
along with the abundance of data have given rise to the idea of
automating this workflow, thereby promising computer programs for
learning a DE from limited and noisy data and solving the learned
equations to predict the state of a physical system under previously
unseen conditions. The goal of this paper is to present an example
of such a workflow based on recent advances in the theory of kernel
methods. Our proposed method is simple to implement, accurate, and
robust to noise as demonstrated by a comprehensive list of numerical
benchmarks.

Consider a generic nonlinear DE of the form

þ(Ė, u) = f (Ė), Ė *
, and ð(Ė, u) = g(Ė), Ė *)
,

∗ Corresponding author.
E-mail addresses: u1368737@utah.edu (D. Long), nesbihal@uw.edu (N. Mrvaljević), zhe@cs.utah.edu (S. Zhe), bamdadh@uw.edu (B. Hosseini).

1 Equivalently, one can also cast the problem of learning the boundary operator ð although we will not consider this setting in this article for brevity and
will always assume that the boundary/initial data is known.

defined over a compact domain
 ⊂ RD for D e 1 with boundary
)
 with solution u ∶
 ³ R, forcing/source term f ∶
 ³ R, and
boundary/initial data g ∶)
 ³ R. Assume that the boundary/initial
data g is known and suppose we have access to limited (and possibly
noisy) training data of the form (ui(X), f i(X))I

i=1
where (ui, f i) are

solution and source pairs that solve the DE and we used the shorthand
notation u(X) = (u(Ė1),& , u(ĖJ)) for a fixed set of observation points
X = {Ė1,& , ĖJ } ⊂
 (see Section 2 for our detailed setup). Given
this limited and noisy data we consider two problems: (a) Learn the
DE, that is, find an approximation to the map þ that describes the
nonlinear relationship between x and the pertinent partial derivatives
of the solution u.1; (b) Learn the solution operator of the DE, that is,
given a new forcing f̃ provide an approximation to the corresponding
solution þ−1f̃ using only the training data. Problem (a) is often referred
to as equation learning or discovery and goes back, at least, to the seminal
works [9,10] but it is broadly the subject of interest in the field of
inverse problems [11] as well. More recently, it is often tackled by
the Sparse Identification of nonlinear Dynamical Systems (SINDy) algo-
rithm of [12] and its subvariants. Problem (b) is reminiscent of standard
problems in numerical solution of DEs. However, the modern twist in
our setting is that the true DE is assumed to be unknown and we only
have access to limited information regarding samples of its solutions

https://doi.org/10.1016/j.physd.2024.134095
Received 4 September 2023; Received in revised form 26 December 2023; Accepted 12 February 2024

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:u1368737@utah.edu
mailto:nesbihal@uw.edu
mailto:zhe@cs.utah.edu
mailto:bamdadh@uw.edu
https://doi.org/10.1016/j.physd.2024.134095

Physica D: Nonlinear Phenomena 460 (2024) 134095

2

D. Long et al.

ui corresponding to some source terms f i. In this light, problem (b)
is often referred to as the operator learning problem where one aims to
learn/approximate the infinite-dimensional solution operator þ−1. In
PIL this problem is often cast as regression of an operator between
two infinite-dimensional function spaces with the DeepONet algorithm
of [13] and the Fourier Neural Operator (FNO) approach of [14] (and
their variants) considered as state of the art; see also [15] for a recent
competitive method using operator valued kernel regression.

To this end, our main contributions are three-fold:

(1) We present a three-step kernel method for learning (ordinary or
partial) DEs and their solution operators from noisy and limited
data: Step (i) kernel smoothing is utilized to denoise the training
data and compute pertinent partial derivatives of the solution.
This allows us to accommodate input data that are provided on
unstructured grids; Step (ii) kernel regression is used to learn the
functional form of the DE and provide the approximate map þ ;
Step (iii) a kernel DE solver is used to numerically approximate

þ
−1
f 2 with the new source term of interest f 2 in order to

approximate the true solution þ−1f 2. Our proposed framework
is not only simple but it inherits the desirable robustness and
stability properties of kernel methods and is amenable to kernel
learning strategies such as cross validation (CV) or maximum
likelihood estimation of hyper-parameters.

(2) Our three-step kernel approach for DE and operator learning
is a special instance of an abstract, three-step approach that
includes existing methods such as SINDy and PDE-FIND [16] but
also extends their applicability in two directions: (a) our kernel
approach for gradient estimation in Step (i) enables SINDy to
deal with training data that are observed on irregular and in-
consistent grids; (b) SINDy can be used in place of our kernel
approach to Step (ii) in order to extend its applicability to
operator learning tasks.

(3) We present a set of numerical experiments and benchmarks
that demonstrate the superior performance of our three-step
approach to operator learning in the low data regime where
only a small data set of solution and forcing pairs are available.
We intuit that this superior performance is due to the fact that
our approach makes explicit use of the fact that the operator
of interest is the solution map of a DE rather than a generic
map between two function spaces as is often considered in the
operator learning literature [13,14,17,18]

1.1. Review of the relevant literature

Below we present a review of the relevant literature to our work
focusing on discovering/learning of DEs, operator learning, and varia-
tional DE solvers that are used in Step (iii) of our framework.

Discovering/learning DEs: Identifying the parameters of a DE is a
well-known inverse problem; see the works of [19,20] on parameter
identification of ordinary differential equations (ODEs) as well as the
book of [11] and the article of [21] for examples involving PDEs.
Such problems are also encountered in optimal control of PDEs [22].
However, these classic problems were considered under the assumption
that the expression of the DE is known up to free parameters that need
to be identified from experimental data.

Equation discovery/learning is a more recent problem attributed
to [9,10] who used symbolic regression to discover underlying phys-
ical laws from experimental data. Compared with the aforementioned
inverse problems, the goal here is to discover the functional form of the
DE, that is the nonlinear relationship between the partial derivatives
of the solution as well as possibly free parameters, from experimental
data. DEs that describe real world physical systems involve only a few
terms and often have simple expressions. Based on this philosophy, re-
cent approaches to equation learning try to learn a DE from a dictionary
of possible terms/features along with a sparsity assumption to ensure

only a few terms will be active. Perhaps the best known example of such
an approach is the SINDy algorithm of [12,16] and its many extensions
and variants; see [23] and references therein. Other authors have also
considered similar approaches [24,25] based on the idea of imposing
sparsity structures on the terms involved in the learned DE. In this light,
the main difference between the aforementioned methods is in the way
they impose the requisite sparsity assumption and how they solve the
resulting optimization problems.

Compared to the feature map perspective of SINDy-type methods,
our approach employs a kernel perspective towards learning the DE.
As a result, we give up the immediate interpretability of the learned
equation in favor of richer and more flexible features that can be tuned
using CV and a more convenient computational framework that is also
able to deal with variable coefficient DEs; feature based methods often
cannot deal with variable coefficients without strong prior knowledge
injected in the their dictionaries. Our method can also be combined
with the kernel mode decomposition approach of [26] to extract the
dominant features of the learned DE, thereby making our approach
more interpretable via a post-processing step although we do not
pursue this direction here. Finally, due to its simple mathematical for-
mulation, our method is amenable to mathematical analysis and opens
the door for analyzing the accuracy and robustness of the estimator þ
from the perspective of kernel methods and optimal recovery, providing
a new perspective for the theoretical analysis of equation learning. Such
theoretical questions have attracted attention very recently [27,28]
although many open questions remain. Another closely related ap-
proach to our framework is the PDE-Net of [29,30] which, put simply,
parameterizes þ via a convolutional neural network. In Section 4 we
comment on how our abstract framework can be extended to include
PDE-Net as well.

Finally we note that a similar kernel based approach to our method
has been developed in the series of papers [31336] aimed at the
discovery, data assimilation, and extrapolation of dynamical systems.
The main difference between those works and ours is that our method is
aimed at wider families of DEs and in particular PDEs and distinguishes
between the equation learning step and operator learning.

Operator Learning: Approximation or learning of the solution maps of
DEs is a vast area of research in applied mathematics and engineering.
In the setting of stochastic and parametric PDEs, the goal is often
to approximate the solution of a PDE as a function of a random or
uncertain parameter. The well-established approach to such problems
is to choose or find appropriate bases for the input parameter and the
solution of the PDE and then construct a parametric, high-dimensional
map, that transforms the input basis coefficients to the output coeffi-
cients. Well-established methods such as polynomial chaos, stochastic
finite element methods, reduced basis methods, and reduced order
models [37341] fall within this category. A vast literature exists on
this subject and the theoretical analysis of these methods has been
extensively researched; see for example [42347]. More recent neural
net based methods such as DeepONets [13], and FNO [14,17,48] also
fall within the aforementioned category of methods where the main
novelty appears to be the use of novel neural network architectures that
are flexible and expressive, and allow the algorithm to learn and adapt
the bases that are selected for the input and outputs of the solution
map. See also the recent paper [15] for a comparison between these
methods and a competitive kernel ridge regression approach based on
the theory of operator valued kernels.

In contrast to the aforementioned methods, our three-step frame-
work takes a different path towards operator learning. First, we use
equation learning to approximate the functional form of the DE from
the training data set, which is a much easier problem than direct ap-
proximation of the solution map. We then approximately evaluate the
solution map by solving an variational problem that solves a ‘‘nearby’’
DE. To this end, our method is making explicit use of the knowledge
that the operator of interest is the solution map of a DE. It is therefore

Physica D: Nonlinear Phenomena 460 (2024) 134095

3

D. Long et al.

natural that our method is able to achieve better accuracy (since it is
biased towards DE problems) but this higher accuracy comes at a higher
computational cost since we still need to solve a DE every time we wish
to evaluate the learned operator. Depending on the DE at hand and
the desired accuracy, this may be an expensive calculation. In contrast,
neural net operators are very efficient to evaluate although they may
be more expensive and challenging to train.

Solving PDEs with Gaussian Process/Kernel methods: Finally, we
mention that the key to our operator learning framework is the exis-
tence of flexible, meshless, and general purpose nonlinear DE solvers
such as the kernel method of [49] or the physics informed neural nets
(PINNs) of [50] that allow us to ‘‘solve’’ DEs which, in general, may
be ill-posed. This is crucial for us since the DE learning algorithms in
Step (ii) do not impose any constraints that ensure the learned DE þ is
in fact well-posed in the classical sense, i.e., these equations may not
have solutions at all or may not be uniquely solvable. Additionally, the
learned DEs may involve high order or stiff terms that cannot be tackled
using classic numerical solvers such as finite differences and finite
elements or may require expert intervention and specialized solvers.
Methods such as the kernel solver of [49], allow us to overcome these
difficulties since the solution of the equation is naturally regularized via
a reproducing kernel Hilbert space (RKHS) norm penalty that provides
numerical stability. We also note that the use of kernel methods and
Gaussian Processes (GPs) for solving DEs has been an active area
of research over the last decade; see for example [51356]. Although
the overwhelming majority of the research in this direction appears
to be focused on the case of linear DEs. Some notable exceptions
are [49,57,58].

1.2. Outline of the article

The article is organized as follows: Section 2 introduces our setup
for nonlinear DEs and outlines our approach for equation and operator
learning; Section 3 presents our numerical experiments; while Section 4
presents our concluding discussions. The appendix contains additional
details of the setup of our experiments.

2. Methodology

Below we outline the details on our proposed approach for learning
DEs and their solution operators. We start with the setup of the problem
and our notation followed by abstract three-step framework for equa-
tion and operator learning that encompasses other families of methods
SINDy and PDE-Net. Next we outline a simple kernel implementation
which is used in our numerical experiments later. We only consider the
case where the DE operator þ is unknown while the boundary operator
ð and the data g are assumed to be given. However, the resulting
approach can easily be extended to learn boundary conditions as well.

2.1. Setup for nonlinear DEs

Suppose D e 1 and let
 ⊂ RD be a compact and simply-connected
domain with boundary)
. Consider the multi-index � = (�1,& , �D) *

ND (i.e., a d-dimensional vector of non-negative integers).2 For a
smooth function u ∶
 ³ R we define the partial derivatives)�u ∶=

)
�1
x1
)
�2
x2

&)
�D
xD
u (see [59] for details regarding the multi-index notation

in theory of DEs) and further consider two collections of multi-indices
{�1,& ,�P } ⊂ NP and {�1,& , �B} ⊂ NB for integers P ,B e 0. Finally
we defineMP ∶= max1didP ‖�i‖1 andMB ∶= max1didB ‖�i‖1. In the rest
of the article we have in mind DEs of the form

þ
(
Ė,)�1u(Ė),& ,)�P u(Ė)

)
= f (Ė), Ė *
, (1a)

2 Henceforth we use bold letters to denote d-dimensional vectors of integers
or reals for d e 2

ð
(
Ė,)�1u(Ė),& ,)�B u(Ė)

)
= g(Ė), Ė *)
, (1b)

where, overloading our notation from Section 1, we defined þ ∶ RJP ³

R and ð ∶ RJB ³ R, with JP = D + P and JB = D + B, are
nonlinear functions that define the functional relationships between
Ė = (x1,& , xD) and values of u and its partial derivatives in the interior
and boundary of
. The functions f ∶
 ³ R, often referred to as
a forcing/source term, and g ∶)
 ³ R, the boundary condition,
constitute the data of the PDE. In most practical problems, MB d MP

and max{MP ,MB} denotes the order of the PDE.
For example consider the one-dimensional second order PDE

−)x
[
a(x))xu(x)

]
+ u3(x) = f (x), x * (0, 1), u(0) = u(1) = 0, (2)

where a * C1(
) is a spatially varying coefficient, for example, drawn
from a random field. We assume this coefficient along with its first
derivative can be evaluated but in general it may have a complicated
or unknown form. We can read that ð(x, u(x)) � u(x). Expanding
the differential operator on the left hand side of the PDE we get
þ
(
x, u(x),)xu(x),)

2
xu(x)

)
= −)xa(x))xu(x) − a(x))2xu(x) + u3(x). Thus,

defining the new variables đ = (s1,& , s4) � [x, u(x), ux(x), uxx(x)] * R4

and Ē = (t1, t2) � [x, u(x)] * R23 we can write þ(đ) = −ax(s1)s3−a(s1)s4+

s3
2
and ð(Ē) = t2. Throughout the rest of the article we will assume that

whenever a DE is discussed, it is well-defined and has a unique strong
solution in the classical sense, that is, defined pointwise.

2.2. An abstract framework for learning DEs and their solution operators

Suppose a set of mesh/observation points X = {Ėj}
J
j=1

⊂
 is fixed

and let {u(i), f (i)}I
i=1

be pairs of solutions and forcing terms for the DE
(1) with the same boundary conditions. Our training data consists of
noisy observations of the pairs (u(i), f (i)) at the points X, that is,

R
J - ē(i) = u(i)(X) + �(i), R

J - Ą (i) = f (i)(X), �(i) < N(0, �2
ă
I).

At this point we may assume that the noise variance �2
ă
is known but

we will treat it as a hyper parameter later. We propose the following
abstract three-step framework for learning þ and the corresponding
solution operator of the DE:

Step (i): Smoothing the Training Data and Estimating Derivatives.
Consider a Banach space ö that is continuously embedded in CMp (
)

Then solve the regression problems

u
(i)

= argmin
v*ö

‖v‖r
ö
+

1

�2
ă

‖v(X) − ē(i)‖2
2

(3)

for i = 1,& , I and r > 0. Proceed to compute the partial derivatives
)�j u

(i)
(X) for j = 1,& , P , i.e., the pertinent partial derivatives of the

smoothed solutions involved in (1) evaluated at X; note that this is
well-defined thanks to our assumption that ö ⊂ CMP (
).4

Step (ii): Learning the Functional Form of the DE. Define the set of
vectors

đ
(i)
j =

(
Ėj ,)

�1u
(i)
(Ėj),& ,)�P u

(i)
(Ėj)

)
* R

JP , (4)

for i = 1,& , I . Now consider another Banach space ö2 that is con-
tinuously embedded in C0(RJP), so that pointwise evaluation is well-
defined, and approximate the function þ via the optimal recovery
problem5

þ = argmin
ÿ*ö2

‖ÿ‖ö2 s.t. ÿ(đ
(i)

j
) = f (i)(Ėj), i = 1,& , I, j = 1,& , J . (5)

3 The entries si, ti simply denote the values of x as well as u and its partial
derivatives evaluated at x. This compact notation will be useful later on.

4 If one wishes to learn the boundary operator ð then the)�j ū(i) should also
be computed at a set of boundary collocation points.

5 One can also formulate a regression problem analogous to Step (i) if the
f (i)(X) are believed to be noisy.

Physica D: Nonlinear Phenomena 460 (2024) 134095

4

D. Long et al.

Step (iii): Operator Learning by Solving the Learned DE. The goal
of operator learning is to predict the solution of a DE given a source
term from a training data set of solution and source pairs. To this end,
Consider a new pair of solution and source term (ũ, f̃), that did not exist
in the training data set {u(i), f (i)}I

i=1
. Then our goal is to predict ũ given

f̃ , but since þ is unknown, we propose to formulate the following DE
where, once again, we assumed the boundary conditions are known:

þ
(
Ė,)�1u(Ė),& ,)�P u(Ė)

)
= f̃ (Ė), Ė *
,

ð
(
Ė,)�1u(Ė),& ,)�B u(Ė)

)
= g(Ė), Ė *)
.

(6)

Note that þ is the function given by (5) and the resulting DE is not
guaranteed to be well-posed. Henceforth we think of ‘‘solving’’ this DE
simply as finding a function û that (approximately) minimizes the resid-
ual of (6). To do so, take new sets of collocation points {Ė̃1,& , Ė̃

J̃

} ⊂

in the interior of
 and {Ė̃
J̃
+1

,& , Ė̃
J̃
} ⊂)
 on the boundary)
. These

new collocation points are independent of the observation points X and
will only be used to solve (6). Choose parameters r, �þ , �ð > 0 and
approximate ũ by solving the optimization problem6

û ∶= argmin
u*ö

‖u‖r
ö
+

1

�2
þ

J̃
1
j=1

|þ (
Ė̃j ,)

�1u(Ė̃j),& ,)�P u(Ė̃j)
)
− f̃ (Ė̃j)|

2

+
1

�2
ð

J̃1
j=J̃
+1

|ð (
Ė̃j ,)

�1u(Ė̃j),& ,)�B u(Ė̃j)
)
− g(Ė̃j)|2.

(7)

The above formulation is at the heart of ML inspired DE solvers
of [49,50] and can be viewed as finding a minimum norm solution
û by imposing the DE and boundary conditions using Lagrange mul-
tipliers rather than exact equality constraints (see [49] for a detailed
discussion).

Remark 2.1. We also note that Eq. (7) is the only place in our
three-step framework where the boundary operator ð appears. Here
we are imposing the boundary conditions using a variational/penalty
technique which often requires careful tuning of the parameter �ð.
However, depending on ð one may be able to choose ö in such a
way to impose the boundary conditions more accurately as is often
done with standard numerical PDE solvers such as imposing natural
boundary conditions in finite element methods or Dirichlet boundary
conditions in finite difference solvers.

2.3. Brief review of representer theorems for kernel regression

Before proceeding further we give a brief review of representer
theorems in RKHSs that will be utilized to implement a kernel in-
stance of the abstract framework of Section 2.2. For brevity we only
discuss pertinent results from the literature and refer the reader to the
Refs. [60363] for in-depth treatment of the theory of RKHSs and kernel
methods.

Consider a simply connected set � ⊆ RD. We say that a function
Ą ∶ � ×� ³ R is a Mercer kernel if it is continuous in both arguments,
symmetric, that is Ą(ė1, ė2) = Ą(ė2, ė1), and positive definite, that is, for
any collection of points Y = {ė1,& , ėJ } ⊂ � the matrix [Ą(Y , Y)]ij =

Ą(ėi, ėj) is positive definite. We writeöĄ to denote the RKHS associated
to Ą with its norm denoted by ‖ ç ‖Ą .

Now for N * N let � = (�1,& , �N) be a vector of N-bounded linear
functionals �j ∶ öĄ ³ R defining a vector valued bounded linear map
� ∶ öĄ ³ RN and consider regression problems of the form

minimize
v*öĄ

‖v‖2
Ą
+

1

�2
‖ôċ�(v) − č‖2

2
, (8)

6 One can take u in a different space than ö if prior knowledge of its
regularity is available but without such knowledge it is reasonable to assume
that is belongs to the same function class as the solutions in the training set.

where ô ∶ RN ³ RO is a nonlinear map, č * RO is a fixed vector
of observations, and � > 0 is a regularization parameter. It follows
from [49, Prop. 2.3] that every minimizer v of problem (8) is of the
form

v(ė) = Ą(ė,�)Ą(�,�)−1Ę, (9)

where Ą(ė,�) ∶ � ³ ö
⊗N
Ą

is a row vector field on � with entries
[Ą(ė,�)]j = �j (Ą(ė, ç)) for j = 1,& , N , i.e., we fix ė and apply �j
to Ą(ė, ç) as a function of its second argument, and Ą(�,�) * RN×N

is a symmetric matrix with entries [Ą(�,�)]ij = �i([Ą(ç,�)]j). Finally
Ę * RN is a vector that solves the optimization problem

minimize
Ę*RN

ĘTĄ(�,�)−1Ę +
1

�2
‖ô (Ę) − č‖2

2
. (10)

Eq. (9) is often referred to as a representer formula for (8) as it states
that the minimizers of the latter equation are represented by the finite
dimensional vector Ę.

In the particular case where N = O and ô = Id one can solve for
Ę exactly and substitute in (9) to obtain the well-known representer
formula for kernel regression

v(ė) = Ą(ė,�)
(
Ą(�,�) + �2I

)−1
č. (11)

Furthermore, letting � ³ 0 we obtain

v(ė) = Ą(ė,�)Ą(�,�)−1č, (12)

which is the representer formula for the minimizers of the kernel
interpolation problem

minimize
g*öõ

‖g‖õ s.t. �(g) = č. (13)

2.4. Implementation of the three-step framework using kernels

We now present a simple, flexible, and efficient implementation of
the framework of Section 2.2 by choosing ö and ö2 to be RKHSs. The
resulting algorithm relies heavily on the representer formulae discussed
above.

Step (i): Let ă ∶
 ×
 ³ R be a Mercer kernel with RKHS öă that
is assumed to be continuously embedded in CMP (
). A simple choice

would be the popular RBF kernel ă (Ė1, Ė2) = exp

(
−1

2l2
ā

‖Ė1 − Ė2‖22
)

whose RKHS consists of infinitely smooth functions although one can
choose any other family of Mercer kernels with sufficiently smooth
RKHSs; see for example [64]. Consider the regression problem (3) with
ö � öă and r = 2. We can solve this problem by applying formula
(11) with � = (�1,& , �J) to obtain the minimizers

u
(i)
(Ė) = ă (Ė, X)

(
ă (X,X) + �2

ă
I
)−1

ē(i), (14)

where ă (Ė, X) =
(
ă (Ė, Ė1),& ,ă (Ė, ĖJ)

)
is viewed as the row vec-

tor field with entries ă (ç, Ėj) and ă (X,X) * RJ×J is a kernel ma-
trix with entries ă (X,X)ij = ă (Ėi, Ėj) and �2

ă
> 0 is the regu-

larization/nugget parameter. Since we assumed öă is continuously
embedded in CMP (
), then for any multi-index �j we can directly
differentiate this formula to get

)�j u
(i)
(Ė) =)�jă (Ė, X)

(
ă (X,X) + �2

ă
I
)−1

ē(i), (15)

where)�jă (Ė, X) =
(
)�jă (Ė, Ė1),& ,)�jă (Ė, ĖJ)

)
, the entries of which

can be computed offline using analytic expressions or automatic differ-
entiation as they do not depend on the data ē(i) and only depend on
the kernel ă , the points Ėj , and the multi-indicies ���j .

Step (ii): With formula (15) at hand we compute the vectors đ
(i)
j

following (4). We then choose another Mercer kernelù ∶ RJP ×RJP ³ R

with RKHS öù; once again the RBF kernel would be a convenient
choice although a polynomial kernel of the form ù(đ, đ2) = (đT đ2 +

1)b for some integer b * N was found to be very effective in our

Physica D: Nonlinear Phenomena 460 (2024) 134095

5

D. Long et al.

experiments in Section 3. We then formulate the optimal recovery
problem (5) with ö2 � öù. Let us write S ∶= {đ1,& , đIJ } ={
đ
(1)

1
,& , đ

(1)

J
, đ

(2)

1
,& , đ

(2)

J
,& , đ

(I)

1
,& , đ

(I)

J

}
and Ą ∶= (Ą (1),& , Ą (I)) denot-

ing the column vector obtained by stacking the Ą (i)’s. Then applying
Eq. (11) once more we have,

þ(đ) = ù(đ, S)
(
ù(S, S) + �2

ù
I
)−1

Ą , (16)

where, analogous to Step (i), we write ù(đ, S) =
(
ù(đ, đ1),& ,ù(đ, đIJ)

)
regarded as a row-vector field and ù(S, S) * RIJ×IJ with entries
ù(S, S)ij = ù(đi, đj). Furthermore, we introduced the artificial regu-
larization/nugget parameter �2

ù
> 0 that improves the conditioning of

ù(S, S).

Step (iii): Finally we consider problem (7) and, following [49], we take
ö � öă and r = 2. Let �̃j denote the pointwise evaluation operator at
Ė̃j and define the maps �̃

i
j
= �̃jċ)

�i , for i = 1,& , p and j = 1,& , J̃

as well as ̃ i
j
= �̃jċ)

�i , for i = 1,& , q and j = J̃
 + 1,& , J̃ ; note that

the �̃i
j
and ̃ i

j
are well-defined bounded linear operators on öă due to

our assumption that öă is continuously embedded in CMP (
). Further
define the vector valued maps �̃j ∶= (�̃1

j
,& , �̃

p
j
) and ̃ j ∶= (̃1

j
,& , ̃

q
j
).

We can now rewrite (7) as

minimize
u*öă

‖u‖2
ă

+
1

�2
þ

J̃
1
j=1

||||þ
(
Ė̃j , �̃j (u)

)
− f̃ (Ė̃j)

||||
2

+
1

�2
ð

J̃1
j=J̃
+1

|||ð
(
Ė̃j , ̃ j (u)

)
− g(Ė̃j)

|||
2
.

Using the representer theorems recalled in Section 2.3, and in partic-
ular realizing that this equation is of the same form as (8), we evoke
formula (9) to identify

û(Ė) = ă (Ė, �̃)ă (�̃, �̃)−1Ę̂,

where �̃ ∶= (�̃1,& , �̃
J̃

, ̃

J̃
+1
,& , ̃

J̃
) is a concatenated vector of

bounded linear functionals and Ę̂ is a concatenated vector that solves

minimize
Ę=(Ę1 ,&,Ę

J̃
)
ĘTă (�̃, �̃)−1ĘT +

1

�2
þ

J̃
1
j=1

|þ (
Ęj
)
− f̃ (Ė̃j)|

2

+
1

�2
ð

J̃1
j=J̃
+1

|ð (
Ęj
)
− g(Ė̃j)|2.

(17)

In practice we solve this problem using a gradient descent algorithm,
such as the Gauss3Newton algorithm proposed in [49] or L-BFGS.

Remark 2.2. Our proposed kernel method involves the tuning of
a number of hyper-parameters such as the regularization parameters
�ă , �ù, �þ and �ð as well as other parameters in the kernels ă ,ù.
The tuning of such parameters is a well-studied problem in kernel
regression and, more broadly, in statistical theory with methods such as
maximum likelihood estimation (MLE) [65], CV [66], and expectation
maximization (EM) [67] regarded as standard in the literature; see
also [68] and references within.

3. Experiments

Below we compare our computational framework to state-of-the-art
algorithms for equation discovery and operator learning. Here we focus
on presenting the results and give a brief summary of the setup. Further
details of experiments such as the form of kernels or the choices of
hyper-parameters are summarized in the Appendix.

Three benchmark DEs were considered: a pendulum model (18), a
nonlinear diffusion PDE (19), and the Darcy flow PDE (20). For the
DE learning task we compared our kernel method to SINDy [16] for
the pendulum and diffusion PDEs. Both our method and SINDy were
trained using the same training data with our kernel method used to

denoise the training solutions u(i) and to compute the relevant partial
derivatives in Step (i). All kernel parameters as well as the regulariza-
tion parameters �ă , �ù were chosen using CV (cross validation); see
Remark 2.2. A test data set was then constructed by taking the same
training source terms f (i) from the training set, perturbing them in a
controlled manner, and solving the DEs using an independent solver.
The Darcy flow PDE was excluded from these experiments since it
is unclear how to choose a SINDy dictionary for PDEs with spatially
variable coefficients without injecting explicit prior information about
the form of the PDE and its dependence on the unknown coefficient.
Furthermore, in all three benchmarks we used Dirichlet boundary
conditions that are imposed using additional collocation points on the
boundary as in (17). Following Remark 2.1 one could incorporate other
standard boundary conditions using the same approach as outlined
in [49].

For operator learning we used our kernel method and SINDy for
Steps (i) and (ii) and used the resulting þ ’s coupled with the kernel
solver of [49] for Step (iii); The hyper parameters �þ , �ð were chosen
using CV once more and following the same approach as [49]. Re-
sults were further compared with the DeepONet algorithm [69] (both
the original version and the POD-DeepONet) and the Fourier Neural
Operator (FNO) method of [14], trained using the same training data
set, to learn the mapping from the source term f to the solution u.
Throughout the experiments we also used a second POD-DeepONet,
denoted as POD-DeepONet (L) in our tables, which is a large network
that we tuned to maximize performance and achieve the closest results
to our kernel method. This model serves to show the additional com-
plexity of the neural net that is needed to match the performance of
the much simpler three step approach. All operator learning methods
were validated on a test set consisting of new pairs of solutions and
source terms. Errors were computed via comparison to an independent
high-resolution PDE solver that was taken as ground truth.

3.1. Pendulum

The following system of ODEs modeling the motion of a pendulum
was considered

(u1)t(t) = u2(t), (u2)t(t) = −k sin(u1(t)) + f (t), (18)

subject to u1(0) = u2(0) = 0. Note that here we used the parameter t as
our input parameter rather than just x as is common notation in ODE
and PDE literature. The training data for this experiment consists of the
pairs of solutions and forcing functions (u(i)(tj), f

(i)(tj)) for i = 1,& , I

(we took I = 10 or 20). Each forcing f (i) was drawn from a GP (Gaussian
Process) and the points tj were distributed uniformly over a fine mesh;
see Fig. 1.

Equation Learning: The function þ was learned using our kernel
approach for Step (ii) as well as SINDy.7 We took I = 20 (size of the
training set) and for testing, the forcing terms f (i) were perturbed using
the formula f (i)

�
= f (i)(t) + � sin(5�t), the parameter � controls size of

the perturbation and hence, the departure of the test and training sets.
The ODEs were then solved using an independent solver to obtain the
perturbed solutions u(i)

�
. The kernel smoothing of Step (i) was then used

to estimate the pertinent derivatives of the u(i)
�
which were then used to

define a new set of inputs over which the error between þ and þ was
computed for our kernel method and SINDy. The results are reported in
Fig. 2 (left) where we observe that our approach with ù taken to be the
polynomial kernel almost perfectly matches SINDy (the points appear
to overlap) and the learned equations are very robust to perturbations
of the test set, a sign that þ is a good global approximation to þ . Taking
ù to be the ARD kernel (an anisotropic variant of the RBF family)

7 see the Appendix for details such as the SINDy dictionary and definition
of kernels in our method.

Physica D: Nonlinear Phenomena 460 (2024) 134095

6

D. Long et al.

Fig. 1. (Left) the forcing terms used to generate the training data for the pendulum ODE. (Middle) comparing the ODE solutions obtained from our model and SINDy for one
of the test forcing terms. (Right) comparing the ODE solutions obtained from POD-DeepONet, FNO, and DeepONet for one of the test forcing terms. Results were obtained with
training set of size 20.

Fig. 2. Experimental results for the pendulum ODE (18). (Left) Test error of the learned function P with our method vs. SINDy for the pendulum ODE. The parameter � controls
the departure of the test and training forcing terms. Results for the polynomial kernel overlapped with SINDy. (Right) Average L2 relative errors for the operator learning task
of pendulum system computed for 50 test forcing functions. Standard deviations are reported in brackets. (L) indicates the large network variant of POD-DeepONet. Bold text
indicates the best errors.

results in drastically different behavior where the error is larger and
grows with �, a sign that þ approximates þ only locally in this setting.

Operator Learning: For operator learning we used our method and
SINDy to learn þ as above with training data of size I = 10 and 20 and
compared our three-step approach to DeepONets and FNO. The trained
models were then validated on a test set of 50 solution-forcing pairs
that were generated by the same procedure as the training set. Fig. 2
(right) compares the average L2 errors for the operator learning of the
pendulum model. We observed that our method with the polynomial
kernel is able to achieve the best performance although the errors are
close to the ARD kernel and SINDy. The POD-DeepONet (L) model
is the next competitive model despite being an order of magnitude
worse and using a much larger neural network, i.e., more expensive
parameterization. A sample of the predicted solutions for all seven
methods is presented in Fig. 1. In particular, it is visually clear that
the predicted solutions using the learned DEs are more accurate than
the neural net methods.

We also repeated our experiments by adding Gaussian noise to
the training data (we used a noise to signal ratio of 0.1), meaning
that the solution-forcing terms are no longer satisfying the underlying
DE exactly. Results for this experiment are summarized in Table 1.
As expected, this additional noise reduces the accuracy of all models
but our method using the ARD kernel was still able to achieve the
best performance. We note that the SINDy method also had very close
performance. FNO achieved the next best result but it was still worse
by a factor of 2. Overall the performance gap between the DE learning
approach and the neural net methods was smaller in this case indicating
that the loss of information due to the additional noise had likely
diminished the advantage of our framework.

3.2. Nonlinear diffusion PDE

The following second order nonlinear PDE was considered for our
second set of experiments

ut(x, t) = 0.01uxx(x, t)+0.01u
2(x) + f (x), (x, t) * (0, 1) × (0, 1], (19)

subject to boundary conditions u(0, t) = u(1, t) = 0 for t * (0, 1] and
initial conditions u(x, 0) = 0, for x * (0, 1). Similar to Section 3.1, the
training data was generated by drawing random sources f (i)(x) from
a GP with the RBF kernel; note that f is only a function of x here.

Table 1
Average L2 relative errors for the operator learning task computed for 50 test forcing
functions with 0.1 noise level in the training data. Standard deviations are reported
in brackets. For our method, we report the best one from the ARD kernel and the
polynomial kernel. (L) indicates the large network variant of POD-DeepONet. Bold text
indicates the best errors.

Method Pendulum Diffusion Darcy Flow

Our method Ă.Ĉă−ā(ā.Ăă−Ă) ą.Ăă−ā(ă.ąă−Ă) 7.7e−2(5.0e−3)

POD-DeepONet 9.7e−2(1.3e−2) 1.4e−1(1.1e−2) 9.8e−2(7.2e−3)

POD-DeepONet (L) 8.1e−2(1.0e−2) 1.0e−1(8.8e−3) Ć.āă−ā(ą.Ąă−Ă)

FNO 8.0e−2(6.8e−3) 7.7e−2(5.0e−3) 8.8e−2(9.0e−3)

DeepONet 1.5e−1(1.9e−2) 2.3e−1(1.8e−2) 1.5e−1(1.6e−2)

SINDy 4.1e−2(3.8e−3) 6.8e−2(2.3e−3) N/A

As a benchmark PDE solver in this example we used the same finite-
difference solver used by [13] with a higher resolution to serve as an
independent proxy for exact solutions of the PDE.

Equation learning:. We followed the same recipe as the equation dis-
covery experiments from Section 3.1 to compare our kernel approach:
We used the RBF kernel in step (i), and took ù to be the ARD and
polynomial kernels in Step (ii) and compared with SINDy. we trained
the models using a training data set of size I = 20 and tested the learned
þ functions on a test set that was obtained via perturbation of the
training set, parameterized by the � parameter controlling the deviation
of the test set from the training set. The results of our experiments are
presented in Fig. 3. Here we see a similar picture to the case of the
pendulum ODE, i.e, the polynomial kernel matched the performance
of SINDy, and yielded a global approximation while the ARD kernel
resulted in a local approximation that for Small � appears and for test
points close to the training set appears to match the performance of
SINDy but the errors grow rapidly as we deviate from the training set.

Operator learning:. For operator learning experiments we followed the
recipe of Section 3.1 once more. All models were trained on data sets
of size I = 10 and 20 and validated on a test set of size 50, all generated
using the same procedure but independently. Fig. 3 (right) summarizes
our results with the exact training data. We observe similar trends as
the pendulum example with the polynomial kernel achieving the best
errors with SINDy achieving slightly worse performance. Interestingly,
in this case the ARD kernel appears to perform significantly worse.
Among the neural net methods the large POD-DeepONet was most

Physica D: Nonlinear Phenomena 460 (2024) 134095

7

D. Long et al.

Fig. 3. Experimental results for the nonlinear diffusion PDE (19). (Left) Test error of the learned function P with our method vs. SINDy for the pendulum ODE. The parameter �
controls the departure of the test and training forcing terms. Results for the polynomial kernel overlapped with SINDy. (Right) Average L2 relative errors for the operator learning
task of nonlinear diffusion computed for 50 test forcing functions. Standard deviations are reported in brackets. (L) indicates the large network variant of POD-DeepONet. Bold
text indicates the best errors.

Fig. 4. A comparison of the estimated solutions to the diffusion PDE for one of the
forcing terms in the test set with training set of size I = 20.

competitive. We also performed the experiments after adding artificial
noise to the training data; the results are presented in Table 1. Once
again we found that our method achieved the lowest error, followed
closely by SINDy. The FNO was once again the best performing neural
net based methods. A sample of the predicted solutions of all methods
over the test set is presented in Fig. 4.

3.3. Darcy flow

For our third and final example we considered the Darcy flow PDE

− div (a∇u) (x) = f (x), x * (0, 1)2, (20)

subject to homogeneous Dirichlet boundary conditions. The coefficient
a is a spatially variable field given by a(x) = exp

(
sin(�x1) + sin(�x2)

)
+

exp
(
− sin(�x1) − sin(�x2)

)
. In this experiment we excluded SINDy as

Table 2
Average L2 relative errors for the operator learning task of Darcy Flow computed for
50 test forcing functions. Standard deviations are reported in brackets. (L) indicates
the large network variant of POD-DeepONet. Bold text indicates the best errors.

Method 10 sources 20 sources

ù =ARD Ā.ăă−ā(Ā.Ąă−Ă) Ć.Āă−Ă(Ā.ÿă−Ă)

POD-DeepONet 1.1e−1(1.2e−2) 3.6e−2(3.2e−3)

POD-DeepONet (L) 1.7e−2(1.6e−3) 1.1e−2(1.1e−3)

FNO 2.3e−1(2.3e−2) 4.3e−2(3.6e−3)

DeepONet 3.7e−1(4.2e−2) 1.2e−1(1.4e−2)

the construction of an appropriate dictionary for PDEs with spatially
variable coefficients is not possible without additional prior knowledge;
see Section 4. Therefore, here we focus primarily on the operator
learning problem and compare with the neural nets.

Our experiments follow a similar setup to the previous problems.
Once again the models were trained using data sets of size I = 10 or
20 and tested on a set of size 50 with forcing terms drawn from a GP.
We also excluded the polynomial kernel as it was not competitive in
this example. The results of our experiments with exact training data
are summarized in Table 2 where our method with the ARD kernel
achieved the lowest error followed closely by the large POD-DeepONet.
Experimental results with the noisy training set are presented in Ta-
ble 1. Interestingly, in this setting large POD-DeepONet achieved the
best errors followed very closely by our method (the difference is well
withing the standard deviation of the errors). In fact, the difference
between our method, POD-DeepONet and FNO was quite small in this
experiment compared to the previous two examples. Fig. 5 shows a
sample of the predicted solutions from the test set for all methods.

3.4. Main takeaways from experiments

Our experiments focused on the two distinct tasks of equation learn-
ing and operator learning. We make three primary observations regard-
ing equation learning: (a) kernel smoothing is a good pre-processing
step for denoising and estimation of gradient information before learn-
ing DEs for both SINDy and the kernel approach. In fact, our kernel
method for Step (i) extends the applicability of SINDy to training data
that is provided on unstructured meshes; (b) the performance of the
kernel method for step (ii) is closely tied to the choice of the kernel ù:
With the polynomial kernel we matched the performance of SINDy in
the pendulum and diffusion examples while the ARD kernel resulted in
a local approximation to þ8; (c) Our kernel approach is more widely
applicable than SINDy as demonstrated with the Darcy flow PDE where
it is unclear how one could construct a dictionary for SINDy to begin
with due to the unknown spatially variable coefficient. Here the ARD
kernel appeared to yield good results while the polynomial kernel was
far from being competitive. This is precisely due to the fact that the

8 This is not surprising considering the fact that both methods are solving
optimal recovery problems over the monomial basis. However, SINDy would
impose a sparsity bias in that basis while the kernel approach does not.

Physica D: Nonlinear Phenomena 460 (2024) 134095

8

D. Long et al.

Fig. 5. A comparison of the estimated solutions to the Darcy flow PDE for one of the
forcing terms in the test set with training set of size I = 20.

Polynomial kernel (and by extension dictionaries involving polynomial
terms) are insufficient for capturing a variable coefficient PDE.

Our results concerning operator learning led to two primary ob-
servations: (a) operator learning via equation learning consistently
outperformed neural net methods when exact training data was avail-
able (often by an order of magnitude); (b) the performance gap was
smaller when noisy training data was involved but even then our
method was (barely) beaten by the POD-DeepONet algorithm for the
Darcy Flow example only. It is noteworthy that the POD-DeepONet
was using a significantly larger set of parameters than our (much
simpler) kernel method and it took significant tuning and architecture
adjustment to achieve this level of performance.

4. Discussions and conclusions

Below we collection some discussions and concluding remarks that
place our abstract framework as well as our kernel implementation of
equation and operator learning within the context of existing methods
in the literature for both tasks.

4.1. Our abstract framework

We highlight that our abstract three-step framework from Section 2
unifies many existing equation learning/discovery methods under the
umbrella of optimal recovery and extends them to perform operator
learning. For example, choosing ö in Step (i) to be the appropriate
RKHS associated to splines, we obtain the spline method implemented
in the PySINDy package [23] for estimating gradients. One can also
take ö to be a Barron space [70] to obtain a neural net approximation
for the derivatives as is done in PINNs. Choosing a sparsity promoting
norm such as a 0-norm or a 1-norm (with r = 1) in Step (ii) yields
methods such as SINDy while a Barron norm will yield a neural net
approach such as PDE-Net [29,30]. The same is also true for Step (iii),
one can choose ö to be a neural net space to obtain solvers such as

PINNs [50], or even a finite-dimensional subset of a Sobolev space
towards obtaining a finite element solver.

We emphasize that the choice of the spaces ö,ö2 in Steps (i3iii) and
more broadly, the models employed at each step, are largely dependent
on the available data and information for the problem at hand, as well
as downstream tasks in engineering or scientific pipelines as we will
discuss in the paragraphs below.

4.2. Discovering DEs with kernels vs sparse recovery

The primary focus of the equation learning literature (see for exam-
ple [9,10,12,24]) has been the extraction of explicit and interpretable
equations that describe natural laws that govern physical processes.
In our framework, this amounts to finding a human interpretable and
simple expression for þ . In this perspective, it is therefore natural
to formulate Step (ii) over an appropriate set of features for þ and
impose a sparsity assumption on those features as is customary in the
SINDy method. Our kernel approach on the other hand, does not aim
to find a human interpretable expression for þ but rather approximates
þ with a large number of features (possibly infinite) with the hope
of achieving the most robust and accurate approximation to þ . The
difference between these two perspectives has major implications in
terms of their performance and applicability:

4.2.1. Downstream tasks
Whether or not one chooses to employ a sparse recovery approach to

learning DEs or our kernel method should be decided by downstream
tasks and pipelines and how the learned equation þ will be utilized.
For example, in a scientific discovery application, where the goal is
to discover new physical laws governing a phenomenon of interest, it
is natural to employ sparse recovery to achieve a solution þ that is
interpretable by a human as was done in the original works [9,10].

On the other hand, in operator learning or data-driven simulation
scenarios, it is more important to obtain an accurate and robust þ over
a large or redundant set of features in which case our kernel method is
more desirable. We also emphasize that in such scenarios one should
still take advantage of a good dictionary of features if additional a priori
information is available. This can be easily achieved for the kernel
method by taking the original kernel ù and augmenting it with the
kernel defined by the feature maps from the dictionary that is

ùaug(đ, đ
2) ∶= ù(đ, đ2) +

L1
ā=1

Fā(đ)Fā(đ),

where we used {Fā}
L
ā=1

for Fā ∶ RJP ³ R to denote a set of features
from a given dictionary. Then the set of feature maps of the resulting
kernel ùaug is precisely the union of the Fā with the feature maps of
ù, and is therefore a more expressive kernel.

4.2.2. Choosing features and the role of a priori knowledge
It is well-known that the performance of sparsity promoting meth-

ods such as SINDy is closely tied to the construction of a good dic-
tionary, in fact, in all of our experiments we used the dictionaries
that were suggested by previous authors and were known to give
competitive results. Due to its bias towards sparse solutions in the
prescribed dictionary, it is often easy to setup SINDy to fail buy simply
choosing a bad dictionary. We did not present such examples in this
paper as we believe this to be an unfair comparison that is not related
to how SINDy is often used in practice. To this end, if we have a
good dictionary and the training data is sufficient, then we expect
sparsity promoting methods to perform well. This fact has motivated
various approaches, such as the Ensemble-SINDy [71], that aim to
automate and improve the construction of dictionaries. However, there
are various situations where the explicit construction of a dictionary
is impossible. Consider our Darcy flow PDE (2) with a coefficient a(x)
that is unknown. In this case one cannot construct a simple dictionary

Physica D: Nonlinear Phenomena 460 (2024) 134095

9

D. Long et al.

of functions (such as polynomials) for þ . This is of course possible if
we knew the regularity of a(x) and the manner in which þ depends on
a but then we are injecting strong prior information into the problem
but this may be unrealistic.

Broadly speaking, the kernel approach, thanks to its large/infinite
number of feature maps, is more suitable in situations where very little
information about the form of þ is available and variable coefficients
exist. Another major advantage of the kernel approach is that it nat-
urally accommodates the tuning/learning of kernel parameters which
amounts to tailoring the feature maps (the dictionary terms) to the
problem at hand. This extra flexibility is what allowed us to obtain
superior results in our operator learning experiments using CV. To
our knowledge, when sparsity promoting techniques are employed for
equation learning, the dictionary itself is rarely tuned.

4.3. Operator learning via DE learning vs function space regression

At the moment the dominant approach to operator learning in the
literature can be broadly categorized as regression of maps between
function spaces. Many existing algorithms such as DeepONets [13,69],
FNOs [14,48], the multipole graph neural operator [72], and the PCA-
Net [17], fall within this category. Our approach to operator learning
is fundamentally different from these methods as it relies on first
learning the functional form of the PDE (that is þ), and then solving the
learned PDE with a new forcing or boundary data. To our knowledge,
our approach is the first of its kind and our experiments suggest that
operator learning via PDE learning is significantly more data efficient
and gives superior performance in small data regimes if our goal is to
obtain the most accurate approximation to the operator. We conjecture
this is due to the fact that our method uses explicit knowledge of the
fact that the operator of interest is the solution map of a PDE. On the
other hand, if our ultimate goal for operator learning is to obtain a
cheap/fast approximation to the solution map, for example as a model
emulator in an engineering workflow, then function space regression
techniques may be more appropriate.

CRediT authorship contribution statement

Da Long: Investigation, Software, Validation, Visualization. Nicole
Mrvaljević: Conceptualization, Formal analysis, Investigation, Valida-
tion, Visualization. Shandian Zhe: Conceptualization, Funding acqui-
sition, Investigation, Resources, Supervision, Writing 3 original draft.
Bamdad Hosseini: Conceptualization, Formal analysis, Investigation,
Methodology, Supervision, Writing 3 original draft, Writing 3 review &
editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Bamdad Hosseini reports financial support was provided by Na-
tional Science Foundation. Shandian Zhe reports financial support was
provided by National Science Foundation.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to dedicated this article to Prof. Nilima
Nigam in celebration of her 50th birthday. They are also grateful to
the reviewers for their insightful comments and suggestions. SZ has
been supported by NSF, United States of America grants CAREER IIS-
2046295, and OAC-2311685. BH is supported by the NSF, United States
of America grant DMS-2208535.

Table 3
The hyper-parameters we used for the pendulum experiments for exact training sets of
size I = 10, 20 as well as the noisy training set of size I = 20.

Hyper-parameters I = 10 I = 20 I = 20 (Noisy)

(i): �ă 1.0e−8 1.0e−8 1.0e−8

u1 � (0.15, 0.45) (0.15, 0.65)

u2 � (0.1, 0.4) (0.1, 0.8)

(ii): �ù 1.0e−5 1.0e−5 1.0e−1

þ1

ā1 = ā2 0.52 1.0 1.0
d 5 3 1
c 3.5 0.015 0.01

þ1

ā1 = ā2 3.0 2.4 1.9
d 5 3 1
c 2.8 0.01 0.01

Table 4
The hyper-parameters we used for the diffusion experiment for exact training sets of
size I = 10, 20 as well as the noisy training set of size I = 20. Reported ‘‘Failed’’ values
indicate high errors that were not competitive.

Hyper-parameters I = 10 I = 20 I = 20 (Noisy)

(i): �ă 1.0e−3 1.0e−3 1.0e−3

� (0.15, 0.7) (0.4, 1.0)

(ii): �ù 1.0e−3 1.0e−3 1.0e−3

(ā1 ,& ,ā3) (0.50, 1.3, 0.13) (0.50, 1.3, 0.13) (0.50, 2.0, 0.25)

d 2 2 Failed

c 0.23 0.0 Failed

Appendix. Details of experiments

Below we present additional details regarding our experiments in
Section 3.

A.1. Common setup

For the kernel PDE solver in Step (iii) we used the implementation
of [49] (https://github.com/yifanc96/NonLinPDEs-GPsolver). For es-
timation of derivatives in our method and the training of DeepONets
we used Jax. For FNO we used the code base provided by the authors
in [14]. The POD-DeepONet was implemented using Pytorch. We used
Python to implement SINDy, with iterative thresholding, with NumPy
for the least squares step.

For all three DEs we conducted the experiments with I = 10 and 20

pairs of solutions-sources (the u(i), f (i) pairs in Section 2) in the training
set. In the I = 20 case we also conducted experiments with a noisy
training set where a Gaussian noise of noise-to-signal ratio 0.1 was
added to both the training solutions and the training sources. In all
of these experiments we validated the models on the same test set of
50 solution3source pairs.

For solving the optimization problem (17) we used the Gaussian-
Newton algorithm of [49] for the pendulum ODE and the Diffusion PDE
with 50 iterations. In the case of the Darcy flow PDE we ran 4000 steps
of L-BFGS with step sizes of 0.2 and 0.5. For all of the kernel matrices
involved in our implementation we used diagonal nugget terms of the
form �I , where � > 0 is a constant and I is an identity matrix of the
same size as the requisite kernel matrix; also see Section 2.4. The value
of � was tuned for each experiment separately; see Tables 335 for a
summary of the chosen nuggets.

For the POD-DeepONet we set the number of bases to maximum
and varied the number of hidden layers from 2 to 3, and the width
over 256, 512, and 1024. We trained for 100000 epochs to ensure
convergence. We also trained a large variant of the POD-DeepONet
(denoted as POD-DeepONet (L)) in all examples, where we set the width
of the network to 8192. We implemented FNO using the standard four
layer architecture for the integral operators, and varied the width over
64, 128, and 256. We trained the model for 4000 epochs to make sure it
had converged. Finally we implemented the standard DeepONet with 2

https://github.com/yifanc96/NonLinPDEs-GPsolver

Physica D: Nonlinear Phenomena 460 (2024) 134095

10

D. Long et al.

Table 5
The hyperparameters we used for the Darcy Flow experiments for exact training sets of size I = 10, 20 as well as noisy training set of size I = 20.

Hyper-parameters I = 10 I = 20 I = 20 (Noisy)

(i): �ă 1.0e−8 1.0e−8 1.0e−2

� (0.15, 0.35) (0.05, 0.5)

(ii): �ù 1.0e−3 1.0e−3 1.0e−1

(ā1 ,& ,ā6) (1.2, 1.2, 8.0, 8.0, 10.0, 10.0) (0.4, 0.4, 3.2, 3.2, 5.0, 5.0) (0.64, 0.64, 2.0, 2.0, 3.0, 3.0)

and 3 hidden layers and varied the width from 256, 512, and 1024 and
trained for 100000 epochs. All of the above neural nets were trained
using the Adam optimizer. We also used different activation functions
(GELU, Tanh, and ReLU) and varied the learning rates from 1e−3, 1e−4,
and 1e−5. Our reported results for each neural net method were the best
test errors that were obtained by searching over the aforementioned set
of architectures and hyperparameters.

A.2. The kernels

Throughout our experiments we used three kernels in Steps (i)3
(iii) of our framework. The RBF kernel (also known as the squared
exponential or Gaussian kernel)

ĄRBF(ė, ė
2) = exp

(
−
‖ė − ė2‖2

2�2

)
ė, ė2 * R

D,

with hyper-parameter � > 0. We primarily used this kernel in Step (i) of
all of our experiments for smoothing the training data and estimating
the requisite partial derivatives. The same kernel was also used in Step
(iii) and during the implementation of the kernel solver of [49].

We also considered a tensorized anisotropic version of this kernel,
which we referred to as the (automatic relevance determination) ARD
kernel in our experiments:

ĄARD(ė, ė
2) =

D/
j=1

exp

⎛⎜⎜⎝
−
|yj − y2j |2

2ā2
j

⎞⎟⎟⎠
ė, ė2 * R

D,

with hyper-parameters āj > 0. The ARD kernel is simply a tensorization
of 1D Gaussian kernels which uses a different length scale along each
input coordinate. Finally, we also used the polynomial kernel

ĄPoly(ė, ė
2) = (ėT ė2 + c)d , ė, ė2 * R

D,

with hyper-parameter c * R and d * N. We only considered d = 2, 3, 4,
and 5. For all experiments and CV to choose the hyperparameters. The
ARD and polynomial kernels were used in Step (ii) of our framework.

A.3. Details for the pendulum benchmark

The training data was generated by the following recipe: the source
terms f (i) for i = 1,& , I were drawn independently from a GP with
the RBF kernel and lengthscale 0.2, For each source term the ODE was
solved using the SciPy solve_ivp function on a fine grid and sub-sampled
over a uniform grid of the tj ’s for j = 1,& , 30. The test data was gen-
erated using the same recipe except that 50 independent source terms
were drawn. For operator learning the L2 errors between the predicted
solutions and the test solutions were computed over the tj grid and then
averaged over the test set. When implementing SINDy, we implemented
the first equation exactly and only learned the second equation using
the dictionary {(u2)t(t), u1(t), u1(t)

2, u1(t)
3, sin(u1(t)), cos(u1(t)), 1}.

When implementing our method we learned each equation in the
system separately assuming that the right hand side for each coordinate
is a function of both u1 and u2, i.e., we considered the system of ODEs

(u1)t(t) = þ1

(
u1(t), u2(t)

)

(u2)t(t) = þ2

(
u1(t), u2(t)

)
.

All hyperparameters involved in the training of our kernel method for
this example are summarized in Table 3. We used the Gaussian kernel
for Step (i) but length scales were tuned for each instance of the data

separately, therefore we report only the range of � for each coordinate
of the solution. The Gaussian kernel was also used for Step (iii) with
a lenghthscale that was chosen in the same range that was tuned for
Step (i). We also used different lengthscales for each of þ1 and þ2 as
indicated in the table.

A.4. Details for the diffusion PDE benchmark

The test data set was generated by drawing the source terms from
the same GP as in the pendulum example of Appendix A.3. The solution
u(i)(x, t) for each force f (i)(x) was computed on a fine grid using an
independent finite difference solver before they were subsampled to
a space3time grid of size 15 × 15, constituting the training set, so
for each tuple (u(i), f (i)) we collected a total of 225 values for a total
training set size of I = 10 and 20. The test data set was produced
in the same manner for 50 pairs of solutions and sources. The errors
were once again computed by averaging the L2 errors over the test
set. When implementing SINDy we used the dictionary of functions
{ut, uxx, u, u

2, u3, u ç uxx, u
2
ç uxx, u

3
ç uxx, u ç ut, u

2
ç ut, u

3
ç ut, 1}.

We parameterized the PDE as

þ(u(x, t), ut, uxx(x, t)) = f (x).

All hyperparameters involved in the training of our kernel method
for this example are summarized in Table 4. Once again we used the
Gaussian kernel for Step (i) while the ARD and polynomial kernels
were used for Step (ii). Step (iii) also used the Gaussian kernel with
a lengthscale that was chosen in the same range that was found in Step
(i). We also present an example of the predicted solutions of the PDE
from the test set in Fig. 4.

A.5. Details for the Darcy flow benchmark

The training and test sources for the Darcy flow PDE were generated
by taking f (x1, x2) � f (x2) and drawing this function from a 1D GP
with the RBF kernel and length scale 0.2. The PDE was then solved
using a finite difference solver, on a fine mesh and the solutions were
subsampled to a uniform grid of size 15 × 15, following a similar
scheme to the diffusion PDE. The test set was generated in the same
manner.

We parameterized the PDE as

þ(x1, x2, u, ux1 , ux2 , �u) = f (Ė).

All hyperparameters involved in the training of our kernel method for
this example as summarized in Table 5. The Gaussian kernel was used
for Step (i) while the ARD kernel was used for Step (ii). Our experiments
using the polynomial kernel for this step lead to bad results. Step (iii)
also used the Gaussian kernel with a lengthscale that was chosen in the
range that was tuned in Step (i). Example solutions from the test set are
presented in Fig. 5.

References

[1] K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and
Engineering, Cambridge University Press, 1999.

[2] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Political
Econ. 81 (3) (1973) 6373654.

[3] L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, 2005.
[4] J.E. Marsden, T.J. Hughes, Mathematical Foundations of Elasticity, Dover Books,

1994.

http://refhub.elsevier.com/S0167-2789(24)00046-0/sb1
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb1
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb1
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb2
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb2
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb2
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb3
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb4
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb4
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb4

Physica D: Nonlinear Phenomena 460 (2024) 134095

11

D. Long et al.

[5] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343,
American Mathematical Society, 2001.

[6] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang,
Physics-informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440.

[7] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
L. Zdeborová, Machine learning and the physical sciences, Rev. Modern Phys.
91 (4) (2019) 045002.

[8] J. Willard, X. Jia, S. Xu, M. Steinbach, V. Kumar, Integrating physics-based
modeling with machine learning: A survey, 2020, arXiv preprint arXiv:2003.
04919.

[9] J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical
systems, Proc. Natl. Acad. Sci. 104 (24) (2007) 9943–9948.

[10] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data,
Science 324 (5923) (2009) 81–85.

[11] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, vol. 160,
Springer Science & Business Media, 2006.

[12] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data
by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci.
113 (15) (2016) 3932–3937.

[13] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators
via DeepONet based on the universal approximation theorem of operators, Nat.
Mach. Intell. 3 (3) (2021) 218–229.

[14] Z. Li, N.B. Kovachki, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandku-
mar, et al., Fourier neural operator for parametric partial differential equations,
in: International Conference on Learning Representations, 2020.

[15] P. Batlle, M. Darcy, B. Hosseini, H. Owhadi, Kernel methods are competitive for
operator learning, 2023, arXiv preprint:2304.13202.

[16] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial
differential equations, Sci. Adv. 3 (4) (2017) e1602614.

[17] K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and
neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021) 121–157.

[18] Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Anandkumar, Neural
operator: Learning maps between function spaces with applications to PDEs, J.
Mach. Learn. Res. 24 (89) (2023) 1–97.

[19] H.G. Bock, Recent advances in parameter identification techniques for ode, in:
Numerical Treatment of Inverse Problems in Differential and Integral Equations,
Springer, 1983, pp. 95–121.

[20] H.G. Bock, Numerical treatment of inverse problems in chemical reaction
kinetics, in: Modelling of Chemical Reaction Systems, Springer, 1981, pp.
102–125.

[21] A. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010)
451–559.

[22] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods,
and Applications, vol. 112, American Mathematical Soc., 2010.

[23] B.M. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J.N. Kutz, S.L. Brunton,
Pysindy: a python package for the sparse identification of nonlinear dynamics
from data, 2020, arXiv preprint arXiv:2004.08424.

[24] H. Schaeffer, Learning partial differential equations via data discovery and sparse
optimization, Proc. R. Soc. A 473 (2197) (2017) 20160446.

[25] S.H. Kang, W. Liao, Y. Liu, Ident: Identifying differential equations with
numerical time evolution, J. Sci. Comput. 87 (1) (2021) 1–27.

[26] H. Owhadi, C. Scovel, G.R. Yoo, Kernel Mode Decomposition and the
Programming of Kernels, Springer, 2021.

[27] Y. He, N. Suh, X. Huo, S.H. Kang, Y. Mei, Asymptotic theory of-regularized PDE
identification from a single noisy trajectory, SIAM/ASA J. Uncertain. Quant. 10
(3) (2022) 1012–1036.

[28] Y. He, H. Zhao, Y. Zhong, How much can one learn a partial differential equation
from its solution? 2022, arXiv preprint arXiv:2204.04602.

[29] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-Net: Learning pdes from data, in:
International Conference on Machine Learning, PMLR, 2018, pp. 3208–3216.

[30] Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: Learning PDEs from data with a
numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019) 108925.

[31] B. Hamzi, H. Owhadi, Learning dynamical systems from data: a simple cross-
validation perspective, part I: parametric kernel flows, Physica D 421 (2021)
132817.

[32] M. Darcy, B. Hamzi, J. Susiluoto, A. Braverman, H. Owhadi, Learning dynamical
systems from data: a simple cross-validation perspective, part II: nonparametric
kernel flows, 2021.

[33] J. Lee, E. De Brouwer, B. Hamzi, H. Owhadi, Learning dynamical systems from
data: A simple cross-validation perspective, Part III: Irregularly-sampled time
series, Physica D 443 (2023) 133546.

[34] B. Hamzi, H. Owhadi, Y. Kevrekidis, Learning dynamical systems from data:
A simple cross-validation perspective, part iv: case with partial observations,
Physica D (2023) 133853.

[35] L. Yang, X. Sun, B. Hamzi, H. Owhadi, N. Xie, Learning dynamical systems from
data: A simple cross-validation perspective, Part V: Sparse kernel flows for 132
chaotic dynamical systems, 2023, arXiv preprint arXiv:2301.10321.

[36] L. Yang, B. Hamzi, Y. Kevrekidis, H. Owhadi, X. Sun, N. Xie, Learning Dynamical
Systems from Data: A Simple Cross-Validation Perspective, Part VI: Hausdorff
metric based training of kernels to learn attractors with application to 133
chaotic dynamical systems, 2023.

[37] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach,
Dover Publications, 2003.

[38] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method
Approach, Princeton University Press, 2010.

[39] A. Cohen, R. DeVore, Approximation of high-dimensional parametric PDEs, Acta
Numer. 24 (2015) 1–159.

[40] J.S. Hesthaven, G. Rozza, B. Stamm, et al., Certified Reduced Basis Methods for
Parametrized Partial Differential Equations, vol. 590, Springer, 2016.

[41] D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for
computational physics, Prog. Aerosp. Sci. 40 (1–2) (2004) 51–117.

[42] J. Beck, R. Tempone, F. Nobile, L. Tamellini, On the optimal polynomial
approximation of stochastic PDEs by Galerkin and collocation methods, Math.
Models Methods Appl. Sci. 22 (09) (2012) 1250023.

[43] A. Chkifa, A. Cohen, R. DeVore, C. Schwab, Sparse adaptive taylor approximation
algorithms for parametric and stochastic elliptic PDEs, ESAIM Math. Model.
Numer. Anal. 47 (1) (2012) 253–280.

[44] A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial
interpolation and applications to parametric PDEs, Found. Comput. Math. 14 (4)
(2014) 601–633.

[45] F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method
for partial differential equations with random input data, SIAM J. Numer. Anal.
46 (5) (2008) 2309–2345.

[46] F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic
collocation method for partial differential equations with random input data,
SIAM J. Numer. Anal. 46 (5) (2008) 2411–2442.

[47] M.D. Gunzburger, C.G. Webster, G. Zhang, Stochastic finite element methods for
partial differential equations with random input data, Acta Numer. 23 (2014)
521–650.

[48] A. Anandkumar, K. Azizzadenesheli, K. Bhattacharya, N. Kovachki, Z. Li, B.
Liu, A. Stuart, Neural operator: Graph kernel network for partial differential
equations, in: ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations, 2020.

[49] Y. Chen, B. Hosseini, H. Owhadi, A.M. Stuart, Solving and learning nonlinear
PDEs with Gaussian processes, J. Comput. Phys. 447 (2021) 110668.

[50] M. Raissi, P. Perdikaris, Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear
partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[51] C. Jidling, N. Wahlström, A. Wills, T.B. Schön, Linearly constrained Gaussian
processes, Adv. Neural Inf. Process. Syst. 30 (2017).

[52] J. Schmidt, N. Krämer, P. Hennig, A probabilistic state space model for joint
inference from differential equations and data, Adv. Neural Inf. Process. Syst. 34
(2021) 12374–12385.

[53] M. Gulian, A. Frankel, L. Swiler, Gaussian process regression constrained by
boundary value problems, Comput. Methods Appl. Mech. Engrg. 388 (2022)
114117.

[54] S. Zhang, X. Yang, S. Tindel, G. Lin, Augmented Gaussian random field: Theory
and computation, Discrete Contin. Dyn. Syst. S 15 (4) (2022) 931.

[55] N. Krämer, N. Bosch, J. Schmidt, P. Hennig, Probabilistic ODE solutions in
millions of dimensions, in: International Conference on Machine Learning, PMLR,
2022, pp. 11634–11649.

[56] A. Besginow, M. Lange-Hegermann, Constraining Gaussian processes to systems
of linear ordinary differential equations, in: Advances in Neural Information
Processing Systems.

[57] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential
equations using Gaussian processes, J. Comput. Phys. 348 (2017) 683–693.

[58] C. Mou, X. Yang, C. Zhou, Numerical methods for mean field games based on
Gaussian processes and Fourier features, J. Comput. Phys. 460 (2022) 111188.

[59] L.C. Evans, Partial Differential Equations, AMS, 2010.

[60] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability
and Statistics, Springer Science & Business Media, 2011.

[61] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, 2002.

[62] H. Owhadi, C. Scovel, Operator-Adapted Wavelets, Fast Solvers, and Numerical
Homogenization: from a Game Theoretic Approach To Numerical Approximation
and Algorithm Design, vol. 35, Cambridge University Press, 2019.

[63] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al., Kernel mean
embedding of distributions: A review and beyond, Found. Trends Mach. Learn.
10 (1–2) (2017) 1–141.

[64] M.G. Genton, Classes of kernels for machine learning: a statistics perspective, J.
Mach. Learn. Res. 2 (Dec) (2001) 299–312.

[65] C. Williams, C. Rasmussen, Gaussian processes for regression, Adv. Neural Inf.
Process. Syst. 8 (1995).

[66] S. Sundararajan, S. Keerthi, Predictive app roaches for choosing hyperparameters
in Gaussian processes, Adv. Neural Inf. Process. Syst. 12 (1999).

[67] M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis, J. R. Stat.
Soc. Ser. B Stat. Methodol. 61 (3) (1999) 611–622.

[68] S. Ameli, S.C. Shadden, Noise estimation in Gaussian process regression, 2022,
arXiv preprint arXiv:2206.09976.

http://refhub.elsevier.com/S0167-2789(24)00046-0/sb5
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb5
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb5
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb6
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb6
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb6
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb7
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb7
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb7
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb7
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb7
http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/2003.04919
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb9
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb9
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb9
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb10
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb10
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb10
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb11
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb11
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb11
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb12
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb12
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb12
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb12
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb12
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb13
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb13
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb13
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb13
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb13
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb14
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb14
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb14
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb14
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb14
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb15
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb15
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb15
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb16
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb16
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb16
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb17
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb17
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb17
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb18
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb18
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb18
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb18
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb18
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb19
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb19
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb19
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb19
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb19
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb20
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb20
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb20
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb20
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb20
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb21
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb21
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb21
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb22
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb22
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb22
http://arxiv.org/abs/2004.08424
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb24
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb24
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb24
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb25
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb25
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb25
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb26
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb26
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb26
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb27
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb27
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb27
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb27
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb27
http://arxiv.org/abs/2204.04602
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb29
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb29
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb29
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb30
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb30
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb30
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb31
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb31
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb31
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb31
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb31
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb32
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb32
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb32
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb32
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb32
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb33
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb33
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb33
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb33
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb33
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb34
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb34
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb34
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb34
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb34
http://arxiv.org/abs/2301.10321
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb36
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb37
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb37
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb37
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb38
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb38
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb38
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb39
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb39
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb39
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb40
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb40
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb40
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb41
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb41
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb41
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb42
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb42
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb42
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb42
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb42
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb43
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb43
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb43
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb43
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb43
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb44
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb44
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb44
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb44
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb44
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb45
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb45
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb45
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb45
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb45
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb46
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb46
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb46
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb46
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb46
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb47
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb47
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb47
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb47
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb47
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb48
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb49
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb49
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb49
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb50
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb50
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb50
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb50
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb50
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb51
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb51
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb51
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb52
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb52
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb52
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb52
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb52
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb53
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb53
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb53
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb53
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb53
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb54
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb54
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb54
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb55
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb55
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb55
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb55
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb55
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb56
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb56
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb56
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb56
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb56
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb57
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb57
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb57
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb58
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb58
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb58
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb59
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb60
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb60
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb60
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb61
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb61
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb61
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb62
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb62
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb62
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb62
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb62
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb63
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb63
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb63
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb63
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb63
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb64
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb64
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb64
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb65
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb65
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb65
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb66
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb66
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb66
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb67
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb67
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb67
http://arxiv.org/abs/2206.09976

Physica D: Nonlinear Phenomena 460 (2024) 134095

12

D. Long et al.

[69] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G.E. Karniadakis, A
comprehensive and fair comparison of two neural operators (with practical
extensions) based on fair data, Comput. Methods Appl. Mech. Engrg. 393 (2022)
114778.

[70] C. Ma, L. Wu, et al., The Barron space and the flow-induced function spaces for
neural network models, Constr. Approx. 55 (1) (2022) 369–406.

[71] U. Fasel, J.N. Kutz, B.W. Brunton, S.L. Brunton, Ensemble-SINDy: Robust sparse
model discovery in the low-data, high-noise limit, with active learning and
control, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 478 (2260) (2022)
20210904.

[72] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya, A.
Anandkumar, Multipole graph neural operator for parametric partial differential
equations, Adv. Neural Inf. Process. Syst. 33 (2020) 6755–6766.

http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb69
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb70
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb70
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb70
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb71
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb72
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb72
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb72
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb72
http://refhub.elsevier.com/S0167-2789(24)00046-0/sb72

	A kernel framework for learning differential equations and their solution operators
	Introduction
	Review of the Relevant Literature
	Outline of the Article

	Methodology
	Setup for Nonlinear DEs
	An Abstract Framework for Learning DEs and their Solution Operators
	Brief Review of Representer Theorems for Kernel Regression
	Implementation of the Three-step Framework Using Kernels

	Experiments
	Pendulum
	Nonlinear Diffusion PDE
	Darcy Flow
	Main Takeaways from Experiments

	Discussions and Conclusions
	Our Abstract Framework
	Discovering DEs with Kernels vs Sparse Recovery
	Downstream tasks
	Choosing Features and the Role of a Priori Knowledge

	Operator Learning via DE Learning vs Function Space Regression
	CRediT authorship contribution statement
	Declaration of competing interest

	Data availability
	Acknowledgments
	Appendix. Details of Experiments
	Common Setup
	The Kernels
	Details for the Pendulum Benchmark
	Details for the Diffusion PDE Benchmark
	Details for the Darcy Flow Benchmark

	References

