
                                                                                     IEEE CICC 2024                                                                   

SP-IMC: A Sparsity Aware In-Memory-Computing Macro 
in 28nm CMOS with Configurable Sparse Representation 
for Highly Sparse DNN Workloads 
Amitesh Sridharan1, Fan Zhang1, Jae-sun Seo2, Deliang Fan1 

1Johns Hopkins University, Baltimore, MD. 
2Cornell Tech, New York, NY. 
Deep neural networks (DNNs) have experienced unprecedented 
success in a variety of cognitive tasks due to which there has been 
a move to deploy DNNs in edge devices. DNNs are usually 
comprised of multiply-and-accumulate (MAC) operations and are 
both data and compute intensive. In-memory computing (IMC) 
methodologies have shown significant energy efficiency and 
throughput benefits for DNN workloads by reducing data movement 
and eliminating memory reads.  Weight pruning in DNNs can further 
improve the energy/throughput of DNN hardware through reduced 
storage and compute. Recent IMC works [1-3,6] have not explored 
such sparse compression techniques unlike ASIC counterparts to 
enable storage benefits and compute skipping. A recent work [4] 
attempted to exploit this by compressing weights using a binary map 
and a custom compression format. This is sub-optimal because the 
implementation requires a complex routing mechanism (butterfly 
routing), additional compute to decode compressed weights and has 
limited flexibility in supporting different sparse encodings. Fig. 1 
illustrates our motivations and the challenges for implementing 
weight compression in digital IMC designs and the need for a new 
methodology to enable sparse compute directly on compressed 
weights. In this work, we present a novel sparsity-integrated IMC 
(SP-IMC) macro in 28nm CMOS which, for the first time, utilizes 
three popular sparse compression formats, i.e., coordinate 
representation (COO), run length encoding (RL) and N:M sparsity [7] 
all along the matrix column direction with tunable precisions. SP-IMC 
stores and directly processes the sparse compressed weights in the 
macro, achieving higher storage density, reduction in re-write 
operations to the macro and higher overall energy efficiency.  
Fig. 2 shows the proposed SP-IMC macro which comprises of 
64x128 bit-cells. The IMC macro consists of 16 column groups (CG), 
where each CG consists of 32 row groups (RG) and one 
accumulation logic (AL) block. Each RG has 16 bit-cells split into two 
8b-rows by a multiply decode and compare (MDC) block. The two 
8b-rows have four bits of 10T bit-cells for weight storage and another 
four bits of traditional 6T bit-cells to store the indices for decoding the 
compressed weights. The 10T bit-cell has four additional transistors 
T1-T4, besides the 6T. The transistor pairs “T1, T2” and “T3, T4” 
each perform AND operations in parallel with the streamed-in input 
activation (IA) and the stored weight to reduce the IA bottleneck in 
previous designs [1-6] which rely on a purely bit-serial approach to 
support large IA precision. Thus, each 10T bit-cell performs a 1b-
W:2b-IA multiplication and the four 10T bit-cells at the top and bottom 
collectively perform two 4b-IA:2b-W partial multiplications. These 
partial-multiply outs serve as inputs to the MDC block which has shift 
accumulators/partial multipliers to complete the 4b2b multiplications. 
The 4b indices at the top and bottom of the MDC block serve as the 
input to the RL/COO decode block which calculates the RLC indices 
based on the index from the previous column or directly pass the 
indices from the bit-cell to the comparator blocks. Now the 
comparators compare it with indices generated either by a local 
counter or the spillover counter. If the comparison is successful, the 
partial products (PP) are sent to the adder tree and then to a shift 
accumulator to complete MACs. The adder trees are split into two 
32-input trees, and the outputs of adder trees are shift-accumulated. 
The accumulator precision is chosen by the weight precision control 
(WPC) signal between 14b (for 8b-W) and 11b (for 4-b-W). Finally, a 
spillover accumulator is present to support edge cases of 
compressed weights, e.g. uneven sparsity across matrix columns. 
The SP-IMC supports three representative compression formats in 
the column direction for element-wise weight sparsity, namely RL, 
COO, and N:M sparse encoding. RL and COO formats have different 
dataflows to support the decode of their respective indices, as shown 
in Fig. 3. N:M sparse encoding follows the dataflow of COO. In COO 
mode, each column of the memory array generates an index 
(through local counters) every cycle that pertains to the index of 
stored weights in their respective columns and these indices are 

used to gate accumulations of PP 
generated in each RG using the 
comparators. The accumulated PPs are 
then sent to the shift accumulator block 
for IA precision compensation semi-bit 
serially (2-bits/cycle). The dataflow is 
similar in RL mode as well, but the index 
generator (counters) now generates the 
zero count (ZC) between two non-zero 
weights, and RL compression incurs 
additional decode hardware in the row 
direction to specify the non-zero weight 
position. The index stored in the neighboring CG[n-1] is streamed 
and is added with the indices in the current CG[n]. The spillover 
dataflow exists to support corner cases, for e.g., all elements of a 
matrix row are not always mapped to the same CG, (Fig. 4 COO-
CSC mapping) and can “spillover” to neighboring CGs. This arises 
out of uneven sparsity across matrix columns and is the case for RL, 
COO and N:M sparsity. It is greatly reduced for N:M sparsity due to 
fixed M. Fig. 3 shows the pipeline diagram of 4b-IA:4b-W MACs from 
a CG in the SP-IMC macro. It also shows the priority queue for index 
handling and the parallelism achieved in a SP-IMC to process sparse 
compressed MACs. The compression and IMC mapping 
methodology is elaborated in Fig. 4. Uncompressed mapping is done 
for convolutions by first flattening the 4D kernels to a 2D weight 
matrix and is transposed and stored onto the IMC array such that the 
kernel dimensions and input channel (R, S, C) fall into columns with 
adder trees and the output channel is mapped in the row direction to 
support parallel multiplications. We employ a similar approach when 
it comes to mapping compressed weights. Encoding in column 
direction is more IMC friendly because it retains column structure 
while breaking row structures, i.e., breaks accumulations and retains 
multiplications. Compressed sparse row (CSR) is not very IMC 
friendly and incurs additional hardware overhead i.e., IA reordering, 
additional accumulate and WB operations, hence not implemented 
in this macro. RL mapping is similar to COO, the indices are replaced 
with ZC. In RL to denote the end of each matrix column, its length is 
fixed, and the last element of all matrix columns are stored 
regardless of magnitude. Mapping matrices that have unequal non-
zero weight distribution in every column will lead to utilization issues 
in the IMC. This can be alleviated during training by employing a fine-
grained N:M sparsity structure as employed in Nvidia GPUs. Through 
this method the SP-IMC macro can also achieve a significant 
speedup by limiting the indices/column. Both RL and COO supports 
index/ZC precision of 4b and 8b which translates to 255 indices 
(COO) or 255 zeros (RL) between two non-zero elements. 
The SP-IMC chip is implemented in 28nm CMOS. We measure the 
chips at 250C, between 0.57 and 1.2V supply. SP-IMC achieves 8.4-
36.6 TOPS/W for 25% input toggle rate (TR) for fully non-sparse (i.e., 
only one index per column activating all bit-cells and adder trees 
nodes) 4b-IA:4b-W MACs and 7.5-115.3 TOPS/W for a pruning ratio 
of 1:16 with the same TR. Energy efficiency increases by 10% on 
average when the TR is decreased by 25%. Fig. 5 shows the 
measurement results. SP-IMC time-multiplexes sparsity. The adder 
tree activity factors decrease as the number of indices per column 
(i.e., sparsity) increases, because fewer adders are assigned to each 
index. SP-IMC shows 3-40´ decrease in area when compared to a 
non-sparse baseline implemented without decode hardware. Fig. 6 
shows the comparison with other works, and SP-IMC achieves the 
highest throughput regardless of sparsity due to dual IA parallelism. 
This work focuses on sparse compressed storage and so it vastly 
reduces the number of writes when compared to other works, this 
also affects the system latency. For the proposed FoM of (TOPS/W 
´ TOPS/mm2 ´ (# of weights stored per kb)), our work achieves up 
to 5.9´ higher when compared to the best prior work. In summary, 
this work introduces a fully digital sparsity integrated IMC macro 
capable of directly processing COO, RL and N:M encoded sparse 
representations along with different bit- precisions for both IA (2b, 4b, 
8b) and weight (4b, 8b), and with scalable sparsity (4b, 8b) for a 
variety of DNN workloads.  
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Fig. 1. Current sparse IMC implementation drawbacks, benefits of 
sparse encoding, challenges of sparse encoded weights in IMC. 

Fig. 2. Overall architecture of SP-IMC Macro, bit-cell schematic, 
layout, and micro-architecture of in-memory decode hardware. 

Fig. 3. Dataflow of various modes in SP-IMC, pipeline diagram, 
index priority queue, SpMM parallelism in memory. 

Fig. 4. Mapping methodologies for COO-CSC, RL, why CSR is not 
IMC friendly and the benefits of N:M sparse encoding. 

Fig. 5. Chip measurement results, accuracy results of pruned 
DNNs, area breakdown in macro and system level. 

Fig. 6. System latency, write operations, figure of merit (FoM), and 
comparison to prior digital IMCs. 
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RL/COO/N:MXXXRigidXIMC Sparsity Support
0.57-1.180.9-1.10.32-1.10.5-0.90.64-1.030.45-1.10Supply Voltage (V)

0.240.01590.01720.0133NA0.049Macro Area (mm2)
201-116030-3601490360-144020-320250Clock Frequency (MHz)

6T+4T(50%)
6T(50%)6T+0.5T8T x 2bit 

+OAI12T8T(55%)
10T(45%)8TBitcell Transistors

4K(Weights)
+ 4K(Index)16K54K64K1.15M16KArray Size(b)

IP:2b/4b/8b
W:4b/8b

IA: 1-8
W: 8

IA: 8/12/16 
W: 8/12

IA: 1-8b
W:4bINT8IA:1-4b

W:1bBit Precision

YesYesYesYesYesNoFull output precision

41.29-238.860.95-11.6127.15104.73522.9*62.5*Performance(GOPS)1,2,7

4.38-57.67622.4-60.487.4(8)

41.3(9)17.5-6315.64/70.375

(System)9.6-15.5Peak Energy Efficiency2,7

(TOPS/W)

0.21-1.20.12-1.460.27-1.010.44-1.760.852.59Compute Density2,3,7

TOPS/mm2

11K-24K(1:16)
5.5K-12K(1:8)0.9K-4.1K3.219K3.942K2.97K4

3.25K53.182KFoM2,7,3

(1) Normalized to 8Kb. (2) One operation is either 8b multiplication or addition. (3) Normalized quadratically to 28nm.
*Estimated from previous works. (4) 75% Sparsity, (5) 92% Sparsity. (6) 93.75% Sparsity (1:16 Sparsity).
GOPS Calculation (8b8b/4b4b): 32 (or) 64 (Rows) x 16 (Columns) x 2 (MAC)/Latency. (7)Excludes write energy/latency otherwise 

incurred by other works for a scaled-up matrix that fits in SP-IMC and not in other works. (8) @ 12.5% TR. (9) @ 50% TR (10) @25% TR.
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Includes write latency - 1 cycle/word size FoM = TOPS/W(2,7) * TOPS/mm2 (2,3,7) * # of W/kb
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