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PALEOECOLOGY

Oldest evidence of abundant C4 grasses and habitat
heterogeneity in eastern Africa
Daniel J. Peppe1†, Susanne M. Cote2†, Alan L. Deino3, David L. Fox4†, John D. Kingston5†,
Rahab N. Kinyanjui6,7,8, William E. Lukens9†, Laura M. MacLatchy5,10†, Alice Novello11,12‡,
Caroline A. E. Strömberg12†, Steven G. Driese1, Nicole D. Garrett13, Kayla R. Hillis14,
Bonnie F. Jacobs15, Kirsten E. H. Jenkins16, Robert M. Kityo17, Thomas Lehmann18, Fredrick K. Manthi6,
Emma N. Mbua6, Lauren A. Michel14, Ellen R. Miller19, Amon A. T. Mugume17,20, Samuel N. Muteti6,13,
Isaiah O. Nengo21,22§, Kennedy O. Oginga1¶, Samuel R. Phelps23#, Pratigya Polissar24,
James B. Rossie22, Nancy J. Stevens25, Kevin T. Uno26, Kieran P. McNulty13*†

The assembly of Africa’s iconic C4 grassland ecosystems is central to evolutionary interpretations of
many mammal lineages, including hominins. C4 grasses are thought to have become ecologically
dominant in Africa only after 10 million years ago (Ma). However, paleobotanical records older than
10 Ma are sparse, limiting assessment of the timing and nature of C4 biomass expansion. This study uses
a multiproxy design to document vegetation structure from nine Early Miocene mammal site complexes
across eastern Africa. Results demonstrate that between ~21 and 16 Ma, C4 grasses were locally
abundant, contributing to heterogeneous habitats ranging from forests to wooded grasslands. These data
push back the oldest evidence of C4 grass–dominated habitats in Africa—and globally—by more than
10 million years, calling for revised paleoecological interpretations of mammalian evolution.

G
rasses using the C4 photosynthetic path-
way are ubiquitous across Earth’s low
to mid-latitudes, dominating modern
tropical lowland grassland and savan-
nah ecosystems. C4 grassy biomes play

an important role in regulating global cli-
mate and have been linked to key adaptations
and diversification in mammalian faunas (1–3).
The C4 photosynthetic pathway is physiologi-
cally advantageous under conditions of aridity,
higher temperatures and irradiance, seasonal
climates, and low atmospheric partial pres-
sure of carbon dioxide (pCO2) (1). Phyloge-
netic analyses show that, beginning in the
Paleocene, C4 photosynthesis evolved inde-
pendently at least 21 times from C3 ancestors
within the generally warm-adapted and shade-
tolerant PACMAD (Panicoideae, Arundinoideae,
Chloridoideae, Micrairoideae, Aristidoideae,
Danthonioideae) grass clade (2). However, such
ancient origins are not corroborated by the
geologic record. Likewise, abundant C4 bio-
mass, for which we use a working definition
of⪆30%C4 biomass, is not documented before
~10 million years ago (Ma), except in isolated
cases (4–6). Instead, major ecological shifts
from C3 vegetation to C4 grasslands are well
documented regionally and globally between
10 and 1 Ma (2, 3, 7, 8). This apparent contra-
diction between phylogenetic estimates and
geological evidence of C4 emergence times has
confounded attempts to explain the origins and
global spread of C4 grasslands (2, 3, 9).
Within eastern Africa, the expansion of C4

grasslands has been intensely studied because
of their relevance for interpreting the evolu-

tion of numerous mammalian lineages, in-
cluding the hominin clade. Carbon isotope
data from multiple substrates suggest that
ecologically important C4 biomass appeared
in the region only after 10 Ma (8, 10–13). How-
ever, older vegetation records are sparse (14, 15).
This paucity of data from the Paleogene and
early Neogene has led to inferences that equa-
torial Africa was largely forested, with C4 grasses
and open habitats making up only minor ele-
ments of the landscape until the Late Miocene
(4, 7, 11).
Here, we present a multiproxy study of Early

Miocene fossilmammal site complexes inKenya
and Uganda (Fig. 1) that combines carbon iso-
tope analyses of bulk soil organic matter, plant
wax biomarkers, and pedogenic carbonateswith
inferences from phytolith (microscopic plant
silica body) assemblages, forming a comprehen-
sive approach to paleoecological reconstruction
(16). Specifically, we assess the role of grasses,
especially C4 grasses, in early Neogene habitats
of eastern Africa.

Early Miocene habitat heterogeneity, open
habitats, and locally abundant C4 vegetation

Results from carbon isotope analyses of ancient
soil organic matter at these sites demonstrate
a surprisingly high degree of habitat heteroge-
neity, with most datasets yielding d13C values
that reflect vegetation types ranging from closed
canopy to wooded grassland, and no clear
trends toward increasing or decreasing open-
ness through time in the Early Miocene or
spatially across eastern Africa (Fig. 2A and
data S1) (16). Every site yielded some paleosol

samples with d13C values indicating that stand-
ing biomass was a mixture of C3 plants and
water-stressed C3 and/or C4 biomass (Fig. 2A)
(16, 17). Soil organic matter d13C values at
Moroto, Tinderet, Bukwa, Rusinga, and Karungu
reflect more open values that extend into
the range of modern woodlands, bushlands,
and shrublands, with Moroto, Bukwa, and
Rusinga indicating a proportion of C4 biomass
equivalent to those characterizing extant
wooded grasslands (Fig. 2A). Taken together,
we interpret these results to reflect regionally
abundant C4 grasses that were heterogeneous-
ly present on the landscape.
Interpreting ancient soil organic matter d13C

values is complicated by potential preferen-
tial degradation of isotopically light, labile
components and by higher rates of decom-
position of C4-derived carbon observed inmixed
C3-C4 systems (16, 18). Furthermore, although
the carbon in soil organicmatter predominantly
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comes frombulk plantmaterial, it can also come
from soil microbiota, mycorrhizae, or fungi.
However, long-chain n-alkanes are a single,
plant-derived molecule, and our d13C values
from leaf wax n-alkanes extracted from the

same samples as soil organic matter yielded
parallel results: substantial variation within
stratigraphic sections and abundant C4 bio-
mass at Moroto and Rusinga (Fig. 2B, figs. S1
and S2, and data S2 and S3) (16). The C31 n-

alkane includes input from both woody and
grassy vegetation, so moderate d13C values for
this homolog cannot unequivocally distin-
guish low concentrations of C4 biomass from
water-stressed C3 biomass (8, 16). However,
the C35 n-alkane is preferentially produced by
C4 grasses (19), therefore samples at Moroto
with high d13C values in both C35 and C31 n-
alkanes unambiguously indicate considerable
C4 biomass (Fig. 2B and fig. S1) (20). In ad-
dition, the high relative abundance of long-
chain n-alkanes (C33 and C35) from Moroto is
similar to patterns found in modern C4 grass-
lands (19) and in sediments from C4-dominated
environments (fig. S1) (21). Interestingly, n-
alkane d13C values from marine cores off of
western and eastern African coasts do not
provide evidence of regionally abundant Early
Miocene C4 vegetation (8, 10, 11). This ap-
parent discrepancy likely reflects differences
in scale and resolution between paleosols
sampled in this study, which represent local
vegetation, and sediments deposited at deep-
sea marine core sites, which integrate plant
wax carbon isotope records over thousands of
square kilometers.
Pedogenic carbonate isotopic values con-

firm variation within and among sites. Pedo-
genic carbonate was not found at all sites, nor
uniformly throughout sections where it was
present (16), demonstrating spatial and temporal
variation in climate (i.e., mesic conditions) and/
or pedogenic processes (e.g., acidic pH) that in-
hibited carbonate precipitation. Carbonate d13C
distributions are shifted evenmore toward open
habitats relative to organic matter (Fig. 2C
and data S4) (16), with a few d13C values in-
dicating C4-dominated vegetation for some
paleosols at multiple sites (Moroto, Napak,
Karungu, and Buluk). Bulk soil organic matter
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Fig. 1. Early Miocene fossil site complexes in eastern Africa. (A) Map of sites. Areas in red represent
current exposures of primarily volcanic and associated sedimentary rock. (B) Chronology of fossil sites
sampled. Further site information is provided in the supplementary materials (16).

Fig. 2. Stable carbon
isotope ratios (d13C)
for three proxies.
(A) Bulk soil organic
matter, (B) C31 and C35
n-alkane homologs, and
(C) pedogenic carbo-
nates. Data distributions
in (A) and (C) shown as
violin plots (mirrored
kernel density esti-
mates), with violin areas
normalized in each
panel and trimmed to
data ranges in each
group; points are
jittered for clarity, and
vertical crossbars
indicate the median of the group. Dashed lines represent mean C3 and C4 endmember d13C values for soil organic matter and pedogenic carbonates (34) and
n-alkanes (11) based on data from modern soils; shaded regions with colored boundaries represent UNESCO biome classifications after (35). Biome boundaries for
n-alkanes have not been sufficiently characterized and thus are not shown. Endmembers and biome boundaries have been corrected for Miocene atmospheric
CO2 d

13C value after (36). Detailed methodology and data are provided in (16) and tables S1 and S2 and data S1, S2, and S4. VPDB, Vienna Pee Dee belemnite; FOR,
forest; W/B/S, woodland/bushland/shrubland; WG, woody grassland; GR, grassland.
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and carbonate d13C values from the same strat-
igraphic levels are not significantly correlated
(fig. S3B), and the mean offset between them
[D13CCO3-OM = 20.0 per mil (‰)] is greater
than theoretical expectations (~14 to 17‰)
(22), possibly indicating that pedogenic carbo-
nates or organic matter (or both) do not pre-
serve original environmental signatures. This
interpretation is unlikely for several reasons.
First, sampleswithmatched soil organicmatter
and n-alkane d13C values show strong, signifi-
cant correlations (Fig. 2, A and B, and fig. S3),
supporting the fidelity of the isotopic signals
from our larger bulk organic dataset. Second,
our field sampling strategy involved collection
of pedogenic carbonates well within the sub-
soil, typically at least 0.5 m in depth, on the
basis of the description of paleosol horizona-
tion and macroscopic pedogenic morpholo-
gies (16) (data S4). Third, the carbonates used
for paleovegetation reconstruction were pre-

pared by drilling micritic crystal textures on
cut and polished rock samples after petro-
graphic analysis, including cathodolumines-
cence petrography, whenever possible (16).We
also purposefully sampled sparry carbonate
in addition to pedogenic micrite to assess for
diagenetic contamination (fig. S4). However,
we found no correspondence between crystal
texture and either d13C or d18O values (fig. S5)
(16), fromwhichwe infer that diagenesis cannot
account for d13C values above a C3 endmember
threshold. Fourth, paleosol morphologies and
reconstructed hydroclimate from independent
proxies atmultiple sites (6, 20, 23) are consistent
with high soil respiration rates, minimizing
the possibility that infiltration of atmospheric
CO2 into soil profiles drove the elevated car-
bonate d13C values that we measured.
We propose instead that both pedogenic

carbonates and soil organic matter preserve
environmental signals that capture different

components of floral compositions at different
time resolutions. Many paleosols that we sam-
pled were deposited and formed in dynamic,
aggradational landscapes associated with rift-
ing and volcanism (20, 23), which would have
caused short-term local changes in the compo-
sition of vegetation as the plant community
responded to frequent disturbances. Owing to
faster humus turnover times relative to the pace
of carbonate accumulation (24), soil organic
matter would retain the last phase of vegetation
for any one profile, yet carbonates would cap-
ture a longer-term, but seasonally biased, signal
of respired CO2, reflecting vegetation that was
most productive during warm and dry sea-
sons (i.e., C4 plants). Consequently, carbonates
would be more sensitive to recording C4 plant
presence compared with bulk organic matter
from the same paleosols, especially if net pri-
mary productivity were higher in wetter sea-
sons with more C3 biomass.
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Fig. 3. Comparison of phytolith assemblages from fossil sites and modern
vegetation types in eastern and central Africa. (A) Maximum potential C4 (i.e.,
PACMAD) grass phytoliths of diagnostic counts from modern vegetation types
(top; showing median and quartiles for types with more than four data points) and
fossil sites (bottom; showing bootstrapped 95% confidence intervals around
estimates). Light-gray fossil ranges represent assemblages with low diagnostic
counts. (B) Pie charts representing diagnostic assemblage data (excluding
nondiagnostic grass phytoliths). Sites are arranged stratigraphically, and ages for

sites are shown in (A) and Fig. 1. Faded pie charts as in (A). (C) Representative
PACMAD grass phytolith types from left to right: SADDLE (C4 Chloridoideae), BILOBATE
(PACMAD), and CROSS (PACMAD). (D) Ordination [nonmetric multidimensional scaling
(NMDS); k = 2] of modern and fossil assemblage data. Details and data are provided
in (16) and data S5 to S11. APPBO, closed-habitat grasses, which are diagnostic of
early diverging grasses in the families Anomochlooideae, Pharoideae, Puelioideae,
Bambusoideae, and Oryzoideae; DRC, Democratic Republic of Congo; Evg. forest or
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The ecological significance of C4 grasses and
habitat heterogeneity is further corroborated by
phytolith assemblages documenting vegetation
on these Early Miocene landscapes (16). Every
site that yielded phytoliths provided evidence
of grasses, and all except Napak andMoruorot
had phytoliths from PACMAD grasses (i.e.,
potential C4 grasses) (data S5 and S6). Well-
preserved assemblages fromMoroto, Bukwa,
and Rusinga could be analyzed quantitatively,
and most are dominated by grass phytoliths
(up to 91.9% of diagnostic phytolith counts;
Fig. 3A, fig. S6, and data S5) (16). As many as
90.8% of grass phytoliths (excluding unknown
anddamaged forms) arediagnostic ofPACMADs,
and up to 29.0% of grass phytoliths are typi-
cal of the strictly-C4 Chloridoideae PACMAD
subclade (Fig. 3B). Nonchloridoid PACMAD
phytoliths could represent C3 or C4 grasses,
but strong C4 isotopic signals from the same
sites suggest that many derived from C4 spe-
cies. Nevertheless, to acknowledge this in-
herent uncertainty, we refer to the sum of
PACMAD phytoliths as “maximum potential
C4 phytoliths” (Figs. 3A and 4). Consistent
with isotopic evidence for habitat heteroge-
neity, the relative abundance of forest indi-
cator phytoliths varied within and across sites
as well, ranging from 8.1 to 81.8% (Fig. 3A and
data S5).

Proportions of potential C4 grasses in fossil
phytolith assemblages most closely resemble
modern eastern and central African habitats
with substantial grass components: wooded
grasslands, shrubland, bushland, riparian for-
ests, and grassy glades within forests (Fig. 3A).
Early Miocene grass communities were di-
verse, including phytoliths typical of closed-
habitat grasses, various PACMAD grasses (Fig.
3, B and C), and potentially Pooideae grasses
(strictly C3) (table S5). Nonmetric multidimen-
sional scaling distinguishes closed habitats,
represented by the Guineo-Congolian lowland
rainforest, from open habitats in the form of
(wooded) grasslands, shrublands, and bush-
lands (Fig. 3D, fig. S7, and table S1) (16). As-
semblages from forests with substantial grassy
glades (i.e., Kakamega) or that are surrounded
by open, grass-dominated vegetation (i.e., ri-
parian forests in savannah landscapes) part-
ly overlap with open, grassy vegetation types,
but most Early Miocene assemblages fall out-
side these compositional fields, instead show-
ing greater similarity with C4 grass–dominated
habitats.
Together, our data from multiple chrono-

logically constrained paleoecological proxies
reveal that: (i) C4 grasses were present in the
Early Miocene of eastern Africa, and at some
sites were a dominant part of the vegetation;

(ii) open habitats (e.g., woodland, bushland,
shrubland, and wooded grassland biomes)
were a substantial and important component
of Early Miocene ecosystems, contributing
to landscape heterogeneity at individual sites
and across the region both spatially and tem-
porally (Figs. 3 and 4, and fig. S8); and (iii)
the range of habitats and d13C values (Fig. 4,
A to D, and fig. S8) and the C4 grass abun-
dances (Fig. 3, A and B) during the Early Mio-
cene were at times similar to grassy savannah
and woodland ecosystems reconstructed for
the Late Miocene and Plio-Pleistocene (Fig. 4,
A to D, and fig. S8) (25), only lacking evidence
of true grasslands or rainforests [but see (26)].
Although it remains a challenge to differenti-
ate spatial and temporal heterogeneity at a
local level because our paleosol and paleoeco-
logical proxies are time-averaged to various de-
grees, temporally restricted horizons at Moroto
and Rusinga document penecontemporane-
ous forested to grassy woodlandmicrohabitats
(20, 23), suggesting that landscape-scale spa-
tial heterogeneity contributed to the variable
paleovegetation signals in our records.

Implications for Neogene ecosystems
of eastern Africa

This study unequivocally extends the record
of C4 grasses in Africa, roughly coeval with
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the earliest records of chloridoid phytoliths
from North America (3). Furthermore, our
data document the occurrence of ecologically
abundant and, in several cases, locally dom-
inant C4 grasses, predating by more than
10 million years the near-global spread of C4
grasslands in the Late Miocene–Early Pleisto-
cene (Fig. 4) (2, 3). This finding contradicts
the longstanding view that C4 grasses did not
gain ecological importance in eastern Africa
until the late Neogene (2, 7, 8, 11). Expansion
of C4 grasses has been linked to a range of
local to global factors, including decreasing
atmospheric pCO2, shifts in disturbance re-
gime (e.g., fire, herbivory, volcanism), and
changes in regional climate (e.g., aridity, sea-
sonality) (2, 8, 9, 22, 27, 28). However, changes
in pCO2 are not likely to have played a role
in structuring Early Miocene vegetation, as
CO2 levels remained relatively high during
this time (Fig. 4) (29). Changes in the fire re-
gime and fauna–vegetation interaction may
have influenced plant communities, but cur-
rent evidence from eastern Africa is insuf-
ficient to evaluate these hypotheses in the
Early Miocene. We hypothesize that regional
tectonic factors (e.g., recurrent volcanic erup-
tions and edifice building, extension-induced
formation of escarpments and grabens) ex-
pressed variably at the scale of individual
sites were the primary controls on hetero-
geneity and regional C4 grass dominance in
eastern Africa. Orographic climate effects re-
lated to doming and uplift associated with
incipient rifting would have disrupted both
local and regional seasonality and drainage
patterns, further enhancing ecological varia-
bility. The presence of topographic barriers
may also explain the lack of agreement be-
tween in situ signals of C4 vegetation reported
in this study and regionally integrated records
from marine cores off of the eastern and west-
ern coasts of Africa, which first record C4 sig-
nals at 10 Ma (8).
Our discovery that heterogeneously distrib-

uted C4 vegetation preceded the rise to domi-
nance of C4 grassland habitats in eastern
Africa stands in stark contrast to data from
North America, South America, Australia, and
eastern Asia, which indicate that C4 grass-
lands replaced C3-dominated grassy mosaics
or other open, semiarid to arid vegetation
(3, 9, 30). Thus, the C3–C4 transition in eastern
Africa may have been more protracted and
complex than elsewhere. Additionally, hab-
itat heterogeneity demonstrated by our data
counters hypotheses of predominantly for-
ested habitats in the Early Miocene of eastern
Africa [(2, 31, 32), but see (33)], instead sup-
porting a more nuanced interpretation of
ecosystem evolution (15, 20, 23). At local
scales—those at which organisms interact with
their environments—the Early Miocene in
eastern Africa was characterized by a variety

of habitats, including open vegetation with
C4 grasses. The evident importance of open
habitats in the early Neogene compels a deeper
time perspective when considering adaptive
hypotheses linking mammalian community
evolutionwith grassland expansion in the fossil
record.
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