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A B S T R A C T 
The dynamic spectra of pulsars frequently exhibit diverse interference patterns, often associated with parabolic arcs in the 
Fourier-transformed (secondary) spectra. Our approach differs from previous ones in two ways: first, we extend beyond the 
traditional Fresnel–Kirchhoff method by using the Green’s function of the Helmholtz equation, i.e. we consider spherical waves 
originating from three-dimensional space, not from a two-dimensional screen. Secondly, the discrete structures observed in the 
secondary spectrum result from discrete scatterer configurations, namely plasma concentrations in the interstellar medium, and 
not from the selection of points by the stationary phase approximation. Through advanced numerical techniques, we model both 
the dynamic and secondary spectra, providing a comprehensive framework that describes all components of the latter spectra in 
terms of physical quantities. Additionally, we provide a thorough analytical explanation of the secondary spectrum. 
Key words: pulsars: general – ISM: structure. 

1  I N T RO D U C T I O N  
The first observation of radio pulsars goes back to Hewish et al. 
( 1969 ). The electromagnetic signals of pulsars encounter on their way 
a varying electron density of the interstellar medium (ISM), resulting 
in deflection and scattering of the travelling electromagnetic waves. 
In addition, the relative motion of pulsar, ISM, and the observer’s 
antenna leads to a Doppler shift and time-varying phenomena. The 
dynamic spectra consist of the frequenc y-resolv ed pulse sequences 
observ ed o v er a time-span of up to several hours. A two-dimensional 
(2D) Fourier transform of the dynamic spectra gives the secondary 
spectra. Stinebring et al. ( 2001 ) disco v ered parabolic arc structures 
in the secondary spectra, which result from the interference of 
multiple signal pathways at a specific distance between the pulsar 
and the observer. The recent catalogue of scintillation arcs compiled 
by Stinebring et al. ( 2022 ) of 22 pulsars shows various structures 
and contains the basic physical parameters of the pulsar, such as 
distance and velocity. Walker et al. ( 2004 ) developed theoretical 
descriptions of the parabolic arcs starting from the Fresnel–Kirchhoff 
integral. Using Monte Carlo methods, Walker et al. ( 2004 ) then 
computed the locations of points in the secondary spectra. Similarly, 
Cordes et al. ( 2006 ) used a thin phase-changing screen approach 
to study the dynamic and secondary spectra. Since then there have 
been a variety of arc studies based on observations by different 
groups, e.g. Hill et al. ( 2003 ), Hill et al. ( 2005 ), Wang et al. ( 2005 ), 
Bhat et al. ( 2016 ), Safutdinov et al. ( 2017 ), Wang et al. ( 2018 ), 
Stinebring, Rick ett & Ock er ( 2019 ), Reardon et al. ( 2020 ), Rickett 
et al. ( 2021 ), Yao et al. ( 2021 ), Chen et al. ( 2022 ), McKee et al. 
( 2022 ). 
⋆ E-mail: tobias.kramer@jku.at 

Here, we put forward a different theoretical approach to treat 
scattering by the ISM using Green’s functions. This method is 
commonly applied to scattering problems in quantum mechanics; 
see Kramer & Rodr ́ıguez ( 2006 ) for an application to matter 
waves originating from a compact source. By solving Helmholtz’s 
equation in Cartesian coordinates using Green’s functions, we deter- 
mine the pulsar spectra received after scattering at the interstellar 
medium (dynamic spectrum) and its 2D Fourier transform with 
respect to time and frequency by high-precision numerics (secondary 
spectrum) for a given scattering configuration. In contrast to the 
Fresnel–Kirchhoff approach, our method enables the determination 
of the entire spectrum and relates the strengths of the individual 
components to physical quantities such as the refractive index and the 
wav enumber. Furthermore, we giv e a complete analytical description 
of the secondary spectra. Walker et al. ( 2004 ) obtained point-like 
peaks in the snapshot regime and determined their positions. We 
considerably extend this analysis by analytically determining also 
the peak extensions and the intensities. 

In the second section, we introduce our scattering approach and 
present our findings for an analytical description of the spectra in the 
third section. We conclude in the fourth section and relegate to the 
appendices some detailed explanations and technical details. 
2  SOLUTI ON  O F  T H E  H E L M H O LT Z  EQUATIO N  
In this section, we propose a Green’s function method to describe 
the scattering of pulsar radiation in the ISM. The differences to the 
Fresnel–Kirchhoff approach are summarized in Appendix A . We 
consider scattering from an extended plasma cloud (see Fig. 1 ), 
described by a region with the scattering potential V ( r ′ ) 
V ( r ′ ) = 1 

4 π ( ϵ( r ′ ) − ϵbackground ) ̸= 0 . (1) 
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Figure 1. Sketch of the scattering set-up, including the pulsar, the ISM, and the observer on Earth. The drawing is not to scale, the extension of the ISM along 
the vertical axis is about 10 9 times exaggerated. We take the ISM to be at rest, while the pulsar and the observer are possibly moving in orthogonal directions 
with respect to each other and the connecting line observer – pulsar. The coordinate origin is taken to be at the intersection of the ISM and the line of sight. The 
cones mark the scattering disc. Within the Born approximation structures within the ISM are contracted to point scatterers (black dots). 
The electron number density n e of the plasma cloud determines the 
plasma frequency ω p , the refractive index n , and ϵ: 
ϵ( r ′ ) = n 2 ( r ′ ) = 1 − ω 2 p 

ω 2 , ω 2 p = n e ( r ′ ) e 2 
ϵ0 m e . (2) 

Pulsar signals travel long distances and undergo a dispersion due to 
the average electron density in the galaxy. This results in pulses where 
different frequency components arrive at different times. Here, we 
are interested in the ISM properties affecting the signal on shorter 
scales compared to the pulsar distance. This allows us to set the 
dielectric constant of the background to unity , but alternatively , a 
uniform background could be introduced. Maxwell’s equation for 
the electric field becomes [equation (50.35) Schwinger 1998 ] 
E ( r ) = E inc ( r ) + i k ( 1 + 1 

k 2 ∇ ∇ T ) 
×
∫ 

d r ′ G 0 ( r , r ′ ; k )( −i k ) V ( r ′ ) E ( r ′ ) . (3) 
The free Green’s function reads 
G 0 ( r , r ′ ; k) = e ik| r −r ′ | 

| r − r ′ | , k = ω 
c = 2 πν

c . (4) 
Within the Born approximation we replace in the integral the electric 
field by the incoming electric field E inc ( r ′ ) and also neglect any 
change in the polarization direction by dropping the Hessian in the 
second term in equation ( 3 ). This can be easily verified considering 
e.g. a linearly polarized wave possessing solely a non-vanishing y - 
component depending only on the spatial x -coordinate. We take the 
incoming electric field to be a spherical wave emitted from the pulsar 
E inc ( r ) = U 0 G 0 ( r , r p ; k) , (5) 
where U 0 determines the polarization direction of the electric field 
and has units of a voltage. We obtain the electric field from the 
Green’s function 
E ( r ) = U 0 G 0 ( r , r p ; k) 

+ k 2 ∫ d r ′ G 0 ( r , r ′ ; k) V ( r ′ ) U 0 G 0 ( r ′ , r p ; k) , (6) 
where we consider only one interaction with the scattering potential 
V , corresponding to the Born approximation. The electric field 
in the Born approximation consists of two contributions, first the 
unscattered component in the absence of any medium, and second 
the volume inte gral o v er the distribution of plasma clouds in the 
interstellar medium. For dense or compact objects multiple scattering 

could be included by summing the Born series in terms of the 
transition matrix. Such processes are neglected in equation ( 6 ). This 
equation is also used in quantum mechanics to describe the scattering 
of coherent electron waves at obstacles (chapter 26 of Heller 2018 ). 
Since we are only interested in the relative contributions of the 
electromagnetic waves, we set | U 0 | = 1 with direction orthogonal to 
the direction of propagation. The intensity is given by the absolute 
value squared of the electric field 

H ( r , r p ; ν) = | E( r ) | 2 
= ∣∣∣∣G 0 ( r , r p ; k) + k 2 ∫ d r ′ G 0 ( r , r ′ ; k) V ( r ′ ) G 0 ( r ′ , r p ; k) ∣∣∣∣2 . 

(7) 
By taking the absolute value, interference terms appear in the 
exponents related to the free Green’s function. The argument of the 
exponent contains the differences in distances measured in multiples 
of the wav elength. F or the typical pulsar geometry shown in Fig. 1 all 
path differences are slowly varying functions across the interstellar 
medium. We introduce coarse-grained inte gration re gions, which 
result in a collection of three-dimensional (3D) clouds of scattering 
sources across an entire region of the ISM. For simplicity, we consider 
a Gaussian electron density profile of the i th cloud centred around r i 
of the form 
n e,i ( r ) = n e, peak ,i exp (− ( r − r i ) 2 

2 a 2 
)

, (8) 
where n e , peak denotes the peak electron density. The first order Born 
approximation requires to e v aluate 

H ( r o , r p ; ν) 
= ∣∣∣∣∣G 0 ( r o , r p ; k ) + k 2 ∑ 

i 
∫ 

cloud i d r ′ e 
i k| r o −r ′ | 

| r o − r ′ | V ( r ′ ) e i k| r p −r ′ | 
| r p − r ′ | 

∣∣∣∣∣

2 
. (9) 

≈ 1 
| r p − r o | 2 
−
∑ 

i βi e i k( | r p −r i |+| r i −r o |−| r p −r o | ) + e −i k( | r p −r i |+| r i −r o |−| r p −r o | ) 
| r p − r i || r i − r o || r p − r o | 

+ ∑ 
i,j βi βj e i k( | r p −r i |+| r i −r o |−| r p −r j |−| r j −r o | ) 

| r p − r i || r i − r o || r p − r j || r j − r o | . (10) 
In the last step in the equation abo v e, we e v aluated the Gaussian 
integral via a series expansion for a (see Appendix C ) and introduced 
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the parameter β i 
βi = −k 2 ∫ 

cloud i d r ′ V ( r ′ ) = 1 
4 π ω 2 

c 2 
∫ 

cloud i d r ′ 
ω 2 p ( r ′ ) 

ω 2 = e 2 
4 πϵ0 m e c 2 

∫ 
cloud i d r ′ n e,i ( r ′ ) = √ 

π

2 a 3 e 2 
ϵ0 m e c 2 n e, peak ,i . (11) 

A uniform background density n e , b along the signal propagation 
requires to replace the electron density with the local change in 
density n e ( r ′ ) → ( n e ( r ′ ) − n e , b ). Within the Fresnel–Kirchhoff 
approach in Walker et al. ( 2004 ), all the contributions in equations 
( 7 ) and ( 10 ) are treated on equal footing rendering it impossible to 
distinguish their individual pre-factors. 

The coarse graining of the ISM complements other approaches 
which focus on the correlation function of scattering from extended 
sources described in terms of statistical spatial correlation functions 
(see Tatarski 1961 ; Coles et al. 2010 ). 
3  DYNAMIC  A N D  S E C O N D  A R  Y  SPECTRA  
3.1 Dynamic spectra 
Equation ( 10 ) contains the complete description of the electric field 
and is next e v aluated for specific conditions. We consider a coordinate 
system where the ISM is considered to be at rest and distributed 
around the origin of the coordinate system, while the pulsar and the 
observ er are mo ving as shown in Fig. 1 . The pulsar is moving with 
velocity v p and changes position as function of time 
r p ( t) = r p (0) + v p t, (12) 
likewise the observer moves with velocity v o and is located at position 
r o ( t) = r o (0) + v o t . (13) 
The line of sight vector lies along e x and is given by the direct 
connection of r o (0) and r p (0), the effect of the velocity components 
along this axis is negligible due to large values of the distance | x p | 
between the pulsar and the ISM plane and the distance | x o | between 
the ISM plane and the observer. Therefore, the velocity component of 
v p along e y is the only rele v ant one, while for v o the components along 
e y and e z need to be considered. A dynamic spectrum is obtained by 
recording H ( r o (0) + v o t , r p (0) + v p t ; ν) o v er the time domain [ −& t /2, 
& t /2] and frequency domain [ νc − & ν /2, νc + & ν /2]. Computed 
spectra are shown in Fig. 2 , left panel, obtained from numerically 
e v aluating equation ( 7 ) and the analytical formulae for 25 scattering 
clouds. Each scattering cloud is assigned the same value of β i = 
4.5 × 10 18 m ( i = 1, . . . , 25). One possible set of parameters for 
the Gaussian cloud model is a = 10 9 m and n e ,peak = 0.1 cm −3 . 
Further parameters are given in the caption of Fig. 2 . We used the 
extended precision mathematical functions available in Mathematica, 
Wolfram Research, Inc. ( 2024 ), and the GCC Quad-Precision Math 
Library, Free Software Foundation ( 2024 ) as we needed to determine 
trigonometric functions of large arguments. 
3.2 Secondary spectra 
The secondary spectrum is given by the 2D Fourier transform of the 
preceding expression 
∣∣ ˜ H ( c t , c ν ) ∣∣ = ∣∣F [H ( r o ( t ) , r p ( t ); ν) ]∣∣

∝ ∣∣∣∣∫ νc + & ν / 2 
νc −& ν / 2 ∫ & t / 2 

−& t / 2 e i νc ν+ i tc t H ( r o (0) + v o t, r p (0) + v p t ; ν) d ν d t ∣∣∣∣ , (14) 
We note that the secondary spectrum is conventionally defined as 
the square of the latter quantity. Our usage here coincides with the 

‘conjugate spectrum’ used by other authors (e.g. Simard et al. 2019 ), 
although we are considering only the magnitude of that quantity. 
Often this quantity is also shown on a logarithmic scale (see Fig. F1 ), 
in that case ∣∣ ˜ H ( c t , c ν) ∣∣ and ∣∣ ˜ H ( c t , c ν) ∣∣2 differ only by a factor of 
2. The secondary spectrum is shown in Fig. 2 . It is obtained by 
the discrete Fourier transform of (512,512) points of the dynamic 
spectra which are zero padded to size (1536,1536). The secondary 
spectra show a wealth of sharply delineated features, caused by the 
presence of the ISM and the specific F ourier inte gration domain. 
All results shown in the figures result from a numerical evaluation 
of equations ( 10 ) and ( 14 ). For the interpretation of the numerical 
results, we discuss different levels of approximations of the integrals 
in the following sections. 
3.3 Main parabolic arc features 
The Fourier transform of the first term in equation ( 10 ) describes 
interference between the direct path of the electric field from the 
pulsar to the observer and the path going through the ISM at a cloud 
centred at position (0, y i , z i ). The Fourier integral comprises terms 
in the form 

˜ H ( i) 1 ( c t , c ν ) = βi ∫ ν+ & ν / 2 
ν−& ν / 2 

∫ & t / 2 
−& t / 2 e i νc ν+ i tc t (e i k( | r p −r i |+| r i −r o |−| r p −r o | ) + e −i k( | r p −r i |+| r i −r o |−| r p −r o | ) )

| r p − r i || r i − r o || r p − r o | d ν d t . 
(15) 

To e v aluate the integrals in the last equation, we set r p ( t ) = ( x p , 
v p t , 0), and r o ( t ) = ( x o , v o , y t , v o , z t ). The expressions derived in 
this section include the possibility of arbitrary mo v ements of pulsar, 
observer, and ISM. The argument of the exponential functions is 
expanded around x p = −∞ and x o = ∞ to first order. In addition, we 
consider only the first order in t and ν around zero and νc , respectively. 
The denominator is taken to be constant. Using the relation 
∫ ∞ 

−∞ d x e i( k −k ′ ) x = 1 
2 π δ( k − k ′ ) . (16) 

we obtain for the first exponential function 
c ( i) t = 2 πy i νc v p,y 

cx p − 2 πy i νc v o,y 
cx o − 2 πv o,z z i νc 

cx o (17) 
c ( i) ν = − π( x o −x p ) ( y 2 i + z i 2 ) 

cx o x p . (18) 
The second exponential function in equation ( 15 ) leads to the 
expressions in equations ( 17 , 18 ) with the replacement c → −c . 
These expressions agree with the ones in Hill et al. ( 2003 , 2005 ) and 
Cordes et al. ( 2006 ), which can be shown by introducing for θθθ and 
v ⊥ the corresponding components. 

These points lie on a parabolic arc, as seen by eliminating y i from 
the last equation and expressing c ν as function of c t 
c ν = (

x p − x o ) x p 
(
v p,y x 0 − v o,y x p )2 [

√ 
cx o 
π

c t 
2 νc + √ 

π

cx o v o,z z i ]2 

−
πz 2 i (x o − x p )

cx o x p , (19) 
For z i = 0 and v o , z = 0 the last expression reduces to the parabolic 
arc expression crossing the origin of the c ν , c t coordinate system. 
Equation ( 19 ) shows that z i induces a shift of the parabolic structures 
in the c ν-direction and v o , z a shift in c t direction, moving the 
parabola away from the origin of the c ν , c t coordinate system. The 
corresponding expressions within the Fresnel–Kirchhoff approach 
(Walker et al. 2004 ) for arbitrary 2D scatterer positions and velocities 
hav e been giv en in (fig. A1 of Xu et al. 2018 ) and in Shi ( 2021 ). The 
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Figure 2. Theoretical dynamic spectra H ( t , ν), upper left panel, and secondary spectra [ | ˜ H ( c t = 2 πf t , c ν = 2 πf ν ) | , upper right panel. The lo wer ro w panels 
show the secondary spectra in detail (left panel: numerical evaluation of equation ( 14 ), right panel: analytic result from equations ( D3 ), ( D9 ). The polygons 
indicate the analytical boundaries of the main arc features (solid lines] and inverted arcs (dashed lines). The centre frequency is set at νc = 0.1 GHz to produce 
large features in the secondary spectra. All scatterers are located on a line perpendicular to the line of sight, intersecting the line of sight. ( β = 4.5 × 10 18 m, x p 
= −214 pc, x o = 429 pc, v p = 640 km s −1 ). 
c ν coordinates of the points allow one to construct a projected spatial 
distribution of the scatterers along the e y axis from the secondary 
spectra, or, for points clearly offset from the main parabola, to 
determine their e z coordinate. Note that Cordes et al. ( 2006 ) introduce 
a 1/(2 π)-scaled variant of the conjugate quantities: 
f ν = c ν

2 π , f t = c t 
2 π , (20) 

conventionally referred to as τ and f D in the literature, respectively. 
A detailed quantitative description of the features requires to mo v e 

beyond the linearized exponents and to e v aluate the integrals in terms 
of special functions (see Appendix D ). For simplicity of presentation, 
we concentrate on the special case v o = 0. For the main parabolic arc, 
we obtain a trapezoid around the centre point ( c ( i) t , c ( i) ν ) with vertices 
and magnitude 
c ( i) t, ±∓ = c ( i) t ± π& νy i v p,y 

cx p ∓ π& νx o v 2 p,y & t 
2 c ( x o −x p ) x p , 

c ( i) ν, ∓ = c ( i) ν ∓ π& t y i v p,y 
cx p + πx o v 2 p,y & 2 t 

4 c x o x p −4 c x 2 p , (21) 
| ˜ H ( i) 1 | = ∣∣∣βi c 

v p x o ( x o −x p ) y i ∣∣∣ . (22) 
Here, the ±, ∓ in c ( i) t, ±∓ refer to the four values of c ( i) t at the right/left 
and upper/lower boundaries of the trapezoid and the ∓ in c ( i) ν, ∓ to the 
upper/lo wer c ( i) ν -v alues at the borders. Regions with similar electron 
density but further away from the line of sight will result in larger 

areas in the secondary spectrum with a magnitude proportional to the 
inverse distance 1/ y i . The extension of the Fourier window (and in 
general shape of the chosen window) changes the secondary spectra 
by affecting the size of the rectangular areas in the secondary spectra. 
Each of these trapezoids comes with a complex phase leading to 
interference effects in the case of o v erlaps of different trapezoids. 
The right panel of Fig. 2 shows a close-up of the patterns with solid 
lines drawn according to equation ( 21 ). 
3.4 Inverted parabolic arcs 
The Fourier transform of the second term in equation ( 10 ) arises 
from interference between two waves travelling through the ISM at 
positions ( y i , z i ) and at ( y j , z j ). 

˜ H ( i,j ) 
2 ( c t , c ν) = βi βj ∫ ν+ & ν/ 2 

ν−& ν/ 2 
∫ & t / 2 

−& t / 2 e 
i νc ν+ i tc t e ik( | r p −r i |+| r i −r o |−| r p −r j |−| r j −r o | ) 
| r p − r i || r i − r o || r p − r j || r j − r o | d νd t . (23) 

This expression is e v aluated as in the last subsection and yields 
maxima at points 
c ( i,j ) 
t = 2 πνc v p,y ( y i −y j ) 

cx p − 2 πνc v o,y ( y i −y j ) 
cx o + 2 πνc v o,z ( z j −z i ) 

cx o (24) 
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Figure 3. Scatterer distribution in the y −z plane (left column), dynamic spectra H ( t , ν), and secondary spectra ( | ˜ H ( c t = 2 πf t , c ν = 2 πf ν ) | for two different 
values of β, corresponding to a change in contrast between main and inverted parabolic arcs. Upper row β = 5 × 10 18 m (for all scatterers), lo wer ro w β = 
10 18 m (for all scatterers), other parameters νc = 1 GHz, x p = −1313 pc, x o = 788 pc, v p = 1000 km s −1 . 
c ( i,j ) 
ν = − π( x o −x p ) (y 2 i −y 2 j + z 2 i −z 2 j )

cx o x p . (25) 
By the same replacements as described after equation ( 17 ) the 
expressions equations ( 24 ) and ( 25 ) can be shown to be identical 
to the ones in Hill et al. ( 2003 , 2005 ) and Cordes et al. ( 2006 ). These 
points lie on inverted parabolic arcs and illuminate rectangular areas 
in the secondary spectra with vertices and magnitude given by 
c ( i,j ) 
t, ± = c ( i,j ) 

t ± πv p,y ( y i − y j ) 
cx p & ν, 

c ( i,j ) 
ν, ∓ = c ( i,j ) 

ν ∓ πv p,y ( y i − y j ) 
cx p & t , (26) 

| ˜ H ( i,j ) 
2 | = βi βj ∣∣∣ c 

v p,y x 2 o x p ( y i −y j ) ∣∣∣ . (27) 
The right panel of Fig. 2 shows a close-up of the patterns with 
dashed rectangles drawn according to equation ( 26 ). Thus, our 
analytic expressions ( 21 ) and ( 26 ) are in excellent agreement with 
our numerics. In the ‘noodle model of scintillation arcs’ proposed 
by Gwinn a smearing of these structures [equations (62) and (63) of 
Gwinn 2019 ] leads to partly similar expressions as our equations ( 17 ) 
and ( 26 ). The differences in the results originate from the differing 
approaches, whereas Gwinn analyses how in the expressions for 
the spot positions in equations ( 17 ), ( 18 ), ( 24 ), and ( 25 ) change 
during the integrations in equations ( 15 ) and ( 23 ), respectively, 
we directly analyse the analytical results for equations ( 15 ) and 
( 23 ). Furthermore, the respective magnitudes ( 22 ) and ( 27 ) and 
consequences with respect to the visibility of main versus inverted 
arcs are not discussed in Gwinn ( 2019 ). The issue of resolution was 
described in Walker et al. ( 2004 ). The authors obtain sinc-functions 

which lead to decreasing/increasing spot sizes in c t ( c ν)-direction 
with increasing/decreasing & t ( & ν). Existing techniques to combat 
this are performing the Fourier transform with respect to wavelength 
instead of frequency (Fallows et al. 2014 ; Reardon et al. 2020 ) or 
with respect to time times frequency instead of time (Sprenger et al. 
2020 ). We emphasize that our expressions derived in Appendix D 
describe both effects, the smearing, and the resolution. 
3.5 Magnitudes of main and inverted parabolic arcs 
The ratio of the magnitude of an inverted parabolic arc structure 
compared to a main parabolic structure is given by the expression 
| ˜ H ( i,j ) 

2 ( c t , c ν) | 
| ˜ H ( i) 1 ( c t , c ν) | = βj 

∣∣∣∣∣
y i (

y i − y j )
(
x o − x p )
x o x p 

∣∣∣∣∣ . (28) 
Equation ( 28 ) implies an increased visibility of the inverted arc 
structures for higher plasma densities (corresponding to a larger value 
of β). Some pulsars [see pulsar B1508 + 55 discussed by Sprenger 
et al. ( 2022 )] show a transient evolution of the secondary spectra 
at different epochs with less and more pronounced inverted arc 
structure. For a pulsar located 1313 pc from the ISM and observed 
at a distance of 788 pc from the ISM, | ( x o −x p ) 

x o x p | = 6 . 5 × 10 −20 m −1 . 
Setting | y i 

( y i −y j ) | ≈ 2 gi ves a v alue of β = 7.5 × 10 18 m to distribute 
equal intensities to the direct and inverted arc features. This estimate 
is in general agreement with the transition from a single main arc 
( β = 10 18 m) to inverted arcs ( β = 5 × 10 18 m) seen in Fig. 3 . 
The Helmholtz equation describes the underlying physics in terms 
of a local change in the refractiv e inde x, and thus cannot distinguish 
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Figure 4. Left panel: Example of an extended scatterer set with one separated scatterer region (black arrow), leading to the formation of an inverted arc offset 
from the main parabolic arc in the secondary spectrum | ˜ H ( c t = 2 πf t , c ν = 2 πf ν ) | (right panel), marked by the white arrow. The dynamic spectrum H ( t , ν) is 
shown in the centre panel. Conjugate time c t = 2 π f t , conjugate frequency c ν = 2 π f ν . Parameters: νc = 0.3 GHz, β = 10 18 m (for all scatterers), x p = −214 pc, 
x o = 429 pc, v p = 160 km s −1 . 
between an increase or decrease in matter relative to an average 
background density. If we take ionized gas (plasma) as the origin of 
the refractive index change, we can estimate the electron density of 
the ISM structures, since the β parameter is directly related to the 
refractiv e inde x change. 

For the model in Fig. 3 , we chose N = 317 scattering clouds 
in order to a v oid considerable o v erlap of the corresponding panels 
in the secondary spectrum. For simplicity, all clouds are assigned 
the same β value. The parameter β = 1 × 10 18 m could be 
realized with a Gaussian cloud with a = 5 × 10 8 m and n e , peak = 
0.15 cm −3 , which is about ten times the average electron density n 0 = 
0.015 cm −3 in our galaxy (Ocker, Cordes & Chatterjee 2020 ). In the 
large N -regime areas in the secondary spectra overlap and additional 
interference of the individual structures in the secondary spectrum 
occurs. Refractiv e inde x changes might also be coming from neutral 
gas clouds. The finite extension of all interference structures leads to 
further interference between o v erlapping rectangles and trapezoids as 
seen in the right panel of Fig. 2 . The interference causes smaller scale 
structures compared to the extension of the rectangular or trapezoidal 
areas. 

Fig. 4 displays the dynamic and secondary spectra of a ISM region 
with a split-off part (see black arrow in the left panel), causing an 
offset feature in the secondary spectra (white arrow in the right panel). 
The split-off part produces shifted inverted arclets by including a 
clump of scatterers offset in the z-direction, but still in the same 
scattering screen (see Fig. 4 , left panel). Similar structures have been 
observed by Brisken et al. ( 2010 ) for pulsar B0834 + 06, but are 
attributed there to a lens-like concentration of plasma due to their 
different mo v ement with wav elengths (see also Simard & Pen 2018 ), 
or to multiple screens (Simard et al. 2019 ; Zhu et al. 2023 ). 
4  C O N C L U S I O N  
We show that the Born approximation to Green’s function is a 
suitable method for computing dynamic and secondary spectra of 
pulsar signals. The theoretical description does not use the Fresnel–
Kirchhof f dif fraction inte gral. Our method pav es the way for the 
ef fecti v e e xtraction of physical parameters such as the refractiv e 
index change and the spatial structure of the ISM from secondary 
spectra. The main and inverted arcs seen in secondary spectra are 
obtained without assuming a quasi one-dimensional structure of the 
ISM. Furthermore, within this approach, we are able to compute 

and analyse the spectra with high precision numerically, as well 
as explain them analytically. The method can be generalized in 
several directions, e.g. it is straightforward to describe configurations 
containing multiple screens or screens extended in 3D. The Green’s 
function method could also be applied to plasma lens structures, 
as e.g. the Gaussian plasma lens (Cle gg, Fe y & Lazio 1998 ), not 
considered here. 
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APPENDIX  A :  RELATION  TO  
K I R C H H O F F – F R E S N E L  T H E O RY  
Pulsar scintillations have been discussed previously using Kirchhoff–
Fresnel theory (see chapter 8.3 of Born & Wolf 2019 ). In addition, 
a phase-changing screen is introduced around the origin with screen 
coordinates (0, y ′ , z ′ ), leading to the expression (equation 2.1 of 
Narayan 1992 ): 

E( r o ) = k e −i π/ 2 
2 πD “

exp [ i ϕ( y ′ , z ′ ) + i k ( y ′ − y o ) 2 + ( z ′ − z o ) 2 
2 D 

] 
d y ′ d z ′ , D = | r o | . (A1) 

For a model based on stripes of phase changing scatterers perpen- 
dicular to the line of sight between pulsar and observer Gwinn 
( 2019 ) provides a detailed analysis based on Kirchhoff–Fresnel 
integrals. In contrast to our expression in equation ( 6 ), Kirchhoff–
Fresnel theory does not contain the contributions from the scattering 
at the ISM explicitly as scattering volumes ( β i in equation 11 ) 
and thereby does not distinguish the contributions of the different 
terms in equations ( 7 ) and ( 10 ) which include the unobstruced 
path. To reco v er the unobstructed path, Gwinn ( 2019 ) introduces 
an additional ‘no screen’ term, relative to which any phase changes 

are considered. Besides a stripe model, also various plasma lenses 
are discussed by Jow, Pen & Feldbrugge ( 2023 ) in the context of 
Kirchhoff–Fresnel theory and a further perturbative expansion of 
the integrand in equation ( A1 ) is given. A treatment of a Gaussian 
lens is shown in (fig. 1c of Aidala et al. 2007 ) and (fig. 2 of Jow 
et al. 2023 ). In contrast to the Born approximation with a real-valued 
scattering potential across a volume, the starting point for Kirchhoff–
Fresnel theory is a phase change of the electric field caused by 
refractiv e inde x changes projected on a plane. Whereas within the 
Born approximation considered here, the scattering of radiation at 
the ISM causes spherical waves originating from all scatterers in 3D, 
in the approximation of Fresnel–Kirchhoff spherical waves originate 
only from a 2D plane. 
APPENDI X  B:  DI MENSI ONALI TY  O F  T H E  ISM  
In Fig. 1 , we depicted the ISM as a 3D cloud in space. Ho we ver, 
throughout the paper it w as al w ays considered to be 2D. To justify 
this restriction to two dimensions, we show here that the effect of an 
additional extension along the x -axis is negligible. 

Therefore, we compute the length difference & s between the path 
along the line of sight starting at the pulsar located at ( x p , 0, 0) and 
ending at the observer at ( x o , 0, 0) and another path starting at the 
pulsar, going to the ISM offset from the line of sight at (0, y 0 , 0) and 
from there to the observer is given by 
&s = √ 

x 2 o + y 2 0 + √ 
x 2 p + y 2 0 − | x o | − | x p | 

≈ y 2 0 
2 

(
1 

| x o | + 1 
| x p | 

)
, (B1) 

where the last relation holds in the limit of | x 0 | ≫ y 0 and | x p | ≫ y 0 . 
Shifting the scatterer along the line-of-sight from (0, y 0 , 0) to ( & x , 
y 0 , 0) changes the result in equation ( B1 ) to 
&s ≈ y 2 0 

2 
(

1 
| x o | + &x + 1 

| x p | − &x 
)

≈ y 2 0 
2 

(
1 

| x o | + 1 
| x p | − &x 

| x o | 2 + &x 
| x p | 2 

)
. (B2) 

As long as | & x | ≪ | x o | and | & x | ≪ | x p | , the impact of & x on the 
interference is quite small, i.e. for the set-up in Fig. 3 and a scatterer 
at a distance of 1 au away from the line of sight, a 170 000 au shift 
along x gives a 0.3 m change in path difference (radio wavelength 
λ = 0.3 m at 1 GHz). In the case | x o | = | x p | , there is no first order 
dependence on & x . To produce a change of & s of 1 m at | x o | = 
500 pc, & x can extend up to 13 pc, corresponding to 3 per cent of 
the LOS. 

Due to these observations, we do not consider explicitly the 
extension of the ISM in x -direction. It would be straightforward 
to include this effect in our calculation and extend our result to that 
case. 

In contrast to a change of the x -position of the scatterer, a change 
in y -direction by & y leads to 
&s ≈ ( y 0 + &y) 2 

2 
(

1 
| x o | + 1 

| x p | 
)

≈ y 2 0 + 2 y 0 &y 
2 

(
1 

| x o | + 1 
| x p | 

)
. (B3) 

Comparing the effects of & x in equation ( B2 ) and of & y in 
equation ( B3 ), respectively, we see that under the assumption | x o | 
≈ | x p | the effect of & x is by a factor y 0 / | x o | smaller than the effect of 
& y . 
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APPEN D IX  C :  B O R N  APPROXIMATION  F O R  A  
GAUSSIA N  DISTRIBUTION  O F  ELECTRO NS  
Consider the electron density of the i th cloud 
n e,i ( r ′′ ) = n e, peak ,i exp ( 

− ( r ′′ − r i ) 2 
2 a 2 

) 
, (C1) 

To e v aluate the integral of the first-order Born approximation 
G Born ( r , r ′ ) = e i k| r −r ′ | 

| r − r ′ | − e 2 
4 πc 2 ϵ0 m e 

∫ 
cloud i d r ′′ e i k| r −r ′′ | 

| r ′′ − r ′ | n e,i ( r ′′ ) e i k| r −r ′′ | 
| r ′′ − r ′ | , (C2) 

we use the propagator representation of the free Green’s function, 
which has a Gaussian kernel: 
e i k| r −r ′′ | 
| r − r ′′ | = 4 π

i 
∫ ∞ 

0 d t ( 1 
4 πi t 

)3 / 2 
exp ( 

i ( r − r ′′ ) 2 
4 t 

) 
e i k 2 t (C3) 

For definiteness we set r i = (0, y i , 0), r = ( x , 0, 0), and r ′ = ( x ′ , 0, 0). 
This allows us to perform the spatial integration r ′′ analytically and 
the remaining integral reads 

−2i √ 
πa 3 n e, peak ,i ∫ ∞ 

0 d t ′ 
∫ ∞ 

0 d t ′′ e i k 2 t ′ e i k 2 t ′′ exp ( a 2 ( x −x ′ ) 2 + 2i ( t ′ ( x ′ 2 + y 2 i ) + t ′′ ( x 2 + y 2 i ) ) 
8 t ′ t ′′ −4i a 2 ( t ′ + t ′′ ) )

(
2 t ′ t ′′ − i a 2 ( t ′ + t ′′ ) )3 / 2 . (C4) 

Expanding the integrand in a power series around a = 0 and 
integrating term by term yields 

G Born ( r , r ′ ) = e i k| r −r ′ | 
| r − r ′ | + βi e i k 

(√ 
ξ2 + √ 

ξ ′ 2 )
√ 

ξ2 ξ ′ 2 
−βi a 2 e i k( ξ+ ξ ′ ) (k 2 ξ2 ξ ′ 2 + x x ′ ( k ξ + i)( k ξ ′ + i) + y 2 i ( k ξ + i)( k ξ ′ + i) )

ξ3 ξ ′ 3 + . . . , (C5) 
where we introduced ξ 2 = x 2 + y 2 i , ξ ′ 2 = x ′ 2 + y 2 i and used the 
definition of β i (equation 11 ). The first term is the direct path 
from the pulsar to the observer, the second term is identical to 
the interaction of the pulsar pulse with a point scattering source 
obtained by contracting the Gaussian cloud, and the third term leads 
to a direction dependent scattering amplitude. We conclude that the 
contraction of the Gaussian cloud to a point is a valid approximation 
if the last term in equation ( C5 ) can be neglected; otherwise, it should 
be included and leads to a diminishing effect of scattering clouds off 
the line of sight. 
APPEN D IX  D :  SADDLE  P O I N T  EVALUATI ON  
For deriving the finite extensions of the interference regions in 
the secondary spectra, it is convenient to introduce the ef fecti ve 
perpendicular velocity of the interstellar medium 
v eff = −v p x o 

x o − x p . (D1) 
In this coordinate frame, the pulsar and observer are kept at rest. 
D1 Main parabolic arc 
The saddle points of the integral reveal the trapezoidal area in the 
secondary spectra. We start from equation ( 15 ) and expand the 

arguments of the exponential functions to the first order around x p = 
−∞ and x o = ∞ , which yields 
H̄ ( i) 1 ( c t , c ν) = βi ∫ ν+ & ν/ 2 

ν−& ν/ 2 
∫ & t / 2 

−& t / 2 e 
i νc ν+ i tc t e i πν(( y i + v eff t) 2 (1 /x p −1 /x o ) /c 

( x o − x p ) x o x p d ν d t . (D2) 
We perform one of the integrals analytically, while we expand 
the integrand of the remaining Fourier transform using erfi( z) = 

2 
i √ 

π

∫ i z 
0 e −t 2 d t ≈ −i + e z 2 √ 

πz . In this context, we restrict to the first 
summand in equation ( 15 ) and denote the corresponding contribution 
by a bar instead of a tilde, the contribution from the second summand 
is obtained by the replacement c → −c from the first one 

H̄ ( i) 1 ( c t , c ν ) 
= −∫ νc + & ν / 2 

νc −& ν / 2 ( −1) 3 / 4 βi exp ( 
− 1 

4 i ( 
−4 νc ν + c x o c 2 t x p 

πνx o ( v eff ) 2 −πν( v eff ) 2 x p + 4 y i c t 
v eff ) ) 

2 v eff (x o − x p ) 3 / 2 √ 
νx o x p 

c 
(D3) 

[
erfi

(
4 √ 

−1 ( cx o c t x p + πνv eff ( x o −x p ) ( v eff & t + 2 y i ) ) 
2 √ 

πv eff √ 
cνx o ( x o −x p ) x p 

)

−erfi
(

4 √ 
−1 ( cx o c t x p + πνv eff ( x o −x p ) ( 2 y i −v eff & t ) ) 

2 √ 
πv eff √ 

cνx o ( x o −x p ) x p 
)]

d ν
≈

∫ νc + & ν/ 2 
νc −& ν/ 2 [ −

i cβi exp ( 
1 
4 i ( 

4 νc ν+ πν( x o −x p ) ( v eff & t −2 y i ) 2 
cx o x p −2 c t & t ) ) 

( x o −x p ) ( cx o c t x p + πνv eff ( x o −x p ) ( 2 y i −v eff & t ) ) (D4) 
+ i cβi exp ( 

1 
4 i ( 

4 νc ν+ πν( x o −x p ) ( v eff & t + 2 y i ) 2 
cx o x p + 2 c t & t ) ) 

( x o −x p ) ( cx o c t x p + πνv eff ( x o −x p ) ( v eff & t + 2 y i ) ) 
]

d ν. 
The borders of the trapezoid along the c ν-axis are determined by the 
condition that the first deri v ati ve of the argument of the exponential 
functions with respect to ν becomes zero for −& t /2 ≤ t ≤ & t /2, i.e. 
that the stationary point of the ν integral lies for −& t /2 ≤ t ≤ & t /2 in 
the inte gration domain. F or the other edges of the trapezoid, we first 
perform the integration over the frequency domain and determine 
the time t sp when the first deri v ati v e of the e xponential function 
with respect to time vanishes. The requirement that the saddle point 
occurs in the interval −& t /2 ≤ t sp ≤ & t /2 determines the edges of 
the trapezoid: 
c ( i) t, ±±∓ = ± πv eff ( x o −x p ) ( νc ± &ν

2 ) ( v eff & t ∓2 y i ) 
cx o x p (D5) 

c ( i) t, ∓±± = ∓ πv eff ( x o −x p ) ( νc ± &ν
2 ) ( v eff & t ±2 y i ) 

cx o x p (D6) 
c ( i) ν, ∓ = − π( x o −x p ) ( v eff & t ∓2 y i ) 2 

4 cx o x p . (D7) 
The absolute value within the trapezoid is approximated by e v aluat- 
ing the magnitude at the central point using the residue theorem: 
| H̄ ( i) 1 ( c t , c ν) | = ∣∣∣∣∣ c βi 

y i v eff (x o − x p ) 2 
∣∣∣∣∣ . (D8) 

D2 Inverted parabolic arcs 
The rectangular area of the interference pattern is determined by 
analytically e v aluating equation ( 23 ) in terms of e xponential inte gral 
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functions Ei ( z) = ∫ ∞ 
−z e −t /t d t : 

˜ H ( i,j ) 
2 ( c t , c ν ) = χ[Ei ⎛ 

⎝ i (c t − c t, + )(c t, + (−v eff & t + y i + y j )+ c νv eff ( &ν − 2 νc ) )
2 v eff c t, + 

⎞ 
⎠ 

−Ei ⎛ 
⎝ i (c t − c t, + )(c t, + (+ v eff & t + y i + y j )+ c νv eff ( &ν − 2 νc ) )

2 v eff c t, + 
⎞ 
⎠ 

−Ei ⎛ 
⎝ i (c ν − c ν, −)(

v eff ( 2 νc + &ν) c ν, − − c t (−v eff & t + y i + y j ))
2 v eff c ν, −

⎞ 
⎠ 

+ Ei ⎛ 
⎝ i (c ν − c ν, + )(v eff ( 2 νc + &ν) c ν, + − c t (+ v eff & t + y i + y j ))

2 v eff c ν, + 
⎞ 
⎠ 

−4i πC( c t , c ν ) ], (D9) 
where C is the characteristic function assuming the value 1 inside 
the rectangular area and 0 outside. In addition 
χ = βi βj i c exp ( i cx o c νc t x p 

2 π( y i −y j ) v eff ( x o −x p ) − i ( y i + y j ) c t 
2 v eff )

2 π (
y i − y j ) v eff (x o − x p ) x o x p . (D10) 

The vertices of the rectangle are determined by the pole of the 
e xponential inte gral function when the argument approaches zero. 
The graph of the exponential integral changes substantially when 
approaching the singularity (section 6.3 of Olver & National Institute 
of Standards and Technology (U.S.), 2010 ), leading to a sharp change 
in the function ˜ H ( i,j ) 

2 ( c t , c ν). This condition yields a rectangular area 
with extensions 
c ( i,j ) 
t, ± = π( y i −y j ) v eff ( x o −x p ) ( 2 νc ±&ν) 

cx o x p (D11) 
c ( i,j ) 
ν, ± = π( y i −y j ) ( x o −x p ) ( ±v eff & t + y i + y j ) 

cx o x p . (D12) 
The absolute value in this area is determined by evaluating equa- 
tion ( D9 ) at the centre point: 
| ˜ H ( i,j ) 

2 ( c t , c ν) | = βi βj c 2 Si (πv eff ( x o −x p ) ( y i −y j ) &t&ν

2 cx o x p )

πv eff x o x p ( x o − x p )( y i − y j ) 
≈ βi βj c (

y i − y j ) v eff (x o − x p ) x o x p , (D13) 
with Si ( z) = ∫ z 0 sin ( t) 

t d t . 

APPENDI X  E:  LIMIT  IN  TERMS  O F  
SI NC-FUNCTI ONS  
In this appendix, we show that the features in the secondary spectra 
obtained for an expansion with respect to large distances of pulsar 
and observer (see Appendix D ) differ from the first-order expansion 
in time and frequency described by Walker et al. ( 2004 , equation 11). 

To simplify the deri v ation of the first order approximation with 
respect to time and frequency, we consider z i = 0, v o , z = 0 and 
show here the corresponding derivation for the main parabolic arcs, 
the corresponding one for the inverted arcs follows similar steps. 
We start from equation ( 15 ) and again expand the arguments of the 
exponential functions to the first order around x p = −∞ and x o = 
∞ , which yields 
H̄ ( i) 1 ( c t , c ν ) = βi ∫ ν+ & ν / 2 

ν−& ν / 2 
∫ & t / 2 

−& t / 2 e i νc ν+ i tc t e i2 πν(( y i −v p t) 2 / (2 | x p | ) + y 2 i / (2 x o ) −( v p t) 2 / (2( x o −x p ))) /c 
−( x o − x p ) x o x p d ν d t . 

(E1) 
The integral with respect to ν is calculated first, giving 

H̄ ( i) 1 ( c t , c ν ) = βi ∫ & t / 2 
−& t / 2 e i νc ν+ i tc t e i2 πν(( y i −v p t) 2 / (2 | x p | ) + y 2 i / (2 x o ) −( v p t) 2 / (2( x o −x p ))) /c 

−( x o − x p ) x o x p 
sin (c ν& ν/ 2 + π& ν (( y i − v p t) 2 / (2 | x p | ) + y 2 i / (2 x o ) − ( v p t) 2 / (2( x o − x p ))) /c )

c ν/ 2 + π(( y i − v p t) 2 / (2 | x p | ) + y 2 i / (2 x o ) − ( v p t) 2 / (2( x o − x p ))) /c d t . 
(E2) 

To arrive at the result in Walker et al. ( 2004 , equation 11) before 
performing the final t integral, approximations must be made: the 
argument of the exponential in t is linearized, in the second factor 
of the last equation the integration variable t is replaced by its mean 
zero. The t integral is then performed, giving 
H̄ ( i) 1 ( c t , c ν) = βi e i νc ν e i2 πν( y 2 i / (2 | x p | ) + y 2 i / (2 x o ) /c 

−( x o − x p ) x o x p & t & ν
sinc ( c t & t 

2 − π
νy i v p & t 

| x p | c 
)

sinc ( c ν& ν
2 + π& νy 2 i 

c 
(

1 
2 | x p | + 1 

2 x o 
))

, (E3) 
which is the desired result in terms of sinc functions (see Walker 
et al. 2004 ). The resulting contour plot of a single scattering region 
using either the large distances expansions (equation D9 ), or the 
linearized time and frequency expression (equation E3 ) are compared 

Figure E1. Left panel: Secondary spectrum | ˜ H ( c t = 2 πf t , c ν = 2 πf ν ) | according to equation ( D9 ), right panel: linear approximation of the spectrum using 
equation ( E3 ). The numerical e v aluation using equation ( 9 ) agrees with the left panel. Same parameters as in Fig. 2 . 
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in Fig. E1 . The numerical e v aluation of equation ( 9 ) agrees with the 
large distance expansion (equation D9 ). 
APPEN D IX  F:  LINEAR  VERSUS  L O G  SCALE  
Fig. F1 shows the secondary spectra on linear and logarithmic 
intensity scales. The logarithmic scale additionally remo v es the 

mean value of the intensity in each row and is commonly used 
to display secondary spectra derived from observations (Stine- 
bring et al. 2022 ). In contrast to that, here we use the linear 
scale in order to directly compare our results with the analytical 
predictions. 
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Figure F1. Left panels: Secondary spectra | ˜ H ( c t = 2 πf t , c ν = 2 πf ν ) | shown in Figs 3 and 4 on a linear scale, right panels: Logarithmic scale of the same 
data after subtracting the mean of each row. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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