
Impact of Memory Bandwidth on the Performance of Accelerators
Sambit Mishra

sambit98@tamu.edu

Department of Ocean Engineering,

Texas A&M University

College Station, Texas, USA

Dhruva K. Chakravorty

chakravorty@tamu.edu

High Performance Research

Computing, Texas A&M University

College Station, Texas, USA

Lisa M. Perez

perez@tamu.edu

High Performance Research

Computing, Texas A&M University

College Station, Texas, USA

Francis Dang

francis@tamu.edu

High Performance Research

Computing, Texas A&M University

College Station, Texas, USA

Honggao Liu

honggao@tamu.edu

High Performance Research

Computing, Texas A&M University

College Station, Texas, USA

Freddie David Witherden

fdw@tamu.edu

Department of Ocean Engineering,

Texas A&M University

College Station, Texas, USA

ABSTRACT

This study investigates the impact of memory bandwidth of ac-

celerators on the performance of computational simulations, re-

vealing the importance of bandwidth over computational power in

scalable high-order numerical simulations. A detailed analysis per-

formed on an NVIDIA H100 GPU and an Intel MAX 1100 GPU on

the NSF ACES platform, demonstrates how matrix multiplication

characteristics such as matrix size and sparsity influence the de-

mand for memory bandwidth. Utilizing the open-source fluid flow

solver PyFR for the study for its flexibility, efficiency, and alignment

with expected performance, this work emphasizes the necessity

for accelerator designs to prioritize memory bandwidth to enhance

simulation efficiency, particularly in the case of workloads whose

performance is bound by available memory bandwidth.

CCS CONCEPTS

• Applied computing→ Physics; • Hardware→ Testing with

distributed and parallel systems; • Computing methodolo-

gies→ Simulation evaluation;Massively parallel and high-

performance simulations.

KEYWORDS

High-Performance Computing, Graphics Processing Unit, Memory

Bandwidth, Discontinuous Spectral Element Methods, Matrix Mul-

tiplication Kernels, Performance Profiling, Roofline Model, Com-

putational Fluid Dynamics, Simulation Scalability, Performance

Portability, Science-Based Benchmarking

ACM Reference Format:

Sambit Mishra, Dhruva K. Chakravorty, Lisa M. Perez, Francis Dang, Hong-

gao Liu, and Freddie David Witherden. 2024. Impact of Memory Bandwidth

on the Performance of Accelerators. In Practice and Experience in Advanced
Research Computing (PEARC ’24), July 21–25, 2024, Providence, RI, USA.ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3626203.3670540

This work is licensed under a Creative Commons Attribution International

4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0419-2/24/07

https://doi.org/10.1145/3626203.3670540

1 INTRODUCTION

Over the past decade, graphics processing units (GPUs) have

emerged as a pivotal tool for high-performance computing (HPC).

Its importance has been underscored by the increasing require-

ments of complexity, demands of computational tasks and shifting

towards parallelism, particularly in fields such as computational

fluid dynamics (CFD) [24], where the quest for higher simulation

fidelity continues to push the boundaries of computational capabili-

ties. This quest has also extended to developing different accelerator

designs such as intelligence processing units [13] and cache archi-

tectures in GPUs such as those in the Intel MAX series Data Center

GPUs [9]. At the time of writing, HPC focused GPUs are available

from AMD, and NVIDIA, with Intel’s recent entry marking a new

era of innovation in the development of GPUs. With the ongoing de-

velopments in this field, evaluating and profiling their performance

with industry-level software is essential.

For scientific applications, the performance of a GPU is typi-

cally evaluated based on three parameters: memory capacity, peak

memory bandwidth, and peak floating point operations per sec-

ond (FLOPs). Outside of linear algebra and machine learning appli-

cations, bandwidth is typically the limiting factor. As such when

evaluating GPUs, it is important to consider (i) the actual amount

of available bandwidth compared with the stated peak, (ii) the ease

with which this bandwidth can be accessed by user code, and (iii)

what tools are provided to measure bandwidth being achieved by

kernels. In this paper, we consider these three questions within the

context of CFD for two mainstream GPUs: NVIDIA H100 and Intel

MAX 1100. Both the GPUs are available on the ACES testbed[14].

The performance characteristics of the Intel MAX GPUs which

have not been as extensively tested as the GPUs provided by other

vendors, further motivating this study.

Flux reconstruction (FR) is a numerical method that can be used

for solving the compressible Navier–Stokes (NS) equations of fluid

dynamics. Originally proposed by Huynh [6], FR belongs to the

family of discontinuous spectral element methods, combining the

superior accuracy of spectral methods with the geometric flexibility

of finite volume methods. As a next-generation scheme, FR has

several highly desirable attributes: (i) it is possible to select an

arbitrary order of spatial accuracy, (ii) it operates naturally on

mixed unstructured grids with curved boundaries, and (iii) when

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-7739-3701
https://orcid.org/0000-0003-1176-1027
https://orcid.org/0009-0008-9494-7639
https://orcid.org/0009-0002-2942-9014
https://orcid.org/0000-0003-2343-412X
https://doi.org/10.1145/3626203.3670540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670540

PEARC ’24, July 21–25, 2024, Providence, RI, USA Mishra et al.

paired with explicit time stepping exhibits a substantial degree of

structured computation.

This third property makes FR an excellent candidate for modern

computing architectures, including many-core CPUs with wide

vector units, and GPUs. The arithmetic intensity of FR depends on

a variety of factors. These include the element type and the chosen

order of accuracy. In particular, on account of their tensor-product

structure, hexahedral elements have a low arithmetic intensity

whereas tetrahedral elements have an intensity that increases as a

function of the order of accuracy. This variation makes FR a very

good candidate for evaluating the bandwidth of modern accelera-

tors.

In this manuscript, we use FR to evaluate GPUs from NVIDIA

and Intel on the National Science Foundation (NSF) supported ACES

testbed at Texas A&M University, with a particular focus on avail-

able memory bandwidth for numerical simulations. This will be

accomplished through profiling a suite of FR simulations at orders

two through six on both hexahedral and tetrahedral domains. The

remainder of the paper is as follows: Section 2 outlines the FR for-

mulation and the particular characteristics of the approach that

render it suitable for evaluating the performance of accelerators

across streaming architecture. Section 3 explains how the Python-

based open-source CFD solver PyFR [25] is used to benchmark

the NVIDIA H100 GPU and the Intel MAX 1100 GPU using the

Taylor–Green vortex (TGV) breakdown as test case. Highlighting

the performance contrast across the GPUs, this section further

explains how the performance of TGV simulations was profiled.

Section 4 discusses the key findings of the tests, exposes the cause

of the observed performance contrast, and outlines potential areas

of future work. Finally, conclusions are drawn in Section 5.

2 THEORY

We start with a brief overview of the salient computational aspects

of the FR approach. Consider a non-linear conservation law of the

form

𝜕v
𝜕𝑡

= −∇ · f (v,∇v), (1)

where the solution v is computed across time 𝑡 in an arbitrary

domain Ω. We first construct a mesh of the domain with non-

intersecting elements. An example of such a mesh can be seen

in Section 2. Inside each element, the solution to the conserva-

tion law at an arbitrary time is represented by a polynomial. This

polynomial is defined as a nodal form with the nodal points being

known as solution points. The number of solution points within

the element depends on the element type and the desired order

of accuracy of the solution. To communicate the fluxes f across
elements, flux points are introduced along the interfaces between

elements. Knowledge of these fluxes can then be used to compute

the first derivative of the solution with respect to time and hence

obtain a semi-discretized form of a conservation law. A detailed

description of the FR approach, along with its implementation is

provided by Witherden et al. [25]. A depiction of solution and flux

points inside a pair of quadrilateral elements can be seen in Fig. 1.

In FR, the operations that constitute the computation towards the

right–hand–side (RHS) evaluation of Eq. (1) can be divided into two

broad categories: point-wise nonlinear kernels and matrix-matrix

multiplication kernels. The former encodes the physics of the prob-

lem. These kernels operate on either individual solution points or

pairs of flux points. Solution point operations result in kernels with

a contiguous (streaming) memory access pattern whereas those

involving flux point pairs—on account of the unstructured nature

of the mesh—have a partially indirect (gather/scatter) memory ac-

cess pattern. Point-wise nonlinear kernels always have a lower

arithmetic intensity when compared with matrix multiplication

kernels[20]. The matrix multiplication kernels take the form of

𝐶 = 𝐴𝐵 + 𝛽𝐶 where 𝛽 ∈ {0, 1}, 𝐴 is a constant operator matrix, and
𝐵 and𝐶 are state matrices whose column counts are proportional to

the number of elements in the domain. Depending on the element

type these 𝐴 operator matrices can be sparse, and depending on

the desired order of accuracy these matrices can vary in size. The

execution sequence of these kernels and the characteristics of the

involved matrix multiplications are known a priori. As a result, the

performance profiles of solvers that use the FR approach may be

mapped to their overall performance in a straightforward manner,

which in turn is useful when isolating bottlenecks and improving

solver performance across streaming architecture.

PyFR is a cross-platform CFD solver written primarily in Python

to perform high-fidelity scale resolving simulations [25] with the

FR approach. A unique aspect of PyFR is its performance portability

across a range of hardware platforms. This is accomplished through

extensive use of a domain-specific language that can translate—at

runtime—functions into either C, CUDA, HIP, OpenCL, or Metal

kernels. The cross-platform framework has been shown to scale

on heterogeneous multi-node systems [26] and on composable

cyberinfrastructure [12], and has been a finalist in the ACMGordon

Bell Prize for high-performance computing [23].

Within PyFR, a domain-specific language is used to handle all

pointwise kernels. Matrix multiplication kernels are offloaded to

either dense vendor BLAS libraries or the GiMMiK sparse kernel

generator. When no BLAS libraries are available for the accelerator

— such as in the case of Intel GPUs on the OpenCL API — GiMMiK

kernels are used. In cases where multiple kernels are available, as

is the case with the NVIDIA cuBLASLt library and GiMMiK, PyFR

employs run-time auto-tuning to select the most efficient kernel.

Equipped with these attributes, PyFR is well suited to leverage

performance improvements of actively developed libraries across

the accelerators it supports.

3 METHODOLOGY

The performance of NVIDIA H100 PCIe GPU (henceforth called

H100 GPU) and Intel MAX 1100 PCIe GPU (henceforth called MAX

GPU) was tested using TGV simulations with 64-bit floating point

arithmetic computations (FP64) on PyFR v2.0.2, both GPUs available

on the ACES [14]. The essential specifications of the accelerators

are outlined in Table 1. GiMMiK v3.2.1 and cuBLASLt available in

CUDA v12.3.0 was used throughout this work.

The study used PyFR to simulate the breakdown of the TGV on a

cubic flow domain Ω = [0, 2𝜋]3 with periodic boundary conditions

along the three coordinate axes {𝑥,𝑦, 𝑧}[22]. The test case is known
for its scalability across numerical schemes and accelerators [1, 12].

The NS equations are solved for the field variables 𝒗 = {𝑝,𝑢, 𝑣,𝑤, 𝜌}

Impact of Memory Bandwidth on the Performance of Accelerators PEARC ’24, July 21–25, 2024, Providence, RI, USA

A
B

(a)

A B
(b)

Figure 1: Example unstructured quadrilateral mesh along with the corresponding arrangement of solution points (blue circles)

and flux points (orchid squares) inside a pair of neighboring elements. Adapted fromWitherden [27].

Specification NVIDIA H100 PCIe [5, 16] Intel MAX 1100 PCIe [7–9]

API CUDA OpenCL

Device memory 80 GB HBM3 48 GB HBM2e

Peak FP64 Performance 51.2 TFLOPS 22.22 TFLOPS

Memory bandwidth 2039 GB/s 1228.8 GB/s

L2 cache 50 MB 108 MB

Kernel libraries cuBLASLt, GiMMiK GiMMiK

Table 1: Technical specifications of GPUs

at Reynolds number 𝑅𝑒 = 1600 with initial conditions

𝑝 = 1 + 𝑈 2

16

(
𝑐𝑜𝑠

(
2𝑥

𝐿

)
+ 𝑐𝑜𝑠

(
2𝑦

𝐿

)) (
𝑐𝑜𝑠

(
2𝑧

𝐿

)
+ 2

)
,

𝑢 = −𝑈𝑠𝑖𝑛

(𝑥
𝐿

)
𝑐𝑜𝑠

(𝑦
𝐿

)
𝑐𝑜𝑠

(𝑧
𝐿

)
, 𝑣 = −𝑈 𝑐𝑜𝑠

(𝑥
𝐿

)
𝑠𝑖𝑛

(𝑦
𝐿

)
𝑐𝑜𝑠

(𝑧
𝐿

)
,

𝑤 = 0, 𝜌 =
𝑝

𝑅𝑇
, (2)

where 𝐿 = 2𝜋 is the length of the cubic domain, and 𝑅 and 𝑇 are

constant fluid parameters. An image of the flow field is shown in

Figure 2: TGV breakdown simulation: Q-Criterion iso-

contours colored by the magnitude of velocity at 𝑡 = 1.

Fig. 2.

The matrix multiplication kernels employed for PyFR simula-

tions depend on the number of solution points and flux points (see

Fig. 1), which in turn depend on the polynomial order and element

type of each element in the mesh. Considering the evaluation of a

field variable at a solution point as a degree of freedom (DOF), the

performance of the GPUs was measured in units of giga-degrees

of freedom per second (GDoF/s). The overall performance of the

TGV simulation for a given polynomial order and element type is

measured as

𝑃𝑇𝐺𝑉 = 𝑃𝑇𝐺𝑉 (𝑁𝑒 , 𝑒,O𝑟𝑘 ,P) =
𝑁𝑒 · 𝐷𝑜𝐹𝑒𝑝 · O𝑟𝑘 · N

𝑇N
, (3)

where 𝑁𝑒 is the total number of elements, O𝑟𝑘 is the Runge-Kutta

order, and 𝑇N is the wall-time taken for the simulation to run

N timesteps. In the case of hexahedral elements and tetrahedral

elements, the DOF of computations per element is given by

𝐷𝑜𝐹𝑒=HEXP = 5(P + 1)3, (4)

𝐷𝑜𝐹𝑒=TETP = 5

(P + 1) (P + 2) (P + 3)
6

, (5)

where P is the polynomial order, 𝑒 = HEX and 𝑒 = TET are the hexa-

hedral and tetrahedral element types respectively, and the factor 5

corresponds to the RHS computation of the five field variables at

each solution point.

Finally, libraries essential to the execution of PyFR for NVIDIA

GPUs — GCC v12.3.0, OpenMPI v5.0.1, OpenCL v3.0, and CUDA

v12.3.0 — were built from source on each compute node containing

H100 GPUs on ACES[14]. Libraries from Intel oneAPI toolkit were

used to set up PyFR on the MAX 1100 GPUs. Python scripts used

to create the meshes were provided [19]. The single-GPU scaling

tests and profiling tests closely followed the procedure outlined by

PEARC ’24, July 21–25, 2024, Providence, RI, USA Mishra et al.

Mishra et al. [12], while the scripts used for building and setting up

PyFR along with its dependent libraries from the source are made

available [21].

3.1 Single-GPU scaling tests

To measure the optimal loading conditions on the GPUs, TGV sim-

ulations were performed across polynomial orders P ∈ {2, 3, 4, 5, 6}
with 𝑒 ∈ {TET, HEX} element types. To perform scaling tests with

similar mesh sizes across all the polynomial orders and element

types, six sets of meshes were created, ranging from around 3.2×105
DOF to 1.7 × 10

8
DOF.

PyFR benchmarks the performance of GiMMiK kernels against

other available open-source and vendor-provided kernels prior to

running simulations, such as cuBLASLt [15] for the CUDA plat-

form. With the lack of performant BLAS libraries for Intel GPUs

on OpenCL platform, GiMMiK library was used to create bespoke

matrix multiplication kernels. A reliable comparison of the perfor-

mance of PyFR on the GPUs warranted isolating the overall per-

formance effects of using only GiMMiK kernels on the H100 GPUs.

Towards this, additional functionality was added to the source

code to selectively choose kernels from the GiMMiK library and

cuBLASLt library. The average simulation performance across 1000

time steps is plotted in Fig. 3. PyFR simulations on the H100 GPUs

performed equal to or better than those restricted to only GiMMiK

kernels or only cuBLASLt kernels.

In the case of the MAX 1100 GPU, simulations run on the H100

GPUs were found to give a not-a-number (NaN) error. Upon further

analysis, it was found that certain kernels performing robustly on

the NVIDIA H100 failed on the MAX 1100 GPU
1
. A trial-and-error

approach isolated the set of performant kernels on the MAX 1100

GPUs for all the simulations in this paper. A modified PyFR branch

was set up to identify robust kernels, available as pearc24revision
branch in the first author’s Github repository [18].

3.2 Kernel profiling

The kernels were profiled to isolate the cause of the performance

differences across the GPUs with the GiMMiK kernels. As the simu-

lation performances tapered beyond 10
7
DOF in most of the cases, a

mesh size of ∼ 7× 10
7
DOF was considered for profiling the simula-

tions. The overall performance of this set of simulations is provided

in Table 2. TGV simulations were profiled across polynomial orders

P ∈ {2, 3, 4, 5, 6}, and for tet and hex element types using the

GiMMiK library.

NVIDIA NSight Compute 2023.3.0.0 available on the CUDA

v12.3.0 toolkit was used to profile simulations on the H100 GPU.

The profiler is designed to profile applications running on NVIDIA

GPUs with a particular focus on the CUDA API. The profiler was

set to profile the Python executible that ran PyFR, with the ‘full’

metrics option enabled. Each kernel call was executed about 500

times to obtain a detailed analysis of each kernel’s execution, along

with its corresponding roofline model.

To profile simulations on the MAX 1100 GPU, we utilized Intel

V-Tune 2024.1 from the oneAPI toolkit available through ACES.

‘GPU Compute/Media Hotspots’ profiling was performed on the

Python executable that ran PyFR, with ‘Trace GPU programming

1
This issue has been replicated via private correspondence with Intel.

APIs’ enabled. To the authors’ knowledge, the oneAPI toolkit could

not provide adequate details to plot a roofline model for the kernels.

Hence, PyFR’s existing performance benchmarking routines for

eligible matrix multiplication kernels were employed to obtain

the roofline for each kernel. The run time (Δ𝑡) averaged over 1000

iterations and the number of non-zero entries (𝔫𝐴) was obtained for

the operator matrix 𝐴 for each GiMMiK kernel. The performance

of each kernel was obtained as

𝐶𝑚 =
2 × 𝔫𝐴 × R𝑠

Δ𝑡
, (6)

where the measured performance𝐶𝑚 equals the number of floating

point operations performed per unit time. The arithmetic intensity

(I) is thus calculated as

I =
𝐶𝑚

𝐵𝑊
, (7)

where the bandwidth 𝐵𝑊 was obtained from the Nsight Compute

and Intel V-Tune profilers. The performance and arithmetic inten-

sity for each kernel, along with the roofline model for both the

GPUs are plotted in Fig. 4. The memory bandwidth reported from

BabelSTREAM v4.0 [3] benchmarks were included on the plots.

4 DISCUSSION

PyFR measured the performance on the NVIDIA H100 and the Intel

MAX 1100 GPUs with a series of simulations. While all GiMMiK

kernels performed on the H100 GPUs, a subset of the GiMMiK

kernels were robust on the Intel MAX 1100 GPUs. Observing a

stark difference in performance across the GPUs, GiMMiK kernels

were chosen for profiling the GPUs via PyFR.

For simulations performed on H100 GPUs, GiMMiK-enabled sim-

ulations outperformed cuBLASLt-enabled simulations for 𝑒 = HEX

simulations, while the reverse is true for 𝑒 = TET simulations. A

closer look at the kernels involved in the corresponding simula-

tions revealed that the arithmetic intensity of 𝑒 = HEX kernels

was lower than that of 𝑒 = TET kernels. Further, the performance

difference between the GiMMiK and cuBLASLt kernels widened

with polynomial order. This contrast is in line with the expected

result of sparsity in the corresponding matrices and the relative

inefficiency of the GiMMiK library in performing dense matrix

operations. To ensure the best kernels are chosen with both of the

available libraries, PyFR includes auto-tuning logic to compare their

performance and select the best-performing kernel. No analogue

of the cuBLASLt library is available specific to Intel GPUs with the

OpenCL API, forcing PyFR to use GiMMiK kernels for all element

types. MAX 1100 GPUs presented challenge in ensuring maximum

possible performance was realised, as well as robust kernels were

used to benchmark and profile the GPUs. The procedure followed

to identify the invalid kernels is provided in Appendix B.3. Con-

sequently, the performance of MAX 1100 GPUs was evaluated on

basis of the subset of GiMMiK kernels that were found robust across

all the simulations.

Upon profiling the GiMMiK kernels across the TGV simulations

performed across polynomial orders and element types, the kernels

are found to be limited by the available memory bandwidth on

both the GPUs, as can be seen in Fig. 4. The performance of the

kernels on the H100 GPUs was limited by the memory bandwidth

of 2039 GB/s which was reported in the vendor’s specification sheet

Impact of Memory Bandwidth on the Performance of Accelerators PEARC ’24, July 21–25, 2024, Providence, RI, USA

GiMMiK and cuBLAS (H100) cuBLAS (H100) GiMMiK (H100) GiMMiK (MAX)

10
6

10
7

10
8

10
8

10
9

(b) P = 2, 𝑒 = hex

10
6

10
7

10
8

10
8

10
9

(c) P = 2, 𝑒 = tet

10
6

10
7

10
8

10
8

10
9

(d) P = 3, 𝑒 = hex

10
6

10
7

10
8

10
8

10
9

(e) P = 3, 𝑒 = tet

10
6

10
7

10
8

10
8

10
9

P
e
r
f
o
r
m
a
n
c
e
(
D
o
F
/
s
)

(f) P = 4, 𝑒 = hex

10
6

10
7

10
8

10
8

10
9

(g) P = 4, 𝑒 = tet

10
6

10
7

10
8

10
8

10
9

(h) P = 5, 𝑒 = hex

10
6

10
7

10
8

10
8

10
9

(i) P = 5, 𝑒 = tet

10
6

10
7

10
8

10
8

10
9

Mesh size (DoF)

(j) P = 6, 𝑒 = hex

10
6

10
7

10
8

10
8

10
9

Mesh size (DoF)

(k) P = 6, 𝑒 = tet

Figure 3: Performance of TGV simulations with various kernel configurations. Tests were performed on H100 and MAX GPUs

for 𝑒 ∈ {TET,HEX} and P ∈ {2, 3, 4, 5, 6}.

[16] and was in line with the roofline model from Nsight Compute.

Interestingly, the performance on the Intel MAX GPUs was mostly

limited by the memory bandwidth of 800 GB/s reported from the

STREAM benchmark, and not the bandwidth of 1228.8 GB/s re-

ported by the vendors [7]. The kernels generally performed worse

in terms of both the arithmetic intensity as well as the performance.

Finally, the roofline of high order TET elements exhibited signif-

icantly lower performance compared to the reported bandwidth

limit and the FLOP limit, signaling a dire need for efficient dense

matrix multiplication kernels.

While a clear performance contrast is observed across the GPUs,

it may be noted that the unique architecture of the Intel MAX series

GPUs in comparison with their competitors is potentially untapped.

In particular, the substantial L2 cache on the Intel MAX 1100 GPU

is 108 MiB, while on the NVIDIA H100, this is only 50 MB. This

large cache size of the MAX series GPUs opens the possibility of

PEARC ’24, July 21–25, 2024, Providence, RI, USA Mishra et al.

10
−2

10
−1

10
0

10
1

10
2

10
10

10
11

10
12

10
13

51.2 TFLOP/s

22.2 TFLOP/s

2
0
3
9
G
B
/s

1
2
2
8
.8
G
B
/s

8
0
0
G
B
/s

Arithmetic intensity [FLOP/byte]

P
e
r
f
o
r
m
a
n
c
e
[
F
L
O
P
/
s
]

H100

MAX

MAX (STREAM)

H100 TET

MAX TET

H100 HEX

MAX HEX

Figure 4: Roofline plot for kernels used in the TGV simulations on H100 and MAX GPUs. A higher intensity of scatter plot

color represents a higher order polynomial.

incorporating cache-blocking strategies that are traditionally used

on CPUs [2].

All the analysis was performed via PyFR, making the flow solver

an ideal science-based tool for benchmarking the performance of

accelerators on the cluster. The alignment of estimated performance

with the actual performance as core to the development of the

solver greatly helped boil down computations to the execution

of kernels. Leveraging vendor-provided profilers’ capabilities, the

matrix multiplication kernels’ performance allowed us to isolate

the causes of performance discrepancy across the NVIDIA and Intel

GPUs. Apart from highlighting the potential of the Intel GPUs and

the limitations on bandwidth on the performance, this analysis

also exposed potential bugs in compiling and running the code,

further bolstering the potential of PyFR as a benchmarking tool for

stress-testing the cluster. Finally, this in-depth analysis of Intel MAX

1100 GPUs is pivotal to the ongoing developments on the ACES

testbed with cutting-edge resources such as Intelligence Processing

Units[11], container adoption[10] and workforce development[4].

5 CONCLUSIONS

This work investigated the performance of NVIDIA H100 and Intel

MAX 1100 GPUs using the open-source fluid flow solver PyFR on

the ACES testbed. Single-GPU scaling tests were performed on

both GPUs across different orders of accuracy and element types,

which correspond to performing matrix multiplications with dif-

fering matrix sizes and sparsities. Upon observing the consistently

better performance of the H100 GPU over MAX 1100 GPU across

various configurations of the Taylor–Green Vortex simulations, the

performance of GiMMik kernels on the H100 GPU and the MAX

GPU were profiled with NVIDIA NSight Compute and Intel V-Tune

respectively. The performance of kernels observed on the roofline

plots exposed the strong relation between the overall performance

of the simulations with the bandwidth-bound nature of the kernels.

Finally, the untapped potential of the unique architecture of the

Intel MAX series GPUs was discussed, and potential directions for

improving the performance of the MAX 1100 GPUs were outlined.

The findings in this work inform the researchers of the expected

performance of the NVIDIA H100 and the Intel MAX 1100 GPUs

available on the ACES facility and promote the development of

OpenCL libraries for the Intel GPUs. The studies showed that the

NVIDIA H100 GPUs performed better than the Intel MAX 1100

GPUs by a factor of up to 6× for dense matrix multiplications, and

up to 3.7× for sparse matrix multiplications part of hexahedral

and tetrahedral element meshes, owing to the bandwidth-bound

computations performed by PyFR and the lack of efficient robust

kernels for the Intel MAX 1100 GPUs.

ACKNOWLEDGMENTS

All simulations performed in this paper used the Accelerating Com-

puting for Emerging Sciences (ACES) cyberinfrastructure testbed

hosted by Texas A&M University with the support of NSF award

numbers 2112356 and 1925764. SM and FDW were partially sup-

ported by the Air Force Office of Scientific Research via grants

FA9550-23-1-0232 (“Enabling next-generation heterogeneous com-

puting for massively parallel high-order compressible CFD”).

REFERENCES

[1] Abouelmagd Abdelsamie, Ghislain Lartigue, Christos E. Frouzakis, and Do-

minique Thévenin. 2021. The Taylor–Green vortex as a benchmark for high-

fidelity combustion simulations using low-Mach solvers. Computers and Fluids
223 (June 2021), 104935. https://doi.org/10.1016/j.compfluid.2021.104935

[2] Semih Akkurt, Freddie Witherden, and Peter Vincent. 2022. Cache blocking

strategies applied to flux reconstruction. Computer Physics Communications 271
(Feb. 2022), 108193. https://doi.org/10.1016/j.cpc.2021.108193

[3] BabelSTREAM for benchmarking memory bandwidth 2024. . Retrieved March

8, 2024 from https://github.com/uob-hpc/babelstream

https://doi.org/10.1016/j.compfluid.2021.104935
https://doi.org/10.1016/j.cpc.2021.108193
https://github.com/uob-hpc/babelstream

Impact of Memory Bandwidth on the Performance of Accelerators PEARC ’24, July 21–25, 2024, Providence, RI, USA

[4] Wesley A. Brashear, Lisa M. Perez, Elizabeth Leake, Sandra B. Nite, Marinus

Pennings, Sheri Stebenne, Honggao Liu, and Dhruva K. Chakravorty. 2024. Culti-

vating Cyberinfrastructure Careers through Student Engagement at Texas A&M

University High Performance Research Computing.. In Practice and Experience in
Advanced Research Computing (PEARC ’24). ACM.

[5] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro 43, 3 (May 2023), 9–17. https://doi.org/10.1109/mm.2023.3256796

[6] H. T. Huynh. 2007. A Flux Reconstruction Approach to High-Order Schemes

Including Discontinuous Galerkin Methods. American Institute of Aeronautics

and Astronautics. https://doi.org/10.2514/6.2007-4079

[7] Intel Data Center GPU MAX 1100 Specifications 2024. . Retrieved Feb

22, 2024 from https://www.intel.com/content/www/us/en/products/sku/232876/

intel-data-center-gpu-max-1100/specifications.html

[8] Intel Data Center GPU MAX Series 2024. . Retrieved March 8, 2024

from https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-data-center-gpu-max-series-overview.html

[9] Intel Data Center GPUMAX Series Technical Overview 2024. . RetrievedMarch 5,

2024 from https://www.intel.com/content/www/us/en/products/details/discrete-

gpus/data-center-gpu/max-series.html

[10] Richard Lawrence, Dhruva K. Chakravorty, Lisa M. Perez, Wesley A. Brashear,

Zhenhua He, and Joshua Winchell. 2024. Container Adoption in Campus High

Performance Computing.. In Practice and Experience in Advanced Research Com-
puting (PEARC ’24). ACM.

[11] Hieu T. Le, Zhenhua He, Mai Le, Dhruva K. Chakravorty, Akhil Chilumuru, Yan

Yao, and Jiefu Chen. 2024. Performance Benchmarking and Lessons Learned

from Porting AI/ML Workloads to Intelligence Processing Units. In Practice and
Experience in Advanced Research Computing (PEARC ’24). ACM.

[12] Sambit Mishra, Freddie Witherden, Dhruva Chakravorty, Lisa Perez, and Francis

Dang. 2023. Scaling Study of Flow Simulations on Composable Cyberinfrastruc-

ture. In Practice and Experience in Advanced Research Computing (PEARC ’23).
ACM. https://doi.org/10.1145/3569951.3597565

[13] Abhinand Nasari, Lujun Zhai, Zhenhua He, Hieu Le, Suxia Cui, Dhruva Chakra-

vorty, Jian Tao, and Honggao Liu. 2023. Porting AI/ML Models to Intelligence

Processing Units (IPUs). In Practice and Experience in Advanced Research Com-
puting (PEARC ’23). ACM. https://doi.org/10.1145/3569951.3603632

[14] NSF Category II: ACES - Accelerating Computing for Emerging Sciences 2024. .

Retrieved March 6, 2024 from https://hprc.tamu.edu/aces/

[15] NVIDIA cuBLASLt library user guide 2024. . Retrieved Feb 24, 2024 from

https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublaslt-api

[16] NVIDIA H100 Specifications 2024. . Retrieved Feb 16, 2024 from https://resources.

nvidia.com/en-us-tensor-core

[17] Paper data and results 2024. . Retrieved June 7, 2024 from https://github.com/

sambitmishra98/GiMMiK-profiling-on-GPU.git

[18] PyFR branch with functionality to choose specific kernels 2024. . Retrieved Jun

12, 2024 from https://github.com/sambitmishra98/PyFR.git

[19] Python scripts to create GMSH 2024. . Retrieved March 7, 2024 from https:

//github.com/WillTrojak/basic_gmsh.git

[20] J. Romero, J. Crabill, J.E. Watkins, F.D. Witherden, and A. Jameson. 2020. ZEFR:

A GPU-accelerated high-order solver for compressible viscous flows using the

flux reconstruction method. Computer Physics Communications 250 (May 2020),

107169. https://doi.org/10.1016/j.cpc.2020.107169

[21] Single-GPU test scripts 2024. . Retrieved March 7, 2024 from https://github.com/

sambitmishra98/benchmark

[22] Geoffrey Ingram Taylor and Albert Edward Green. 1937. Proceedings of the Royal
Society of London. Series A - Mathematical and Physical Sciences 158, 895 (Feb.
1937), 499–521. https://doi.org/10.1098/rspa.1937.0036

[23] P. Vincent, F. Witherden, B. Vermeire, J. Park, and A. Iyer. 2016. Towards Green

Aviation with Python at Petascale. In SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer

Society, Los Alamitos, CA, USA, 1–11. https://doi.org/10.1109/SC.2016.1

[24] Z.J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni,

Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H.T. Huynh,

Norbert Kroll, Georg May, Per-Olof Persson, Bram van Leer, and Miguel Visbal.

2013. High-order CFD methods: current status and perspective. International
Journal for Numerical Methods in Fluids 72, 8 (Jan. 2013), 811–845. https://doi.

org/10.1002/fld.3767

[25] F.D. Witherden, A.M. Farrington, and P.E. Vincent. 2014. PyFR: An open source

framework for solving advection–diffusion type problems on streaming architec-

tures using the flux reconstruction approach. Computer Physics Communications
185, 11 (Nov. 2014), 3028–3040. https://doi.org/10.1016/j.cpc.2014.07.011

[26] F.D. Witherden, B.C. Vermeire, and P.E. Vincent. 2015. Heterogeneous computing

on mixed unstructured grids with PyFR. Computers and Fluids 120 (Oct. 2015),
173–186. https://doi.org/10.1016/j.compfluid.2015.07.016

[27] Freddie D. Witherden. 2021. Python at Petascale With PyFR or: How I Learned

to Stop Worrying and Love the Snake. Computing in Science and Engineering 23,

4 (July 2021), 29–37. https://doi.org/10.1109/mcse.2021.3080126

A KERNEL PERFORMANCE, PROFILE AND

BENCHMARK DATA

The performance of simulations using the mesh set of mesh sizes

∼ 7 × 10
7𝐷𝑜𝐹 is given in Table 2.

B OBSERVATIONS ON INTEL MAX 1100 GPU

The setup of PyFR on the Intel MAX 1100 GPUs was not as straight-

forward as that on the NVIDIAH100 GPUs. Significant observations

upon working with the MAX 1100 GPUs are noted in this section,

while the rest of the observations are mentioned in [17].

B.1 Intel MPI and OpenCL installation on

compute node

The Intel oneAPI toolkit was used to set up PyFR on the cluster.

Following issues around setting up MPI and OpenCL libraries

on the Intel GPUs on ACES, all libraries were installed from the

source, on the compute nodes containing the MAX GPUs. Build

instructions to set up the libraries and results are available at the

first author’s Github repository Paper data and results [17], Single-

GPU test scripts [21].

B.2 Strong-scaling test on MAX GPUs

To evaluate the potential benefits of performing single-GPU scaling

tests and kernel profiling studies on the Intel MAX 1100 GPUs,

strong scaling tests were performed on the MAX GPUs on ACES.

ACES is set to host 120 Intel MAX 1100 GPUs upon its deployment.

Four MAX GPUs are connected to a PCIe switch chip, which, in

turn, is connected to the CPU. The nodes were connected across

the NDR Infiniband fabric with an inter-node bandwidth of at least

200 GB/s. The libraries were set up on a compute node containing

the MAX GPUs (see Appendix B.1), and multi-node multi-GPU

scaling tests successfully ran on the cluster with OpenCL backend.

A TGV simulation was performed with 𝑒 = HEX and P = 3, and the

generated meshes were partitioned to distribute workload across

the GPUs with METIS v5.2.0. It may be noted that despite our use

of a subset of kernels found to perform robustly on a single Intel

MAX 1100 GPU, the strong-scaling tests found simulations to result

in a NaN error beyond 32 GPUs.

B.3 Isolation of faulty kernels

Simulations failed in a probabilistic manner, with the chance of a

NaN increasing with simulation mesh size and polynomial order.

Upon observing the NaN error, each matrix multiplication kernel

was isolated and tested iteratively for large matrix sizes. For matrix

multiplications of the form 𝐶 = 𝐴𝐵 where 𝐴 performed in PyFR

(see Section 2) when matrix𝐶 was expected to be a matrix with unit

entries, the authors found that a few of the matrix entries deviated

from 1 every few iterations, particularly for large matrices. Since

this issue is only isolated as a result of the physics of the simulation

failing, it is possible that many simulations would result in invalid

physics but not deviate from the valid solution enough to cause the

NaN error.

In addition, a few simulations resulted in a page fault on the

nodes with the MAX 1100 GPUs. This warning did not seem to visi-

bly affect the progress of the simulation every time it was observed,

https://doi.org/10.1109/mm.2023.3256796
https://doi.org/10.2514/6.2007-4079
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html
https://doi.org/10.1145/3569951.3597565
https://doi.org/10.1145/3569951.3603632
https://hprc.tamu.edu/aces/
https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublaslt-api
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://github.com/sambitmishra98/GiMMiK-profiling-on-GPU.git
https://github.com/sambitmishra98/GiMMiK-profiling-on-GPU.git
https://github.com/sambitmishra98/PyFR.git
https://github.com/WillTrojak/basic_gmsh.git
https://github.com/WillTrojak/basic_gmsh.git
https://doi.org/10.1016/j.cpc.2020.107169
https://github.com/sambitmishra98/benchmark
https://github.com/sambitmishra98/benchmark
https://doi.org/10.1098/rspa.1937.0036
https://doi.org/10.1109/SC.2016.1
https://doi.org/10.1002/fld.3767
https://doi.org/10.1002/fld.3767
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1016/j.compfluid.2015.07.016
https://doi.org/10.1109/mcse.2021.3080126

PEARC ’24, July 21–25, 2024, Providence, RI, USA Mishra et al.

Performance [GDoF/s]

Element Order Mesh size H100 MAX

type [MDoF] GiMMiK GiMMiK+cuBLAS GiMMiK

tet

2 70 2.596 2.602 1.092

3 65 2.788 2.791 1.120

4 68 2.621 2.935 0.703

5 73 1.821 3.140 0.300

6 69 1.294 3.276 0.160

hex

2 69 3.513 3.517 1.369

3 69 3.793 3.801 1.499

4 69 4.342 4.344 1.403

5 69 4.523 4.529 1.227

6 67 3.950 3.951 1.020

Table 2: Comparison of the overall performance of PyFR simulations for the mesh set used to profile the GPUs.

Ideal scaling 80% efficiency scaling Gen 5 PCIe fabric Gen 4 PCIe fabric

1 2 4 8 16

4

8

12

16

R
e
l
a
t
i
v
e
p
e
r
f
o
r
m
a
n
c
e

(a) P = 2, 𝑒 = tet

1 2 4 8 16

4

8

12

16

(b) P = 2, 𝑒 = hex

1 2 4 8 16

4

8

12

16

Number of GPUs

R
e
l
a
t
i
v
e
p
e
r
f
o
r
m
a
n
c
e

(c) P = 6, 𝑒 = tet

1 2 4 8 16

4

8

12

16

Number of GPUs

(d) P = 6, 𝑒 = hex

Figure 5: Strong-scaling test performed with Intel MAX 1100 GPUs across multiple nodes on ACES, with four GPUs connected

to each node on the composable Gen 4 and Gen 5 PCIe fabric. The performance was normalized with respect to corresponding

simulations performed on the four meshes in the largest mesh set tested for the paper, i.e. 1.7 × 10
8𝐷𝑜𝐹 .

but may be a warning for the error observed with the matrix mul-

tiplication. The Intel V-Tune profiler failed to profile simulations

that displayed this page-fault error.

[2024 -03 -04 08:22:58][u.sm121949@sdp -pvc ~]$ dmesg --time

-format=iso | grep "2024 -02 -23 T11 :20:39"

2024 -02 -23 T11 :20:39 ,752448 -06:00 i915 0000:9a:00.0: page

fault @ 0x01000010d6241000 , ccs0 in python3

[2609731]

2024 -02 -23 T11 :20:39 ,752451 -06:00 i915 0000:9a:00.0: EU

debugging disabled , EUs not interrupted , dumping

error state to /sys/class/drm/card0/error

Impact of Memory Bandwidth on the Performance of Accelerators PEARC ’24, July 21–25, 2024, Providence, RI, USA

The above issues were addressed by employing a subset of ker-

nels offered by the GiMMiK package. While the GiMMiK package

typically provides four kernels per matrix multiplication routine,

the following subset of kernels were found robust across all simula-

tions:

...

[backend -opencl]

gimmik -nkern -M0 = [0,1]

gimmik -nkern -M3 = [0,1]

gimmik -nkern -M6 = [0,1]

gimmik -nkern -M132 = [0,1]

gimmik -nkern -M460 = [0,1,2,3]

...

The PyFR branch modified from the develop branch to isolate

the kernels is available as pearc24revision branch in the first

author’s Github repository[18].

	Abstract
	1 Introduction
	2 Theory
	3 Methodology
	3.1 Single-GPU scaling tests
	3.2 Kernel profiling

	4 Discussion
	5 Conclusions
	Acknowledgments
	References
	A Kernel performance, profile and benchmark data
	B Observations on Intel MAX 1100 GPU
	B.1 Intel MPI and OpenCL installation on compute node
	B.2 Strong-scaling test on MAX GPUs
	B.3 Isolation of faulty kernels

