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ABSTRACT

High Performance Computing (HPC) workflows across disciplines
often require large amounts of memory which can result in bottle-
necks when system memory is exceeded. Technologies that bridge
the latency gap between traditional Hard Disk Drive (HDD) and
Solid State Drive (SSD) SATA/SAS storage and volatile DRAM offer a
way to extend available memory on HPC systems at a fraction of the
cost of traditional DRAM. We developed synthetic benchmarks to
test the performance of various configurations that leverage NVMe
(non-volatile memory express) SSDs and Lustre storage over a Liqid
composable infrastructure. Configurations included mounting the
NVMe SSDs as swap connected via PCle (Peripheral Component
Interconnect express) Gen4 fabric over a software-defined compos-
able infrastructure and having the same NVMe SSDs and the Lustre
space being managed by MemVerge Memory Machine software.
The nodes with NVMe SSD swap and MemVerge-managed NVMe
SSDs performed similarly and completed synthetic benchmark runs
with little to no increase in runtime compared to nodes configured
with traditional DRAM alone. This is surprising given the latency
differences between DRAM and NVMe SSDs and the results bode
well for the adoption of composable architecture. The approaches
described within this paper offer HPC resource providers a cost-
effective way to increase memory bandwidth while sacrificing very
little performance.
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1 INTRODUCTION

Memory capacity and I/O performance are frequent bottlenecks in
many modern High Performance Computing (HPC) applications
and workflows across a variety of disciplines [1]. In traditional HPC
applications, such as quantum chemistry, bioinformatics, and fluid
dynamics, even small problems frequently require large amounts of
dedicated memory. This issue is exacerbated by the amount of mem-
ory being consumed by the recent explosion in Artificial Intelligence
and Machine Learning (AI/ML) workloads. Indeed, the growth in
speed at which HPC hardware can conduct floating-point oper-
ations has outpaced memory bandwidth gains by approximately
2x every two years over the past 20 years [2]. Overcoming these
bottlenecks is a key challenge as we embrace exascale computing
and address growing demands for HPC resources [3].

The need for increased memory has been exacerbated by current
HPC workflows, but it is not a novel limiting factor in the design
of scientific applications and workflows. As such, several methods
have been employed at both the software and hardware levels
that help mitigate DRAM memory limitations. Some programs
have been written to utilize large I/O operations to disk to reduce
RAM usage and ensure the program completes successfully [4-
6]. Some workflows incorporate libraries or models that allow
the use of disaggregated logically addressable memory space [e.g.
PGAS models [7]). Increasing swap space (the portion of the storage
memory that is dedicated as a substitute for DRAM memory) can
also help alleviate memory limitation. However, some of these
methods require substantial I/O that is typically orders of magnitude
slower than traditional RAM.
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Table 1: Node configurations used to benchmark performance of MemVerge-managed composable memory and increased swap
space through PCle connected Intel Optane SSDs and a Lustre parallel distributed file system.

Configuration Name Total DRAM Extended Memory MemVerge-managed DRAM
Standard Node 512 GB 16 GB Swap NA

Increased Swap 512 GB 1.4 TB Intel Optane SSDs as Swap NA

Reduced DRAM 256 GB 1.4 TB Intel Optane SSDs as Swap NA

MemVerge 400 GB DRAM Tier 512 GB 2.7 TB Intel Optane as MemVerge Disk Tier 400 GB
MemVerge 250 GB DRAM Tier 512 GB 1.3 TB Intel Optane as MemVerge Disk Tier 250 GB
MemVerge Over Lustre 512 GB 1.3 TB Lustre space as MemVerge Disk Tier 250 GB

Recent advances in HPC hardware offer promising solutions to
these bottlenecks that reduce latency and bridge the gap between
traditional DRAM and Hard Disk Drive (HDD)/Solid State Drive
(SSD) storage devices [8]. Technologies such as persistent mem-
ory (PMEM) in server DIMM slots or NVMe (non-volatile memory
express) SSDs can be connected via PCle (Peripheral Component
Interconnect Express) over hardware composable infrastructures
which allows faster access to data and reduced runtimes [9]. Given
these advances, we sought to test the performance of various node
configurations using non-volatile storage to extend memory ca-
pacity. The approaches discussed herein can help alleviate the
need for large memory nodes and provide alternative approaches
for completing scientific workflows that require large amounts of
memory.

2 METHODS

2.1 ACES Composable Testbed

ACES (Accelerating Computing for Emerging Sciences) is a National
Science Foundation-funded testbed system housed at Texas A&M’s
High Performance Research Computing [10]. This system has a
number of different accelerators (e.g. Intel Max 1100 GPUs, NVIDIA
H100 GPUs) that, along with Intel Optane SSDs, can be composed
through the Liqid composable infrastructure over PCle (Peripheral
Component Interconnect Express) Gen4 and Gen5 fabrics. There
are 48 Intel Optane SSDs, comprising an additional ~18TB of com-
posable memory that can be managed through the MemVerge Mem-
oryMachine software [11] or configured as PCle-connected swap.
In previous works, we have investigated the effectiveness of com-
posing accelerators to match the needs of composable workloads.
Here, we extend this approach toward managing memory-requiring
workloads [12-14]. We used multiple node configurations to test
the efficacy of increased swap space (using composed Intel Optane
SSDs as a swap device), MemVerge-managed composable memory
(through both composed Intel Optane SSDs and reserved space on
the 2.3 PB DDN Lustre parallel distributed file system connected
through an NDR InfiniBand Network) in relation to standard node
architecture (Table 1). Runs on MemVerge nodes were managed
with the MemoryMachine software, which allows the user to con-
figure the amount of DRAM utilized by the program (DRAM Tier
Limit), before non-DRAM resources are utilized. All nodes were
equipped with 2 48-core Intel Xeon 8468 Sapphire Rapids CPUs and
each run used all 96-cores available on each node.

2.2 Synthetic Benchmarks with Dense Matrix
Multiplication

To test the efficiency of using Intel Optane SSDs as composed mem-
ory, we developed a synthetic benchmark that would utilize large
amounts of memory over a relatively short runtime: an R script that
conducts parallelized matrix multiplication with double-precision
floating point values [15]. This allowed us to test how utilizing
composed memory might affect applications/workflows utilizing
dense linear algebra, a common component of HPC algorithms [16].
The R script reports memory utilization and runtime to compare
against metrics we collected through mvmcli and Memory Viewer
(proprietary software from MemVerge), Linux free command, and
/proc/meminfo. These benchmarks were first run on standard com-
pute nodes (no composed memory) while running Memory Viewer,
an application from MemVerge that can be used to profile memory
usage (i.e. hot vs cold memory), to inform parameters for running
jobs with MemoryMachine and on nodes with Intel Optane SSDs
configured as swap devices. We completed at least three runs for
each node configuration/matrix size and reported the average per-
formance for each. Upper DRAM tier limits and hugepage numbers
(hugepage size of 2 MB) for MemVerge-managed nodes were set
according to recommendations from MemVerge: an upper limit of
400 GB MemVerge-managed memory for 512 GB DRAM nodes and
hugepage numbers equal to the GB DRAM tier limit multiplied by
500 (the number of huge pages required for each GB of managed
DRAM).

3 RESULTS

We ran the R script for matrix multiplication with two indepen-
dent matrices (125k x 125k dimensions) with random numbers in
a normal distribution with a mean value of 1000 and a standard
deviation of 100 to profile memory usage using the proprietary
Memory Viewer software from MemVerge. While this program
runs as a graphical user interface (GUI) and produces a graph of
memory usage, the raw data logged by this process was replotted
for clarity (Figure 1). The script uses a max of ~350 GB of DRAM,
but for a majority of the run the amount of hot RAM is < 125 GB.
The average runtimes, average maximum DRAM, and average
extended memory for each node configuration across multiple ma-
trix dimensions are shown in Table 2. The nodes that utilized Intel
Optane SSDs configured as additional swap space outperformed
the MemVerge-managed nodes using both the Intel Optane SSDs
and the Lustre file system except for the calculations with 150,000 x
150,000 matrices. In these runs, the MemVerge-managed node with
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Figure 1: Memory profile of R script conducting matrix multiplication with two matrices of 125000 x 125000 dimension. The
stats from this run were generated using the Memory Viewer software from MemVerge and depict the total amount of DRAM
used for the run, Hot RAM (memory which is being frequently accessed), and the CPU utilization of the run.

Intel Optane SSDs outperformed the node with reduced DRAM
(256 GB) but were still slightly slower than the node with 512 GB
of DRAM and Intel Optane SSDs configured as swap.

4 DISCUSSION

The DRAM tier limits used in this study were selected by starting
with a small portion of the job (~10%) using extended memory and
then slowly increasing the threshold until the minimum DRAM
tier needed for desired performance was reached [17]. We found
that, using the Memory Viewer software from MemVerge, this tier
should ideally be set slightly higher than the amount of hot memory
typically utilized across the length of the application’s runtime. This
limits the amount of time the job spends accessing memory stored
in non-volatile storage to help mitigate the drop in performance
that comes from using storage with higher latencies. In practice,
this also limits the type of programs/applications that might benefit
from using this technology. It may therefore be beneficial for HPC
resource providers and facilitators to identify the best candidate
applications within their areas of expertise that would benefit from
utilizing non-volatile memory and instruct users on how best to
use these resources. A centralized repository for these identified
applications would benefit the HPC community and utilization of
existing profiling applications could help in this endeavor [18].
The similarities in performance between the MemVerge-
managed extended memory nodes and those where swap was con-
figured as PCle-connected Intel Optane SSDs exhibits the lack of
need for third-party interfaces for managing extended memory for

applications using dense linear algebra. The Memory Viewer soft-
ware allowed us to easily set a file on our Lustre file system to act
as extended memory whereas this process is much more difficult
without it. Although it did show a dramatic decrease in speed, the
job was able to complete with over half the full amount of memory
being written to this space. It would be useful for HPC centers
to identify specific workflows that will benefit. Otherwise, future
development is needed to reduce barriers to entry for general use.
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Table 2: Runtime statistics for matrix multiplication in R across multiple node configurations with different matrix sizes.
Extended Memory refers to either swap or MemVerge managed memory devices depending on node configurations.

Matrix Sizes
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