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ABSTRACT

The dynamic spectra of pulsars frequently exhibit diverse interference patterns, often associated with parabolic arcs in the
Fourier-transformed (secondary) spectra. Our approach differs from previous ones in two ways: first, we extend beyond the
traditional Fresnel-Kirchhoff method by using the Green’s function of the Helmholtz equation, i.e. we consider spherical waves
originating from three-dimensional space, not from a two-dimensional screen. Secondly, the discrete structures observed in the
secondary spectrum result from discrete scatterer configurations, namely plasma concentrations in the interstellar medium, and
not from the selection of points by the stationary phase approximation. Through advanced numerical techniques, we model both
the dynamic and secondary spectra, providing a comprehensive framework that describes all components of the latter spectra in

terms of physical quantities. Additionally, we provide a thorough analytical explanation of the secondary spectrum.
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1 INTRODUCTION

The first observation of radio pulsars goes back to Hewish et al.
(1969). The electromagnetic signals of pulsars encounter on their way
a varying electron density of the interstellar medium (ISM), resulting
in deflection and scattering of the travelling electromagnetic waves.
In addition, the relative motion of pulsar, ISM, and the observer’s
antenna leads to a Doppler shift and time-varying phenomena. The
dynamic spectra consist of the frequency-resolved pulse sequences
observed over a time-span of up to several hours. A two-dimensional
(2D) Fourier transform of the dynamic spectra gives the secondary
spectra. Stinebring et al. (2001) discovered parabolic arc structures
in the secondary spectra, which result from the interference of
multiple signal pathways at a specific distance between the pulsar
and the observer. The recent catalogue of scintillation arcs compiled
by Stinebring et al. (2022) of 22 pulsars shows various structures
and contains the basic physical parameters of the pulsar, such as
distance and velocity. Walker et al. (2004) developed theoretical
descriptions of the parabolic arcs starting from the Fresnel-Kirchhoff
integral. Using Monte Carlo methods, Walker et al. (2004) then
computed the locations of points in the secondary spectra. Similarly,
Cordes et al. (2006) used a thin phase-changing screen approach
to study the dynamic and secondary spectra. Since then there have
been a variety of arc studies based on observations by different
groups, e.g. Hill et al. (2003), Hill et al. (2005), Wang et al. (2005),
Bhat et al. (2016), Safutdinov et al. (2017), Wang et al. (2018),
Stinebring, Rickett & Ocker (2019), Reardon et al. (2020), Rickett
et al. (2021), Yao et al. (2021), Chen et al. (2022), McKee et al.
(2022).

* E-mail: tobias.kramer @jku.at

Here, we put forward a different theoretical approach to treat
scattering by the ISM using Green’s functions. This method is
commonly applied to scattering problems in quantum mechanics;
see Kramer & Rodriguez (2006) for an application to matter
waves originating from a compact source. By solving Helmholtz’s
equation in Cartesian coordinates using Green'’s functions, we deter-
mine the pulsar spectra received after scattering at the interstellar
medium (dynamic spectrum) and its 2D Fourier transform with
respect to time and frequency by high-precision numerics (secondary
spectrum) for a given scattering configuration. In contrast to the
Fresnel-Kirchhoff approach, our method enables the determination
of the entire spectrum and relates the strengths of the individual
components to physical quantities such as the refractive index and the
wavenumber. Furthermore, we give a complete analytical description
of the secondary spectra. Walker et al. (2004) obtained point-like
peaks in the snapshot regime and determined their positions. We
considerably extend this analysis by analytically determining also
the peak extensions and the intensities.

In the second section, we introduce our scattering approach and
present our findings for an analytical description of the spectra in the
third section. We conclude in the fourth section and relegate to the
appendices some detailed explanations and technical details.

2 SOLUTION OF THE HELMHOLTZ EQUATION

In this section, we propose a Green’s function method to describe
the scattering of pulsar radiation in the ISM. The differences to the
Fresnel-Kirchhoff approach are summarized in Appendix A. We
consider scattering from an extended plasma cloud (see Fig. 1),
described by a region with the scattering potential V(r’)

1
V(r/) = E(E(r/) - ebackground) o 0. M
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Figure 1. Sketch of the scattering set-up, including the pulsar, the ISM, and the observer on Earth. The drawing is not to scale, the extension of the ISM along
the vertical axis is about 10° times exaggerated. We take the ISM to be at rest, while the pulsar and the observer are possibly moving in orthogonal directions
with respect to each other and the connecting line observer — pulsar. The coordinate origin is taken to be at the intersection of the ISM and the line of sight. The
cones mark the scattering disc. Within the Born approximation structures within the ISM are contracted to point scatterers (black dots).

The electron number density n, of the plasma cloud determines the
plasma frequency w,, the refractive index n, and e:
2 "2
e(r') = nz(r,) =-1- &’ wf) = M. 2)
w €om,

Pulsar signals travel long distances and undergo a dispersion due to
the average electron density in the galaxy. This results in pulses where
different frequency components arrive at different times. Here, we
are interested in the ISM properties affecting the signal on shorter
scales compared to the pulsar distance. This allows us to set the
dielectric constant of the background to unity, but alternatively, a
uniform background could be introduced. Maxwell’s equation for
the electric field becomes [equation (50.35) Schwinger 1998]

1
E(r) = Einc(r) + ik(1 + ﬁVVT)

X /dr/GO(r, r' k) (—ik)V () E(r). 3)
The free Green’s function reads
) ik|r—r'| w 27ty
Gor,r;k) = ——, k=—=—. 4
|r —r'| c c

Within the Born approximation we replace in the integral the electric
field by the incoming electric field Ej,.(r') and also neglect any
change in the polarization direction by dropping the Hessian in the
second term in equation (3). This can be easily verified considering
e.g. a linearly polarized wave possessing solely a non-vanishing y-
component depending only on the spatial x-coordinate. We take the
incoming electric field to be a spherical wave emitted from the pulsar

Einc(r) = U()Go(r, rp;k)v (5)

where U, determines the polarization direction of the electric field
and has units of a voltage. We obtain the electric field from the
Green’s function

E(r) =UyGo(r,r,:k)
we / A Golr, P30 V) UGo(r rpik). (6)

where we consider only one interaction with the scattering potential
V, corresponding to the Born approximation. The electric field
in the Born approximation consists of two contributions, first the
unscattered component in the absence of any medium, and second
the volume integral over the distribution of plasma clouds in the
interstellar medium. For dense or compact objects multiple scattering

could be included by summing the Born series in terms of the
transition matrix. Such processes are neglected in equation (6). This
equation is also used in quantum mechanics to describe the scattering
of coherent electron waves at obstacles (chapter 26 of Heller 2018).
Since we are only interested in the relative contributions of the
electromagnetic waves, we set |Uy| = 1 with direction orthogonal to
the direction of propagation. The intensity is given by the absolute
value squared of the electric field

H(r,ry;v) = |E@)P
2
= 'Go(r, rpk) +k2/dr/G0(r, r'; k) V') Gor', r s k)| .

@)

By taking the absolute value, interference terms appear in the
exponents related to the free Green’s function. The argument of the
exponent contains the differences in distances measured in multiples
of the wavelength. For the typical pulsar geometry shown in Fig. 1 all
path differences are slowly varying functions across the interstellar
medium. We introduce coarse-grained integration regions, which
result in a collection of three-dimensional (3D) clouds of scattering
sources across an entire region of the ISM. For simplicity, we consider
a Gaussian electron density profile of the ith cloud centred around r;
of the form

r—r)
ne,i(r) = Ne¢ peak,i exXp (_7) s (8)

2a?

where n, .. denotes the peak electron density. The first order Born
approximation requires to evaluate

H(ro, rp;v)
R ik|ro—r'| eiklfp*"/\ 2
’ /
= |Go(ro, rp; k)+k Z/ dr —V(r)) ~19)
i cloud; |r0—r| |rl’_r|
oo b
2
|rp - rol
eik(rp=ril+iri=rol=Irp—rol) + e ik(rp=ril+lri=rol=Irp=rol)
- b
- lrp, —rillri —r,llr, —r,l
eik(rp=riltiri—rol=lrp—rjl=Irj—rol)
+> BB : (19)
P = rilir = rlir, =l =

In the last step in the equation above, we evaluated the Gaussian
integral via a series expansion for a (see Appendix C) and introduced
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the parameter S;
1 o? w? (3] 2
ﬁi=—k2/ dr’ V(r)—fwf/ arr o ¢
cloud; 4 2 cloud; wz 4'7-[60"”862

, , T a’e?
dr ne,i(r ) = 772 e,peak,i + (11)
cloud; 2 €oMm.C

A uniform background density n,.;, along the signal propagation
requires to replace the electron density with the local change in
density n.(r') — (n.(r') — n.p). Within the Fresnel-Kirchhoff
approach in Walker et al. (2004), all the contributions in equations
(7) and (10) are treated on equal footing rendering it impossible to
distinguish their individual pre-factors.

The coarse graining of the ISM complements other approaches
which focus on the correlation function of scattering from extended
sources described in terms of statistical spatial correlation functions
(see Tatarski 1961; Coles et al. 2010).

3 DYNAMIC AND SECONDARY SPECTRA

3.1 Dynamic spectra

Equation (10) contains the complete description of the electric field
and is next evaluated for specific conditions. We consider a coordinate
system where the ISM is considered to be at rest and distributed
around the origin of the coordinate system, while the pulsar and the
observer are moving as shown in Fig. 1. The pulsar is moving with
velocity v, and changes position as function of time

rp(l) = rp(o) + vptv (12)
likewise the observer moves with velocity v, and is located at position
r()(t) = ra(o) + v,t. (13)

The line of sight vector lies along e, and is given by the direct
connection of r,(0) and r,(0), the effect of the velocity components
along this axis is negligible due to large values of the distance |x,|
between the pulsar and the ISM plane and the distance |x,| between
the ISM plane and the observer. Therefore, the velocity component of
v, along e, is the only relevant one, while for v, the components along
e, and e need to be considered. A dynamic spectrum is obtained by
recording H(r,(0) + v,t,r,(0) + v,t; v) over the time domain [—A,/2,
A,/2] and frequency domain [v, — A,/2, v. + A,/2]. Computed
spectra are shown in Fig. 2, left panel, obtained from numerically
evaluating equation (7) and the analytical formulae for 25 scattering
clouds. Each scattering cloud is assigned the same value of 8; =
45 x 10® m (i = 1, ..., 25). One possible set of parameters for
the Gaussian cloud model is @ = 10° m and 7, pex = 0.1 cm™.
Further parameters are given in the caption of Fig. 2. We used the
extended precision mathematical functions available in Mathematica,
Wolfram Research, Inc. (2024), and the GCC Quad-Precision Math
Library, Free Software Foundation (2024) as we needed to determine
trigonometric functions of large arguments.

3.2 Secondary spectra

The secondary spectrum is given by the 2D Fourier transform of the
preceding expression

|, )| = |F [Hao @), rpe;0)]|

vetAv /2 pAL2 .
/ / eV H(r,(0) + vot, 7p(0) + v,15v) dv dt | (14)
ve—Ap/2 J—Ar)2

X

We note that the secondary spectrum is conventionally defined as
the square of the latter quantity. Our usage here coincides with the
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‘conjugate spectrum’ used by other authors (e.g. Simard et al. 2019),
although we are considering only the magnitude of that quantity.
Often this quantity is also shown on a logarithmic scale (see Fig. F1),
in that case |H(c,, cv)‘ and }H(c,, cu)}2 differ only by a factor of
2. The secondary spectrum is shown in Fig. 2. It is obtained by
the discrete Fourier transform of (512,512) points of the dynamic
spectra which are zero padded to size (1536,1536). The secondary
spectra show a wealth of sharply delineated features, caused by the
presence of the ISM and the specific Fourier integration domain.
All results shown in the figures result from a numerical evaluation
of equations (10) and (14). For the interpretation of the numerical
results, we discuss different levels of approximations of the integrals
in the following sections.

3.3 Main parabolic arc features

The Fourier transform of the first term in equation (10) describes
interference between the direct path of the electric field from the
pulsar to the observer and the path going through the ISM at a cloud
centred at position (0, y;, z;). The Fourier integral comprises terms
in the form
. v+AY/2
H;I)(c,, ) =i /\)—AV/Z/
apJ2 elvev-Hire (eikﬂr/z—r,-H\r;—m\—\r;;—ml)+e—ikurp—r,-\+\r,»—ra\—\rp—rou)

dv dr.

1s)

/—A,/Z [rp —rillri —rollrp —rol

To evaluate the integrals in the last equation, we set r,(f) = (x,,
vpt, 0), and r,(f) = (xo, Vo yt, V,, ;). The expressions derived in
this section include the possibility of arbitrary movements of pulsar,
observer, and ISM. The argument of the exponential functions is
expanded around x, = —oo and x,, = oo to first order. In addition, we
consider only the first order in f and v around zero and v, respectively.
The denominator is taken to be constant. Using the relation

o0
/ dy ei—k)x —
—00

we obtain for the first exponential function

1 ’
28k =K. (16)

C;i) — 27'[,"1'.‘& Upy 27'[,"1'.‘% Yo,y 27‘"{)1111’5 (17)
cxp cxo [
i) _ _”(xo—"p)(>"2+zi2)
¢ = cxnxp’ . (18)

The second exponential function in equation (15) leads to the
expressions in equations (17,18) with the replacement ¢ — —c.
These expressions agree with the ones in Hill et al. (2003, 2005) and
Cordes et al. (2006), which can be shown by introducing for 8 and
v, the corresponding components.

These points lie on a parabolic arc, as seen by eliminating y; from
the last equation and expressing ¢, as function of ¢,

2
o (xp—xo Xp { [ex, ¢ [T v Z']
v 0,251
(vﬁ yX0 =~ Vo, }xll 21}” o

_”Zi (%0 — xp)
CXoXp ’ (19)

For z; = 0 and v, = 0 the last expression reduces to the parabolic
arc expression crossing the origin of the c,, ¢, coordinate system.
Equation (19) shows that z; induces a shift of the parabolic structures
in the c,-direction and v,, a shift in ¢, direction, moving the
parabola away from the origin of the c,, ¢, coordinate system. The
corresponding expressions within the Fresnel-Kirchhoff approach
(Walker et al. 2004) for arbitrary 2D scatterer positions and velocities
have been given in (fig. Al of Xu et al. 2018) and in Shi (2021). The
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Figure 2. Theoretical dynamic spectra H(r, v), upper left panel, and secondary spectra [|H(c; = 27tf;, ¢, = 27tf,)|, upper right panel. The lower row panels
show the secondary spectra in detail (left panel: numerical evaluation of equation (14), right panel: analytic result from equations (D3), (D9). The polygons
indicate the analytical boundaries of the main arc features (solid lines] and inverted arcs (dashed lines). The centre frequency is set at v, = 0.1 GHz to produce
large features in the secondary spectra. All scatterers are located on a line perpendicular to the line of sight, intersecting the line of sight. (8 = 4.5 x 10'8 m, Xp

= —214 pc, x, = 429 pc, v, = 640 km s~ 1).

¢, coordinates of the points allow one to construct a projected spatial
distribution of the scatterers along the e, axis from the secondary
spectra, or, for points clearly offset from the main parabola, to
determine their e, coordinate. Note that Cordes et al. (2006) introduce
a 1/(2m)-scaled variant of the conjugate quantities:

Cy

fv - ﬁ,

conventionally referred to as t and fp in the literature, respectively.

A detailed quantitative description of the features requires to move
beyond the linearized exponents and to evaluate the integrals in terms
of special functions (see Appendix D). For simplicity of presentation,
we concentrate on the special case v, = 0. For the main parabolic arc,
@ ¢y with vertices

(20)

we obtain a trapezoid around the centre point (¢,
and magnitude

(i) () 4 TAVYIVpy  TAvXVy A
c =c¢ =x - -
t,+F t cxp 2C(.\’0*)€p)x,} ’
) V2 A2
(i) (i) TAYiVpy TXoVp,y A7
. 21
v, F v T cxp dexoxp —4<‘X%’ @1
a9 = |g—o . (22)
1 VpXo(Xo—Xp)Yi

Here, the &£, F in cff)i¢ refer to the four values of ¢!’ at the right/left
and upper/lower boundaries of the trapezoid and the F in c(vlg to the
upper/lower c¢{-values at the borders. Regions with similar electron

density but further away from the line of sight will result in larger

areas in the secondary spectrum with a magnitude proportional to the
inverse distance 1/y;. The extension of the Fourier window (and in
general shape of the chosen window) changes the secondary spectra
by affecting the size of the rectangular areas in the secondary spectra.
Each of these trapezoids comes with a complex phase leading to
interference effects in the case of overlaps of different trapezoids.
The right panel of Fig. 2 shows a close-up of the patterns with solid
lines drawn according to equation (21).

3.4 Inverted parabolic arcs

The Fourier transform of the second term in equation (10) arises
from interference between two waves travelling through the ISM at
positions (y;, z;) and at (y;, z;).

- 0) v+A, /2
sz (cr,e0) = BiB; /
Jv—Ay/2
Ai/2 giveytiter gik(Irp—ril+ri—ro|=lrp—rjl=Irj—ro)
/ dvdt. (23)
—A: )2 |I‘], _ri”ri _r()”rp _r_illrj _ro|

This expression is evaluated as in the last subsection and yields
maxima at points

G.0) _ 27vevpy(i=yi)  2vevoy(i—y)) 4 2mvevo (=)
Ci - cxp cxo cxo

(24)
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Figure 3. Scatterer distribution in the y—z plane (left column), dynamic spectra H(z, v), and secondary spectra (| H(c; = 27tf;, ¢, = 27tf,)| for two different
values of 8, corresponding to a change in contrast between main and inverted parabolic arcs. Upper row = 5 x 10'® m (for all scatterers), lower row g =
10'8 m (for all scatterers), other parameters v. = 1 GHz, x, = —1313 pc, x, = 788 pc, v, = 1000 km sl

- 2_ 24,2 .2
) — _ﬂ(x()ﬂ,y)(y,- Ytz Lf)
v cxXoXp )

(25)

By the same replacements as described after equation (17) the
expressions equations (24) and (25) can be shown to be identical
to the ones in Hill et al. (2003, 2005) and Cordes et al. (2006). These
points lie on inverted parabolic arcs and illuminate rectangular areas
in the secondary spectra with vertices and magnitude given by

. . v i — Yj
cg;ﬁ) _ Cl(w) + MAU’
cxXp
. o T, (i — ;)
D = id 3 TOpy i 7 Vi) A (26)
cxp
GG _pgR |
|Hy | = BiBj VpyXaxp(vi—yj) | @7

The right panel of Fig. 2 shows a close-up of the patterns with
dashed rectangles drawn according to equation (26). Thus, our
analytic expressions (21) and (26) are in excellent agreement with
our numerics. In the ‘noodle model of scintillation arcs’ proposed
by Gwinn a smearing of these structures [equations (62) and (63) of
Gwinn 2019] leads to partly similar expressions as our equations (17)
and (26). The differences in the results originate from the differing
approaches, whereas Gwinn analyses how in the expressions for
the spot positions in equations (17), (18), (24), and (25) change
during the integrations in equations (15) and (23), respectively,
we directly analyse the analytical results for equations (15) and
(23). Furthermore, the respective magnitudes (22) and (27) and
consequences with respect to the visibility of main versus inverted
arcs are not discussed in Gwinn (2019). The issue of resolution was
described in Walker et al. (2004). The authors obtain sinc-functions

MNRAS 531, 3950-3960 (2024)

which lead to decreasing/increasing spot sizes in ¢; (c,)-direction
with increasing/decreasing A, (A,). Existing techniques to combat
this are performing the Fourier transform with respect to wavelength
instead of frequency (Fallows et al. 2014; Reardon et al. 2020) or
with respect to time times frequency instead of time (Sprenger et al.
2020). We emphasize that our expressions derived in Appendix D
describe both effects, the smearing, and the resolution.

3.5 Magnitudes of main and inverted parabolic arcs

The ratio of the magnitude of an inverted parabolic arc structure
compared to a main parabolic structure is given by the expression

(. J)
B e el
~ (7 —_— J
1A (cr, e)

i (xo - xp)
(yi - yj) XoXp

(28)

Equation (28) implies an increased visibility of the inverted arc
structures for higher plasma densities (corresponding to a larger value
of ). Some pulsars [see pulsar B1508+-55 discussed by Sprenger
et al. (2022)] show a transient evolution of the secondary spectra
at different epochs with less and more pronounced inverted arc
structure. For a pulsar located 1313 pc from the ISM and observed
at a distance of 788 pc from the ISM, |(‘¥%;;”)| =65x107m™",
Setting |ﬁ| ~ 2 gives a value of 8 = 7.5 x 10'® m to distribute
equal intensities to the direct and inverted arc features. This estimate
is in general agreement with the transition from a single main arc
(B = 10'® m) to inverted arcs B=5x 10"® m) seen in Fig. 3.

The Helmholtz equation describes the underlying physics in terms
of a local change in the refractive index, and thus cannot distinguish
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Figure 4. Left panel: Example of an extended scatterer set with one separated scatterer region (black arrow), leading to the formation of an inverted arc offset
from the main parabolic arc in the secondary spectrum |H (¢, = 27 f;, ¢, = 27 f,)| (right panel), marked by the white arrow. The dynamic spectrum H(z, v) is
shown in the centre panel. Conjugate time c; = 27f;, conjugate frequency ¢, = 27f,. Parameters: v, = 0.3 GHz, 8 = 10'® m (for all scatterers), xp = =214 pc,

xo =429 pc, v, = 160 km s~

between an increase or decrease in matter relative to an average
background density. If we take ionized gas (plasma) as the origin of
the refractive index change, we can estimate the electron density of
the ISM structures, since the B parameter is directly related to the
refractive index change.

For the model in Fig. 3, we chose N = 317 scattering clouds
in order to avoid considerable overlap of the corresponding panels
in the secondary spectrum. For simplicity, all clouds are assigned
the same B value. The parameter 8 = 1 x 10'® m could be
realized with a Gaussian cloud with a = 5 x 10® m and Me, peak =
0.15 cm™3, which is about ten times the average electron density ng =
0.015 cm™ in our galaxy (Ocker, Cordes & Chatterjee 2020). In the
large N-regime areas in the secondary spectra overlap and additional
interference of the individual structures in the secondary spectrum
occurs. Refractive index changes might also be coming from neutral
gas clouds. The finite extension of all interference structures leads to
further interference between overlapping rectangles and trapezoids as
seen in the right panel of Fig. 2. The interference causes smaller scale
structures compared to the extension of the rectangular or trapezoidal
areas.

Fig. 4 displays the dynamic and secondary spectra of a ISM region
with a split-off part (see black arrow in the left panel), causing an
offset feature in the secondary spectra (white arrow in the right panel).
The split-off part produces shifted inverted arclets by including a
clump of scatterers offset in the z-direction, but still in the same
scattering screen (see Fig. 4, left panel). Similar structures have been
observed by Brisken et al. (2010) for pulsar B0834+-06, but are
attributed there to a lens-like concentration of plasma due to their
different movement with wavelengths (see also Simard & Pen 2018),
or to multiple screens (Simard et al. 2019; Zhu et al. 2023).

4 CONCLUSION

We show that the Born approximation to Green’s function is a
suitable method for computing dynamic and secondary spectra of
pulsar signals. The theoretical description does not use the Fresnel—
Kirchhoff diffraction integral. Our method paves the way for the
effective extraction of physical parameters such as the refractive
index change and the spatial structure of the ISM from secondary
spectra. The main and inverted arcs seen in secondary spectra are
obtained without assuming a quasi one-dimensional structure of the
ISM. Furthermore, within this approach, we are able to compute

and analyse the spectra with high precision numerically, as well
as explain them analytically. The method can be generalized in
several directions, e.g. it is straightforward to describe configurations
containing multiple screens or screens extended in 3D. The Green’s
function method could also be applied to plasma lens structures,
as e.g. the Gaussian plasma lens (Clegg, Fey & Lazio 1998), not
considered here.
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APPENDIX A: RELATION TO
KIRCHHOFF-FRESNEL THEORY

Pulsar scintillations have been discussed previously using Kirchhoff—
Fresnel theory (see chapter 8.3 of Born & Wolf 2019). In addition,
a phase-changing screen is introduced around the origin with screen

coordinates (0, y', z’), leading to the expression (equation 2.1 of
Narayan 1992):

e—im/2

2D
R 2
//exp {iw(y’,z/)vLikW dy'd?, D=|r,l (A1)

For a model based on stripes of phase changing scatterers perpen-
dicular to the line of sight between pulsar and observer Gwinn
(2019) provides a detailed analysis based on Kirchhoff—Fresnel
integrals. In contrast to our expression in equation (6), Kirchhoff—
Fresnel theory does not contain the contributions from the scattering
at the ISM explicitly as scattering volumes (8; in equation 11)
and thereby does not distinguish the contributions of the different
terms in equations (7) and (10) which include the unobstruced
path. To recover the unobstructed path, Gwinn (2019) introduces
an additional ‘no screen’ term, relative to which any phase changes

E(r,) =k
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are considered. Besides a stripe model, also various plasma lenses
are discussed by Jow, Pen & Feldbrugge (2023) in the context of
Kirchhoff—Fresnel theory and a further perturbative expansion of
the integrand in equation (A1) is given. A treatment of a Gaussian
lens is shown in (fig. 1c of Aidala et al. 2007) and (fig. 2 of Jow
et al. 2023). In contrast to the Born approximation with a real-valued
scattering potential across a volume, the starting point for Kirchhoff—
Fresnel theory is a phase change of the electric field caused by
refractive index changes projected on a plane. Whereas within the
Born approximation considered here, the scattering of radiation at
the ISM causes spherical waves originating from all scatterers in 3D,
in the approximation of Fresnel-Kirchhoff spherical waves originate
only from a 2D plane.

APPENDIX B: DIMENSIONALITY OF THE ISM

In Fig. 1, we depicted the ISM as a 3D cloud in space. However,
throughout the paper it was always considered to be 2D. To justify
this restriction to two dimensions, we show here that the effect of an
additional extension along the x-axis is negligible.

Therefore, we compute the length difference As between the path
along the line of sight starting at the pulsar located at (x,, 0, 0) and
ending at the observer at (x,, 0, 0) and another path starting at the
pulsar, going to the ISM offset from the line of sight at (0, y, 0) and
from there to the observer is given by

As = \/x3—|—y§+ X2+ 35 — x| = |x,]

2
Y ( 1 1 )
A0 (), (B1)
2 \Ixol  Ixp]

where the last relation holds in the limit of |xp| 3> yo and |x,| > yo.
Shifting the scatterer along the line-of-sight from (0, yo, 0) to (Ax,
Yo, 0) changes the result in equation (B1) to

2 1 1
As ~ % +
2 \|x| +Ax  |x,| — Ax

2/ 1 1 Ax o Ax
%LO< + + ) (B2)

2 | %] |xp| |xo|2 |xp|2

As long as |Ax| < |x,| and |Ax| < |x,|, the impact of Ax on the
interference is quite small, i.e. for the set-up in Fig. 3 and a scatterer
at a distance of 1 au away from the line of sight, a 170 000 au shift
along x gives a 0.3 m change in path difference (radio wavelength
A = 0.3 m at 1 GHz). In the case |x,| = |x,], there is no first order
dependence on Ax. To produce a change of As of 1 m at |x,| =
500 pc, Ax can extend up to 13 pc, corresponding to 3 per cent of
the LOS.

Due to these observations, we do not consider explicitly the
extension of the ISM in x-direction. It would be straightforward
to include this effect in our calculation and extend our result to that
case.

In contrast to a change of the x-position of the scatterer, a change
in y-direction by Ay leads to

Ay)? 1 1
A o D0t AY) (7_{_ )

%] 1xpl

2
2
YopAy (11
~ 20T E02Y (— + —) . (B3)
2 %o [xpl

Comparing the effects of Ax in equation (B2) and of Ay in
equation (B3), respectively, we see that under the assumption |x,|
A |x,| the effect of Axis by a factor yy/|x,| smaller than the effect of
Ay.
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APPENDIX C: BORN APPROXIMATION FOR A
GAUSSIAN DISTRIBUTION OF ELECTRONS

Consider the electron density of the ith cloud

" —r)’
ne,i(r") = Ne¢ peak,i CXP (_2a21 ) (Cl)
To evaluate the integral of the first-order Born approximation
eik\r—r’ | &2

Geom(r, 1) = -
om( lr —r'|  4mciegm,

eiklrfr”l eik\r—r”\
” ”
[ nea(r’) L@
cloud;

|r”—r/| |r//_r/|

we use the propagator representation of the free Green’s function,
which has a Gaussian kernel:

ik|r—r"| 4 00 1 3/2 —)? .
e / g () Texp (T2 e (o3
|r —r"| i Jo 4tit 4t

For definiteness we set r; = (0, y;, 0),r = (x, 0, 0), and ¥ = (', 0, 0).
This allows us to perform the spatial integration r” analytically and
the remaining integral reads

o0
—2i\/7?a3ne,peak_,~ / dr’
0

o) €X
/ dl//eikzr’eikzt” P (
0

Expanding the integrand in a power series around a = 0 and
integrating term by term yields

eik(\/;?ﬂ/(?z)

az(xfx/)2+2i(t’(x/2+y[2)+t”(x2+y‘-2))
8t/t" —4ia%(t'+1")
)3/2

(e2))

(211" —ia*(t’ + 1)

, eik\r—r’\
Gpom(r, 1) = T i NGTZ
a2 W EHED (k26267 4wy (ke + D)(kE +1) + V2 (ke + D(kE" +1)
—Bi ( =P ) + (C5)

where we introduced &2 = x% + y?, £ = x”? + y? and used the
definition of B; (equation 11). The first term is the direct path
from the pulsar to the observer, the second term is identical to
the interaction of the pulsar pulse with a point scattering source
obtained by contracting the Gaussian cloud, and the third term leads
to a direction dependent scattering amplitude. We conclude that the
contraction of the Gaussian cloud to a point is a valid approximation
if the last term in equation (C5) can be neglected; otherwise, it should
be included and leads to a diminishing effect of scattering clouds off
the line of sight.

APPENDIX D: SADDLE POINT EVALUATION

For deriving the finite extensions of the interference regions in
the secondary spectra, it is convenient to introduce the effective
perpendicular velocity of the interstellar medium

X,
ff
vl = —y, 2. (D1)
Xo — Xp

In this coordinate frame, the pulsar and observer are kept at rest.

D1 Main parabolic arc

The saddle points of the integral reveal the trapezoidal area in the
secondary spectra. We start from equation (15) and expand the
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arguments of the exponential functions to the first order around x, =
—oo and x, = 0o, which yields

A%, ) = B /

v—A,/2

v+A, /2

A2 giveytite; einv((y,-ﬂe"ft)z(l/x[,—l/xo)/c
/ dvdt. (D2)

Ar/2 (xo - xp)xoxp

We perform one of the integrals analytically, while we expand
the integrand of the remaining Fourier transform using erfi(z) =

iz . 22 . .
% fol edr ~ —i+ j/a-' In this context, we restrict to the first
summand in equation (15) and denote the corresponding contribution
by a bar instead of a tilde, the contribution from the second summand

is obtained by the replacement ¢ — —c from the first one

AP @, e)
2
134 RN cXoCiXp 4yjct
/Vr+Av/2( DA exp< 4! ( dvey + nvx,;(vaf)z—IﬂV(quf)z).p + Ue‘ff ))
ve—Ap/2 2081 (x, — x,) 32 /2P
(D3)
erfi \4/ —1 (cxo CXp +7rvUEff(xo —Xp )(veffA/ +2y; ))
2\/77u“ff«/cvxg(xa—xp)xp
_erfi Y= (L')C{,(}X];‘FT[VUE“‘(X” 736,,)(2)'[ 7L'effA,)) dv
Zﬁveff\/cvx,,(x,,—xp)xp
- eff A _5..)2
icprexp( Li PR ) Gl /) x”c)x(; 82 pa
~ ve+Ay /2 o (D4)
ve—Ay/2 (.\",,7)(],)(c‘x(,r,xp+7tvv°ff(x(,fxp)(Zy;7UeffA,))

CXoXp

B ff )2
icpi exp <%i <4vc“ + w +2¢1 Ay
(xo —xp)(cx,,c,x,,+7-rvv°fr(x,,—xp)(vdrA,+2yi)) :| dv.

+

The borders of the trapezoid along the ¢, -axis are determined by the
condition that the first derivative of the argument of the exponential
functions with respect to v becomes zero for —A,/2 <t < A,/2,i.e.
that the stationary point of the v integral lies for —A,/2 <t < A,/2in
the integration domain. For the other edges of the trapezoid, we first
perform the integration over the frequency domain and determine
the time f;, when the first derivative of the exponential function
with respect to time vanishes. The requirement that the saddle point
occurs in the interval —A,/2 < t, < A,/2 determines the edges of
the trapezoid:

(i) 7o (xp—x, u,:(:ﬁ veff A F2y;

D)y = T o)t 20 T0) (Ds)
(i) 2 (x—x, ) (vet B2 ) (veff A +2y;

le:F:(::(: =F ( 1)( CXHXIZ) )( i 1) (D6)
(i) 7(x0—x, ) (v A F2y; 2

CVI,ZF == ( ]4)o(xox,; : ! : (D7

The absolute value within the trapezoid is approximated by evaluat-
ing the magnitude at the central point using the residue theorem:

¢ Bi

7 ()
|H1 (cr,c)l =
yivt (x, — x,) 2

(D)

D2 Inverted parabolic arcs

The rectangular area of the interference pattern is determined by
analytically evaluating equation (23) in terms of exponential integral
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functions Ei(z) = ff: e/t dt:

A e ) = x [Ei (

(i (er —cry) (C't.+ (+v5ﬁAr + i+ ,V,') + et (av - 2Vc)) )
—Ei

2vefle; o

Per =) (e (=080 + 343y ) + e (A = 200)) )

zveffcl'+

(i (cv - Cv,—) (vcrf Q2ue + Av)cy,— — ¢ (—v'“'(rA, +yi + y,’)) >
—Ei

2vefle,

i (v —enr) (v @ve + Av vt — e (40T +3i +;))
+Ei
20l

—4inC(cr, z:\,)} . (D9)

where C is the characteristic function assuming the value 1 inside
the rectangular area and O outside. In addition

. icxpcycixp _ ity e
1c eXp (ZU(Y,‘—)'j)VCH(Xﬂ_XP) 2pefl )

27 (y,- — yj) peff (x‘7 — x,,) XoXp

X = BiB; (D10)
The vertices of the rectangle are determined by the pole of the
exponential integral function when the argument approaches zero.
The graph of the exponential integral changes substantially when
approaching the singularity (section 6.3 of Olver & National Institute
of Standards and Technology (U.S.), 2010), leading to a sharp change
in the function I-I2(” )(c[, ¢,). This condition yields a rectangular area
with extensions

) _ w(i=y)v™ (xo—xp)@veEAv)
D = L (D11)
() = T ayey) o12)

CXpXp

The absolute value in this area is determined by evaluating equa-
tion (D9) at the centre point:

2Si (ﬂveff(xt,fxp)(y,-—yj)AtAu)
~ (i i 2¢x0Xp
e, el = piBje— :

veitxox, (X — x,) (i — ¥))
- PiBjc (D13)
(i = 35) v (%0 = x,) X,

with Si(z) = 5 22@dr.
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w
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fy (us)
¢y (s)

APPENDIX E: LIMIT IN TERMS OF
SINC-FUNCTIONS

In this appendix, we show that the features in the secondary spectra
obtained for an expansion with respect to large distances of pulsar
and observer (see Appendix D) differ from the first-order expansion
in time and frequency described by Walker et al. (2004, equation 11).

To simplify the derivation of the first order approximation with
respect to time and frequency, we consider z; = 0, v, ; = 0 and
show here the corresponding derivation for the main parabolic arcs,
the corresponding one for the inverted arcs follows similar steps.
We start from equation (15) and again expand the arguments of the
exponential functions to the first order around x, = —oo and x, =
00, which yields

E'](i)(c,,cp) = /3,'/

v—Ay/2

v+Ay /2

dv dt.

(EL)

/-AI/Z eivey-Hire 2V =vp 1) /2lep D43 /2xo)~(vp1)? Qo —xp )/

—Ar/2 —(xo = xp)XoXp

The integral with respect to v is calculated first, giving

ArJ2 givey-Hite 2003 =Yp 1P [Q1xp 432 /(2x0)=(0p1)? [2Uxo—xp))/c

AP (er,e0) = B /

—Ar)2 —(Xo — Xp)XoXp
sin (chv/z + A = vp1)?/Qlxp)) + Y2 /(2x0) — (Wp1)? /(2x0 — x,,»)/c)
/24 (i — vp1)2/Qlxpl) + 2 /(2x0) — (012 /(2% — xp))/e

(E2)

To arrive at the result in Walker et al. (2004, equation 11) before
performing the final ¢ integral, approximations must be made: the
argument of the exponential in ¢ is linearized, in the second factor
of the last equation the integration variable ¢ is replaced by its mean
zero. The ¢ integral is then performed, giving

eiven eizm(y,?/(z\xp D+y2/(2x0)/c

e e = f——— s A
0 pJrorp

. o, Vyiv, A,
sic —n—
2 lxplc

. cL A, +7TAvyi2 1 n 1 (E3)
sinc — ,
2 c 2|xpl 0 2x,

which is the desired result in terms of sinc functions (see Walker
et al. 2004). The resulting contour plot of a single scattering region
using either the large distances expansions (equation D9), or the
linearized time and frequency expression (equation E3) are compared

f, (MHz)
3.4 3.5 3.6
1-17
~0.00011f

~ -
i i-18 2
‘ NS

-0.00012} 1-19

0.022 0.023
¢t (H2)

Figure E1. Left panel: Secondary spectrum |H (c; = 27 f;, ¢, = 27 f,)| according to equation (D9), right panel: linear approximation of the spectrum using
equation (E3). The numerical evaluation using equation (9) agrees with the left panel. Same parameters as in Fig. 2.
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in Fig. E1. The numerical evaluation of equation (9) agrees with the
large distance expansion (equation D9).
APPENDIX F: LINEAR VERSUS LOG SCALE

Fig. F1 shows the secondary spectra on linear and logarithmic
intensity scales. The logarithmic scale additionally removes the

Scattering model of scintillation arcs 3959

mean value of the intensity in each row and is commonly used
to display secondary spectra derived from observations (Stine-
bring et al. 2022). In contrast to that, here we use the linear
scale in order to directly compare our results with the analytical
predictions.
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Figure F1. Left panels: Secondary spectra |H(c; = 27tf;, ¢, = 27tf,)| shown in Figs 3 and 4 on a linear scale, right panels: Logarithmic scale of the same
data after subtracting the mean of each row.
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