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Deep neural networks (DNNs) have experienced unprecedented
success in a variety of cognitive tasks due to which there has been
a move to deploy DNNs in edge devices. DNNs are usually
comprised of multiply-and-accumulate (MAC) operations and are
both data and compute intensive. In-memory computing (IMC)
methodologies have shown significant energy efficiency and
throughput benefits for DNN workloads by reducing data movement
and eliminating memory reads. Weight pruning in DNNs can further
improve the energy/throughput of DNN hardware through reduced
storage and compute. Recent IMC works [1-3,6] have not explored
such sparse compression techniques unlike ASIC counterparts to
enable storage benefits and compute skipping. A recent work [4]
attempted to exploit this by compressing weights using a binary map
and a custom compression format. This is sub-optimal because the
implementation requires a complex routing mechanism (butterfly
routing), additional compute to decode compressed weights and has
limited flexibility in supporting different sparse encodings. Fig. 1
illustrates our motivations and the challenges for implementing
weight compression in digital IMC designs and the need for a new
methodology to enable sparse compute directly on compressed
weights. In this work, we present a novel sparsity-integrated IMC
(SP-IMC) macro in 28nm CMOS which, for the first time, utilizes
three popular sparse compression formats, i.e., coordinate
representation (COO), run length encoding (RL) and N:M sparsity [7]
all along the matrix column direction with tunable precisions. SP-IMC
stores and directly processes the sparse compressed weights in the
macro, achieving higher storage density, reduction in re-write
operations to the macro and higher overall energy efficiency.

Fig. 2 shows the proposed SP-IMC macro which comprises of
64x128 bit-cells. The IMC macro consists of 16 column groups (CG),
where each CG consists of 32 row groups (RG) and one
accumulation logic (AL) block. Each RG has 16 bit-cells split into two
8b-rows by a multiply decode and compare (MDC) block. The two
8b-rows have four bits of 10T bit-cells for weight storage and another
four bits of traditional 6T bit-cells to store the indices for decoding the
compressed weights. The 10T bit-cell has four additional transistors
T1-T4, besides the 6T. The transistor pairs “T1, T2” and “T3, T4”
each perform AND operations in parallel with the streamed-in input
activation (IA) and the stored weight to reduce the IA bottleneck in
previous designs [1-6] which rely on a purely bit-serial approach to
support large IA precision. Thus, each 10T bit-cell performs a 1b-
W:2b-IA multiplication and the four 10T bit-cells at the top and bottom
collectively perform two 4b-lA:2b-W partial multiplications. These
partial-multiply outs serve as inputs to the MDC block which has shift
accumulators/partial multipliers to complete the 4b2b multiplications.
The 4b indices at the top and bottom of the MDC block serve as the
input to the RL/COQ decode block which calculates the RLC indices
based on the index from the previous column or directly pass the
indices from the bit-cell to the comparator blocks. Now the
comparators compare it with indices generated either by a local
counter or the spillover counter. If the comparison is successful, the
partial products (PP) are sent to the adder tree and then to a shift
accumulator to complete MACs. The adder trees are split into two
32-input trees, and the outputs of adder trees are shift-accumulated.
The accumulator precision is chosen by the weight precision control
(WPC) signal between 14b (for 8b-W) and 11b (for 4-b-W). Finally, a
spillover accumulator is present to support edge cases of
compressed weights, e.g. uneven sparsity across matrix columns.

The SP-IMC supports three representative compression formats in
the column direction for element-wise weight sparsity, namely RL,
COO, and N:M sparse encoding. RL and COO formats have different
dataflows to support the decode of their respective indices, as shown
in Fig. 3. N:M sparse encoding follows the dataflow of COO. In COO
mode, each column of the memory array generates an index
(through local counters) every cycle that pertains to the index of

used to gate accumulations of PP
generated in each RG using the
comparators. The accumulated PPs are
then sent to the shift accumulator block
for IA precision compensation semi-bit
serially (2-bits/cycle). The dataflow is
similar in RL mode as well, but the index
generator (counters) now generates the
zero count (ZC) between two non-zero
weights, and RL compression incurs
additional decode hardware in the row
direction to specify the non-zero weight
position. The index stored in the neighboring CG[n-1] is streamed
and is added with the indices in the current CG[n]. The spillover
dataflow exists to support corner cases, for e.g., all elements of a
matrix row are not always mapped to the same CG, (Fig. 4 COO-
CSC mapping) and can “spillover” to neighboring CGs. This arises
out of uneven sparsity across matrix columns and is the case for RL,
COO and N:M sparsity. It is greatly reduced for N:M sparsity due to
fixed M. Fig. 3 shows the pipeline diagram of 4b-IA:4b-W MACs from
a CG in the SP-IMC macro. It also shows the priority queue for index
handling and the parallelism achieved in a SP-IMC to process sparse
compressed MACs. The compression and IMC mapping
methodology is elaborated in Fig. 4. Uncompressed mapping is done
for convolutions by first flattening the 4D kernels to a 2D weight
matrix and is transposed and stored onto the IMC array such that the
kernel dimensions and input channel (R, S, C) fall into columns with
adder trees and the output channel is mapped in the row direction to
support parallel multiplications. We employ a similar approach when
it comes to mapping compressed weights. Encoding in column
direction is more IMC friendly because it retains column structure
while breaking row structures, i.e., breaks accumulations and retains
multiplications. Compressed sparse row (CSR) is not very IMC
friendly and incurs additional hardware overhead i.e., IA reordering,
additional accumulate and WB operations, hence not implemented
in this macro. RL mapping is similar to COO, the indices are replaced
with ZC. In RL to denote the end of each matrix column, its length is
fixed, and the last element of all matrix columns are stored
regardless of magnitude. Mapping matrices that have unequal non-
zero weight distribution in every column will lead to utilization issues
in the IMC. This can be alleviated during training by employing a fine-
grained N:M sparsity structure as employed in Nvidia GPUs. Through
this method the SP-IMC macro can also achieve a significant
speedup by limiting the indices/column. Both RL and COO supports
index/ZC precision of 4b and 8b which translates to 255 indices
(COO) or 255 zeros (RL) between two non-zero elements.

The SP-IMC chip is implemented in 28nm CMOS. We measure the
chips at 25°C, between 0.57 and 1.2V supply. SP-IMC achieves 8.4-
36.6 TOPS/W for 25% input toggle rate (TR) for fully non-sparse (i.e.,
only one index per column activating all bit-cells and adder trees
nodes) 4b-1A:4b-W MACs and 7.5-115.3 TOPS/W for a pruning ratio
of 1:16 with the same TR. Energy efficiency increases by 10% on
average when the TR is decreased by 25%. Fig. 5 shows the
measurement results. SP-IMC time-multiplexes sparsity. The adder
tree activity factors decrease as the number of indices per column
(i.e., sparsity) increases, because fewer adders are assigned to each
index. SP-IMC shows 3-40x decrease in area when compared to a
non-sparse baseline implemented without decode hardware. Fig. 6
shows the comparison with other works, and SP-IMC achieves the
highest throughput regardless of sparsity due to dual IA parallelism.
This work focuses on sparse compressed storage and so it vastly
reduces the number of writes when compared to other works, this
also affects the system latency. For the proposed FoM of (TOPS/W
x TOPS/mm? x (# of weights stored per kb)), our work achieves up
to 5.9x higher when compared to the best prior work. In summary,
this work introduces a fully digital sparsity integrated IMC macro
capable of directly processing COO, RL and N:M encoded sparse
representations along with different bit- precisions for both 1A (2b, 4b,
8b) and weight (4b, 8b), and with scalable sparsity (4b, 8b) for a
variety of DNN workloads.
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Fig. 1. Current sparse IMC implementation drawbacks, benefits of
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Fig. 2. Overall architecture of SP-IMC Macro, bit-cell schematic,
layout, and micro-architecture of in-memory decode hardware.
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Fig. 3. Dataflow of various modes in SP-IMC, pipeline diagram,
index priority queue, SpMM parallelism in memory.

Fig. 4. Mapping methodologies for COO-CSC, RL, why
IMC friendly and the benefits of N:M sparse encoding.
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Work ISSCC'22 [1] | ISSCC 23 [4] | ISSCC'22[6] | ISSCC'23 [2] | ESSCIRC'23[3] | This Work
Technolog 28nm 28nm 5nm 4nm 28nm 28nm
MAC Implementation Digital Digital Digital Digital Digital Digital
IMC Sparsity Support X Rigid X X X RL/COO/N:M
Supply Voltage (V) 0.45-1.10 0.64-1.03 0.5-0.9 0.32-1.1 0.9-1.1 0.57-1.18
Macro Area (mm?) 0.049 NA 0.0133 0.0172 0.0159 0.24
Clock Frequency (MHz) 250 20-320 360-1440 1490 30-360 201-1160
. , 8T(55%) 8T x 2bit 6T+4T(50%)
Bitcell Transistors 8T 10T(45%) 12T Ol 6T+0.5T 6T(50%)
4K(Weights)
Array Size(b) 16K 1.15M 64K 54K 16K + 4K(Index)
. 1A:1-4b 1A: 1-8b 1A: 8/12/16 1A:1-8 IP:2b/4b/8b
Bit Precision W:1b INT8 W:4b W: 8/12 w: 8 W:4b/8b
Full output precision No Yes Yes Yes Yes Yes
Performance(GOPS)"27 62.5% 22.9" 104.735 127.15 0.95-11.6 41.29-238.86
Peak Energy Efficiency?’ § 15.6%70.37° § 87.4©) § § 5
(ToPSW) 9.6-15.5 (System) 17.5-63 413 22.4-60.4 4.38-57.67
Compute Density?*"
TOPS/mm? 2.59 0.85 0.44-1.76 0.27-1.01 0.12-1.46 0.21-1.2
275 2.97K* ) 11K-24K(1:16)
FoM 3.182K 325K5 3.942K 3.219K 0.9K-4.1K 5.5K12K(1:8)
(" Normalized to 8Kb. @ One operation is either 8b or addition. ©) au to 28nm

*Estimated from previous works. 4) 75% Sparsity, ® 92% Sparsity.  93.75% Sparsity (1:16 Sparsny)
GOPS Calculation (8b8b/4bdb): 32 (or) 64 (Rows) x 16 (Columns) x 2 (MAC)/Latency.
incurred by other works for a scaled-up matrix that fits in SP-IMC and not in other works. ® @ 12. 5% TR © @ 50% TR (0 @25% TR.
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comparison to prior digital IMCs.
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