Impact of Memory Bandwidth on the Performance of Accelerators

Sambit Mishra
sambit98@tamu.edu
Department of Ocean Engineering,
Texas A&M University
College Station, Texas, USA

Dhruva K. Chakravorty
chakravorty@tamu.edu
High Performance Research
Computing, Texas A&M University
College Station, Texas, USA

Lisa M. Perez
perez@tamu.edu
High Performance Research
Computing, Texas A&M University
College Station, Texas, USA

Francis Dang Honggao Liu Freddie David Witherden
francis@tamu.edu honggao@tamu.edu fdw@tamu.edu
High Performance Research High Performance Research Department of Ocean Engineering,
Computing, Texas A&M University Computing, Texas A&M University Texas A&M University

College Station, Texas, USA
ABSTRACT

This study investigates the impact of memory bandwidth of ac-
celerators on the performance of computational simulations, re-
vealing the importance of bandwidth over computational power in
scalable high-order numerical simulations. A detailed analysis per-
formed on an NVIDIA H100 GPU and an Intel MAX 1100 GPU on
the NSF ACES platform, demonstrates how matrix multiplication
characteristics such as matrix size and sparsity influence the de-
mand for memory bandwidth. Utilizing the open-source fluid flow
solver PyFR for the study for its flexibility, efficiency, and alignment
with expected performance, this work emphasizes the necessity
for accelerator designs to prioritize memory bandwidth to enhance
simulation efficiency, particularly in the case of workloads whose
performance is bound by available memory bandwidth.

CCS CONCEPTS

« Applied computing — Physics; « Hardware — Testing with
distributed and parallel systems; « Computing methodolo-
gies — Simulation evaluation; Massively parallel and high-
performance simulations.

KEYWORDS

High-Performance Computing, Graphics Processing Unit, Memory
Bandwidth, Discontinuous Spectral Element Methods, Matrix Mul-
tiplication Kernels, Performance Profiling, Roofline Model, Com-
putational Fluid Dynamics, Simulation Scalability, Performance
Portability, Science-Based Benchmarking

ACM Reference Format:

Sambit Mishra, Dhruva K. Chakravorty, Lisa M. Perez, Francis Dang, Hong-
gao Liu, and Freddie David Witherden. 2024. Impact of Memory Bandwidth
on the Performance of Accelerators. In Practice and Experience in Advanced
Research Computing (PEARC °24), July 21-25, 2024, Providence, RI, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3626203.3670540

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC 24, July 21-25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670540

College Station, Texas, USA

College Station, Texas, USA

1 INTRODUCTION

Over the past decade, graphics processing units (GPUs) have
emerged as a pivotal tool for high-performance computing (HPC).
Its importance has been underscored by the increasing require-
ments of complexity, demands of computational tasks and shifting
towards parallelism, particularly in fields such as computational
fluid dynamics (CFD) [24], where the quest for higher simulation
fidelity continues to push the boundaries of computational capabili-
ties. This quest has also extended to developing different accelerator
designs such as intelligence processing units [13] and cache archi-
tectures in GPUs such as those in the Intel MAX series Data Center
GPUs [9]. At the time of writing, HPC focused GPUs are available
from AMD, and NVIDIA, with Intel’s recent entry marking a new
era of innovation in the development of GPUs. With the ongoing de-
velopments in this field, evaluating and profiling their performance
with industry-level software is essential.

For scientific applications, the performance of a GPU is typi-
cally evaluated based on three parameters: memory capacity, peak
memory bandwidth, and peak floating point operations per sec-
ond (FLOPs). Outside of linear algebra and machine learning appli-
cations, bandwidth is typically the limiting factor. As such when
evaluating GPUs, it is important to consider (i) the actual amount
of available bandwidth compared with the stated peak, (ii) the ease
with which this bandwidth can be accessed by user code, and (iii)
what tools are provided to measure bandwidth being achieved by
kernels. In this paper, we consider these three questions within the
context of CFD for two mainstream GPUs: NVIDIA H100 and Intel
MAX 1100. Both the GPUs are available on the ACES testbed[14].
The performance characteristics of the Intel MAX GPUs which
have not been as extensively tested as the GPUs provided by other
vendors, further motivating this study.

Flux reconstruction (FR) is a numerical method that can be used
for solving the compressible Navier—Stokes (NS) equations of fluid
dynamics. Originally proposed by Huynh [6], FR belongs to the
family of discontinuous spectral element methods, combining the
superior accuracy of spectral methods with the geometric flexibility
of finite volume methods. As a next-generation scheme, FR has
several highly desirable attributes: (i) it is possible to select an
arbitrary order of spatial accuracy, (ii) it operates naturally on
mixed unstructured grids with curved boundaries, and (iii) when

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-7739-3701
https://orcid.org/0000-0003-1176-1027
https://orcid.org/0009-0008-9494-7639
https://orcid.org/0009-0002-2942-9014
https://orcid.org/0000-0003-2343-412X
https://doi.org/10.1145/3626203.3670540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670540

PEARC ’24, July 21-25, 2024, Providence, RI, USA

paired with explicit time stepping exhibits a substantial degree of
structured computation.

This third property makes FR an excellent candidate for modern
computing architectures, including many-core CPUs with wide
vector units, and GPUs. The arithmetic intensity of FR depends on
a variety of factors. These include the element type and the chosen
order of accuracy. In particular, on account of their tensor-product
structure, hexahedral elements have a low arithmetic intensity
whereas tetrahedral elements have an intensity that increases as a
function of the order of accuracy. This variation makes FR a very
good candidate for evaluating the bandwidth of modern accelera-
tors.

In this manuscript, we use FR to evaluate GPUs from NVIDIA
and Intel on the National Science Foundation (NSF) supported ACES
testbed at Texas A&M University, with a particular focus on avail-
able memory bandwidth for numerical simulations. This will be
accomplished through profiling a suite of FR simulations at orders
two through six on both hexahedral and tetrahedral domains. The
remainder of the paper is as follows: Section 2 outlines the FR for-
mulation and the particular characteristics of the approach that
render it suitable for evaluating the performance of accelerators
across streaming architecture. Section 3 explains how the Python-
based open-source CFD solver PyFR [25] is used to benchmark
the NVIDIA H100 GPU and the Intel MAX 1100 GPU using the
Taylor-Green vortex (TGV) breakdown as test case. Highlighting
the performance contrast across the GPUs, this section further
explains how the performance of TGV simulations was profiled.
Section 4 discusses the key findings of the tests, exposes the cause
of the observed performance contrast, and outlines potential areas
of future work. Finally, conclusions are drawn in Section 5.

2 THEORY

We start with a brief overview of the salient computational aspects
of the FR approach. Consider a non-linear conservation law of the
form
ov
o V- f(v,Vv), (1)
where the solution v is computed across time ¢ in an arbitrary
domain Q. We first construct a mesh of the domain with non-
intersecting elements. An example of such a mesh can be seen
in Section 2. Inside each element, the solution to the conserva-
tion law at an arbitrary time is represented by a polynomial. This
polynomial is defined as a nodal form with the nodal points being
known as solution points. The number of solution points within
the element depends on the element type and the desired order
of accuracy of the solution. To communicate the fluxes f across
elements, flux points are introduced along the interfaces between
elements. Knowledge of these fluxes can then be used to compute
the first derivative of the solution with respect to time and hence
obtain a semi-discretized form of a conservation law. A detailed
description of the FR approach, along with its implementation is
provided by Witherden et al. [25]. A depiction of solution and flux
points inside a pair of quadrilateral elements can be seen in Fig. 1.
In FR, the operations that constitute the computation towards the
right-hand-side (RHS) evaluation of Eq. (1) can be divided into two
broad categories: point-wise nonlinear kernels and matrix-matrix

Mishra et al.

multiplication kernels. The former encodes the physics of the prob-
lem. These kernels operate on either individual solution points or
pairs of flux points. Solution point operations result in kernels with
a contiguous (streaming) memory access pattern whereas those
involving flux point pairs—on account of the unstructured nature
of the mesh—have a partially indirect (gather/scatter) memory ac-
cess pattern. Point-wise nonlinear kernels always have a lower
arithmetic intensity when compared with matrix multiplication
kernels[20]. The matrix multiplication kernels take the form of
C = AB + fC where f € {0,1}, A is a constant operator matrix, and
B and C are state matrices whose column counts are proportional to
the number of elements in the domain. Depending on the element
type these A operator matrices can be sparse, and depending on
the desired order of accuracy these matrices can vary in size. The
execution sequence of these kernels and the characteristics of the
involved matrix multiplications are known a priori. As a result, the
performance profiles of solvers that use the FR approach may be
mapped to their overall performance in a straightforward manner,
which in turn is useful when isolating bottlenecks and improving
solver performance across streaming architecture.

PyFR is a cross-platform CFD solver written primarily in Python
to perform high-fidelity scale resolving simulations [25] with the
FR approach. A unique aspect of PyFR is its performance portability
across a range of hardware platforms. This is accomplished through
extensive use of a domain-specific language that can translate—at
runtime—functions into either C, CUDA, HIP, OpenCL, or Metal
kernels. The cross-platform framework has been shown to scale
on heterogeneous multi-node systems [26] and on composable
cyberinfrastructure [12], and has been a finalist in the ACM Gordon
Bell Prize for high-performance computing [23].

Within PyFR, a domain-specific language is used to handle all
pointwise kernels. Matrix multiplication kernels are offloaded to
either dense vendor BLAS libraries or the GiMMIiK sparse kernel
generator. When no BLAS libraries are available for the accelerator
— such as in the case of Intel GPUs on the OpenCL API — GiIMMiK
kernels are used. In cases where multiple kernels are available, as
is the case with the NVIDIA cuBLASLt library and GiMMIK, PyFR
employs run-time auto-tuning to select the most efficient kernel.
Equipped with these attributes, PyFR is well suited to leverage
performance improvements of actively developed libraries across
the accelerators it supports.

3 METHODOLOGY

The performance of NVIDIA H100 PCle GPU (henceforth called
H100 GPU) and Intel MAX 1100 PCIe GPU (henceforth called MAX
GPU) was tested using TGV simulations with 64-bit floating point
arithmetic computations (FP64) on PyFR v2.0.2, both GPUs available
on the ACES [14]. The essential specifications of the accelerators
are outlined in Table 1. GIMMIK v3.2.1 and cuBLASLt available in
CUDA v12.3.0 was used throughout this work.

The study used PyFR to simulate the breakdown of the TGV on a
cubic flow domain Q = [0, 27r]® with periodic boundary conditions
along the three coordinate axes {x, y, z}[22]. The test case is known
for its scalability across numerical schemes and accelerators [1, 12].
The NS equations are solved for the field variablesv = {p, u,v, w, p}

Impact of Memory Bandwidth on the Performance of Accelerators

@)

PEARC 24, July 21-25, 2024, Providence, RI, USA

A ne [o om
B

Figure 1: Example unstructured quadrilateral mesh along with the corresponding arrangement of solution points (blue circles)
and flux points (orchid squares) inside a pair of neighboring elements. Adapted from Witherden [27].

Specification NVIDIA H100 PCIe [5, 16] Intel MAX 1100 PCle [7-9]
API CUDA OpenCL
Device memory 80 GB HBM3 48 GB HBM2e
Peak FP64 Performance 51.2 TFLOPS 22.22 TFLOPS
Memory bandwidth 2039 GB/s 1228.8 GB/s
L2 cache 50 MB 108 MB
Kernel libraries cuBLASLt, GIMMiK GiMMiK

Table 1: Technical specifications of GPUs

at Reynolds number Re = 1600 with initial conditions

U? 2x 2y 2z
p=1+—|cos|—|+cos|—|||cos|—|+2],
16 L L L
. (X Yy z X\ . Yy z
u = -Usin (—) cos (—) cos (—) ,0=-=U cos (—) sin (—) cos (—) R
L L L L L L
p
= 0’ = —, 2
w=0p=pr @)
where L = 27 is the length of the cubic domain, and R and T are
constant fluid parameters. An image of the flow field is shown in

Figure 2: TGV breakdown simulation: Q-Criterion iso-
contours colored by the magnitude of velocity at ¢ = 1.

Fig. 2.

The matrix multiplication kernels employed for PyFR simula-
tions depend on the number of solution points and flux points (see
Fig. 1), which in turn depend on the polynomial order and element
type of each element in the mesh. Considering the evaluation of a
field variable at a solution point as a degree of freedom (DOF), the
performance of the GPUs was measured in units of giga-degrees
of freedom per second (GDoF/s). The overall performance of the
TGV simulation for a given polynomial order and element type is
measured as

Ne - DoF§ - Oy - N

Prgv = PGy (Ne, e, Op, P) =)

n
where N is the total number of elements, O, is the Runge-Kutta
order, and Ty is the wall-time taken for the simulation to run
N timesteps. In the case of hexahedral elements and tetrahedral
elements, the DOF of computations per element is given by

DoFgEX = 5(P +1)3, (4)
5(?+1)(P;—2)(P+3)’ 5)

where P is the polynomial order, e = HEX and e = TET are the hexa-
hedral and tetrahedral element types respectively, and the factor 5
corresponds to the RHS computation of the five field variables at
each solution point.

Finally, libraries essential to the execution of PyFR for NVIDIA
GPUs — GCC v12.3.0, OpenMPI v5.0.1, OpenCL v3.0, and CUDA
v12.3.0 — were built from source on each compute node containing
H100 GPUs on ACES[14]. Libraries from Intel oneAPI toolkit were
used to set up PyFR on the MAX 1100 GPUs. Python scripts used
to create the meshes were provided [19]. The single-GPU scaling
tests and profiling tests closely followed the procedure outlined by

e=TET _
DoFP =

PEARC ’24, July 21-25, 2024, Providence, RI, USA

Mishra et al. [12], while the scripts used for building and setting up
PyFR along with its dependent libraries from the source are made
available [21].

3.1 Single-GPU scaling tests

To measure the optimal loading conditions on the GPUs, TGV sim-
ulations were performed across polynomial orders P € {2,3,4,5,6}
with e € {TET, HEX} element types. To perform scaling tests with
similar mesh sizes across all the polynomial orders and element
types, six sets of meshes were created, ranging from around 3.2x10°
DOF to 1.7 x 108 DOF.

PyFR benchmarks the performance of GiMMIK kernels against
other available open-source and vendor-provided kernels prior to
running simulations, such as cuBLASLLt [15] for the CUDA plat-
form. With the lack of performant BLAS libraries for Intel GPUs
on OpenCL platform, GiIMMIK library was used to create bespoke
matrix multiplication kernels. A reliable comparison of the perfor-
mance of PyFR on the GPUs warranted isolating the overall per-
formance effects of using only GiMMiK kernels on the H100 GPUs.
Towards this, additional functionality was added to the source
code to selectively choose kernels from the GiMMiK library and
cuBLASLt library. The average simulation performance across 1000
time steps is plotted in Fig. 3. PyFR simulations on the H100 GPUs
performed equal to or better than those restricted to only GIMMiK
kernels or only cuBLASLt kernels.

In the case of the MAX 1100 GPU, simulations run on the H100
GPUs were found to give a not-a-number (NaN) error. Upon further
analysis, it was found that certain kernels performing robustly on
the NVIDIA H100 failed on the MAX 1100 GPU'. A trial-and-error
approach isolated the set of performant kernels on the MAX 1100
GPUs for all the simulations in this paper. A modified PyFR branch
was set up to identify robust kernels, available as pearc24revision
branch in the first author’s Github repository [18].

3.2 Kernel profiling

The kernels were profiled to isolate the cause of the performance
differences across the GPUs with the GIMMIK kernels. As the simu-
lation performances tapered beyond 107 DOF in most of the cases, a
mesh size of ~ 7 107 DOF was considered for profiling the simula-
tions. The overall performance of this set of simulations is provided
in Table 2. TGV simulations were profiled across polynomial orders
P e {2,3,4,5,6}, and for TET and HEX element types using the
GiMMIK library.

NVIDIA NSight Compute 2023.3.0.0 available on the CUDA
v12.3.0 toolkit was used to profile simulations on the H100 GPU.
The profiler is designed to profile applications running on NVIDIA
GPUs with a particular focus on the CUDA API. The profiler was
set to profile the Python executible that ran PyFR, with the ‘full’
metrics option enabled. Each kernel call was executed about 500
times to obtain a detailed analysis of each kernel’s execution, along
with its corresponding roofline model.

To profile simulations on the MAX 1100 GPU, we utilized Intel
V-Tune 2024.1 from the oneAPI toolkit available through ACES.
‘GPU Compute/Media Hotspots’ profiling was performed on the
Python executable that ran PyFR, with “Trace GPU programming

IThis issue has been replicated via private correspondence with Intel.

Mishra et al.

APIs’ enabled. To the authors’ knowledge, the oneAPI toolkit could
not provide adequate details to plot a roofline model for the kernels.
Hence, PyFR’s existing performance benchmarking routines for
eligible matrix multiplication kernels were employed to obtain
the roofline for each kernel. The run time (At) averaged over 1000
iterations and the number of non-zero entries (1t4) was obtained for
the operator matrix A for each GiIMMIK kernel. The performance
of each kernel was obtained as

2X1y XRs
Cm = ——— (6)
where the measured performance Cp, equals the number of floating
point operations performed per unit time. The arithmetic intensity
() is thus calculated as

Cm
I = W (7)

where the bandwidth BW was obtained from the Nsight Compute
and Intel V-Tune profilers. The performance and arithmetic inten-
sity for each kernel, along with the roofline model for both the
GPUs are plotted in Fig. 4. The memory bandwidth reported from
BabelSTREAM v4.0 [3] benchmarks were included on the plots.

4 DISCUSSION

PyFR measured the performance on the NVIDIA H100 and the Intel
MAX 1100 GPUs with a series of simulations. While all GIMMiK
kernels performed on the H100 GPUs, a subset of the GIMMiK
kernels were robust on the Intel MAX 1100 GPUs. Observing a
stark difference in performance across the GPUs, GiIMMIK kernels
were chosen for profiling the GPUs via PyFR.

For simulations performed on H100 GPUs, GiMMiK-enabled sim-
ulations outperformed cuBLASLt-enabled simulations for e = HEX
simulations, while the reverse is true for e = TET simulations. A
closer look at the kernels involved in the corresponding simula-
tions revealed that the arithmetic intensity of e = HEX kernels
was lower than that of e = TET kernels. Further, the performance
difference between the GiIMMIK and cuBLASLLt kernels widened
with polynomial order. This contrast is in line with the expected
result of sparsity in the corresponding matrices and the relative
inefficiency of the GiMMIK library in performing dense matrix
operations. To ensure the best kernels are chosen with both of the
available libraries, PyFR includes auto-tuning logic to compare their
performance and select the best-performing kernel. No analogue
of the cuBLASLL library is available specific to Intel GPUs with the
OpenCL AP, forcing PyFR to use GiMMIiK kernels for all element
types. MAX 1100 GPUs presented challenge in ensuring maximum
possible performance was realised, as well as robust kernels were
used to benchmark and profile the GPUs. The procedure followed
to identify the invalid kernels is provided in Appendix B.3. Con-
sequently, the performance of MAX 1100 GPUs was evaluated on
basis of the subset of GiMMiK kernels that were found robust across
all the simulations.

Upon profiling the GIMMIK kernels across the TGV simulations
performed across polynomial orders and element types, the kernels
are found to be limited by the available memory bandwidth on
both the GPUs, as can be seen in Fig. 4. The performance of the
kernels on the H100 GPUs was limited by the memory bandwidth
of 2039 GB/s which was reported in the vendor’s specification sheet

Impact of Memory Bandwidth on the Performance of Accelerators

—%— GiMMiK and cuBLAS (H100)

8

PEARC 24, July 21-25, 2024, Providence, RI, USA

cuBLAS (H100) - ©- GiMMiK (H100) - ©- GiMMiK (MAX)

" ——— 8 5 5 B
10° 0’47,,79———0—0——0——0 Wle-----O -0 -6--—0 -0
108 108
10° 107 108 10 107 108
(b) P =2, e = HEX ()P =2¢=rET
g—8—a—=
= o o ——— B
10° . ©--G-0--0-90 0 e---6--6---0--0
@’/ C
108 108
10° 107 10° 106 107 108
(d) P =3,e = HEX () P =3,e=TET
=
E N BB
= _6--0--0-9© &=
s 10° _Le--"9-C 10° o e
E che G-
€ 10° 108
5 ; ; : ; ; :
10° 107 108 106 107 108
(f) P =4, e = HEX (g) P =4,e=T1ET
e % d—k sk
10° _.6--0---0-0 , G----O-0-0---0-90
Plchs 10
o _G-0---0-9
10° G----o
1 : ; 108 ; } |
10° 107 108 109 107 108
(h) # =5, e = HEX (i) P =5,e=1ET
*/@-—-6—6—9—9 — S .
10° o -0 --0--9 10° O_____o———o-—e———e——o
.07
- _o--0---6--0
108 c] ‘ ‘ ‘ 108 R | |
10° 107 108 106 107 108
Mesh size (DoF) Mesh size (DoF)

(j) P =6, e = HEX

(k) P =6,e =TET

Figure 3: Performance of TGV simulations with various kernel configurations. Tests were performed on H100 and MAX GPUs

for e € {TET,HEX} and P € {2,3,4,5,6}.

[16] and was in line with the roofline model from Nsight Compute.
Interestingly, the performance on the Intel MAX GPUs was mostly
limited by the memory bandwidth of 800 GB/s reported from the
STREAM benchmark, and not the bandwidth of 1228.8 GB/s re-
ported by the vendors [7]. The kernels generally performed worse
in terms of both the arithmetic intensity as well as the performance.
Finally, the roofline of high order TET elements exhibited signif-
icantly lower performance compared to the reported bandwidth

limit and the FLOP limit, signaling a dire need for efficient dense
matrix multiplication kernels.

While a clear performance contrast is observed across the GPUs,
it may be noted that the unique architecture of the Intel MAX series
GPUs in comparison with their competitors is potentially untapped.
In particular, the substantial L2 cache on the Intel MAX 1100 GPU
is 108 MiB, while on the NVIDIA H100, this is only 50 MB. This
large cache size of the MAX series GPUs opens the possibility of

PEARC ’24, July 21-25, 2024, Providence, RI, USA

1013 +

1012 +

Performance [FLOP/s]

1011 4

Mishra et al.

51.2 TFLOP/s

P 22.2 TFLOP/s

——— H100

—— MAX

- - - MAX (STREAM)
H100 TET

* MAXTET
H100 HEX

x MAXHEX

1010

10°

Arithmetic intensity [FLOP/byte]

10!

102

Figure 4: Roofline plot for kernels used in the TGV simulations on H100 and MAX GPUs. A higher intensity of scatter plot

color represents a higher order polynomial.

incorporating cache-blocking strategies that are traditionally used
on CPUs [2].

All the analysis was performed via PyFR, making the flow solver
an ideal science-based tool for benchmarking the performance of
accelerators on the cluster. The alignment of estimated performance
with the actual performance as core to the development of the
solver greatly helped boil down computations to the execution
of kernels. Leveraging vendor-provided profilers’ capabilities, the
matrix multiplication kernels’ performance allowed us to isolate
the causes of performance discrepancy across the NVIDIA and Intel
GPUs. Apart from highlighting the potential of the Intel GPUs and
the limitations on bandwidth on the performance, this analysis
also exposed potential bugs in compiling and running the code,
further bolstering the potential of PyFR as a benchmarking tool for
stress-testing the cluster. Finally, this in-depth analysis of Intel MAX
1100 GPUs is pivotal to the ongoing developments on the ACES
testbed with cutting-edge resources such as Intelligence Processing
Units[11], container adoption[10] and workforce development[4].

5 CONCLUSIONS

This work investigated the performance of NVIDIA H100 and Intel
MAX 1100 GPUs using the open-source fluid flow solver PyFR on
the ACES testbed. Single-GPU scaling tests were performed on
both GPUs across different orders of accuracy and element types,
which correspond to performing matrix multiplications with dif-
fering matrix sizes and sparsities. Upon observing the consistently
better performance of the H100 GPU over MAX 1100 GPU across
various configurations of the Taylor-Green Vortex simulations, the
performance of GiMMik kernels on the H100 GPU and the MAX
GPU were profiled with NVIDIA NSight Compute and Intel V-Tune
respectively. The performance of kernels observed on the roofline
plots exposed the strong relation between the overall performance

of the simulations with the bandwidth-bound nature of the kernels.
Finally, the untapped potential of the unique architecture of the
Intel MAX series GPUs was discussed, and potential directions for
improving the performance of the MAX 1100 GPUs were outlined.
The findings in this work inform the researchers of the expected
performance of the NVIDIA H100 and the Intel MAX 1100 GPUs
available on the ACES facility and promote the development of
OpenCL libraries for the Intel GPUs. The studies showed that the
NVIDIA H100 GPUs performed better than the Intel MAX 1100
GPUs by a factor of up to 6x for dense matrix multiplications, and
up to 3.7x for sparse matrix multiplications part of hexahedral
and tetrahedral element meshes, owing to the bandwidth-bound
computations performed by PyFR and the lack of efficient robust
kernels for the Intel MAX 1100 GPUs.

ACKNOWLEDGMENTS

All simulations performed in this paper used the Accelerating Com-
puting for Emerging Sciences (ACES) cyberinfrastructure testbed
hosted by Texas A&M University with the support of NSF award
numbers 2112356 and 1925764. SM and FDW were partially sup-
ported by the Air Force Office of Scientific Research via grants
FA9550-23-1-0232 (“Enabling next-generation heterogeneous com-
puting for massively parallel high-order compressible CFD”).

REFERENCES

[1] Abouelmagd Abdelsamie, Ghislain Lartigue, Christos E. Frouzakis, and Do-
minique Thévenin. 2021. The Taylor-Green vortex as a benchmark for high-
fidelity combustion simulations using low-Mach solvers. Computers and Fluids
223 (June 2021), 104935. https://doi.org/10.1016/j.compfluid.2021.104935

[2] Semih Akkurt, Freddie Witherden, and Peter Vincent. 2022. Cache blocking

strategies applied to flux reconstruction. Computer Physics Communications 271

(Feb. 2022), 108193. https://doi.org/10.1016/j.cpc.2021.108193

BabelSTREAM for benchmarking memory bandwidth 2024. . Retrieved March

8, 2024 from https://github.com/uob-hpc/babelstream

—
£

https://doi.org/10.1016/j.compfluid.2021.104935
https://doi.org/10.1016/j.cpc.2021.108193
https://github.com/uob-hpc/babelstream

Impact of Memory Bandwidth on the Performance of Accelerators

[4] Wesley A. Brashear, Lisa M. Perez, Elizabeth Leake, Sandra B. Nite, Marinus
Pennings, Sheri Stebenne, Honggao Liu, and Dhruva K. Chakravorty. 2024. Culti-
vating Cyberinfrastructure Careers through Student Engagement at Texas A&M
University High Performance Research Computing.. In Practice and Experience in
Advanced Research Computing (PEARC "24). ACM.

[5] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro 43, 3 (May 2023), 9-17. https://doi.org/10.1109/mm.2023.3256796

[6] H.T. Huynh. 2007. A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. American Institute of Aeronautics
and Astronautics. https://doi.org/10.2514/6.2007-4079

[7] Intel Data Center GPU MAX 1100 Specifications 2024. Retrieved Feb
22, 2024 from https://www.intel.com/content/www/us/en/products/sku/232876/
intel-data- center- gpu-max-1100/specifications.html

[8] Intel Data Center GPU MAX Series 2024. Retrieved March 8, 2024

from https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-data- center- gpu- max-series- overview.html

Intel Data Center GPU MAX Series Technical Overview 2024. . Retrieved March 5,

2024 from https://www.intel.com/content/www/us/en/products/details/discrete-

gpus/data-center-gpu/max-series.html

Richard Lawrence, Dhruva K. Chakravorty, Lisa M. Perez, Wesley A. Brashear,

Zhenhua He, and Joshua Winchell. 2024. Container Adoption in Campus High

Performance Computing.. In Practice and Experience in Advanced Research Com-

puting (PEARC ’24). ACM.

[11] Hieu T. Le, Zhenhua He, Mai Le, Dhruva K. Chakravorty, Akhil Chilumuru, Yan

Yao, and Jiefu Chen. 2024. Performance Benchmarking and Lessons Learned

from Porting AI/ML Workloads to Intelligence Processing Units. In Practice and

Experience in Advanced Research Computing (PEARC "24). ACM.

Sambit Mishra, Freddie Witherden, Dhruva Chakravorty, Lisa Perez, and Francis

Dang. 2023. Scaling Study of Flow Simulations on Composable Cyberinfrastruc-

ture. In Practice and Experience in Advanced Research Computing (PEARC ’23).

ACM. https://doi.org/10.1145/3569951.3597565

Abhinand Nasari, Lujun Zhai, Zhenhua He, Hieu Le, Suxia Cui, Dhruva Chakra-

vorty, Jian Tao, and Honggao Liu. 2023. Porting AI/ML Models to Intelligence

Processing Units (IPUs). In Practice and Experience in Advanced Research Com-

puting (PEARC ’23). ACM. https://doi.org/10.1145/3569951.3603632

[14] NSF Category II: ACES - Accelerating Computing for Emerging Sciences 2024. .

Retrieved March 6, 2024 from https://hprc.tamu.edu/aces/

[15] NVIDIA cuBLASLt library user guide 2024. . Retrieved Feb 24, 2024 from

https://docs.nvidia.com/cuda/cublas/index.html#using-the- cublaslt-api

[16] NVIDIA H100 Specifications 2024. . Retrieved Feb 16, 2024 from https://resources.

nvidia.com/en-us-tensor-core

[17] Paper data and results 2024. . Retrieved June 7, 2024 from https://github.com/

sambitmishra98/GiMMiK-profiling-on-GPU.git

PyFR branch with functionality to choose specific kernels 2024. . Retrieved Jun

12, 2024 from https://github.com/sambitmishra98/PyFR.git

[19] Python scripts to create GMSH 2024. . Retrieved March 7, 2024 from https:

//github.com/WillTrojak/basic_gmsh.git

[20] J. Romero, J. Crabill, J.E. Watkins, F.D. Witherden, and A. Jameson. 2020. ZEFR:

A GPU-accelerated high-order solver for compressible viscous flows using the

flux reconstruction method. Computer Physics Communications 250 (May 2020),

107169. https://doi.org/10.1016/j.cpc.2020.107169

Single-GPU test scripts 2024. . Retrieved March 7, 2024 from https://github.com/

sambitmishra98/benchmark

[22] Geoffrey Ingram Taylor and Albert Edward Green. 1937. Proceedings of the Royal

Society of London. Series A - Mathematical and Physical Sciences 158, 895 (Feb.

1937), 499-521. https://doi.org/10.1098/rspa.1937.0036

P. Vincent, F. Witherden, B. Vermeire, J. Park, and A. Iyer. 2016. Towards Green

Aviation with Python at Petascale. In SC16: International Conference for High

Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer

Society, Los Alamitos, CA, USA, 1-11. https://doi.org/10.1109/SC.2016.1

Z.J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni,

Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, HT. Huynh,

Norbert Kroll, Georg May, Per-Olof Persson, Bram van Leer, and Miguel Visbal.

2013. High-order CFD methods: current status and perspective. International

Journal for Numerical Methods in Fluids 72, 8 (Jan. 2013), 811-845. https://doi.

org/10.1002/1d.3767
[25] E.D. Witherden, A.M. Farrington, and P.E. Vincent. 2014. PyFR: An open source
framework for solving advection-diffusion type problems on streaming architec-
tures using the flux reconstruction approach. Computer Physics Communications
185, 11 (Nov. 2014), 3028-3040. https://doi.org/10.1016/j.cpc.2014.07.011

[26] F.D.Witherden, B.C. Vermeire, and P.E. Vincent. 2015. Heterogeneous computing
on mixed unstructured grids with PyFR. Computers and Fluids 120 (Oct. 2015),
173-186. https://doi.org/10.1016/j.compfluid.2015.07.016

[27] Freddie D. Witherden. 2021. Python at Petascale With PyFR or: How I Learned
to Stop Worrying and Love the Snake. Computing in Science and Engineering 23,
4 (July 2021), 29-37. https://doi.org/10.1109/mcse.2021.3080126

=

[10

[12

[13

(18

(21

[23

[24

PEARC ’24, July 21-25, 2024, Providence, RI, USA

A KERNEL PERFORMANCE, PROFILE AND
BENCHMARK DATA

The performance of simulations using the mesh set of mesh sizes
~ 7% 107 DoF is given in Table 2.

B OBSERVATIONS ON INTEL MAX 1100 GPU

The setup of PyFR on the Intel MAX 1100 GPUs was not as straight-
forward as that on the NVIDIA H100 GPUs. Significant observations
upon working with the MAX 1100 GPUs are noted in this section,
while the rest of the observations are mentioned in [17].

B.1 Intel MPI and OpenCL installation on
compute node

The Intel oneAPI toolkit was used to set up PyFR on the cluster.

Following issues around setting up MPI and OpenCL libraries
on the Intel GPUs on ACES, all libraries were installed from the
source, on the compute nodes containing the MAX GPUs. Build
instructions to set up the libraries and results are available at the
first author’s Github repository Paper data and results [17], Single-
GPU test scripts [21].

B.2 Strong-scaling test on MAX GPUs

To evaluate the potential benefits of performing single-GPU scaling
tests and kernel profiling studies on the Intel MAX 1100 GPUs,
strong scaling tests were performed on the MAX GPUs on ACES.
ACES is set to host 120 Intel MAX 1100 GPUs upon its deployment.
Four MAX GPUs are connected to a PCle switch chip, which, in
turn, is connected to the CPU. The nodes were connected across
the NDR Infiniband fabric with an inter-node bandwidth of at least
200 GB/s. The libraries were set up on a compute node containing
the MAX GPUs (see Appendix B.1), and multi-node multi-GPU
scaling tests successfully ran on the cluster with OpenCL backend.
A TGV simulation was performed with e = HEX and # = 3, and the
generated meshes were partitioned to distribute workload across
the GPUs with METIS v5.2.0. It may be noted that despite our use
of a subset of kernels found to perform robustly on a single Intel
MAX 1100 GPU, the strong-scaling tests found simulations to result
in a NaN error beyond 32 GPUs.

B.3 Isolation of faulty kernels

Simulations failed in a probabilistic manner, with the chance of a
NaN increasing with simulation mesh size and polynomial order.
Upon observing the NaN error, each matrix multiplication kernel
was isolated and tested iteratively for large matrix sizes. For matrix
multiplications of the form C = AB where A performed in PyFR
(see Section 2) when matrix C was expected to be a matrix with unit
entries, the authors found that a few of the matrix entries deviated
from 1 every few iterations, particularly for large matrices. Since
this issue is only isolated as a result of the physics of the simulation
failing, it is possible that many simulations would result in invalid
physics but not deviate from the valid solution enough to cause the
NaN error.

In addition, a few simulations resulted in a page fault on the
nodes with the MAX 1100 GPUs. This warning did not seem to visi-
bly affect the progress of the simulation every time it was observed,

https://doi.org/10.1109/mm.2023.3256796
https://doi.org/10.2514/6.2007-4079
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
https://doi.org/10.1145/3569951.3597565
https://doi.org/10.1145/3569951.3603632
https://hprc.tamu.edu/aces/
https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublaslt-api
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://github.com/sambitmishra98/GiMMiK-profiling-on-GPU.git
https://github.com/sambitmishra98/GiMMiK-profiling-on-GPU.git
https://github.com/sambitmishra98/PyFR.git
https://github.com/WillTrojak/basic_gmsh.git
https://github.com/WillTrojak/basic_gmsh.git
https://doi.org/10.1016/j.cpc.2020.107169
https://github.com/sambitmishra98/benchmark
https://github.com/sambitmishra98/benchmark
https://doi.org/10.1098/rspa.1937.0036
https://doi.org/10.1109/SC.2016.1
https://doi.org/10.1002/fld.3767
https://doi.org/10.1002/fld.3767
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1016/j.compfluid.2015.07.016
https://doi.org/10.1109/mcse.2021.3080126

PEARC ’24, July 21-25, 2024, Providence, RI, USA Mishra et al.

Performance [GDoF/s]

Element Order Mesh size H100 MAX
type [MDoF] | GiIMMIiK GiMMiK+cuBLAS GiMMiK

2 70 2.596 2.602 1.092

3 65 2.788 2.791 1.120

TET 4 68 2.621 2.935 0.703

5 73 1.821 3.140 0.300

6 69 1.294 3.276 0.160

2 69 3.513 3.517 1.369

3 69 3.793 3.801 1.499

HEX 4 69 4.342 4.344 1.403

5 69 4.523 4.529 1.227

6 67 3.950 3.951 1.020

Table 2: Comparison of the overall performance of PyFR simulations for the mesh set used to profile the GPUs.

Ideal scaling 80% efficiency scaling —@— Gen 5 PCle fabric - @- - Gen 4 PCle fabric

16 } 161
8
g 12+ 12]
g _-o
& 8 | - 8 + ___.
o -
> ZZ -
=] == -
= == _ -0~
2 4 Z 44 -
1 2 4 8 16 1 2 4 8 16
(a) P =2,e=TET (b) P =2, e = HEX
16 + 16 T
13
o
5 12 | 12
5} 5 _--
a8 == 8 | -
1 z .
2 - -
2 4 4 z
1 2 4 8 16 1 2 4 8 16
Number of GPUs Number of GPUs
(c) P =6,e=TET (d) P =6, e = HEX

Figure 5: Strong-scaling test performed with Intel MAX 1100 GPUs across multiple nodes on ACES, with four GPUs connected
to each node on the composable Gen 4 and Gen 5 PCle fabric. The performance was normalized with respect to corresponding
simulations performed on the four meshes in the largest mesh set tested for the paper, i.e. 1.7 x 103 DoF.

but may be a warning for the error observed with the matrix mul- 2024-02-23T11:20:39,752448-06:00 1915 0000:9a:00.0: page
tiplication. The Intel V-Tune profiler failed to profile simulations fault @ 0x01000010d6241000, ccs@ in python3

that displayed this page-fault error. BROHENE -
2024-02-23T11:20:39,752451-06:00 1915 0000:9a:00.0: EU

debugging disabled, EUs not interrupted, dumping

) error state to /sys/class/drm/card@/error
[2024-03-04 ©8:22:58][u.sm121949@sdp-pvc ~]$ dmesg --time

-format=iso | grep "2024-02-23T11:20:39"

Impact of Memory Bandwidth on the Performance of Accelerators

The above issues were addressed by employing a subset of ker-
nels offered by the GIMMIK package. While the GiIMMIK package
typically provides four kernels per matrix multiplication routine,
the following subset of kernels were found robust across all simula-
tions:

[backend-opencl]
gimmik -nkern-M0 = [0,1]

PEARC ’24, July 21-25, 2024, Providence, RI, USA

gimmik -nkern-M3 = [0,1]
gimmik -nkern-M6 = [0,1]
gimmik -nkern-M132 = [0,1]
gimmik -nkern-M460 = [0,1,2,3]

The PyFR branch modified from the develop branch to isolate
the kernels is available as pearc24revision branch in the first
author’s Github repository[18].

	Abstract
	1 Introduction
	2 Theory
	3 Methodology
	3.1 Single-GPU scaling tests
	3.2 Kernel profiling

	4 Discussion
	5 Conclusions
	Acknowledgments
	References
	A Kernel performance, profile and benchmark data
	B Observations on Intel MAX 1100 GPU
	B.1 Intel MPI and OpenCL installation on compute node
	B.2 Strong-scaling test on MAX GPUs
	B.3 Isolation of faulty kernels

