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ABSTRACT
Modern powerful accelerators and composable infrastructures put
our simulation frameworks to the test. We will show that the accel-
eration of a simulation framework is absolutely critical for good
performance and scaling. Building on our previous work using re-
search software as a benchmark for computing clusters, the High
Performance Research Computing Group (HPRC)1 compares the
Kokkos and GPU acceleration packages of LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) molecular dynam-
ics software with NVIDIA H100 and Intel Data Center GPU Max
1100 accelerators on the composable ACES cyber-infrastructure at
Texas A&M University. We observe different computational and
communication patterns emerge from the different codes, which
in turn result in different performance and scaling characteristics
across these accelerators. We observe an opportunity for growth
in the synergy between Intel’s oneAPI toolchain and the Kokkos
framework to enable effective scaling of molecular dynamics simu-
lations on composable infrastructure.

CCS CONCEPTS
• Hardware → Testing with distributed and parallel systems;
•General and reference→ Performance; • Computer systems
organization→ Reconfigurable computing; • Software and
its engineering → Interoperability.
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1 INTRODUCTION
The native language of all NVIDIA GPUs is the proprietary CUDA
language. Intel GPUs do not have a monolithic native language, but
instead rely on community languages such as OpenCL and SYCL.
Community languages can, in theory, program any GPU, but they
have not yet been able to displace CUDA as the primary method
of programming NVIDIA GPUs. For Intel GPUs, meanwhile, Intel
OneAPI integrates a variant of SYCL to enable application develop-
ers to target multiple GPU platforms simultaneously, which may
provide performance portability [3]. The community framework
Kokkos is an ever higher-level interface that targets maximum per-
formance portability by enabling developers to write code that can
be later translated to any of several lower-level interfaces, including
CUDA and SYCL [16]. The shift from the direct use of hardware-
specific languages to higher-level interfaces is led by developers
who wish to avoid maintaining multiple branches of code targeting
different hardware interfaces.

Community codes from research applications offer a more holis-
tic method for benchmarking hardware than direct hardware capa-
bility tests and often yield tangential benefits to the community;
this strategy has repeatedly resulted in recognizable and infor-
mative results, providing valuable insights into the performance
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of research workflows on the FASTER and ACES composed GPU
systems [8][2][11][4][9]. This approach was exemplified in our
previous work, where we utilized established molecular dynamics
research workflows as benchmarks for composed GPU systems [7].

Within the LAMMPS molecular dynamics simulation software
[15], the “GPU package” created in 2010 [1] follows an effort-
efficient development philosophy, and thus is only partially GPU-
accelerated. The most impactful simulation steps, such as pairwise
force calculations, can be offloaded to the GPU, while others can
only be performed on a CPU. Steps that are not accelerated in-
clude the execution of LAMMPS’ fix commands, FFT computation
in the PPPM calculation, and the atom modify step. As a result,
the GPU package must move the entire simulation between the
GPU and the host on every timestep, which places demands on
communication bandwidth. In addition, the GPU backends–CUDA
and OpenCL–are directly integrated into the code so redundant
development is needed to keep them both supported. After 2016, the
community largely began concentrating development of LAMMPS
on a Kokkos build option. The Kokkos package today is more com-
pletely GPU-accelerated; for some simulations, all of the steps can
be performed on the GPU [10]. The older GPU package of LAMMPS
that uses CUDA and OpenCL directly still exists, but has not ben-
efited from the same level of development and lacks many of the
features that the Kokkos package enjoys [14]. Thus, the Kokkos
variant of LAMMPS is the community standard for performance
on supported GPUs. Previous benchmarks have shown that the
all-on-the-GPU acceleration strategy, currently available only from
the Kokkos package, outperforms the partial acceleration strategy
for simulation workloads above a certain size [13] [10]. Since simu-
lation workloads have only gotten larger over time, this advantage
is expected to remain.

This paper focuses on the acceleration strategies employed by
the Kokkos and GPU packages of LAMMPS. Despite the names, we
will not be evaluating the GPU interfaces these packages utilize.

2 MATERIALS AND METHODS
The performance benchmarks were performed on the National
Science Foundation ACES cluster. ACES is a composable testbed
supported by High Performance Research Computing at Texas
A&M University. ACES offers a variety of accelerators, including
NVIDIA H100 GPUs and Intel Intel Data Center GPU Max 1100
GPUs, also known as Ponte Vecchio (PVC). These GPUs are con-
nected to server nodes via a PCIe 4 Liqid composable fabric, which
can provide 8 or more GPUs to a single host. While a traditional
cluster communication fabric centralizes communication to serve
shared resources, such as a network filesystem, a composable fab-
ric is distributed throughout the cluster to provide more direct
routes between nearby devices. This configuration provides unique
opportunities for efficient parallelization of accelerated code.

Several versions and variants of LAMMPS were tested, built
from source code released between 2023 and 2024; for brevity, we
will refer to them by abbreviation. LAMMPS with Kokkos with
Cuda for NVIDIA GPUs (KCN) was retrieved from the NVIDIA
container registry, image tag patch_15Jun2023 [12]. LAMMPS with
the GPU package with Cuda for NVIDIA GPUs (GCN) was built
from source, tag 2Aug2023_update2, using the Cmake build strategy

[6]. LAMMPS with the GPU package with OpenCL for Intel GPUs
(GOI) was built from source, from the develop branch on Feb 21,
2024, [5] using theMakefile strategy and the Intel OneAPI toolchain,
with OpenMP support [6].

Multiple LAMMPS test problems were utilized to load the GPUs.
Our previous work selected three established LAMMPS bench-
mark problems to explore the scaling of bonding and non-bonding
force calculations: the Lennard-Jones (LJ), Embedded Atom Model
(EAM), and Rhodopsin systems. Each system presents unique com-
putational characteristics and challenges, providing a comprehen-
sive benchmark for the GPUs [7]. Since only non-bonded Lennard-
Jones interactions are involved, the Lennard-Jones (LJ) system is
the simplest and least computationally demanding. In contrast,
the Rhodopsin system is the most complex and computationally
demanding, as it involves all types of interactions: bonded, non-
bonded, and electrostatic.

Comparison of performance between the GPU package and
the Kokkos package of LAMMPS is not straightforward. Because
LAMMPSwith Kokkos does not use the CPU for calculations, the op-
timal number of CPU processes per GPU in the Kokkos framework
is exactly one - with a strong performance penalty for additional
processes. The number of CPU cores is not expected to be a limiting
factor for performance of the Kokkos package. However, because a
GPU package build of LAMMPS does perform calculations using
CPU, we must choose some representative number of CPUs in order
to compare the benchmarks. One could find the optimal ratio of
CPUs to GPUs to efficiently utilize resources while achieving good
performance across a range of problem scales; on ACES nodes we
find that this corresponds to a linear scaling of approximately 28
CPUs per GPU, with some variance related to the node’s composi-
tion and the molecular system. See supplemental documentation
for details [6]. Therefore, for small numbers of GPUs, we scale the
number of CPUs linearly according to this ratio. However, when
scaling up to higher numbers of GPUs on a single composed Liqid
fabric node, this strategy fails because we are limited by available
CPUs. Instead, the number of CPUs stops scaling at an optimal
maximum of 84 for LJ and EAM and 48 for Rhodopsin, again based
on our findings on ACES nodes.

For the GOI build of LAMMPS, Intel provides a tool for MPI
orchestration named “Compute Aggregation Layer” which we use
to reduce the communication overhead of the many MPI processes.
While the OpenMP framework is available to fill a similar role, it
has not been found to be beneficial for GPU-focused simulations.

In our previous work, we showed that GPUs perform better for
atomic simulation when the problem size is large enough to occupy
a significant fraction of memory [7]. Based on those results, we
select our LJ and EAM problem size to be 32 million atoms. For the
Rhodopsin case, the problem size is chosen to be 4 million atoms.
Strong scaling was measured, wherein the system size remains
constant while the assigned computing resources are increased.

3 RESULTS
3.1 Processor scaling (GPU package build)
We performed an experiment to show how the GOI build scales
with the number of processes on the host. As shown in Figure 1, the
GPU package requires a significant number of cores to obtain good
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Figure 1: Performance (in million atom-steps/s) of the LAMMPS GPU package as function of the number of processes for the
benchmarks of (a) LJ, (b) EAM, and (c) Rhodopsin in two scenarios: pinning processes to a single socket (blue) and to two sockets
(red). The experiment was performed on a traditional PVC GPU node with two sockets per node and 48 cores per socket.

performance – around half of the cores on this node for a single
GPU. We further observe that the optimal number of processes is
less than the total number of cores on the node. This experiment
shows that the LAMMPS GPU package has a demand for both cores
and other host resources. The host resource requirements limit
the ability of the simulation to scale up on multiple GPUs on the
Liqid fabric, where the GPU count can grow while the CPU count
remains fixed. Additionally, the processes should be spread across
a node as much as possible; confining the processes to a single
socket (48 cores) or filling an entire node with processes results in
a performance penalty. This limits the ability of the GPU package
to scale up on a single node. These observations foreshadow that
attempting to scale up GPUs and processes at the same time on a
single Liqid fabric node is a lost cause.

3.2 GPU scaling (three builds)
We performed experiments with both the GPU and Kokkos pack-
ages to see how they each scale with the number of GPUs on a Liqid
fabric. For the GPU package, the number of processes increases
with the number of GPUs up to a maximum in accordance with our
scaling strategy, which occurs at three GPUs. As shown in Figure
2, we can see that the GPU package struggles to extract any addi-
tional performance from four or more GPUs on a single node. By
contrast, the Kokkos package has no difficulty scaling up beyond
four GPUs because it has very low host resource requirements. The
Kokkos package scales much better than the GPU package on Liqid
composable fabric nodes. This is because it isn’t limited by host
resources such as cores and is less communication-intense. The
significant boost in performance ascribed to the all-on-the-GPU
strategy of the Kokkos package is consistent with previous bench-
marks performed with NVIDIA GPUs [10]. As seen in Figure 3,
communication accounts for a very large fraction of time expent
during the LJ and EAM tests of the GOI build. The performance
difference for Rhodopsin is less pronounced, because Rhodopsin re-
quires more operations per atom; communication between the host

and the GPU is a relatively smaller fraction of the total simulation
wall time.

4 DISCUSSION AND CONCLUSIONS
We highlight the need to account for data transfer capability in
addition to raw compute power for GPUs. In the Liqid fabric, com-
munication is fast but bandwidth is limited because communication
hardware is shared among multiple devices. Thus, scalability is
highly dependent on the data strategy of the parallelization frame-
work. In this case, the Kokkos package of LAMMPS delivers the
best performance because it minimizes the need for data movement,
while the GPU package struggles to scale up. We predict that this
will continue to be the winning strategy for the foreseeable future
as composable fabrics and other novel HPC architectures become
commonplace.

The results here show that the scaling of the LAMMPS GPU
package has a strong need for CPU cores and other host resources,
and struggles to scale up beyond 3 GPUs on a Liqid fabric node.
We suspect that competition between processes for host resources,
such as memory or communication bandwidth, limits the ability of
processes to scale up. On the other hand, the Kokkos package has
no difficulty scaling beyond 4 GPUs on a single node.

NVIDIA supports LAMMPS development on the Kokkos pack-
age. Meanwhile, Intel supports a direct OpenCL implementation for
LAMMPS within the GPU package. The LAMMPS Kokkos package
with the OneAPI SYCL backend for Intel GPUs remains a work-
in-progress (see Appendix B). We anticipate that benchmarking
results for Intel Data Center GPU Max 1100 would show improve-
ment over what has been reported in this paper if Intel invested
in the development of the Kokkos framework to enable the use of
LAMMPS with OneAPI’s SYCL backend.
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Figure 2: Performance of the three LAMMPS builds under strong scaling for the benchmarks of (a) LJ, (b) EAM, and (c) Rhodopsin,
using the previously defined MPI strategy and accelerated by Intel PVC (blue) and NVIDIA H100 GPUs (red, yellow) on the
Liqid composable fabric nodes. Note that the vertical axis is piecewise in subplots (a) and (b). The similarity between GCN and
GOI builds indicates that the acceleration strategy is the limiting factor rather than hardware capability.

Figure 3: Time spent on by category for the LAMMPS GOI build during strong scaling benchmarks of (a) LJ, (b) EAM, and (c)
Rhodopsin, using the previously defined MPI strategy and accelerated by Intel PVCs on the Liqid composable fabric nodes.
Comm represents time spent waiting for transfer of data between the host and the GPU. Only the Pair and Kspace calculations
are GPU-accelerated in this build.
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