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 R T I C L E I N F O A B S T R A C T

mmunicated by Karlheinz Gröchenig We provide a surface density threshold to guarantee mobile sampling in terms of the surface 
density of the set. This threshold is sharp if the Fourier transform is supported in either a ball or 
a cube, and further examples in the two-dimensional case where the result is sharp are given.

 Introduction

This letter builds upon [9] and answers a question left open in that paper. For a set Γ ⊂ ℝ𝑑 of locally finite 𝑑−1-measure, the 
obile sampling problem concerns whether there exists a constant 𝐶 > 0 such that

‖𝑓‖2
𝐿2(ℝ𝑑 ) ≤ 𝐶 ∫

Γ

|𝑓 |2𝑑𝑑−1

r every function 𝑓 in 𝐿2(ℝ𝑑 ) whose Fourier transform 𝑓 (𝜉) = ∫ℝ𝑑 𝑓 (𝑥)𝑒2𝜋𝑖⟨𝑥,𝜉⟩𝑑𝑚𝑑 (𝑥) is supported in an origin symmetric convex 
t 𝐾 .
This problem has been quite heavily studied in the last ten years, see e.g. [1,2,7,8,12] and references therein, following foun-
tional work by Unnikrishnan and Vetterli, who formulated the problem precisely and coined the term mobile sampling. These 
pers contain a number of precise results characterizing mobile sampling sets within a variety of special families of curves and 
rfaces. Unnikrishnan and Vetterli [13,14] also introduced the surface density as analog of lower Beurling density for discrete sets 
at featured in classical results of Beurling and Kahane. The lower surface density 𝐃−(Γ) of a set Γ ⊂ ℝ𝑑 is defined by

𝐃−(Γ) = lim inf
𝑟↦∞

inf
𝑥∈ℝ𝑑

𝑑−1(Γ ∩𝐵(𝑥, 𝑟))
𝑚𝑑 (𝐵(𝑥, 𝑟))

.

The goal of [9] was to provide a general sufficient condition for mobile sampling in terms of the lower surface density of Γ
one that is valid for a large class of surfaces, in the spirit of one-dimensional results of Beurling and Kahane [4,11]. Unlike the 
e-dimensional case, one cannot expect a necessary condition given in terms of density for every curve Γ– see Proposition 4.1 in 
]. A general sufficient condition for sampling by discrete sets is given by Beurling’s covering theorem [5].
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In [9], it was shown that there is a constant 𝐴𝑑 such that for if Γ ⊂ ℝ𝑑 is a ‘regular’ surface satisfying 𝐃−(Γ) > 𝐴𝑑𝐖(𝐾), 
en it must be mobile sampling set. Here 𝐖(𝐾) is the mean width of the symmetric convex set 𝐾 . The value of 𝐴𝑑 in [9] was 

𝑑 = 𝜔𝑑

𝜔𝑑−1

3𝑑2
2𝑑+4 , where 𝜔𝑑 is the volume of the 𝑑-dimensional unit ball, and it was left as an open problem if this constant could be 

proved. In this letter we resolve this issue and provide the sharp value of the constant 𝐴𝑑 = 𝑑

2
𝜔𝑑

𝜔𝑑−1
. All relevant definitions will be 

ven in the next section.

eorem 1.1. Suppose that Γ is 𝜑-regular and

𝐃−(Γ) > 𝜑(0) ⋅𝐴𝑑 ⋅𝐖(𝐾), where 𝐴𝑑 = 𝑑

2
𝜔𝑑

𝜔𝑑−1
.

r every 1 ≤ 𝑝 ≤∞, there exists a constant 𝐶 > 0 such that(
∫
ℝ𝑑

|𝑓 |𝑝𝑑𝑚𝑑

)1∕𝑝

≤ 𝐶

(
∫
Γ

|𝑓 |𝑝𝑑𝑑−1
)1∕𝑝

(1.1)

r every 𝑓 ∈ 𝐿𝑝(ℝ𝑑 ) whose (distributional) Fourier transform is supported in 𝐾 .

In Section 5 of [9] it was already shown that 𝐴𝑑 = 𝑑

2
𝜔𝑑

𝜔𝑑−1
is the sharp constant when 𝐾 = [−1, 1]𝑑 . It is plausible that this constant 

uld be sharp for a large class of origin symmetric convex sets. We are able to show that for 𝑑 = 2 (in which case 𝐴2 = 𝜋∕2), this 
nstant is sharp for any convex set 𝐾 which is 𝜋∕2-symmetric, which means that

(𝑥1, 𝑥2) ∈ 𝐾 ⟺ (−𝑥2, 𝑥1) ∈ 𝐾.

is class of symmetric convex sets contains all 𝓁𝑝-balls for 1 ≤ 𝑝 ≤∞.

eorem 1.2. Suppose 𝑑 = 2, and 𝐾 is a 𝜋∕2-symmetric convex set. For every 𝛿 > 0, there is a function 𝑓 with 𝑓 (0) = ‖𝑓‖∞ = 1, 
pp(𝑓 ) ⊂ 𝐾 , and a 𝜑-regular set Γ with 𝜑(0) = 1, Γ ⊂ {𝑓 = 0}, and

𝐃−(Γ) >
(

𝜋

2
− 𝛿

)
𝐖(𝐾).

Additionally, we can show that in any dimension, the constant 𝐴𝑑 = 𝑑

2
𝜔𝑑

𝜔𝑑−1
is sharp for the Euclidean ball 𝐵(0, 1).

oposition 1.3. For every 𝛿 > 0, there is a function 𝑓 with 𝑓 (0) = ‖𝑓‖∞ = 1, supp(𝑓 ) ⊂ 𝐵(0, 1), and a 𝜑-regular set Γ with 𝜑(0) = 1, 
⊂ {𝑓 = 0}, and

𝐃−(Γ) > 2
(

𝑑

2
𝜔𝑑

𝜔𝑑−1
− 𝛿

)
.

In order to prove Theorem 1.1 we prove an improved bound on the density of the zero set of a Paley-Weiner class function 
roposition 3.1 below). Compared with [9], the main new tool is a modification of an averaging trick which has appeared before 
 studying the zero sets of analytic functions [3,10]. We consider it of independent interest that the technique provides the sharp 
und when executed properly in the case when 𝐾 is a Euclidean ball in all dimensions, and a wide class of convex sets when 𝑑 = 2.
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The authors were supported in part by NSF grants DMS-2049477 and DMS-2103534. This research was primarily carried out 
hile in residence at the ICERM program Harmonic Analysis and Convexity in Fall 2022. The authors would like to thank Galyna 
vshyts and Fedor Nazarov for helpful remarks.

 Notation

For a positive integer 𝑘, let 𝜔𝑘 denote the volume of the 𝑘-dimensional unit ball in ℝ𝑘. Recall that 𝜔𝑘 =
𝜋𝑘∕2

Γ(𝑘∕2+1) . Let 𝐸 ⊂ ℝ𝑑 , we 
fine

𝑘(𝐸) = lim
𝛿→0+

inf
{

𝜔𝑘

∑
𝑗

𝑟𝑘
𝑗 ∶ 𝐸 ⊂ ∪𝑗𝐵(𝑥𝑗 , 𝑟𝑗 ) and 𝑟𝑗 ≤ 𝛿

}
.

Restricting 𝑘 to a 𝑘-dimensional plane, 𝑘 = 𝑚𝑘, where 𝑚𝑘 is the 𝑘-dimensional Lebesgue measure. Furthermore, 𝑑−1(𝕊𝑑−1) =
𝑑 .

Let 𝐾 ⊂ ℝ𝑑 , be an origin symmetric compact convex set for 𝑑 ≥ 2. We set 𝑝(𝐾) to be the collection of functions in 𝐿𝑝(ℝ𝑑 )
2

hose distributional Fourier transform is supported in 𝐾 .
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We define regular sets (and measures) in the same way as given in [9]. Let us suppose 𝜑 ∶ [0, 1) ↦ [0, ∞) is function continuous 
 0. We say a measure 𝜇 is 𝜑-regular if 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝜑(𝑟)𝜔𝑑−1𝑟

𝑑−1 for every 𝑥 ∈ ℝ𝑑 and 𝑟 ∈ (0, 1). We say a closed set 𝐸 ⊂ ℝ𝑑 is 
lled 𝜑-regular if the measure 𝑑−1|𝐸 is 𝜑-regular.
For an origin-symmetric convex set 𝐾 , we denote 𝐖(𝐾) the mean width, which is given by 𝐖(𝐾)= 2

𝑑−1(𝕊𝑑−1) ∫𝕊𝑑−1ℎ𝐾 (𝜃)𝑑𝑑−1(𝜃), 
here ℎ𝐾 (𝜃) =max𝑥∈𝐾⟨𝑥, 𝜃⟩ is the support function. If 𝐵(0, 𝑅) denotes the origin-centered ball with radius 𝑅 then 𝐖(𝐵(0, 𝑅)) = 2𝑅, 
d 𝐖([−𝑅, 𝑅]𝑑 ) = 2𝑅𝜔𝑑−1

𝜔𝑑
for (see, e.g., Section 5 of [9]).

 The proof of Theorem 1.1

oposition 3.1. If 𝑓 ∈ ∞(𝐾) satisfies ‖𝑓‖∞ ≤ 1 and |𝑓 (0)| > 0, then

lim sup
𝑅→∞

𝑑−1(𝐵(0,𝑅) ∩ {𝑓 = 0})
𝜔𝑑𝑅𝑑

≤ 𝐴𝑑 ⋅𝐖(𝐾), (3.1)

ere 𝐴𝑑 = 𝑑

2
𝜔𝑑

𝜔𝑑−1
.

The path from Proposition 3.1 to Theorem 1.1 follows the same lines as in [9], and so we briefly outline the process here. First, 
e note that (3.1) implies the averaged estimate

lim sup
𝑅↦∞

1
𝜔𝑑𝑅𝑑

𝑅

∫
0

𝑑−1(𝐵(0, 𝑟) ∩ {𝑓 = 0})𝑑𝑟

𝑟
≤ 𝐴𝑑

𝑑
𝐖(𝐾), (3.2)

r the same value of 𝐴𝑑 (this corresponds to an improved version of Proposition 3.1 of [9]).1 Now, following Section 3 of [9]
e-for-line with this new value of constant 𝐴𝑑 yields the following improved version of Proposition 3.2 of [9]:

oposition 3.2. Fix a 𝛿 > 0, 𝑅0 > 0. There exists 𝜀 > 0 such that for every 𝜑-regular set Γ and 𝑓 ∈ ∞(𝐾) satisfies ‖𝑓‖∞ ≤ 1 and 
(0)| > 1∕2, there exists 𝑅 ≥ 𝑅0 such that

1
𝜔𝑑𝑅𝑑

𝑅

∫
0

𝑑−1(Γ ∩𝐵(𝑥, 𝑟) ∩ {|𝑓 | ≤ 𝜀})𝑑𝑟

𝑟
≤ 𝜑(0)

(𝐴𝑑

𝑑
𝐖(𝐾) + 𝛿

)
.

With this result in hand, one completes the proof of Theorem 1.1 in precisely the same manner as in Section 3.4 of [9]. We now 
turn to give the proof of Proposition 3.1.

 Proof of Proposition 3.1

oof of Proposition 3.1. For 𝜃 ∈ 𝕊𝑑−1, 𝑅 > 0 and 𝜀 ∈ (0, 1∕4), we consider the quantity

𝑉𝜃 = ∫
𝐵(0,𝑅)

𝜀𝑅

∫
0

card({|𝑠| ≤ 𝑡 ∶ 𝑓 (𝑥+ 𝑠𝜃) = 0})𝑑𝑡

𝑡
𝑑𝑚𝑑 (𝑥).

For ease of notation, start by fixing 𝜃 = (0, 0, ...., 0, 1) ∈ 𝕊𝑑−1 and consider 𝑥 = (𝑥′, 𝑥𝑑 ) ∈ℝ𝑑 where 𝑥′ ∈ℝ𝑑−1. Denote by 𝑓𝑥′ (𝑡) =
𝑥′, 𝑡), which has its one-dimensional distributional Fourier transform supported in the interval [−2𝜋ℎ𝐾 (𝜃), 2𝜋ℎ𝐾 (𝜃)]. Therefore, 
′ extends to an entire function in ℂ and |𝑓𝑥′ (𝑡 + 𝑠𝑖)| ≤ 𝑒2𝜋ℎ𝐾 (𝜃)|𝑠| for 𝑡, 𝑠 ∈ℝ. Therefore, Jensen’s formula yields that for any 𝑥 ∈ℝ𝑑 ,

𝜀𝑅

∫
0

card({|𝑠| ≤ 𝑡 ∶𝑓𝑥′ (𝑥𝑛 + 𝑠) = 0})𝑑𝑡

𝑡

≤ 1
2𝜋

2𝜋

∫
0

2𝜋ℎ𝐾 (𝜃)𝜀𝑅| sin(𝜑)|𝑑𝜑+ log
( 1|𝑓𝑥′ (𝑥𝑑 )|

)

= 4𝜀𝑅ℎ𝐾 (𝜃) + log
(

1|𝑓 (𝑥)|
)

.

To derive (3.2), fix 𝑅0 > 1 and split the integral 1
𝜔𝑑 𝑅𝑑

∫ 𝑅

0 = 1
𝜔𝑑 𝑅𝑑

∫ 𝑅0
0 ⋯ + 1

𝜔𝑑 𝑅𝑑
∫ 𝑅

𝑅0
⋯ . Proposition 3.1 of [9] (for instance) ensures that the first integral is of the 

𝑑

3

er 𝑂( 𝑅0
𝑅𝑑

)
, while Proposition 3.1 above implies that for every 𝜀 > 0, the second integral is ≤ 𝐴𝑑

𝑑
𝐖(𝐾) + 𝜀 if 𝑅0 is large enough.
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bstituting this bound into the definition of 𝑉𝜃 yields

𝑉𝜃 ≤ 4𝜀𝑅𝑑+1𝜔𝑑ℎ𝐾 (𝜃) + ∫
𝐵(0,𝑅)

log
(

1|𝑓 (𝑥)|
)

𝑑𝑚𝑑 (𝑥). (4.1)

On the other hand, 𝑉𝜃 equals

∫
𝐵𝑑−1(0,𝑅)

√
𝑅2−|𝑥′|2
∫

−
√

𝑅2−|𝑥′|2

𝜖𝑅

∫
0

card({|𝑠| ≤ 𝑡 ∶ 𝑓𝑥′ (𝑥𝑑 + 𝑠) = 0})𝑑𝑡

𝑡
𝑑𝑚1(𝑥𝑑 )𝑑𝑚𝑑−1(𝑥′).

x 𝑥′ ∈ 𝐵(𝑑−1)(0, 𝑅), and define a locally finite Borel measure 𝜇 on ℝ via

𝜇 =
∑

𝑠∈ℝ∶𝑓𝑥′ (𝑠)=0
𝛿𝑠.

en √
𝑅2−|𝑥′|2
∫

−
√

𝑅2−|𝑥′|2

𝜖𝑅

∫
0

𝑡

∫
−𝑡

𝑑𝜇(𝑥𝑑 + 𝑠)𝑑𝑡

𝑡
𝑑𝑚1(𝑥𝑑 )

=

√
𝑅2−|𝑥′|2+𝜖𝑅

∫
−
√

𝑅2−|𝑥′|2−𝜖𝑅

𝜖𝑅

∫
0

√
𝑅2−|𝑥′|2
∫

−
√

𝑅2−|𝑥′|2
𝟏{𝑟−𝑡≤𝑥𝑑≤𝑟+𝑡}𝑑𝑚1(𝑥𝑑 )

𝑑𝑡

𝑡
𝑑𝜇(𝑟).

w, note that if 𝑟 ∈ [−
√

𝑅2 − |𝑥′|2 + 𝜖𝑅, 
√

𝑅2 − |𝑥′|2 − 𝜖𝑅], and 𝑡 ∈ (0, 𝜀𝑅), then

[𝑟− 𝑡, 𝑟+ 𝑡] ⊂ [−
√

𝑅2 − |𝑥′|2,√𝑅2 − |𝑥′|2]
d so √

𝑅2−|𝑥′|2
∫

−
√

𝑅2−|𝑥′|2

𝜖𝑅

∫
0

𝑡

∫
−𝑡

𝑑𝜇(𝑥𝑑 + 𝑠)𝑑𝑡

𝑡
𝑑𝑚1(𝑥𝑑 )

≥ 2𝜀𝑅 ⋅ 𝜇([−
√

𝑅2 − |𝑥′|2 + 𝜖𝑅,
√

𝑅2 − |𝑥′|2 − 𝜖𝑅]).

(4.2)

serving that√
𝑅2 − |𝑥′|2 − 𝜀𝑅 ≥√

(1 − 2𝜀)𝑅2 − |𝑥′|2 provided that |𝑥′| ≤√
1 − 2𝜀 ⋅𝑅,

e infer that, with 𝜃 = (0, 0, … , 1), 𝑉𝜃 is at least

2𝜀𝑅 ⋅ ∫
𝐵(𝑑−1)(0,

√
1−2𝜀⋅𝑅)

card({|𝑟| ≤√
(1 − 2𝜀)𝑅2 − |𝑥′|2 ∶ 𝑓 (𝑥′ + 𝑟) = 0})𝑑𝑚𝑑−1(𝑥′).

erefore, with a suitable rotation, we find that for every 𝜃 ∈ 𝕊𝑑−1,

𝑉𝜃 ≥ 2𝜀𝑅 ∫
𝜃⟂∩𝐵(0,

√
1−2𝜀⋅𝑅)

card(𝐵(0,
√
1 − 2𝜀 ⋅𝑅) ∩ {𝑓 = 0} ∩ 𝓁𝑦,𝜃})𝑑𝑚𝑑−1(𝑦),

here 𝓁𝑦,𝜃 is the line through 𝑦 with direction 𝜃. Combining this with (4.1) therefore yields

∫
𝜃⟂∩𝐵(0,

√
1−2𝜀⋅𝑅)

card(𝐵(0,
√
1 − 2𝜀 ⋅𝑅) ∩ {𝑓 = 0} ∩ 𝓁𝑦,𝜃})𝑑𝑚𝑑−1(𝑦)

≤ 2ℎ𝐾 (𝜃)𝜔𝑑𝑅𝑑 + 1
2𝜀𝑅 ∫

𝐵(0,𝑅)

log
(

1|𝑓 (𝑥)|
)

𝑑𝑚𝑑 (𝑥).
(4.3)

The Crofton formula (e.g. [6, 3.2.26]) states that for any set 𝐸 ⊂ ℝ𝑑 that is (𝑑 − 1)-rectifiable,

𝑑−1(𝐸) = 1 card(𝐸 ∩ 𝓁𝑦,𝜃)𝑑𝑚𝑑−1(𝑦)𝑑𝑑−1(𝜃).
4

2𝜔𝑑−1 ∫
𝕊(𝑑−1)

∫
𝜃⟂
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hence, integrating (4.3) over 𝕊𝑑−1 with respect to the 𝑑−1 measure yields that

(𝑑−1)(𝐵(0,
√
1 − 2𝜀𝑅) ∩ {𝑓 = 0})
𝜔𝑑𝑅𝑑

≤{ 𝑑𝜔𝑑

2𝜔𝑑−1
𝐖(𝐾) + 𝑑

2𝜔𝑑−1

1
2𝜀𝑅𝑑+1 ∫

𝐵(0,𝑅)

log
(

1|𝑓 (𝑥)|
)

𝑑𝑚𝑑 (𝑥)
}

.

Regarding the second term on the right-hand side of this inequality, it follows from work of Ronkin [10] on functions with 
mpletely regular growth (see Lemma 4.4 of [9] for a concise proof) that

lim
𝑅→∞

1
𝑅𝑑+1 ∫

𝐵(0,𝑅)

log
(

1|𝑓 (𝑥)|
)

𝑑𝑚𝑑 (𝑥) = 0.

erefore,

lim sup
𝑅→∞

(𝑑−1)(𝐵(0,
√
1 − 2𝜀𝑅) ∩ {𝑓 = 0})
𝜔𝑑𝑅𝑑

≤ 𝑑𝜔𝑑

2𝜔𝑑−1
𝐖(𝐾).

tting 𝜀 → 0 completes the proof of the proposition. □

 The sharpness of the bound

1. The general construction

Assume that 𝐾 is a origin symmetric strictly convex body. For 𝑥 ∈ 𝜕𝐾 we put 𝜈(𝑥) to be the outward pointing unit normal vector 
 𝐾 .
Let us recall the polar body

𝐾◦ = {𝑦 ∈ℝ𝑑 ∶ ⟨𝑥, 𝑦⟩ ≤ 1 for every 𝑥 ∈ 𝐾},

hich satisfies that

‖𝑥‖𝐾◦ ∶= inf{𝜆 ≥ 0 ∶ 𝑥 ∈ 𝜆𝐾} = ℎ𝐾 (𝑥).

For a bounded continuous function 𝑔 ∶ 𝜕𝐾 → [0, ∞), put

⟨𝑔⟩ = 1
𝑑−1(𝜕𝐾) ∫

𝜕𝐾

𝑔(𝑥)𝑑𝑑−1(𝑥), and 𝜇 = 1
𝑑−1(𝜕𝐾)

sup
𝑦∈𝐾◦ ∫

𝜕𝐾

|⟨𝜈(𝑥), 𝑦⟩|𝑔(𝑥)𝑑𝑑−1(𝑥).

r first goal is to prove the following

oposition 5.1. For every 𝜀 > 0, there exists

) a continuous function 𝜑 ∶ [0, ∞) → [0, ∞) with 𝜑(0) = 1, and
) a bounded function 𝑓 with |𝑓 (0)| = ‖𝑓‖∞ = 1, supp(𝑓 ) ⊂ 𝐾 ,

) a 𝜑-regular set Γ ⊂ ℝ𝑑 with Γ ⊂ {𝑓 ≡ 0},

ch that

𝐃−(Γ) ≥ 2⟨𝑔⟩
𝜇

− 𝜀.

oof. For 𝑁 ∈ ℕ, select 𝑥1, … , 𝑥𝑁 uniformly and independently on 𝜕𝐾 , and consider the associated vectors 𝜈𝑛 = 𝜈(𝑥𝑛) for 𝑛 =
 … , 𝑁 . For 𝛼 > 0, consider the function

𝑓 (𝑥) =
𝑁∏

𝑛=1
cos

(
2𝜋

𝛼𝑔(𝑥𝑛)
𝑁

⟨𝑥, 𝜈𝑛⟩).

serve that 𝑓 (0) = ‖𝑓‖∞ = 1, and the Fourier transform of 𝑓 is the 𝑁 -fold convolution of the factors 12
(
𝛿 𝛼𝑔(𝑥𝑛)

𝑁
𝜃𝑛
+ 𝛿− 𝛼𝑔(𝑥𝑛)

𝑁
𝜈𝑛

)
, and 

erefore

̂
{

𝛼
𝑁∑ }
5

supp(𝑓 ) ⊂
𝑁

𝑛=1
𝑔(𝑥𝑛)𝜀𝑛𝜈𝑛 ∶ 𝜀𝑛 ∈ {−1,1} .
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r goal is to find (the largest) 𝛼 to ensure that supp(𝑓 ) ⊂ 𝐾 . Recall that, for any 𝑥 ∈ℝ𝑑 ‖𝑥‖𝐾 = sup𝑦∈𝜕𝐾◦⟨𝑥, 𝑦⟩, and 𝑥 ∈ 𝐾 if and 
ly if ‖𝑥‖𝐾 ≤ 1. Therefore, we want to select 𝛼 > 0 so that, for any 𝑦 ∈ 𝜕𝐾◦,

𝛼 sup
𝜀𝑛∈{−1,1}

1
𝑁

𝑁∑
𝑛=1

𝑔(𝑥𝑛)𝜀𝑛⟨𝜈𝑛, 𝑦⟩ ≤ 1,

, in other words,

𝛼 ⋅
1
𝑁

𝑁∑
𝑛=1

|⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) ≤ 1.

r 𝑦 ∈ 𝜕𝐾◦, the random variable 𝑋𝑛,𝑦 = |⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) has mean

𝜇𝑦 =
1

𝑑−1(𝜕𝐾) ∫
𝜕𝐾

|⟨𝜇(𝑥), 𝑦⟩|𝑔(𝑥)𝑑𝑑−1(𝑥),

d its variance is may be crudely bounded independently of 𝑛 in terms of the geometry of the convex body 𝐾 and the 𝐿∞(𝜕𝐾)
rm of 𝑔. Since, 𝑋𝑛,𝑦 are independent, Chebyshev’s inequality yields that

Prob
(||| 1𝑁

𝑁∑
𝑛=1

|⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) − 𝜇𝑦
|||> 𝛿

)≤ 𝐶(𝐾,𝑔)
𝑁𝛿2

. (5.1)

w, for 𝜈1, … , 𝜈𝑁 fixed on 𝕊𝑑−1, the function 𝑦 ↦ 1
𝑁

∑𝑁
𝑛=1 |⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) is Lipschitz continuous with Lipschitz constant bounded by 

∶= ‖𝑔‖∞. Similarly, the function 𝜇𝑦 is Lipschitz continuous with constant ≤𝐾 . Elementary volume considerations ensure that the 
t 𝜕𝐾◦ can be covered by 𝐶(𝛿∕𝐾)−(𝑑−1) balls 𝐵(𝑦𝑗 , 𝛿∕𝐾) with 𝑦𝑗 ∈ 𝜕𝐾◦. Therefore, if max𝑦∈𝜕𝐾◦

||| 1
𝑁

∑𝑁
𝑛=1 |⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) − 𝜇𝑦

|||> 3𝛿, 

en there must exist 𝑗 with ||| 1
𝑁

∑𝑁
𝑛=1 |⟨𝜈𝑛, 𝑦𝑗⟩|𝑔(𝑥𝑛) − 𝜇𝑦𝑗

|||> 𝛿. Consequently, (5.1) ensures that

Prob
(
max

𝑦∈𝜕𝐾◦

||| 1𝑁
𝑁∑

𝑛=1
|⟨𝜈𝑛, 𝑦⟩|𝑔(𝑥𝑛) − 𝜇𝑦

|||> 3𝛿
)

≤∑
𝑗

Prob
(||| 1𝑁

𝑁∑
𝑛=1

|⟨𝜈𝑛, 𝑦𝑗⟩|𝑔(𝑥𝑛) − 𝜇𝑦𝑗

|||> 𝛿
)
→ 0 as 𝑁 →∞.

Since 𝜇 = sup𝑦∈𝜕𝐾◦ 𝜇𝑦, we conclude that for any 𝛿 > 0, if 𝑁 is chosen sufficiently large then there exist 𝑥1, … , 𝑥𝑁 ∈ 𝜕𝐾 such that 
r any 𝜀𝑛 ∈ {−1, 1},

‖‖‖ 1
𝑁

𝑁∑
𝑛=1

𝑔(𝑥𝑛)𝜀𝑛𝜈𝑛
‖‖‖𝐾

≤ 𝜇 + 3𝛿, (5.2)

d so if 𝛼 = 1
𝜇+3𝛿 , then supp(𝑓 ) ⊂ 𝐾 . Repeating the Chebyshev inequality argument if necessary, we may additionally ensure that

1
𝑁

𝑁∑
𝑛=1

𝑔(𝑥𝑛) ≥ 1
𝑑−1(𝜕𝐾) ∫

𝜕𝐾

𝑔(𝑥)𝑑𝑑−1(𝑥) − 𝛿 = ⟨𝑔⟩− 𝛿.

On the other hand, each factor 𝑓𝑛(𝑥) = cos
(
2𝜋 𝛼

𝑁
𝑔(𝑥𝑛)⟨𝑥, 𝜈𝑛⟩) satisfies

lim
𝑅→∞

𝑑−1({𝑓𝑛 = 0} ∩𝐵(0,𝑅))
𝜔𝑑𝑅𝑑

=
2𝛼𝑔(𝑥𝑛)

𝑁
.

ee Lemma 5.1 of [9].) Since there are 𝑁 factors 𝑓𝑛, and the nodal sets of each 𝑓𝑛 intersect in a set of dimension 𝑑 − 2, we have 
at,

lim
𝑅→∞

𝑑−1({𝑓 = 0} ∩𝐵(0,𝑅))
𝜔𝑑𝑅𝑑

= 2𝛼 1
𝑁

𝑁∑
𝑛=1

𝑔(𝑥𝑛) ≥ 2(⟨𝑔⟩− 𝛿)
(𝜇 + 3𝛿)

.

We cannot immediately conclude Lemma 5.1 as the set {𝑓 = 0} is not 𝜑-regular for a function 𝜑 with lim𝑡→0+ 𝜑(𝑡) = 1. However 
 removing small regions where any of the planes in the sets {𝑓𝑛 = 0} intersect, we obtain a set Γ that is 𝜑-regular for some 𝜑 with 
𝑡→0+ 𝜑(𝑡) = 1, and such that Γ has surface density at least 2 ⟨𝑔⟩

𝜇
− 𝐶 ′𝛿, where 𝐶 ′ is an absolute constant, and {𝑓 ≡ 0} ⊃ Γ. This 

ncludes the proof of Proposition 5.1. □
6

We first use Proposition 5.1 to prove Proposition 1.3.
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oof of Proposition 1.3. In order to verify Proposition 1.3 from Proposition 5.1, we take 𝑔 ≡ 1 and recall the following well-known 
mputation (see, for instance the end of Section 5 of [9]): if |𝑣| = 1, then

∫
𝕊𝑑−1

|⟨𝜃, 𝑣⟩|𝑑𝑑−1(𝜃) = 2𝜔𝑑−1.

nce 𝐖(𝐵(0, 1)) = 2, we conclude that 𝐃−(Γ) ≥ 𝑑𝜔𝑑

2𝜔𝑑−1
𝐖(𝐵(0, 1)) − 𝜀, as required. □

2. Sharpness for any 𝜋∕2-symmetric convex body if 𝑑 = 2

We now prove Theorem 1.2 as a consequence of Proposition 5.1. Recall that a convex body is called 𝜋∕2-symmetric if it is 
mmetric under a rotation by 𝜋∕2, i.e.

(𝑥1, 𝑥2) ∈ 𝐾 ⟺ (−𝑥2, 𝑥1) ∈ 𝐾

is condition implies origin symmetry, and that ℎ𝐾 (𝜃1, 𝜃2) = ℎ𝐾 (−𝜃2, 𝜃1) for (𝜃1, 𝜃2) ∈ 𝕊1.
By an approximation argument, in proving Theorem 1.2, we may assume that 𝐾 is strictly convex. We again will set 𝑔 ≡ 1 in the 
tement of Proposition 5.1, and calculate, for 𝜃 ∈ 𝜕𝐾◦

1
1(𝜕𝐾) ∫

𝜕𝐾

|⟨𝜈𝑥, 𝜃⟩|𝑑1(𝑥) = 2
1(𝜕𝐾) ∫

(𝜕𝐾)+

⟨𝜈𝑥, 𝜃⟩𝑑1(𝑥)

here (𝜕𝐾)+ = {𝑥 ∈ 𝜕𝐾 ∶ ⟨𝜈𝑥, 𝜃⟩ ≥ 0}.
Denote by 𝑧± ∈ 𝜕𝐾 the two points that satisfy 𝜈𝑧±

⟂ 𝜃, and put 𝜃⟂ = (−𝜃2, 𝜃1). Since 𝐾 is origin symmetric, 𝑧− = −𝑧+, so the line 

gment [𝑧−, 𝑧+] ⊂ 𝐾 contains 0, and has length 2|∇ℎ𝐾 (
𝜃⟂|𝜃| )|. Put 𝜈 to be a unit vector normal to the direction of the line segment 

−, 𝑧+]. Then the divergence theorem implies that

∫
(𝜕𝐾)+

⟨𝜈𝑥, 𝜃⟩𝑑1(𝑥) = ∫
[𝑧− ,𝑧+]

|⟨𝜈, 𝜃⟩|𝑑1 = 2|∇ℎ𝐾 ( 𝜃⟂|𝜃| )||⟨𝜈, 𝜃⟩|.
is an elementary geometry exercise to see that

|∇ℎ𝐾 ( 𝜃⟂|𝜃| )||⟨𝜈, 𝜃⟩| = ℎ𝐾 ( 𝜃⟂|𝜃| )|𝜃|.
deed, this boils down to the following fact: For 𝐴 > 𝐵 > 0 denote by 𝑇 the right angle triangle with vertices (0, 0), (0, 𝐵) and 
𝐴2 −𝐵2, 0), then the outward unit vector to the hypotenuse of 𝑇 has its first component equal 𝐵∕𝐴.)

Since ℎ𝐾 ( 𝜃⟂|𝜃| )|𝜃| = ℎ𝐾 (𝜃⟂) the quantity 𝜇 appearing in Proposition 5.1 equals

𝜇 = sup
𝜃∈𝜕𝐾◦

4ℎ𝐾 (𝜃⟂)
1(𝜕𝐾)

.

hen combined with the classical fact that 1(𝜕𝐾) = 𝜋𝐖(𝐾), we see that, for any 𝜀 > 0, Proposition 5.1 ensures that there is a 
unded function with Fourier transform supported in 𝐾 , that vanishes on a regular set of density at least

𝜋

2
𝐖(𝐾)

sup𝜃∈𝜕𝐾◦ ℎ𝐾 (𝜃⟂)
− 𝜀.

To this point we have not used the 𝜋

2 -symmetric assumption, but finally we observe that if 𝐾 is 𝜋

2 -symmetric then 
p𝜃∈𝜕𝐾◦ ℎ𝐾 (𝜃⟂) = 1 (insofar as it implies that ℎ𝐾 (𝜃) = ℎ𝐾 (𝜃⟂)), and this completes the proof.
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