
 IEEE CICC 2024

SP-IMC: A Sparsity Aware In-Memory-Computing Macro
in 28nm CMOS with Configurable Sparse Representation
for Highly Sparse DNN Workloads
Amitesh Sridharan1, Fan Zhang1, Jae-sun Seo2, Deliang Fan1

1Johns Hopkins University, Baltimore, MD.
2Cornell Tech, New York, NY.
Deep neural networks (DNNs) have experienced unprecedented
success in a variety of cognitive tasks due to which there has been
a move to deploy DNNs in edge devices. DNNs are usually
comprised of multiply-and-accumulate (MAC) operations and are
both data and compute intensive. In-memory computing (IMC)
methodologies have shown significant energy efficiency and
throughput benefits for DNN workloads by reducing data movement
and eliminating memory reads. Weight pruning in DNNs can further
improve the energy/throughput of DNN hardware through reduced
storage and compute. Recent IMC works [1-3,6] have not explored
such sparse compression techniques unlike ASIC counterparts to
enable storage benefits and compute skipping. A recent work [4]
attempted to exploit this by compressing weights using a binary map
and a custom compression format. This is sub-optimal because the
implementation requires a complex routing mechanism (butterfly
routing), additional compute to decode compressed weights and has
limited flexibility in supporting different sparse encodings. Fig. 1
illustrates our motivations and the challenges for implementing
weight compression in digital IMC designs and the need for a new
methodology to enable sparse compute directly on compressed
weights. In this work, we present a novel sparsity-integrated IMC
(SP-IMC) macro in 28nm CMOS which, for the first time, utilizes
three popular sparse compression formats, i.e., coordinate
representation (COO), run length encoding (RL) and N:M sparsity [7]
all along the matrix column direction with tunable precisions. SP-IMC
stores and directly processes the sparse compressed weights in the
macro, achieving higher storage density, reduction in re-write
operations to the macro and higher overall energy efficiency.
Fig. 2 shows the proposed SP-IMC macro which comprises of
64x128 bit-cells. The IMC macro consists of 16 column groups (CG),
where each CG consists of 32 row groups (RG) and one
accumulation logic (AL) block. Each RG has 16 bit-cells split into two
8b-rows by a multiply decode and compare (MDC) block. The two
8b-rows have four bits of 10T bit-cells for weight storage and another
four bits of traditional 6T bit-cells to store the indices for decoding the
compressed weights. The 10T bit-cell has four additional transistors
T1-T4, besides the 6T. The transistor pairs “T1, T2” and “T3, T4”
each perform AND operations in parallel with the streamed-in input
activation (IA) and the stored weight to reduce the IA bottleneck in
previous designs [1-6] which rely on a purely bit-serial approach to
support large IA precision. Thus, each 10T bit-cell performs a 1b-
W:2b-IA multiplication and the four 10T bit-cells at the top and bottom
collectively perform two 4b-IA:2b-W partial multiplications. These
partial-multiply outs serve as inputs to the MDC block which has shift
accumulators/partial multipliers to complete the 4b2b multiplications.
The 4b indices at the top and bottom of the MDC block serve as the
input to the RL/COO decode block which calculates the RLC indices
based on the index from the previous column or directly pass the
indices from the bit-cell to the comparator blocks. Now the
comparators compare it with indices generated either by a local
counter or the spillover counter. If the comparison is successful, the
partial products (PP) are sent to the adder tree and then to a shift
accumulator to complete MACs. The adder trees are split into two
32-input trees, and the outputs of adder trees are shift-accumulated.
The accumulator precision is chosen by the weight precision control
(WPC) signal between 14b (for 8b-W) and 11b (for 4-b-W). Finally, a
spillover accumulator is present to support edge cases of
compressed weights, e.g. uneven sparsity across matrix columns.
The SP-IMC supports three representative compression formats in
the column direction for element-wise weight sparsity, namely RL,
COO, and N:M sparse encoding. RL and COO formats have different
dataflows to support the decode of their respective indices, as shown
in Fig. 3. N:M sparse encoding follows the dataflow of COO. In COO
mode, each column of the memory array generates an index
(through local counters) every cycle that pertains to the index of
stored weights in their respective columns and these indices are

used to gate accumulations of PP
generated in each RG using the
comparators. The accumulated PPs are
then sent to the shift accumulator block
for IA precision compensation semi-bit
serially (2-bits/cycle). The dataflow is
similar in RL mode as well, but the index
generator (counters) now generates the
zero count (ZC) between two non-zero
weights, and RL compression incurs
additional decode hardware in the row
direction to specify the non-zero weight
position. The index stored in the neighboring CG[n-1] is streamed
and is added with the indices in the current CG[n]. The spillover
dataflow exists to support corner cases, for e.g., all elements of a
matrix row are not always mapped to the same CG, (Fig. 4 COO-
CSC mapping) and can “spillover” to neighboring CGs. This arises
out of uneven sparsity across matrix columns and is the case for RL,
COO and N:M sparsity. It is greatly reduced for N:M sparsity due to
fixed M. Fig. 3 shows the pipeline diagram of 4b-IA:4b-W MACs from
a CG in the SP-IMC macro. It also shows the priority queue for index
handling and the parallelism achieved in a SP-IMC to process sparse
compressed MACs. The compression and IMC mapping
methodology is elaborated in Fig. 4. Uncompressed mapping is done
for convolutions by first flattening the 4D kernels to a 2D weight
matrix and is transposed and stored onto the IMC array such that the
kernel dimensions and input channel (R, S, C) fall into columns with
adder trees and the output channel is mapped in the row direction to
support parallel multiplications. We employ a similar approach when
it comes to mapping compressed weights. Encoding in column
direction is more IMC friendly because it retains column structure
while breaking row structures, i.e., breaks accumulations and retains
multiplications. Compressed sparse row (CSR) is not very IMC
friendly and incurs additional hardware overhead i.e., IA reordering,
additional accumulate and WB operations, hence not implemented
in this macro. RL mapping is similar to COO, the indices are replaced
with ZC. In RL to denote the end of each matrix column, its length is
fixed, and the last element of all matrix columns are stored
regardless of magnitude. Mapping matrices that have unequal non-
zero weight distribution in every column will lead to utilization issues
in the IMC. This can be alleviated during training by employing a fine-
grained N:M sparsity structure as employed in Nvidia GPUs. Through
this method the SP-IMC macro can also achieve a significant
speedup by limiting the indices/column. Both RL and COO supports
index/ZC precision of 4b and 8b which translates to 255 indices
(COO) or 255 zeros (RL) between two non-zero elements.
The SP-IMC chip is implemented in 28nm CMOS. We measure the
chips at 250C, between 0.57 and 1.2V supply. SP-IMC achieves 8.4-
36.6 TOPS/W for 25% input toggle rate (TR) for fully non-sparse (i.e.,
only one index per column activating all bit-cells and adder trees
nodes) 4b-IA:4b-W MACs and 7.5-115.3 TOPS/W for a pruning ratio
of 1:16 with the same TR. Energy efficiency increases by 10% on
average when the TR is decreased by 25%. Fig. 5 shows the
measurement results. SP-IMC time-multiplexes sparsity. The adder
tree activity factors decrease as the number of indices per column
(i.e., sparsity) increases, because fewer adders are assigned to each
index. SP-IMC shows 3-40´ decrease in area when compared to a
non-sparse baseline implemented without decode hardware. Fig. 6
shows the comparison with other works, and SP-IMC achieves the
highest throughput regardless of sparsity due to dual IA parallelism.
This work focuses on sparse compressed storage and so it vastly
reduces the number of writes when compared to other works, this
also affects the system latency. For the proposed FoM of (TOPS/W
´ TOPS/mm2 ´ (# of weights stored per kb)), our work achieves up
to 5.9´ higher when compared to the best prior work. In summary,
this work introduces a fully digital sparsity integrated IMC macro
capable of directly processing COO, RL and N:M encoded sparse
representations along with different bit- precisions for both IA (2b, 4b,
8b) and weight (4b, 8b), and with scalable sparsity (4b, 8b) for a
variety of DNN workloads.
Acknowledgement:
This work is supported in part by the NSF under Grant No. 2314591, No. 2342726,
No. 2349802, No. 2414603, and SRC/DARPA JUMP 2.0 CoCoSys Center.
References:

Die micrograph.

26-2

979-8-3503-9406-1/24/$31.00 ©2024 IEEE

2
0

2
4

 I
E

E
E

 C
u

s
t
o

m
 I

n
t
e

g
r
a

t
e

d
 C

ir
c
u

it
s
 C

o
n

fe
r
e

n
c
e

 (
C

IC
C

)
|

 9
7

9
-8

-3
5

0
3

-9
4

0
6

-1
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
C

IC
C

6
0

9
5

9
.2

0
2

4
.1

0
5

2
9

0
0

9

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 03,2024 at 14:09:07 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

[1] D. Wang et al., ISSCC, 2022. [2] H. Mori et al., ISSCC, 2023. [3] J. Oh et al.,
ESSCIRC, 2023. [4] J. Yue et al., ISSCC, 2023. [5] S. Liu et al., ISSCC, 2023.

[6] H. Fujiwara et al., ISSCC, 2022. [7] A. Zhou et al., ICLR, 2021. [8] L. Yang et
al., NeurIPS’22.

Fig. 1. Current sparse IMC implementation drawbacks, benefits of
sparse encoding, challenges of sparse encoded weights in IMC.

Fig. 2. Overall architecture of SP-IMC Macro, bit-cell schematic,
layout, and micro-architecture of in-memory decode hardware.

Fig. 3. Dataflow of various modes in SP-IMC, pipeline diagram,
index priority queue, SpMM parallelism in memory.

Fig. 4. Mapping methodologies for COO-CSC, RL, why CSR is not
IMC friendly and the benefits of N:M sparse encoding.

Fig. 5. Chip measurement results, accuracy results of pruned
DNNs, area breakdown in macro and system level.

Fig. 6. System latency, write operations, figure of merit (FoM), and
comparison to prior digital IMCs.

Reduced Hardware Cost

Compression Challenge

SP-IMC Design with flexible sparse representation

Ad
de

r T
re

e

C
om

pr
es

so
r

C
om

pr
es

so
r

Ad
de

r T
re

e
ISSCC’22[1]

…

Reduced Adder hardware
Reduced Adder precision
through appx. Compute.

Accuracy drop.

…

Ad
de

r T
re

e

…

Scaling up memory hardware and
time share compute hardware.

No real benefits when it comes to
saving storage hardware.

ISSCC’23[2]

…
…

w w w w
MSB-LSB

Adder Tree

Row 0

Row 1

Time multiplex weight
precision and IA precision.

Very low throughput

ESSCIRC’23[3]

T.G based butterfly mux

Binary MapDense Ws

w w w w
w w w w
w w w w

1
0
1

0
0
0

1 1

1
0

0
0

Address sparsity through W compression.
Decode and compute are done separately.
Complex decode hardware. Rigid sparsity.

ISSCC’23[4]
Prior works: Sparsity in IMC

Co
lu

m
n

Co
m

pr
es

si
on

br
ea

ks
 a

cc
um

ul
at

io
ns

MMs in-memory rely on Matrix structure

Row Compression
breaks multiplications

Utilization Challenge

w00 0 0
w01

w02 w03

0
0

0

w04 0
0

w06 0

0

w10

0

w11

0

w140

00
0

w15

Flexible Sparsity support:
N:M(1-255:2-256), Coordinate & Run Length

Encoding compression formats

w00
w02

w01

w15

w03

w14

w04

w06

w10

w11

0
2

1
4

2
3

0
2
3

3 0
1

1
2

2
0

0
1
0

3

1 0
0

RL CompressionCOO Compression

Time-Multiplexed Sparsity

1D- Compression &
Multiply Decode Acc.

Idx 0 Idx 1

Clk
Ve

ry
 S

pa
rs

e

Ve
ry

 D
en

se

Ve
ry

 D
en

se

…

M
od

er
at

el
y

Sp
ar

se

Utilization in IMC depends mapped
weights post compression

Unstructured Sparsity

Decode

Decode

Idx Queue

Ac
cu

m
ul

at
e

W Idx

IdxW

Mul.

Mul.

Weight MatrixWeight Matrix

Prior works: Optimizing Storage Density

Layer #

of

 M
ac

ro
s

(N
or

m
al

iz
ed

 A
rr

ay
 S

iz
e)

50

100

1-4

0.5
0.7
0.9
1.0

Resnet-32
Cifar-10

Resnet-32
Cifar-100

Resnet-50
ImageNet

- Dense
- 90% Sparsity
- 98% Sparsity

Pruning techniques have large pruning
ratio with minimal accuracy drop [5].

Ac
cu

ra
cy

Sparsity in DNNs

Resnet-18 on Cifar-10
98% Sparsity

<2
%

 A
cc

ur
ac

y
dr

op

5 10

4x

1000

6-8

500

9

50x

SP-IMC
Non

Sparse IMC

MDC

Row Grp[0]
W + Idx

W + Idx

<<4

IA[0]

IA[2] Col. Idx

PP_top
PP_bot.

WPC
(4b/8b)

IG [0]

Done 3b
8-12b

11b/14b

0

MDC

Row Grp[1]
W + Idx

W + Idx

IA[4]

IA[6] Col. Idx

PP_top
PP_bot.

IG [1]

Done 3b
8-12b

0…
x32

…

IA[127:0]

W
L

De
co

de
r a

nd
 IP

/A
ct

 C
on

tro
l

8-
12
b

Idx out 8b

8b

6b

10b10b

6b

32
-In

pu
t A

dd
er

 T
re

e[
0]

32
-In

pu
t A

dd
er

 T
re

e[
1]

Idx out

Shift
Accumulator(SA)

Column Group [0]

Column Group [15]Scan
Chain

Clock
Gen

Output
Memory
15.18KB

AL[0]

Spillover Index Col. specific
IndexSpillover Mode

x16

…

Spillover Accumulation

Control
Logic

Local
Counter

IA[1]

IA[3]

IA[5]

IA[7]

Sp
ill

ov
er

Co
nt

ro
l

Sp
ill

ov
er

Co
un

te
r

8-12b

IPC
(2b/4b/8b)

Id
x_

M
od

e
(4

b/
8b

)

RL/COO
Mode

Se
ria

l-o
ut

Se
ria

l-I
n

Co
l.

Id
x

Ad
dr

es
s

W
E

D_
ou

t
D_

in

x32

RL/COO
Decode

Comparators

PO_M1
Poly

Active
M1

M2
NWell

PP_top
PP_bot.

Idx_outIdx_out
[Col-1] Done

Partial Multiplier

10T 10T 10T 10T 6T 6T 6T 6T

10T 10T 10T 10T 6T 6T 6T 6T

Partial Multiplier

4x DPO[1:0] Idx_top [3:0]

Idx_bot. [3:0]4x DPO[1:0]

Idx_RL
Idx_to_CmpRL/COO

Mode

Idx_Mode

10T Bit-Cell Schematic

10T Bit-Cell Layout

Sparse IMC Macro Architecture Row Group

…

x16

…

Col. Idx

11b/15b/20b4b2b/4b4b/8b8b(I:W)

Psum

RLC Mode Dataflow
Column group 0

Compare

Generate
Col Index

Shift
Acc.

Ac
cu

m
ul

at
e

. . .

. . .

Ro
w

0

Row 1

Column group 0

Compare

Generate
Spill Index

Shift
Acc.

Ac
cu

m
ul

at
e

. . .

Ro
w

0

. . .

Spillover Acc.

Co
lu

m
n

gr
ou

p
15

Column group 0
Generate
Zero Cnt.

1’b1

Co
lu

m
n

gr
ou

p
15

Column group 1

4b’ZC4b’W

Compare

Generate
Zero Cnt.

. . .

Co
lu

m
n

gr
ou

p
15

4b’W 4b’ZC

Ro
w

0

. . .

1’b1Ro
w

0

Compare

4b’W 4b’ZC Ac
cu

m
ul

at
e

4b’ZC4b’WAc
cu

m
ul

at
e

Row 31

4b’W 4b’Idx

4b’Idx4b’W

. . .

Row 1

Row 31
Shift
Acc.

Shift
Acc.

Row 1

Row 31

2b’IA

2b’IA

2b’IA

2b’IA

Row 1

Row 31

4b’Idx4b’W

4b’W 4b’Idx

2b’IA

2b’IA

To
 C

ol
. g

ro
up

 2

Pipeline Diagram of SP-IMC in 4bI:4bW mode
Mode

Spillover-Mode Dataflow

COO Mode Dataflow

Cycle 1 Cycle 2
Cmp

In-memory parallelism for SpMM
for each generated index/ZC:
for 2-bits in IA:

PP = IA[1:0]*W[3:0]
if generated idx/ZC == stored idx/ZC:

PP is added
else:

PP is not added

Mul Acc Shift

CmpMul Acc

Cycle 2n-1
CmpMul Acc

Shift

Shift

CmpMul Acc

Cycle 2n

IA 0[3:2] IA 0[1:0] IA 1[3:2] IA 1[1:0]
Index 0 Index n

Row-wise
Parallelism

Column-wise
Parallelism

Psum = Psum<<2 + Add_out

Index Priority Queue
Spillover Indices

Column Specific Indices

1
2

Cntr
Low
High

Cntr
Low
High

Hold Until

-

Spill
Idx

Spill
Ctrl

…

Uncompressed Mapping

…

w00w01

w02w03

wM0wM1
wM2wM3

I0 I1 I2 I3
I4 I5 I6 I7
I8 I9 I10 I11
I12 I14I13 I15

M

C

C

…

R

S

w00

wM0

M…
w01 w02 w03…

…wM1wM2wM3

M

R,S,C
Ad

de
r T

re
e

Ad
de

r T
re

e

…

w00

w01

w03

w03

wM0

wM1

wM2

wM3

M

R
,S

,C

IMC Array

…

Flattened 2D
W Matrix

4D - Convolutions

Transposed Store

w00 0 0
w01

w02 w03

0
0

0

w04 0

0
w06 0

0

w10

0

w11

0

M

R,S,C

w140

00
0

w15

Sparse Weight Matrix
W

H

N:M fine grained sparsity for efficient mapping

Compressed in M direction(CSC)
w00
w02

w01

w15

w03

w14

w04

w06

w10

w11 0
2

1
4

2
3

0
2
3

3

Ad
de

r T
re

e

w00

w01

w03

w04

w11

Ad
de

r T
re

e

w02

w15

w14

w06 Ad
de

r T
re

e

w10

0
1
2
0
3

2
4
3
2 3

Spillover Accumulator
Indices 2 & 3 span multiple columns, but
there are adders padded to columns only

Spillover accumulator accumulates
outputs of adder trees from every column

Index MatrixWeight Matrix

Run Length Compression and Mapping

w00 0 0
w01

w02 w03

0
0

0

w04 0
0

w06 0

0

w10

0

w11

0

M

R,S,C

w140

00
0

w15

Sparse Weight Matrix

Compressed in M direction(RLC)
w00
w02

w01

w15

w03

w14

w04

w06

w10

w11 0
1

1
2

2
0

0
1
0

3

RLC Mapping

Ad
de

r T
re

e

w00

w01

w03

w04

w11

Ad
de

r T
re

e

w02

w15

w14

w06 Ad
de

r T
re

e

w10

0
1
2
0
3

1
2
0
1 3

Spillover Accumulator

Zero Count
Matrix

Weight Matrix

0 1 00
0

0 0

0 0

0
0 0

1.) Fixed column length.
2.) Last element of
column is always stored
regardless of magnitude.

Unstructured Sparsity

U
ne

ve
n

ut
ili

za
tio

n

Ve
ry

 S
pa

rs
e

Ve
ry

 D
en

se

M
od

er
at

el
y

Sp
ar

se
Ve

ry
 D

en
se

M
od

er
at

el
y

Sp
ar

se

…

Ad
de

r T
re

e

w
w
w

Ad
de

r T
re

e

w
w

Ad
de

r T
re

e

wIdx
Idx
Idx

Idx
Idx

Idx …
…
…

…………………

100 Idxs 3 Idxs 1 Idx
Large Index Queue

w00 0
w01

w02 w03

00

w04 0w06

0

0

w10 w11

w14

00 0

0
w09

1:2 Col-wise Sparsity

2 Idxs
w00 w02

w01 w14

w06 w03

w04 w10
w09 w11

Ad
de

r T
re

e0

0
0

1

1

2
2
2
3
3

Ad
de

r T
re

e

2 Idxs

In
cr

ea
se

d
ut

ili
za

tio
nSmaller index queue

w00
w02

w01

w14

w06

w03

w04

w10 w11

w09

0
2

1
2

0
2

0
3 3

1

R
ed

uc
ed

 S
pi

llo
ve

r

Denser weight &
index distribution

1:2
1:2

Why not CSR? - Incurs Additional Hardware overhead
w00 0 0

w01

w02 w03

0
0

0

w04 0

0
w06 0

0

w10 w11

M
R,S,C

w1400

Sparse Weight Matrix Indices denote IA operand

w00

w02

w01

w03

w14

w04

w06

w10w11

w010
3

1

Retains Multiply Parallelism
Breaks Add Parallelism

0

0

1

2

2

3

3

3 4

Weight Matrix Index Matrix

I01
I02
I03
I04
I05

Ad
de

r T
re

e

Ad
de

r T
re

e

Ad
de

r T
re

e

Ad
de

r T
re

e

w00
w04

w02 w14
w03

w06

w10

w11

0
2
3

2
3
4

Needs additional accumulate and Write back.
Temporary Buffers

IA
 re

or
de

rin
g

Another Pipeline Stage. Breaks Mul. parallelism

Coordinate - Compressed Sparse Column (COO-CSC)

Chip area breakdown System level Area Scaling

TOPS & TOPS/W Scaling Pwr. & Freq. Scaling 1:2 vs 1:4 vs 1:8 Sparsity

Accuracy(INT8)ModelDataset

UnstructuredN:M PruningDense

90% Sparsity1:81:41:2

93.2%91.44%92.49%93.37%93.8%Resnet18Cifar-10

73.9%71.99%74.63%74.64%75.9%Resnet18Cifar-100

MDC
Adders
WL Driv.

Bit-cells
Shift Acc.

Resnet-18, on Cifar-10, 98% Unstructured sparsity mapped to SP-IMC with
RLC Compression.INT8 Dense acc.: 87%, Sparse acc. 86.2%

Throughput (GOPS)

En
er

gy
 E

ffi
cie

nc
y

(T
O

PS
/W

)

1:16 Sparsity
@25% IA Toggle rate

Po
we

r (
m

W
)

VDD(V)

Fr
eq

ue
nc

y
(G

Hz
)0.57V

1.18V

0.57V

1.18V

VDD(V)

TO
PS

/W

Adder tree activity factor scales with
sparsity because sparsity is time-shared@25% IA Toggle rate

@
25

%
 IA

 T
og

gl
e

ra
te

Layer # 1 2 3 4 5 6 7 8 9 10

25%

50%

75%

100%

%
 o

f A
re

a 3x

40x

Baseline measurement with no sparsity.
This WorkESSCIRC’23 [3]ISSCC’23 [2]ISSCC’22 [6]ISSCC’ 23 [4]ISSCC’22 [1]Work

28nm28nm4nm5nm28nm28nmTechnology
DigitalDigitalDigitalDigitalDigitalDigitalMAC Implementation

RL/COO/N:MXXXRigidXIMC Sparsity Support
0.57-1.180.9-1.10.32-1.10.5-0.90.64-1.030.45-1.10Supply Voltage (V)

0.240.01590.01720.0133NA0.049Macro Area (mm2)
201-116030-3601490360-144020-320250Clock Frequency (MHz)

6T+4T(50%)
6T(50%)6T+0.5T8T x 2bit

+OAI12T8T(55%)
10T(45%)8TBitcell Transistors

4K(Weights)
+ 4K(Index)16K54K64K1.15M16KArray Size(b)

IP:2b/4b/8b
W:4b/8b

IA: 1-8
W: 8

IA: 8/12/16
W: 8/12

IA: 1-8b
W:4bINT8IA:1-4b

W:1bBit Precision

YesYesYesYesYesNoFull output precision

41.29-238.860.95-11.6127.15104.73522.9*62.5*Performance(GOPS)1,2,7

4.38-57.67622.4-60.487.4(8)

41.3(9)17.5-6315.64/70.375

(System)9.6-15.5Peak Energy Efficiency2,7

(TOPS/W)

0.21-1.20.12-1.460.27-1.010.44-1.760.852.59Compute Density2,3,7

TOPS/mm2

11K-24K(1:16)
5.5K-12K(1:8)0.9K-4.1K3.219K3.942K2.97K4

3.25K53.182KFoM2,7,3

(1) Normalized to 8Kb. (2) One operation is either 8b multiplication or addition. (3) Normalized quadratically to 28nm.
*Estimated from previous works. (4) 75% Sparsity, (5) 92% Sparsity. (6) 93.75% Sparsity (1:16 Sparsity).
GOPS Calculation (8b8b/4b4b): 32 (or) 64 (Rows) x 16 (Columns) x 2 (MAC)/Latency. (7)Excludes write energy/latency otherwise

incurred by other works for a scaled-up matrix that fits in SP-IMC and not in other works. (8) @ 12.5% TR. (9) @ 50% TR (10) @25% TR.
System Latency

of MAC OPs1,2

C
yc

le
 C

ou
nt

 la
te

nc
y

Write operations vs # of MACs Figure of Merit

1:4 1:8 1:16
Sparsity

4.8x

Compressed storage reduces WBs to SP-IMC

of MAC OPs1,2

of

 W
rit

e
O

Ps

Includes write latency - 1 cycle/word size FoM = TOPS/W(2,7) * TOPS/mm2 (2,3,7) * # of W/kb

Fo
M

VDD(V)

2x

1.9x
1:4 1:8 1:16

0
0

6K 12K 18K

250

500

750

1000

0
0

5K 10K 15K

350

700

1.05K

1.35K

0 0.5 1 1.5
0

7.5K

15K

22.5K

30K

26-2

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 03,2024 at 14:09:07 UTC from IEEE Xplore. Restrictions apply.

