
Insight Gained from Migrating a Machine Learning Model to
Intelligence Processing Units

Hieu Le
hieult@tamu.edu

Texas A&M University
College Station, TX, USA

Zhenhua He
Texas A&M University
College Station, TX, USA
happidence1@tamu.edu

Mai Le
University of Houston
Houston, TX, USA

mnle8@cougarnet.uh.edu

Dhruva K. Chakravorty
Texas A&M University
College Station, TX, USA
chakravorty@tamu.edu

Lisa M. Perez
Texas A&M University
College Station, TX, USA

perez@tamu.edu

Akhil Chilumuru
Texas A&M University
College Station, TX, USA
akhilchilumuru@tamu.edu

Yan Yao
University of Houston
Houston, TX, USA

yyao4@central.uh.edu

Jiefu Chen
University of Houston
Houston, TX, USA

jchen82@central.uh.edu

ABSTRACT
The discoveries in this paper show that Intelligence Processing
Units (IPUs) offer a viable accelerator alternative to GPUs for ma-
chine learning (ML) applications within the fields of materials sci-
ence and battery research. We investigate the process of migrating
a model from GPU to IPU and explore several optimization tech-
niques, including pipelining and gradient accumulation, aimed at
enhancing the performance of IPU-based models. Furthermore, we
have effectively migrated a specialized model to the IPU platform.
This model is employed for predicting effective conductivity, a
parameter crucial in ion transport processes, which govern the
performance of multiple charge and discharge cycles of batteries.
The model utilizes a Convolutional Neural Network (CNN) archi-
tecture to perform prediction tasks for effective conductivity. The
performance of this model on the IPU is found to be comparable
to its execution on GPUs. We also analyze the utilization and per-
formance of Graphcore’s Bow IPU. Through benchmark tests, we
observe significantly improved performance with the Bow IPU
when compared to its predecessor, the Colossus IPU.

CCS CONCEPTS
• Computing methodologies → Machine learning.

KEYWORDS
ACES (Accelerating Computing for Emerging Sciences), Graphics
Processing Unit, ResNet50, Intelligence Processing Unit, Classifica-
tion, Prediction, Convolution Neural Network, Optimization

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670527

ACM Reference Format:
Hieu Le, Zhenhua He, Mai Le, Dhruva K. Chakravorty, Lisa M. Perez, Akhil
Chilumuru, Yan Yao, and Jiefu Chen. 2024. Insight Gained from Migrating a
Machine Learning Model to Intelligence Processing Units. In Practice and
Experience in Advanced Research Computing (PEARC ’24), July 21–25, 2024,
Providence, RI, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3626203.3670527

1 INTRODUCTION
Scientists are increasingly relying on specialized hardware to fa-
cilitate computationally-intensive research. By 2022, the U.S. Na-
tional Science Foundation (NSF)-funded Accelerating Computing
for Emerging Sciences (ACES) offered the national community a cy-
berinfrastructure (CI) testbed equipped with a range of accelerators
that were developed for artificial intelligence and machine learning
(AI/ML) workflows. Hosted by Texas A&M University, ACES com-
plements the NSF ACCESS FASTER high-performance computing
(HPC) system that is also hosted by Texas A&M University.

Included in ACES’ suite of accelerators are 16 Graphcore Colos-
sus Intelligent Processing Units (IPUs) and 16 Graphcore Bow IPUs.
Although IPUs were introduced to the ML community much later
than GPUs, Graphcore hardware has shown promising results that
are on par with GPU performance for their training and inference
capabilities [11], [12].

GPUs and IPUs are designed with different Arithmetic Logic
Units (ALUs), which gives each their own advantages depending
on the ML workload. GPU ALUs centrally control arithmetic op-
erations and memory sharing. As a result, large-memory GPUs
demonstrate superior performance when executing tasks that in-
volve parallelizing a set of decomposable instructions, such as ma-
trix multiplication [14]. Meanwhile, an IPU partitions ALUs into
numerous smaller tiles, each of which is independent from the
other. Moreover, each tile has its own memory and can compute
instructions independently. Thus, fine-grained parallelism is one of
the main advantages of IPU architecture.

Recently, a new generation of Graphcore hardware, the Bow
IPU, has been introduced. The Bow IPU represents an enhanced

https://orcid.org/0000-0003-2510-073X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670527
https://doi.org/10.1145/3626203.3670527
https://doi.org/10.1145/3626203.3670527


PEARC ’24, July 21–25, 2024, Providence, RI, USA Hieu, et al.

generation of the existing Graphcore chip known as the Colossus
Mk2. While maintaining the same number of processing cores and
memory capacity as the Colossus Mk2, the Bow IPU achieves up
to 40 percent greater performance due to its utilization of a novel
wafer-on-wafer design. This innovative technology enables the
integration of two distinct silicon wafers in a vertical, or three-
dimensional, arrangement to create a unified chip [3].

This paper not only aims to compare the performance of the
new Bow-IPU architecture with previous IPU generations, but also
investigates the process of transitioning ML models between GPUs
and IPUs. Through integrating deep learning frameworks into IPU
with careful steps of implementation, IPUs have demonstrated their
ability to enhance the performance of ML computations. In contrast
with an extensive corpus of literature regarding the utilization and
internal mechanisms of GPUs in various applications [2, 8, 15], this
paper is among a limited number that discuss the performance of
the Bow-IPU and the process of porting ML models from GPUs to
IPUs [11, 12].

We show that IPUs offer an alternative to GPUs for scientific
research, especially in the field of battery science. As in Fujimura’s
work, ML is utilized to predict the ionic conductivity of numerous
conductors [4]. A recent collaboration between Microsoft and the
Pacific Northwest National Laboratory takes a significant stride,
utilizing AI to assess more than 32 million solid-state electrolyte
candidates within a week which greatly accelerates the process of
discovery toward better rechargeable batteries [1]. With increased
demand for computing resources, many complex problems can be
solved by using the IPU accelerator. With the computing power
of IPUs, we successfully trained a specialized mode [9] to predict
effective ionic conductivity of composite cathode solid-state batter-
ies. The performance, particularly the training throughput of the
model trained on IPUs, is similar to models trained on GPUs.

In the following sections, we outline approaches and computa-
tional platforms utilized to examine the performance of the Bow-
IPU.While the execution of GPU programs is widely comprehended,
we elaborate on the execution of IPU programs and analyze how
several implementations impact performance when porting a GPU
model to the IPU. Given the widespread use of GPUs at national CI
sites, this paper aims to enhance the understanding of the new Bow-
IPU architecture and how users can efficiently use ML workflows
with IPU accelerators.

2 METHODS
2.1 Benchmarking
In this work, AI/ML models were tested with both GPUs and IPUs.
All models were optimized for each platform architecture to guar-
antee that peak performance could be achieved. The objective of
an ML benchmark is to measure the time required to achieve a
specific level of accuracy during training, or to assess the speed
and efficiency of algorithmic performance in real-world inference
situations, focusing on latency and throughput. This comparison
ensures fairness among various training methods by appropriately
considering both throughput and accuracy. The most effective train-
ing strategy entails choosing parameters that produce both high
throughput and high accuracy. Therefore, some models may be

more compatible and more performant with specific hardware ar-
chitectures than others, depending on how training parameters
impact the model’s accuracy.

We performed benchmarks on the Bow-IPU architecture using a
couple of ML models. All models were implemented with the core
network being the convolutional neural network (CNN), which
is also the backbone for many ML tasks such as object detection
and segmentation in computer vision. One of many models is the
well-known ResNet [5] model which contains different skip con-
nection layers to mainly combat the vanishing gradient problem.
This model is heavily optimized for both accelerators to achieve
peak performance.

On the other hand, we also analyzed the process of porting a spe-
cialized model from GPU to IPU. Besides adding simple wrappers
around regular ML modules to make it run on IPU, we addressed
the optimization with IPU to fully utilize the hardware for training.
Additionally, several advanced options, such as pipelining and gra-
dient accumulation, were investigated to boost IPU performance.

Theoretically, we desired to achieve linear scaling, meaning that
if the number of accelerators doubles, the throughput also doubles,
thereby reducing the training time by half. However, in practice,
doubling the number of accelerators does not result in halving the
training time. This is due to various conditions of hardware and non-
compute resources, such as memory and networking. Moreover,
we are much more interested in the performance of the overall
hardware system than individual components. Therefore, many
attributes of ML models in both IPU and GPU environments are
fine-tuned to achieve the best possible optimization.

2.2 Specialized Model
The escalating demand for safer and more efficient battery tech-
nologies has spurred a significant shift towards non-flammable
solid-state batteries, and away from their lithium-ion counterparts
(which can ignite or explode). While solid-state batteries have safety
and energy density advantages, a notable challenge persists in the
form of low power density due to non-optimal cathode microstruc-
tures that lead to high tortuosity and poor ionic conductivity [7].
High Ionic conductivity corresponds to low internal resistance, re-
sulting in more efficient ion transport. This high ionic conductivity
allows fast movement of ions within the composite cathode, en-
abling higher actual capacity at fast charging and discharging rates,
eventually contributing to higher cell energy density, sustained
stability, and consistency of performance over numerous charge
and discharge cycles. To study the effect of cathode microstructure
on ionic conductivity, a general workflow was proposed to predict
the ionic conductivity from scanning electron microscopy (SEM)
images [10]. The general workflow consists of two steps: image
denoising for data preparation and effective conductivity prediction.
Cross-sectional SEM images often contain striped noise from ion
beam polishing, which impacts the accuracy of conductivity calcu-
lations. The denoising model, U-net, effectively eliminates striped
noise from SEM images and converts them into clean binary images.
The binary images have two regions: conductive (yellow) and non-
conductive (black) regions, corresponding to solid electrolyte and
cathode active material, respectively. The effective conductivity pre-
diction model is a CNN implemented in PyTorch as shown in Figure



Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units PEARC ’24, July 21–25, 2024, Providence, RI, USA

Figure 1: The specialized model for effective conductivity prediction

1. The model takes binary SEM images and the ionic conductivity
value of the conductive region as inputs to generate predictions for
effective or total ionic conductivity. The conductivity model is the
model that we aim to port to the Bow-IPU.

The image datasets consist of training, validation, and testing
sets, distributed in a ratio of 1216:152:152. Binary images of size
256x256 were obtained by denoising and cropping SEM images.
The reference effective conductivity value of each image is deter-
mined using the finite difference method (FDM). FDM is a highly
accurate method for calculating current, resistance, and effective
conductivity. However, FDM accrues significant computational cost,
especially in situations involving large-sized images or when pro-
cessing a substantial quantity of images. In the work of Mai, et al.,
FDM was employed to calculate the effective conductivity value for
each image, serving as the target value of the effective conductivity
prediction model [9]. The acquired image datasets, along with their
corresponding effective conductivity values, were utilized to train
the CNN effective conductivity prediction model. The model allows
a fast prediction of a composite cathode’s performance from its
SEM images by outputting the predicted effective ionic conductivity
value.

2.3 Porting the Conductivity Model to IPU
Different hardware architectures require different techniques and
workflows to improve the performance of anMLmodel. The special-
ized model is originally implemented to run on GPUs. Thus, when
porting to IPUs, several modifications are required to make our
model run optimally. Fortunately, the amount of work to modify
our workflow is minimal and can be done quickly.

IPU Options
The first modification that we perform is to add Poptorch op-

tions to our program. Graphcore provides a placeholder for many
options that can be defined for the hardware; thus all options are
wrapped in a unique and central variable. IPU options define how
IPUs control the workflow of the training and inference of a model.
One of the many important options is the device iterations option.
The option organizes batches of data on a queue that can be used
directly by the IPU, which significantly reduces the time spent on
data transferring between CPUs and IPUs. Another advantageous

Table 1: Configuration for IPU pipelining

Number of IPUs Configuration
2 [6, 4]
4 [5, 1, 1, 3]
8 [1, 1, 1, 1, 1, 1, 1, 3]

attribute involves instructing the IPU to execute convolution and
matrix multiplication in float16, thereby reducing the computa-
tional workload, as these two operations account for the majority
of computations.

Dataloader
For implementation on IPUs, we opt for a dataloader specifically

designed for IPUs, as opposed to utilizing PyTorch’s dataloader. The
IPU dataloader provides the flexibility to incorporate additional
options for modifying data processing methods. With the prede-
fined Poptorch options mentioned above, we simply add the unique
option variable to the IPU dataloader. As a result, we achieve an
efficient data pipeline for IPU training and inference processes.

Pipelining
Pipelining is an effective method that we use to improve the

performance of our model. Pipelining involves dividing the entire
model into several computational stages, with each stage’s output
being fed into the next. Each stage is allocated an IPU to perform
its forward and backward propagation. By distributing the stages
across various IPUs and ensuring an adequate number of mini-
batches, all stages will concurrently process a data batch after an
initial "ramp-up" phase. These stages execute concurrently across
multiple IPUs, which enables amore efficient utilization of resources
compared to relying solely on sharding. As a result, this pipeline
maximizes the parallel processing capabilities of all IPUs involved,
leading to enhancements in processing efficiency, throughput, and
latency performance.

When employing pipelining with a model on the IPU, it is nec-
essary to specify the gradient accumulation option which enables
concurrent processing of several mini-batches through the pipeline,
enabling IPUs to execute multiple stages simultaneously. Particu-
larly, in the backpropagation, gradients accumulate across multiple



PEARC ’24, July 21–25, 2024, Providence, RI, USA Hieu, et al.

mini-batches. After processing the predefined number of accumu-
lation, the model parameters are updated with the average value of
gradients. With gradient accumulation enabled, the global batch
size is defined to be equal to the multiplication of the mini-batch
size, the number of replicas, and the number of gradient accumula-
tion.

Graphcore provides several methods to pipeline a model. All
of them are equally efficient and the choice of which method to
use depends on the user’s preference. Using the provided ‘pop-
torch.BeginBlock’ wrapper, we are able to control the partitioning
of the model’s granularly. The process of organizing blocks into
different stages is straightforward, which only requires access to
components of an ML model.

To further boost the performance of multiple IPUs via pipelin-
ing, the amount of workload and memory of each partition should
be equally distributed. It is essential to consider that these parti-
tions will be allocated and executed across multiple IPUs. Thus, the
way in which we segment a model will have a direct influence on
both memory usage and performance at each stage. Subsequent
compromises must be taken into account:

• Stages must be accommodated within memory, taking into
account both active and intermittently active memory. A
report from the PopVision tool can assist with identifying
which Ops and tensors utilize the most memory.

• Stages should exhibit comparable execution durations to
prevent IPUs from remaining inactive while others finish
the computation. The time taken by the longest stage dictates
the duration of a single step. Again, the PopVision execution
trace can aid in identifying stages with imbalances.

• Communication between IPUs incurs a slower rate compared
to accessing memory within a single IPU and should be kept
to a minimum.

Even though Graphcore provides convenient methods to pipeline
a model, the task still requires manually partitioning the original
blocks of a model into a corresponding pipelined block. This step
requires a good understanding of all components of the model.
The conductivity model is built upon many layers. Based on the
model implementation, we group all layers into 10 different blocks,
each of which contains a different number of parameters. After
analyzing the memory usage and computational workload during
pipelining with PopVision, we obtain configurations for pipelining
with a different number of IPUs as shown in Table 1.

As can be seen from Table 1, there is no single IPU model. The
reason behind this is that the model cannot fit into a single Bow-IPU
with an input size of 256x256. This is due to the limited memory
of each IPU in the system. To overcome this problem, pipelining is
the method Graphcore recommends. Therefore, we came up with
three pipelined models:

The number in the second column of Table 1 indicates howmany
layers are being placed in multiple IPUs. For instance, in the case
of pipelining with two IPUs, the first six layers are placed on the
first IPU with the index being 0, while the remaining four layers
are placed in the second IPU with the index being 1. The placement
of layers is dictated by the number of parameters at each layer. The
number of parameters gradually increases from the first layer and
peaks at the eighth layer before drastically decreasing with the

Figure 2: Image throughput variation of PyTorch ResNet50
model across 8 IPUs with epochs.

Figure 3: Image throughput variation of PyTorch ResNet50
model across 8 IPUs with epochs.

last two layers. To further confirm our partitioning, PopVision is
used to check the workload of each stage. Results from PopVision
are in agreement with our pipeline configurations to achieve peak
performance for IPUs.

2.4 Performing the Calculation
Benchmarking on GPUs is performed on NVIDIA A100 (40GB,
PCle) [13] on the NSF FASTER cluster at Texas A&M University.
These GPUs are composed over the PCIe fabric to dual-socket nodes
powered by 64-core processors (two 32-core Intel Xeon 8352Y Ice
Lake processors)

On the other hand, IPU calculations are performed on Graphcore
Bow-IPU compute nodes provided by ACES. Each compute node
includes 16 IPUs. Graphcore provides their own implementation of
both Tensorflow and PyTorch through the Poplar software devel-
opment toolkit. Graphcore also provides benchmarking tools and
documentation for widely-used AI/ML models, and comprehensive
guidance on ML workload environments [3, 6]. It is imperative to
emphasize that benchmarking measurements for training are con-
ducted starting from the second epoch onward. This is because ML
models undergo compilation during the initial epoch, a procedure
that usually demands a significant amount of time. Consequently,



Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units PEARC ’24, July 21–25, 2024, Providence, RI, USA

Figure 4: Image throughput variation of PyTorch ResNet50 model across 8 IPUs with epochs.

it is more precise to assess benchmarking criteria from the second
epoch onward.

Graphcore IPUs allow training and inference to be performed in
parallel with single or multiple hosts. The number of hosts (num-
ber of instances) can be specified using the command ‘poprun’ to
launch different IPU nodes. Furthermore, the number of replicas
(model copies) can also be defined to create multiple copies of the
same graph of a model. Based on these two parameters, ‘poprun’
automatically allocates the correct number of IPUs for the given
task. The total number of IPUs is a result of the multiplication be-
tween the number of instances and the number of replicas. Each
host (instance) manages the input/output of data, but it does not
directly affect the computation of IPUs. As a result, this parameter
is specified based on the workload of data transferring between
IPUs and hosts. In general, the number of instances is equal to or
divisible by the number of replicas.

3 RESULTS AND DISCUSSION
3.1 Computer Vision model - PyTorch ResNet50
For benchmarking on IPUs with computer vision models, we used
the same PyTorch ResNet50 model that was used in the previous
paper [11, 12]. ResNet model [5] is a popular CNN model for its
innovation of skip connections to address the gradient degradation
problem. It also serves as the backbone for many models of image

classification, object detection, semantic and instance segmentation,
etc.

Figure 2 shows the image throughput of PyTorch ResNet50 varies
with the number of epochs on ACES Bow and Colossus IPU systems
respectively across 8 IPUs. Initially, for both Bow and Colossus IPU
systems, the first epoch exhibits lower performance primarily be-
cause of graph compilation overhead. However, the performance
improves and stabilizes after the second epoch. Therefore, the per-
formance values reported in this study are obtained after 2 epochs.
Also, we can see the performance comparison of the two systems is
evident. On average, the Bow IPU system outperforms the Colossus
system by approximately 42%. This is consistent with the compar-
ison of the IPU frequencies. The Bow IPU frequency is 1.85 GHz.
The Colossus IPU frequency is 1.325 GHz. And the difference is
around 40%.

In deep learning models, batch size can impact how efficiently
hardware resources are utilized and different batch sizes may lead
to different levels of memory usage and computational efficiency.
We study the image throughput variation of the PyTorch ResNet50
model with the micro-batch sizes across 8 IPUs (Figure 3). As shown
in the figure, there is a clear positive correlation between the micro-
batch size and the throughput. At smaller micro-batch sizes, the
performance of throughput increases, indicating higher efficiency in
processing images at a higher rate with micro-batch size. However,



PEARC ’24, July 21–25, 2024, Providence, RI, USA Hieu, et al.

Figure 5: Sequence throughput and latency variation of LLaMa2-7B model inference with the number of IPUs.

Figure 6: Performance of different pipelined models without replicason on Bow IPUs

at larger micro-batch sizes, the increase slows down because of the
memory and computation being almost saturated.

Monitoring the training loss and accuracy of deep learning mod-
els over epochs can help assess whether hte models are converging.



Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units PEARC ’24, July 21–25, 2024, Providence, RI, USA

Figure 7: Performance of different pipelined models without replicas on Bow IPUs

Table 2: Performance of the 2-IPU pipelined model and GPU implementation

Hardware Device Quantity Micro BSize Global BSize Throughput (images/s)
NVIDIA A100 1 256 256 304.29
NVIDIA A100 2 256 512 567.32
NVIDIA A100 4 256 1024 1,077.34
Bow-IPU 2 2 80 289.04
Bow-IPU 4 2 160 435.30
Bow-IPU 8 2 320 720.17
Bow-IPU 16 2 640 1,116.62

Notes: BSize is batch size

Figure 4 depicts the training loss and accuracy of the PyTorch
ResNet50 model with the number of epochs on both ACES Bow
and Colossus IPU systems. We can see that the training loss and
accuracy on the two systems are very close. The accuracy gradually
increases from approximately 1.2% to nearly 50%, while the training
loss steadily decreases from around 6.5 to about 3.2 over 10 epochs.
In the final epochs, the trends start to plateau.

3.2 Large Language Model - LLaMa2-7B
Inference

Figure 5 shows the performance of Meta’s Large Language Model
for Text Generation (LLaMa2-7B) with 7 billion parameters on
the ACES Bow IPU system. This evaluation was conducted with

micro-batch size of 2 and a sequence length of 1024. The model
is obtained from the Gradient Hugging Face GitHub repository.
From the figure, we can see that as the number of IPUs increases,
the throughput (measured in generated tokens/sec) increases al-
most linearly, indicating enhanced processing efficiency whenmore
IPUs are involved, and the latency decreases, indicating a quicker
response. This proves the scalability and efficiency improvements
achievable by allocating more IPUs to LLaMa2-7B model inference.

3.3 Conductivity Model
3.3.1 Performance of PipelinedModel on Bow-IPU. When themodel
is pipelined across various IPUs, there is an enhancement in perfor-
mance, as illustrated in Figure 6. All model executions are conducted



PEARC ’24, July 21–25, 2024, Providence, RI, USA Hieu, et al.

on a suboptimal configuration with 20 iterations and 40 gradient
accumulations. The mini-batch size is configured to the maximum
for 2, 4, and 8-pipelined models, corresponding to 2, 4, and 8 images
per mini-batch, respectively. However, the throughput does not
scale linearly. One potential explanation for this phenomenon is the
data exchange between different IPUs within an IPU-POD. Comput-
ing units experience delays while transferring data between IPUs,
leading to a slight decline in performance.

3.3.2 Scaling with replicas. As depicted in Figure 7, different pipelined
models achieve similar throughput when the number of IPUs being
used is the same. For instance, with a total of 8 IPUs being used, the
2-IPU pipelined models with 4 replicas yield comparable outcomes
to the 4-IPU pipelined model with 2 replicas and the 8-IPU pipelined
model without any replicas. This indicates that both replicas and
pipelining enhance performance almost identically.

However, effective pipelining, aimed at distributing the workload
evenly across IPUs, has the potential to yield higher performance,
as evidenced by the case of utilizing 16 IPUs (Figure 7). Using
the same number of IPUs, the pipelined model where workload is
distributed among all 4 IPUs outperforms the other two models in
terms of throughput. This improvement stems from the flexibility
provided by the architecture of the specialized model, allowing for
nearly equal partitioning of all layers into pipelined blocks based on
workload. In contrast, the 2-IPU pipelined model can only divide the
model into two parts, thus limiting partitioning options given the
model architecture. Conversely, the 8-IPU pipelined model, while
employing an excess number of IPUs for a model consisting of
10 main blocks, results in inefficient utilization of IPU computing
resources.

3.3.3 GPU and IPU comparison. Table 2 presents the performance
results from training a specialized model on both the NVIDIA A100
GPU and the Bow-IPU. Our analysis reveals that GPUs require a
sizable batch size to effectively train the model while maintaining
high throughput. In contrast, although the Bow-IPU supports a
minimal number of micro batch sizes, it still demonstrates signifi-
cant performance gains. Furthermore, the global batch size for the
IPU typically tends to be large due to the incorporation of gradient
accumulation and model replication techniques. This arises from
the fact that IPUs distribute workloads across tiles, whereas the
NVIDIA A100 possesses significantly greater memory, enabling it
to handle considerably larger batch sizes. More importantly, the
performance of both platforms in the training process remains
comparable across hardware platforms.

3.3.4 Limitations and Challenges. Despite the extensive applica-
tion of optimization techniques to the conductivity model, the code
in the IPU has not been optimized to achieve the maximum pos-
sible performance. There are several other optimization options
available to enhance the model’s performance, such as optimiz-
ing matrix multiplication operations with different data types and
adjusting caching behaviors. These techniques can be tailored to
specific tasks, presenting an opportunity for improvement in future
implementations.

Porting code from GPU to IPU poses several challenges. Firstly,
Graphcore gathers the majority of optimization options into a cen-
tral variable, requiring careful review of the documentation to

find equivalent options in PyTorch/TensorFlow for GPU. Moreover,
effective pipelining requires a thorough understanding of IPU ar-
chitecture, as the workload must be evenly distributed across all
IPUs to achieve optimal scaling performance.

4 CONCLUSION
The training results of the conductivity model on Bow-IPU hard-
ware demonstrate that IPU serves as a promising alternative plat-
form for conducting ML tasks within the field of materials science
and chemistry. Moreover, Graphcore offers various methods for
efficiently transitioning a model from GPU to IPU. Among these
techniques, pipelining stands out as a crucial approach for suc-
cessfully migrating medium-to-large-scale ML models. Pipelining
becomes particularly advisable when dealing with models that sur-
pass the capacity of a single IPU, as it facilitates the partitioning
of the model across multiple IPUs. Moreover, pipelined models,
when using an equivalent number of IPUs, demonstrate compara-
ble throughput during the training process to models trained with
numerous replicas. Consequently, pipelining can serve as an alter-
native strategy for model replications across distributed systems.
On the other hand, this study also delves into the performance and
applicability of IPU. The IPU platform not only exhibits substantial
performance improvements over its predecessor, the Colossus IPU,
but also achieves training throughput comparable to that of the
NVIDIA A100.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (NSF)
award number 2112356 ACES (Accelerating Computing for Emerg-
ing Sciences); NSF award number 1925764 SWEETER (SouthWest
Expertise in Expanding, Training, Education and Research); and
staff at Texas A&M High Performance Research Computing.

REFERENCES
[1] Nathan Baker. 2024. Unlocking a new era for scientific discovery with AI:

How Microsoft’s AI screened over 32 million candidates to find a better battery.
Retrieved March, 2024 from https://cloudblogs.microsoft.com/quantum/2024/01/
09/unlocking-a-new-era-for-scientific-discovery-with-ai-how-microsofts-ai-
screened-over-32-million-candidates-to-find-a-better-battery/

[2] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of
irregular programs on GPUs. In 2012 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 141–151.

[3] Graphcore documents. 2024. Graphcore documents. Retrieved March, 2024 from
https://docs.graphcore.ai/en/latest/

[4] Koji Fujimura, Atsuto Seko, Yukinori Koyama, Akihide Kuwabara, Ippei Kishida,
Kazuki Shitara, Craig AJ Fisher, Hiroki Moriwake, and Isao Tanaka. 2013. Accel-
erated materials design of lithium superionic conductors based on first-principles
calculations and machine learning algorithms. Advanced Energy Materials 3, 8
(2013), 980–985.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[6] TAMU HPRC. 2024. TAMU HPRC Wiki. Retrieved March, 2024 from https:
//hprc.tamu.edu/wiki/

[7] Jürgen Janek and Wolfgang G Zeier. 2023. Challenges in speeding up solid-state
battery development. Nature Energy 8, 3 (2023), 230–240.

[8] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the NVIDIA volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[9] Mai Le, Hieu Le, Lihong Zhao, Xuqing Wu, Jiefu Chen, and Yan Yao. 2024. Pre-
dicting Ionic Conductivity of Solid-State Battery Cathodes Using Machine Learn-
ing. Retrieved March, 2024 from https://www.usnc-ursi-archive.org/nrsm/2024/
papers/1316.pdf

https://cloudblogs.microsoft.com/quantum/2024/01/09/unlocking-a-new-era-for-scientific-discovery-with-ai-how-microsofts-ai-screened-over-32-million-candidates-to-find-a-better-battery/
https://cloudblogs.microsoft.com/quantum/2024/01/09/unlocking-a-new-era-for-scientific-discovery-with-ai-how-microsofts-ai-screened-over-32-million-candidates-to-find-a-better-battery/
https://cloudblogs.microsoft.com/quantum/2024/01/09/unlocking-a-new-era-for-scientific-discovery-with-ai-how-microsofts-ai-screened-over-32-million-candidates-to-find-a-better-battery/
https://docs.graphcore.ai/en/latest/
https://hprc.tamu.edu/wiki/
https://hprc.tamu.edu/wiki/
https://www.usnc-ursi-archive.org/nrsm/2024/papers/1316.pdf
https://www.usnc-ursi-archive.org/nrsm/2024/papers/1316.pdf


Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units PEARC ’24, July 21–25, 2024, Providence, RI, USA

[10] Mai Le, Alan Yao, Amie Zhang, Hieu Le, Zhaoyang Chen, Xuqing Wu, Lihong
Zhao, and Jiefu Chen. 2024. Predicting Ionic Conductivity of Solid-State Battery
Cathodes Using Machine Learning, in preparation.

[11] Abhinand Nasari, Hieu Le, Richard Lawrence, Zhenhua He, Xin Yang, Mario
Krell, Alex Tsyplikhin, Mahidhar Tatineni, Tim Cockerill, Lisa Perez, et al. 2022.
Benchmarking the performance of accelerators on national cyberinfrastructure
resources for artificial intelligence/machine learning workloads. In Practice and
Experience in Advanced Research Computing. 1–9.

[12] Abhinand Nasari, Lujun Zhai, Zhenhua He, Hieu Le, Suxia Cui, Dhruva Chakra-
vorty, Jian Tao, and Honggao Liu. 2023. Porting AI/ML Models to Intelligence

Processing Units (IPUs). In Practice and Experience in Advanced Research Com-
puting. 231–236.

[13] NVIDIA. 2020. A100 40GB PCIe Product Brief. Retrieved March, 2024
from https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/
pdf/A100-PCIE-Prduct-Brief.pdf

[14] Karl Steinbuch and Uwe AWPiske. 1963. Learning matrices and their applications.
IEEE Transactions on Electronic Computers 6 (1963), 846–862.

[15] Dave Steinkraus, Ian Buck, and Patrice Y Simard. 2005. Using GPUs for machine
learning algorithms. In Eighth International Conference on Document Analysis
and Recognition (ICDAR’05). IEEE, 1115–1120.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf

	Abstract
	1 Introduction
	2 Methods
	2.1 Benchmarking
	2.2 Specialized Model
	2.3 Porting the Conductivity Model to IPU
	2.4 Performing the Calculation

	3 RESULTS AND DISCUSSION
	3.1 Computer Vision model - PyTorch ResNet50
	3.2 Large Language Model - LLaMa2-7B Inference
	3.3 Conductivity Model

	4 CONCLUSION
	Acknowledgments
	References

