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ARTICLE INFO ABSTRACT

Communicated by Karlheinz Gréchenig We provide a surface density threshold to guarantee mobile sampling in terms of the surface
density of the set. This threshold is sharp if the Fourier transform is supported in either a ball or
a cube, and further examples in the two-dimensional case where the result is sharp are given.

1. Introduction

This letter builds upon [9] and answers a question left open in that paper. For a set I' C R? of locally finite 7{?~!-measure, the
mobile sampling problem concerns whether there exists a constant C > 0 such that

171y <€ [ 17Pa7
r

for every function f in L?(RY) whose Fourier transform f &= fRd F(x)e2mixE) g my(x) is supported in an origin symmetric convex
set K.

This problem has been quite heavily studied in the last ten years, see e.g. [1,2,7,8,12] and references therein, following foun-
dational work by Unnikrishnan and Vetterli, who formulated the problem precisely and coined the term mobile sampling. These
papers contain a number of precise results characterizing mobile sampling sets within a variety of special families of curves and
surfaces. Unnikrishnan and Vetterli [13,14] also introduced the surface density as analog of lower Beurling density for discrete sets
that featured in classical results of Beurling and Kahane. The lower surface density D~(I) of a set I' c R¢ is defined by

D~ (1) = liminf inf L COBCr)
r—o  xeRd my(B(x,r))

The goal of [9] was to provide a general sufficient condition for mobile sampling in terms of the lower surface density of I
alone that is valid for a large class of surfaces, in the spirit of one-dimensional results of Beurling and Kahane [4,11]. Unlike the
one-dimensional case, one cannot expect a necessary condition given in terms of density for every curve I'- see Proposition 4.1 in
[7]. A general sufficient condition for sampling by discrete sets is given by Beurling’s covering theorem [5].

* Corresponding author.
E-mail addresses: bjaye3@gatech.edu (B. Jaye), mmitkov@clemson.edu (M. Mitkovski), nvempati@lsu.edu (M.N. Vempati).

https://doi.org/10.1016/j.acha.2024.101670
Received 6 September 2023; Received in revised form 14 April 2024; Accepted 10 May 2024

Available online 23 May 2024
1063-5203/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:bjaye3@gatech.edu
mailto:mmitkov@clemson.edu
mailto:nvempati@lsu.edu
https://doi.org/10.1016/j.acha.2024.101670
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2024.101670&domain=pdf
https://doi.org/10.1016/j.acha.2024.101670

B. Jaye, M. Mitkovski and M.N. Vempati Applied and Computational Harmonic Analysis 72 (2024) 101670

In [9], it was shown that there is a constant A, such that for if I' C R is a ‘regular’ surface satisfying D~(I') > A, W(K),

then it must be mobile sampling set. Here W(K) is the mean width of the symmetric convex set K. The value of A, in [9] was
2

q= ww—" 23:1, where @, is the volume of the d-dimensional unit ball, and it was left as an open problem if this constant could be

d—1

g

improved. In this letter we resolve this issue and provide the sharp value of the constant A, = % —<—. All relevant definitions will be

d—1 ’
given in the next section.
Theorem 1.1. Suppose that I is ¢-regular and
_ d Wy
D (D) > @(0)- A; - W(K), where Ay = — ——.
2wy,

For every 1 < p < oo, there exists a constant C > 0 such that

1/p 1/p
(/ |f|1’dmd> < c(/ IfI"de'1> wn
R4 r

for every f € LP(R?) whose (distributional) Fourier transform is supported in K.

d _wy4
2 wy_y
could be sharp for a large class of origin symmetric convex sets. We are able to show that for d = 2 (in which case A, = 7 /2), this
constant is sharp for any convex set K which is z/2-symmetric, which means that

In Section 5 of [9] it was already shown that A; = is the sharp constant when K = [—1, 19. 1t is plausible that this constant

(x1,%) EK < (—x,,x7) €EK.

This class of symmetric convex sets contains all Z”-balls for 1 < p < co.

Theorem 1.2. Suppose d =2, and K is a = /2-symmetric convex set. For every § > 0, there is a function f with f(0)=||f|l, =1,
supp(f) C K, and a ¢-regular set I" with p(0)=1, ' C { f =0}, and

D> (g - (S)W(K).

Additionally, we can show that in any dimension, the constant A; = % ww—” is sharp for the Euclidean ball B(0, 1).
d—1

Proposition 1.3. For every 6 > 0, there is a function f with f(0)=||f|l, = 1, supp( f ) C B(0,1), and a @-regular set I" with ¢(0) =1,
I'c{f =0}, and
,
D (M)> 2(9—"’ - 5).
2wy

In order to prove Theorem 1.1 we prove an improved bound on the density of the zero set of a Paley-Weiner class function
(Proposition 3.1 below). Compared with [9], the main new tool is a modification of an averaging trick which has appeared before
in studying the zero sets of analytic functions [3,10]. We consider it of independent interest that the technique provides the sharp
bound when executed properly in the case when K is a Euclidean ball in all dimensions, and a wide class of convex sets when d = 2.
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2. Notation

For a positive integer k, let w, denote the volume of the k-dimensional unit ball in R¥. Recall that w; = Let E CR?, we

define

k/2
T(k/2+1) "

)ander(S}.

Ky — fiem k .
H (E)_éll%mf{wk er L ECU;B(x;,r,
J
Restricting H* to a k-dimensional plane, H* = m,, where m,_is the k-dimensional Lebesgue measure. Furthermore, H~1(S7~1) =
dw,.
Let K ¢ RY, be an origin symmetric compact convex set for d > 2. We set PWP(K ) to be the collection of functions in L?(R%)
whose distributional Fourier transform is supported in K.
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We define regular sets (and measures) in the same way as given in [9]. Let us suppose ¢ : [0, 1) — [0, ) is function continuous
at 0. We say a measure yu is g-regular if pu(B(x,r)) < qa(r)a)d_]rd’l for every x € RY and r € (0,1). We say a closed set E C R¢ is
called ¢-regular if the measure H?"!| E is @-regular.

For an origin-symmetric convex set K, we denote W(K) the mean width, which is given by W(K)= m /Sd—l hy(@)dH d-1(g),
where A (0) = max, g (x,0) is the support function. If B(0, R) denotes the origin-centered ball with radius R then W(B(0, R)) = 2R,

and W([-R, R]9) = 2R::—"" for (see, e.g., Section 5 of [9]).
d
3. The proof of Theorem 1.1

Proposition 3.1. If f € PW_(K) satisfies || ||, < 1 and | f(0)| > O, then

d-1 -
limsupH BO,R)N{f=0})

<A, W(K), 3.1
msu o R <Ag-W(K) 3.1

—4d o
where Ay = 3 P
The path from Proposition 3.1 to Theorem 1.1 follows the same lines as in [9], and so we briefly outline the process here. First,
we note that (3.1) implies the averaged estimate

R

lim sup /H‘H(B(O, n{f= 0})? < %W(K}, (3.2)

R—oc0 @y

R4

for the same value of A, (this corresponds to an improved version of Proposition 3.1 of [9]).! Now, following Section 3 of [9]
line-for-line with this new value of constant A, yields the following improved version of Proposition 3.2 of [9]:

Proposition 3.2. Fix a 6 > 0, Ry > 0. There exists € > 0 such that for every g-regular set I and f € PW,(K) satisfies || f|l,, <1 and
| £(0)| > 1/2, there exists R > R, such that

1
w, R4

R
/Hd—1<rnB(x,r)n (sl sﬂ)? smm(%ww)w).
0

With this result in hand, one completes the proof of Theorem 1.1 in precisely the same manner as in Section 3.4 of [9]. We now
return to give the proof of Proposition 3.1.

4. Proof of Proposition 3.1

Proof of Proposition 3.1. For # € S?~!, R> 0 and ¢ € (0, 1/4), we consider the quantity
£R
, di
Vo= card({|s| <t : f(x+s0)=0})7dmd(x).
BO.R) 0

For ease of notation, start by fixing 8 = (0,0, ....,0,1) € S9! and consider x = x',xy) € R? where x’ € R?"!. Denote by f ()=
f(x',1), which has its one-dimensional distributional Fourier transform supported in the interval [-2zhg(0),2rxhg(0)]. Therefore,
£, extends to an entire function in C and | f,/ (¢ + si)| < e2* k@l for ¢, s € R. Therefore, Jensen’s formula yields that for any x € R?,

€R

/card({lsl <t fulx,+s)=0}

0

dt
iy

2z
1 . 1
SZ/2”hK(0)ERISln((p)ld(p+10g<m>

=46RhK(0)+10g (m)

1

o R
g R

1 To derive (3.2), fix R, > 1 and split the integral % foR - ﬁ)R(» . ﬁ /R': -+ Proposition 3.1 of [9] (for instance) ensures that the first integral is of the
Py Py

d
order O & , while Proposition 3.1 above implies that for every & > 0, the second integral is < ﬂW(K + ¢ if R, is large enough.
R P P Ty 2 4 0 8 g!

3



B. Jaye, M. Mitkovski and M.N. Vempati Applied and Computational Harmonic Analysis 72 (2024) 101670

Substituting this bound into the definition of V}, yields
Vy <4eRw hy (0) + / 10g< )dm (x).
’ K Ifeor) (4.1)
B(O,R)

On the other hand, ¥, equals
R2—|x! |2 €R
dt
/ / /card({lsl <t: fx/(xd+s)=O})Tdm1(xd)dmd_l(x').
B4=1(0,R) _\/RZ_|'2 0
Fix x’ € B“~1(0, R), and define a locally finite Borel measure y on R via
H= Z .
sER : fr(s)=0
Then
R2—|x'|2 €R t
dt
du(xy; + s)Tdml(xd)
VR2Z|X'[2+eR eR VR =[x/
dt
= / / / 1[,_,SderJr,)dml(xd)Tdﬂ(r).
Now, note that if r € [-1/R? — |x'|2 + €R,\/R? — |x'|?2 — €R], and t € (0,eR), then

[r—t,r+11C[-VR: = x|, VR = [x'|2]

and so

/ //dﬂ(xdﬂ)%dml(xd) 4.2)

>2eR- u([-VR?—|x'|2+€eR,VR? — |X'|2 — €R]).
Observing that
VR?2 —|x'|2—eR> /(1 —2¢)R? — |x'|? provided that |x'| < V1 —2¢-R,

we infer that, with 6 = (0,0, ..., 1), V} is at least

2¢eR - / card({|r] £ V(1 =2&)R2 — |X'|2 . f(X' +7r)=0})dm,_,(x").
BE@-1(0,y/1=2¢-R)

Therefore, with a suitable rotation, we find that for every § € S9!,

V,>2eR / card(B(O, V1 —2e- R)N {f =0} N &0} )dmy_ (),
ﬁinB(O,\/ 1-2¢-R)

where 7, 4 is the line through y with direction 6. Combining this with (4.1) therefore yields

/ card(B(0, V1 —2¢ - R)N{f =0} N £, 4 Ddmy_; ()
6LnB0,v/1-2¢-R) (4.3)

1
<2h,<(9)wd1<d+ﬁ g log (|f( )|>dmd(x)

The Crofton formula (e.g. [6, 3.2.26]) states that for any set E C R that is (d — 1)-rectifiable,

Hd—l(E) — L
ZCOd 1

/ / card(EN ¢, g)dmy_(»)dH'™(0).
s@-1 9L
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Whence, integrating (4.3) over S?~! with respect to the 7?~! measure yields that

H@-D(B0,v/1-2eR)n {f=0})

w, R4

dowy d 1
S{Za)d_lw(K)+2wd_1 2RI /l <|f( )|>d'"d(x)}
B(0,R)

Regarding the second term on the right-hand side of this inequality, it follows from work of Ronkin [10] on functions with
completely regular growth (see Lemma 4.4 of [9] for a concise proof) that

. 1
i [ ton g7ty Jamar=o.
BO,R)

Therefore,
@=D(B(0,v/1—-2¢R = d
limsupH (B(0, eR)N{f 0})S Wy WK).
Rooo w R? 2w,

Letting € — 0 completes the proof of the proposition. []
5. The sharpness of the bound
5.1. The general construction

Assume that K is a origin symmetric strictly convex body. For x € dK we put v(x) to be the outward pointing unit normal vector
to K.
Let us recall the polar body

K°={yeR?: (x,y) <1 forevery x€ K},

which satisfies that

x|l go :=inf{A>0: x € AK} = hg(x).

For a bounded continuous function g : 0K — [0, c0), put

sup / [(v(x), »)|g(x)dH = (x).

_ 1 d-1 _
<g>_Hd‘](¢3K)0_I[g(X)dH (x), and = e 1(0K)

Our first goal is to prove the following

Proposition 5.1. For every € > 0, there exists
(1) a continuous function ¢ : [0, ) — [0, c0) with ¢(0) = 1, and
(2) a bounded function f with | f(0)| =||fll = 1, supp(f) C K,
(3) a p-regular set T c R with " C { f =0},
such that
2
D> 28 (g)
u

Proof. For N €N, select x|, ..., x5 uniformly and independently on dK, and consider the associated vectors v, = v(x,) for n =
1,...,N. For a > 0, consider the function

N
f(x)=Hcos( n)).

Observe that f(0) = || f|l,, =1, and the Fourier transform of f is the N-fold convolution of the factors - (Sag(vn) o, +5_ agCn) ), and
=NV

therefore

N
supp(f) { X sGx)ev ¢ ey € (=1, 1}}.
n=1
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Our goal is to find (the largest) a to ensure that supp( f ) C K. Recall that, for any x € R? ||x||x = SUpyegko(x,¥), and x € K if and
only if ||x||x < 1. Therefore, we want to select & > 0 so that, for any y € 0K°,

a sy g(x e (v, y) <1,
ee(ql}NZ :

or, in other words,

N
1
~ 22 (v »elx,) < 1.
P

For y € 0K°, the random variable X, , = [{v,,¥)|g(x,) has mean

= / G0 ) g dH ™ (o),

Hi- 1(aK)
and its variance is may be crudely bounded independently of » in terms of the geometry of the convex body K and the L*(0K)

norm of g. Since, X, , are independent, Chebyshev’s inequality yields that

N
1 C(K.g)
PrOb(’Nle<vn=y>|g(xn)_”y‘> 5>S N&Z (5.1)
=
Now, for vy, ..., vy fixed on S¢~!, the function y % 2’1,\/: 1 [{vy» ¥)|g(x,) is Lipschitz continuous with Lipschitz constant bounded by
K :=||gllc- Similarly, the function u, is Lipschitz continuous with constant < K. Elementary volume considerations ensure that the

set dK° can be covered by C(6/K)~@-D balls B(y;,6/K) with y; € K®. Therefore, if max,e ko

% N KV Wg(x,) = py|> 35,

then there must exist j with )% Zfl\[: Vs yj)lg(x,,) — My, |> 6. Consequently, (5.1) ensures that

Prob( max, I+ Z| Vs g = iy > 35)

< ZProb(‘% Z [V ¥ )18 (x,) = yyl_|> 5>—>0 as N — oo.
J n=1

Since y = sup,e,ko My, We conclude that for any 6 > 0, if N is chosen sufficiently large then there exist x|, ..., xy € 0K such that
forany ¢, € {—1,1},

N
|4 S s

then supp( f ) C K. Repeating the Chebyshev inequality argument if necessary, we may additionally ensure that

(5.2)

. 1
andSOlle—m,

N
i _ d=1(x)— § = (g) —
N;gm)zm_l@m / g)dH ™ (x) - 5= (g) - 5.
K

On the other hand, each factor f,(x) = cos(2x %g(x,,)(x, v,)) satisfies

lim H*'({f,=0}nB(O,R) 2ag(x,)

R—>o wy R4 - N ’
(See Lemma 5.1 of [9].) Since there are N factors f,, and the nodal sets of each f, intersect in a set of dimension d — 2, we have
that,

H*'({/=0}nBO.R) _ Z( 2((g) = 8) %)

lim X,) >
h+38)

R—o0 wde

We cannot immediately conclude Lemma 5.1 as the set { f =0} is not g-regular for a function ¢ with lim,_,y+ ¢(¢) = 1. However
by removing small regions where any of the planes in the sets { f,, = 0} intersect, we obtain a set I that is ¢-regular for some ¢ with
lim, g+ @(t) = 1, and such that I" has surface density at least 288 _ ¢ 8, where C’ is an absolute constant, and {f =0} D T. This
concludes the proof of Proposition 5.1. [] g

We first use Proposition 5.1 to prove Proposition 1.3.
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Proof of Proposition 1.3. In order to verify Proposition 1.3 from Proposition 5.1, we take g = 1 and recall the following well-known
computation (see, for instance the end of Section 5 of [9]): if |v| =1, then

/|<0,u>|de*1(0)=2wd_l.
§d—l

Since W(B(0, 1)) = 2, we conclude that D~(I') > Z&W(B(o, 1)) — €, as required. []
d—1

5.2. Sharpness for any x /2-symmetric convex body if d =2

We now prove Theorem 1.2 as a consequence of Proposition 5.1. Recall that a convex body is called 7 /2-symmetric if it is
symmetric under a rotation by /2, i.e.

(XI,X2)€K — (—Xz,xl)EK

This condition implies origin symmetry, and that iy (6,,6,) = hg(=6,,0,) for (8,,6,) € S.
By an approximation argument, in proving Theorem 1.2, we may assume that K is strictly convex. We again will set g =1 in the
statement of Proposition 5.1, and calculate, for 6 € 0K°

; 1 _# .
o | o= [ manten
oK o,

where (0K), = {x €dK : (v,,0) >0}.
Denote by z, € 0K the two points that satisfy v, 16, and put 9+ = (—6,,6,). Since K is origin symmetric, z_ = —z,, so the line
- L
segment [z_,z,] C K contains 0, and has length 2|Vh K(%)l. Put v to be a unit vector normal to the direction of the line segment
[z_,z,]. Then the divergence theorem implies that

/ (vy, 0)dH' (x) = / [(v,0)|dH" = 2|th(%>||<v,9>|.

©K)4 [z 2]

It is an elementary geometry exercise to see that
61 BL

IV Gl 0)] = i ()61,
(Indeed, this boils down to the following fact: For A > B > 0 denote by T the right angle triangle with vertices (0,0), (0, B) and
(V A% — B2,0), then the outward unit vector to the hypotenuse of T has its first component equal B/A.)

Since h K(%)lé‘l = hy(6+) the quantity u appearing in Proposition 5.1 equals

= sup 4hy(0%)
vocok> H'(0K) '

When combined with the classical fact that H!(0K) = zW(K), we see that, for any € > 0, Proposition 5.1 ensures that there is a
bounded function with Fourier transform supported in K, that vanishes on a regular set of density at least

b W(K)
2 SUpgeoke Mg (6+) B
To this point we have not used the %-symmetric assumption, but finally we observe that if K is %-symmetric then
SUPgeoke Mk (#%) =1 (insofar as it implies that Ay (6)=h K(GL)), and this completes the proof.

Data availability
No data was used for the research described in the article.
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