EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO
DIMENSIONS*

WENJIA JINGT, HUNG V. TRAN}, AND YIFENG YU$

Abstract. We study the effective fronts of first order front propagations in two dimensions
(n = 2) in the periodic setting. Using PDE-based approaches, we show that for every a € (0,1), the
class of centrally symmetric polygons with rational vertices (i.e., vectors in [ Jy cg AZ?) and nonempty
interior is admissible as effective fronts for front speeds in C'*(T?2, (0, 00)). This result can also be
formulated in the language of stable norms corresponding to periodic metrics in T2. Similar results
were known long time ago when n > 3 for front speeds in C*°(T", (0, 00)). The two dimensional case
is much more subtle due to topological restrictions. In fact, for given C1:*(T2, (0, 00)) front speeds,
the effective front is C! and hence cannot be a polygon. Our regularity requirements on front speeds
are hence optimal. To the best of our knowledge, this is the first time that polygonal effective fronts
have been constructed in two dimensions.
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trally symmetric polygons; stable norm; limit shape
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1. Introduction. In this paper, we are concerned with fine properties of the
effective fronts of first order front propagations in oscillatory periodic environment in
two dimensions. The front propagation is modeled by the following Hamilton-Jacobi
equation with oscillatory periodic coefficient:

(1.1) uf—l—a(f) |Duf| =0 in R™ x (0, 00),
' us(z,0) = g(x) on R™.

Here, ¢ € (0,1), g € BUC(R™) N Lip (R™) is the initial data, where BUC (R") is
the space of bounded, uniformly continuous functions on R™. The coefficient a :
R™ — (0,00) determines the normal velocity in the underlying front propagation
model. Throughout the paper we deal with a that is continuous, Z™-periodic and

non-constant positive function. Denote by T = R™/Z" the n-dimensional flat torus.
We then write a € C(T", (0,00)).

We now give a minimalistic review of the literature on the qualitative homoge-
nization of (1.1), which fits in the classical and standard framework (see [18, 10, 21]).
As € — 0, the solution u® of (1.1) converges, locally uniformly on R™ x [0, 00), to the
solution of the effective (homogenized) problem:

u; + H(Du) =0 in R™ x (0, 00),

(1.2) u(z,0) = g(x) on R™.
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2 W. JING, H. V. TRAN, AND Y. YU

Here, H is the effective Hamiltonian determined by the Hamiltonian H (z, p) = a(z)|p|
of (1.1) in a nonlinear way as follows. For each p € R™, H(p) is the unique real number
such that the following equation admits a continuous viscosity solution

(1.3) a(y)lp + Dup(y)| = H(p) in T".

This is the well-known cell (ergodic) problem. Although H(p) is unique, v, is not
unique in general even up to additive constants. It is known that H(p) has the
following inf-max representation formula (see e.g., [21])

14)  H(p)= inf Do(y)| = inf Dé(y)|.
(1.4) (p) pedih, max a(y)lp + Do(y)| pednf | max a(y)lp + Do(y)|

Clearly, H _is convex, even, and positively homogeneous of degree 1. We sometime
write H = H, to emphasize the dependence on the function a. Due to those properties
of H,, its 1-sublevel set

S,:={peR": H,(p) <1}

belongs to W, which denotes the collection of all convex compact sets in R™ that are
centrally symmetric with nonempty interior.

Due to the 1-homogeneity of H,, it is determined by S,. By effective front we
mean the dual set D, of S,, defined by

(1.5) D, ={qeR":q-p<1,Vpe S,}.

D, is also convex and it is known to be the large time average limit of the so-called
reachable set that arises in the control representation of (1.1). See more discussions
in Remark 1.3.

As in general homogenization theory, the function a in (1.1) models the periodic
environment that rules the front propagation in the microscopic scale. In the limit as
¢ — 0, the homogenized problem (1.2) captures the effects of the oscillatory periodic
environment on front propagations in the macroscopic level. From both mathematical
and practical point of views, it is very important and interesting to characterize certain
finer details of the effective Hamiltonian H, or equivalently, those of the set S, in the
current setting. For example, in combustion literature, the well-known G-equation
is often used as another front propagation model, and the effective burning velocity
associated to it is sometimes taken to be isotropic for convenience (see [17]). This
strongly motivates the following question.

Question 1.1. For what kind of W € W does there exist a € C(T", (0, 00)) such
that S, = W?

Here, we set a in the regularity class C(T", (0, 00)) since this is most common in
the homogenization theory of Hamilton-Jacobi equations. In environments of compos-
ite materials, piecewise constant functions (or more generally, L>(T", (0, 00)) func-
tions) are probably more suitable.

The above question is often called the realization problem, which remains largely
open. Below we summarize what is known so far. Most of them were formulated in
equivalent forms in terms of § functions in the Aubry-Mather theory or in terms of
the stable norms of periodic metrics in geometry; see Remark 1.3.

1. When n > 3, all centrally symmetric polytopes with rational vertices and
nonempty interior are realizable for some front speed a € C*°(T", (0, 0)).

This manuscript is for review purposes only.



76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

91

92

93
94

95
96
97
98
99
100
101

112
113
114
115
116

EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 3

This was first studied in the seminal work [13], and completed by [3, 2, 16, 15]
via different approaches. Hence, the set of realizable convex sets are dense
in W. Very little is known about finer properties of S, except along some
irrational directions (see [7] for instance).

2. When n = 2, the result in [8] implies that 95, is C' if a € C**(T?) due to
some topological restrictions in two dimensional spaces and due to the fact
that the initial value problem of the ODE system & = V(€) has a unique
solution for V' € Lip(R?). If we assume further that a € C*°(T?, (0, 00)),
then there are other restrictions on S,: for example, [4] yields that S, cannot
be a strictly convex set other than a disk.

A very natural question arising from (2) above is: for n = 2, are all centrally
symmetric polygons with rational slopes and nonempty interior realizable if we lower
the regularity of a to C1*(T?2, (0,00)) for a € (0,1)? See [6, 5] for more questions on
possible shapes and differentiability properties of S,. Hereafter, a polygon is said to
be centrally symmetric with rational slopes if it can be expressed as

. = . caop <
(1.6) P={peR éliégnlqz p| <1}

for m given rational vectors {g;}"™, C R".

The following is our main result, which gives an affirmative answer to the above
question.

THEOREM 1.2. Assume thatn = 2. Then, for any a € (0,1) and for any centrally
symmetric polygon P with rational slopes and nonempty interior, there exists a €
C12(T?,(0,00)) such that

S, =P.

Remark 1.3. We can formulate the result of Theorem 1.2 in the language of stable
norms corresponding to periodic metrics as follows. We view a € C(T?,(0,0)) as a
Z2-periodic function in R2, and it defines a Riemannian metric

L e o
9= (@) (day + da3)

on R? that is clearly periodic. Let d,(-,-) denote the distance function induced by
this metric. The stable norm associated to g, or a, is well defined by

d. (0, \v)
A

See [6] for more background. In particular, it was proved there that, for all v € R?,

[Allvlla = da(0, Av)| < C

||U||a = )\h~>n;o ; v E R2'

for a universal constant C' > 0. In view of the connection between the stable norm

I ||le and the effective Hamiltonian H,, given a polygon P with rational slopes {¢;}7 4,
-—=a

S, = P means that the unit ball B of the stable norm satisfies

Bl =conv({xq : 1 <i<m}).

Here, conv(E) is the convex hull of a set E, i.e., the smallest convex set that contains
E. Tt is standard to check that B] is the dual set of S, in R™; see (1.5). In [15], we
wrote ET as D,. Thus, Theorem 1.2 implies that all centrally symmetric polygons
with rational vertices and nonempty interior are realizable as unit balls of the stable
norms associated to some a € C1%(T?2, (0, 00)).

This manuscript is for review purposes only.
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4 W. JING, H. V. TRAN, AND Y. YU

Remark 1.4. Thanks to [23, Theorem 1.1], for a € C(T?, (0, 00)), 85, cannot have
an edge of irrational slope. Thus, our main result, combined with [23], shows that a
polygon is an effective front for some a € C(T?,(0,00)) if and only if it is centrally
symmetric with rational vertices and nonempty interior.

In view of the duality between S, and E‘f, Question 1.1 can also be reformulated
in terms of unit balls of stable norms.

Question 1.5. For what kind of W € W does there exist a € C(T", (0, 00)) such
that B} = W?

We mention that it was proved in [20] that there exists a € C°°(T?, (0, 0)) such
that

(1.7) {#¢; : 1<i<m}cCaBy,

i.e., the stable norm is partially prescribed. Our PDE based approach also provides
a very simple proof of this fact. See Remark 2.3 at the end of Section 2.

It is worth mentioning that Questions 1.1 and 1.5 also appear in the first pas-
sage percolation literature, where the unit ball of the stable norm is called the limit
shape. In the general stationary ergodic setting, that is a : R™ x Q — (0, 00) being a
stationary ergodic random field, it was proved in [9] that the limit shape exists and is
a deterministic convex compact set in R™. Then, it was shown in [12] that any sym-
metric compact convex set C' with nonempty interior is a limit shape corresponding
to some stationary ergodic a. However, when a is restricted to the independent and
identically distributed (i.i.d.) setting, Question 1.5 is completely open, and it is of
great interests to study properties of the limit shape. We refer the readers to [1] for
detailed discussions and a list of extremely interesting open problems. For example,
it is expected that the n-dimensional cube is not a possible limit shape in the i.i.d.
setting.

As an immediate consequence of Theorem 1.2, we obtain the following result,
which also follows from the less delicate inclusion (1.7).

COROLLARY 1.6. The two collections
{Sa : a€C™(T2,(0,00)}  and {Eﬁ Lac COO(TQ,(O,OO))}

are both proper dense sets in W.

Our proof of Theorem 1.2 is done by explicit construction and relies on the char-
acterization (1.4). Similar to the proof in [15] for higher dimensional cases (n > 3),
a rough idea to construct a is sort of clear: form a network of curves pointing to the
rational directions {¢;}7*,, and assign values of a appropriately in this network. The
curves in this network serve as highways so that proper assignment of values of a here
guarantees that ¢;’s are in the effective front, proving the lower bound. Let a be very
small away from the network of highways so that, to check the upper bound, we can
choose appropriate test functions in (1.4) and still concentrate on behaviors close to
the network. In three dimensions this strategy is easy to carry out since we can easily
choose disjoint straight lines as highways pointing to the directions {¢;}7,, thanks to
the availability of space. In two dimensions, however, those highways always intersect
and it is very delicate to design a near the intersection points to make everything still
compatible.

This manuscript is for review purposes only.



EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 5

160 We would like to mention that this paper belongs to an ongoing project of sys-
161 tematic studies of inverse problems in periodic homogenization of Hamilton-Jacobi
162 equations (see [19, 14, 22]).

163 The rest of the paper is organized as follows. The proof of Theorem 1.2 is given
164 in Section 2. Some auxiliary results are given in Appendix A.

165 2. Proof of Theorem 1.2. Let P be a centrally symmetric polygon with ra-
166 tional slopes {¢;}1™; of the form (1.6). Since n = 2, we can assume that the rational
167 vectors {g;}™,; C R? are arranged clockwise; see Figure 1. For each i = 1,..,m, there
168 is a unique real number )\; > 0, and a unique irreducible integer vector (k;, £;) € Z?
169 so that

170 g = Ni (ki 4;).

171 Note that by the definition (1.6), {g;}/, form normal vectors of half of the faces of
172 P. By symmetry, we order the other half by

173 Gm+i = —4i, 1<i<m.

174 Let p; be the vertex of P between ¢; and ¢; 41 for 1 <i < 2m — 1. Then the vertices
175 {p;}, of P (in fact, half of them) are determined by

176 (2.1) Pi-¢i=pi-¢+1 =1 and max |g;-pi] <1, 1<i<m.
JFiit1
1<j<m

—

_q|
177
Fig. 1: Polygon P with vertices p1,po, ..., Pom
178 LEMMA 2.1. Suppose that & € C1([0,T],R?) satisfies that
179 E(T) —£(0) = (k, ) € Z2.

180 Then for § = fOT mm(tﬂ dt, we have

181 H(p) > Ap- (k,0), Vp € R%.

This manuscript is for review purposes only.
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6 W. JING, H. V. TRAN, AND Y. YU

Proof. Without loss of generality we assume A > 0. Owing to the inf-max formula
(1.4), it suffices to show that for any fixed p € R? and for any ¢ € C>(T?),

M = max a(z)|p + Dé(x)| 2 Ap- (k. ©).
Let u(z) = p-x + ¢(x). Then, we compute and check

T
pe (k. 6) = w(E(T) ~u(€(0) = [ o+ Do(e(e) -y ar < -

The desired inequality follows immediately. 0

Proof of Theorem 1.2. Given a polygon P C R? with rational slopes {g;}, let
{p:}M, (and the vectors opposite to them) be the vertices of P. Given a € (0,1),
our goal is to construct a speed function a € C1*(T?,(0,00)) so that the associated
effective Hamiltonian H = H, satisfies the following properties:

(i) for all p € R?, and for all i = 1,2,...,m,

. H(p) > .l
(2.2) H<p)—123§§n |gi - p|

(ii) foralli=1,2,...,m,

(2.3) H(p;) < 1.
In view of (1.6), the first inequality shows {H(p) < 1} C P, i.e., S, C P. On the
other hand, since P is the convex hull of {£p;}, and H(p) is convex and even, the
second inequality above implies H(p) < 1 for all p € P, i.e., P C S,. This would
prove Theorem 1.2.

Before diving into details, let us first present the basic idea of constructing the
weight function a: for 1 < ¢ < m and each prescribed direction ¢;, choose a suitable
periodic curve §; with rotation vector parallel to ¢; that form a network. By assigning
suitable values of a(x) along &;, we can use Lemma 2.1 to obtain (2.2) in a rather
straightforward way. The other inequality (2.3) is more subtle. To achieve that, for
each i, the key is to build a periodic smooth subsolution v; of

a(x)|p; + Dv;| <1 on R2

Moreover, we need both &; and ;41 to be gradient flows of u; = p; - © + v; asso-
ciated to the common vertex p; (see the paragraph below for motivations). Due to
the two dimensional topological restrictions, & and &1 have to be tangent at their
intersections. Accordingly, we need to let u; equal to a function with multiple gra-
dient flows starting from the intersection points. This is why we cannot simply use
straight lines for &; as in the three dimensional case, and the lower regularity of a(z)
is necessary. In order to glue the pieces together, we choose u; = u; near intersection
points (& +Z*)N(&; +Z?) and then properly extend to a neighborhood of the network
using methods in the Appendix, which provides the value of a(x) near the network
by denoting a(z) = ‘D—luil near & + Z? for each i. Finally, for each i, extend u; to R2
and adjust a(z) to make it close to 0 away from the network, which will ensure that
u; is a subsolution in the whole plane.

We would like to remark that the above construction method is more or less
necessary. In fact, suppose that a(x) is a continuous function with given form of H.

This manuscript is for review purposes only.
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 7

By the classical Aubry-Mather theory and suitable approximations, we can show that
for each ¢ = 1,2, .., m, there exists a Lipschitz continuous periodic viscosity solution
v; to

a(x)|p; + Dv;| =1 on R?

and v; has two periodic gradient flows &; and &;;1 with rotation vectors parallel to ¢;
and g;41 respectively.

Step 1. Creation of a suitable network. First we choose m lines {L;}™; in R?
such that L, is parallel to ¢; and, when projected to T?, no three lines intersect at the
same point. Then, by (2.1), for every two distinct points « and y on L;, we have that

Ipi - (x —y)| > max [p;-(z —y)l|
i1
1<j<m

Consider all integer translations of L;, which form a network inl (Li + Zz). Let

m
I = the collection of all intersection points in U (Ll- + ZQ).
i=1

Note that the intersection set I is Z2-periodic. Denote
d=minfle —yl: v +y, .y € I}.

Due to the rationality of ¢;’s, I/Z? is finite and d > 0.

Qi

Li

\ X, +(mi,ni)

Fig. 2: Intersection points on L;

Next, in a small neighborhood of each fixed intersection point in I, we perturb the
two corresponding intersecting lines a bit to create gradient flows of an appropriate

This manuscript is for review purposes only.
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8 W. JING, H. V. TRAN, AND Y. YU

function. Since this is purely local, by linear transformations and translations, it
suffices to show how to perform this procedure in a neighborhood of the origin (0, 0)
provided that Lq, Ly are the x;-axis and xs-axis, respectively.

Let @ € (0,1) as fixed in Theorem 1.2, pick k € N so that

1
<1— —.
=T
Consider the potential function
ik 1-2%
u(xy, xe) = Cy (1 + x%) + 21,
Cr

where Cj, > 1 is a positive constant to be determined. Clearly, v € Cl1-2 (R?) and
is C? away from the origin. We say a curve v : J C R — R? is a gradient flow of the
potential function u if it solves

V() = Du(y(1)), el

where J is the maximal open interval of the solution and, without loss of generality,
we may assume 0 € J. Moreover, we say a gradient flow passes through the origin if
~v(0) = 0.

To modify L; and Lo locally near the intersection point (here set to be the origin
(0,0)), we show that for the potential function u defined above, there are infinitely
many gradient flows of it passing through the origin. We can then keep Li, for
instance, while replacing Lo by (the image of) a different gradient flow of u near the
origin.

LEMMA 2.2. Fix Cy, > 2k(4k +1). Then, u has infinitely many distinct gradient
flows passing through the origin.

Proof. Consider the curve v1(t) = (f(¢),0), where f is the unique solution to

Apparently, v; : J — R? is a gradient flow of u passing through the origin, where J
is the maximal open interval containing 0 of the solution.

To prove the lemma, it suffices to show that if £(t) = (21(t), 72(t)) : J = R%is a
gradient flow of v and

£0)eD:={(a,b) : 0<a<1, 0<b<a®*},

then

£(J N (=00,0)) N (0,00)% C D.

This manuscript is for review purposes only.



EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 9

Ty = z*

Fig. 3: Graph of £ in D

Note that 21 (t) and z2(t) are both increasing within D, the above statement would
imply that £ must intersect the flow ~; (the x; axis) at the origin. By translation in
time, we obtain a different gradient flow of u passing through the origin.

Now suppose the statement fails, then there exists 6 < 0 such that

0 < x2(0) =23%(0) and 0 < xo(t) < 22%(t) <1 for t € (6,0).

At 0,
Crat"1(0) _ ugy (21(6),22(0)) _ x5(6) 2k—1
= <2 .
T ah S @(0).020) o) o
This contradicts the choice of C. The proof is complete. ]

By this construction, we are able to form m periodic curves {L}{Zl and their
integer translations such that, for some small r € (0, %),
1. L; = L; away from the set I, = {x € R? : d(z,I) < r};
2. the set of intersection points remains the same, i.e., for ¢ # j and any integer
vector v € Z2,
Liﬂ(Lj -‘r’U) :Liﬁ(Lj—l-’U);

Equivalently, L; N ij = L; N L; when projected to T?.
3. given i # j and an integer vector v € Z2, if L; and f/j + v intersect at
T =y, then there exists a C1'* function u = u; ;,, in B (z) such that
e [Du(z)| > 1in Bz (z);
e within Bx (), L; and f/j —+uv are two gradient flows of u that only intersect
at x;
e (periodicity) if two intersection points x;j, = xy j.»» + w for some
w € Z2, then

Wi (T +w) = up oo (x) for @ € Bz jr0r).

This says that u is well defined on Iz when being projected to the flat
torus T2.

This manuscript is for review purposes only.



10 W. JING, H. V. TRAN, AND Y. YU

282 The perturbed network is henceforth denoted by

283 r= J (Li+7%.

1<i<m

284

Fig. 4: Local perturbation at the intersection of L; and Lo

285 Step 2. Initial choice of ag. We can choose 7o € (0,%) and ag € C*(T?, (0, 00))
286 such that ag is C'™ away from the set I and satisfies the following conditions.

287 1. for each given intersection point z = x;;, € I and the associated function
288 U = U; j, from the above
289 (y) L f € By, ()
28¢ aop(y) = or r Z);
|Du(y)| B
290 2. for every two intersection points z,y on L;for1< i <m (ie, z,y € LN I),
291 the weighted length I;(z,y) between z and y along L; satisfies
1 1 .

202 (2.4) o) i= [ s Old = i (@ )l

' o ao(&(?)) '

293 Here, £ : [0,1] — L; is an arbitrary parametrization of L; between and y. In
294 particular, the weighted length of each period (i.e., from z to « + (k;, £;)) of L; is )\%
205 The existence of ag is clear provided r > 0 is small enough. By Lemma 2.1,

206 (2.5) H,,(p) > max lg: - pl, Vp € R?.

207 Fori=1,2,....,m, let & : R — L; be the smooth reparametrization of L; such that

: 1
298 i) =——— forteR.
& (0)] o)
200 For each § > 0 and i = 1,2,...,m, define L; s = {z : d(z,L;) < 6} and let
300 Ts={z €R® : d(2,T) <6} = | (Lis + 2.
i=1

This manuscript is for review purposes only.
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 11

Owing to Lemma A.1 and the periodicity of T', there exists a universal dg € (0,7q)
such that for each ¢ = 1,2,...,m, there exists w; € Cl’o‘(f]iy(so) such that w; is C*
away from intersection points and

1. &(t) = Dw;(&(t)) for all t € R, i.e., & is the gradient flow of w;

2. Dw;(z) = Duy j(x) for & € Bs,(z;.,), for each intersection point x; ;.

along L;;

3. infzeii,ao |D’U}1(l‘)| > 0.

Then, for x € I',, we define

1

=~ ifz—ve L forveZ.
Dun(z =) ifor—wv 5, for v

ap(z)

Extend ag so that it belongs to C1®(T?2, (0, 00)) and is smooth away from I.

Fig. 5: Part of I's,

Step 3. Adjustments of ay. Next we need to construct a € C1*(T?,(0,00)) that
is smooth away from I,

s}

=ay onl,

and, for 1 <7 <m, Hg(p;) < 1. Since @ agree with ag of the previous section along
L;’s, the property (2.4) and, by Lemma 2.1, the inequality (2.5) are preserved. Hence,
both (2.2) and (2.3) hold for a. This finishes the proof of Theorem 1.2.

Note that, owing to (2.1), for given i € {1,2,..,m}, the following points hold
e for j =4,7+ 1 and two intersection points =,y € L;,

pi @ —pi -yl =1(z,y);
e for j # 4,9+ 1 and every two distinct intersection points z,y € L;,

i@ —pi-yl=Ipi-(x—y)| Sl;?gfjlpr(x—y)\ <lpj - (@ =y =1(z,y).

This manuscript is for review purposes only.
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12 W. JING, H. V. TRAN, AND Y. YU

In light of Remark A.2 and the periodicity of ', there exists pg € (0, d9) such that for
each i = 1,2,...,m, there exists a function @; € C1*(T,,,) such that

a; € C12(Ty,), ;€ C(T,\1),
infréo |DI~L,L‘ > O7
i; —p; -« is Z%-periodic in | R

|Dﬁ1‘ S \Dwz| iIl F“O,

and for any intersection point x = x; 1, € I,
Di; = Dwj = Dujp,o  in Byy(@ij0)-

We extend i; — p; -« to v; € CH¥(T?) such that v; is C? away from I, and for
Ui = Pi = T+ Vi,
u; = U; on F%.

Now let

K, = [nax max |Du;(z)] and K= max ap(x).

Choose ¢(x) € C*°(T?,(0,1]) such that

1 forxel"%,

¢(z) =

1
m for x S Rz\FHTO

Finally, let
a(x) = ¢(x)ag(x) for z € R?.

Then, for i =1,2,...,m,
a(x)|p + Dv;(x)| < a(x)|Dw;(x)] = ¢(z) <1 for z € I'ua,

~ ao(x)|Du;(x
a(@)lp + Dui(e)| = EIPuE < for € B\

which says

max a(z)|p + Dv;(z)| = max a(z)|Du;(z)] < 1.
z€ER? zER2

By the inf-max formula (1.4), for 1 < i < m,

H&(pi) S 1.

This verifies that a constructed above has the desired properties, and the proof of
Theorem 1.2 is completed. 0

Remark 2.3. Our method also provides a simple proof of the following result in
[20]: there exists a € C°°(T?, (0,)) such that

(2.6) {#¢; : 1<i<m}cCdB].

In fact, to prove this claim, no gradient matching is needed at the intersections. Steps
1 and 2 in the proof of Theorem 1.2 are not needed. Below we give some adaptions
to get (2.6). We use the straight line network U™, (Li + ZZ) directly.
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1. Pick a € C*°(T?,(0,00)) such that a = 1 in a small neighborhood of I, and

(2.4) holds with a, L; in place of ag, L;, respectively.
2. In Step 3 of the proof of Theorem 1.2, choose u; as

0
uil®) = qu-\
K3

(T = ®ijw) + 0 Tig

near each intersection point x; ; ,. Then, using the method of characteristics
(see [11, Chapter 3] for instance), we extend u;(x) to a smooth function on
I's for some § > 0 such that

a(x)|Du;(z)] =1 in Ts.

3. Finally, following the same arguments in Step 3 of the proof of Theorem 1.2,
we can conclude.

Appendix A. Some auxiliary lemmas.

LEMMA A.1. Suppose that v : [0,1] — R? is a smooth curve satisfying that

L mingeo,) [(6)] > 0 and y(t1) # v(t2) for t1 # t2;
2. there exist r > 0 and ug,u; € C*(R?) such that

V() = Duo(y(t))  fort €[0,7],
A(t) = Duq(v(t)) fortel—r1].

Then, there ezist 6 > 0, an open neighborhood U of v, and u € C*(U) such that

infy |Du| >0,
Du = Duyg in Bs(v(0)),
Du = Duy in Bs(v(1))

and
A(t) = Du(y(t)) fort € ]0,1].
The proof of the above lemma is standard, and we leave it as an exercise for the
interested readers.
Remark A.2. Consider the same set-up of Lemma A.1. Let a(vy(t))
for t € [0,1], and

_ 1
= Du(v@®)]

o _
M= /0 oy 1Ol = u(1) = u(0))

For each r € (—M, M), let 7 > 0 be sufficiently small, and choose h € C*°(R) so that

h(t) =t for t € [0, 3],
ht)=r+t—M for t € [M — Z, M],
()] <1 for all ¢ € [0, M].

Then, u, = h(u — u(v(0))) + u(v(0)) satisfies that
ur(7(0)) = u(v(0),  ur(y(1)) = u((0)) +r.
Moreover, we also have |Du,| < |Du| in U and
Du,(z) = Du(z) for x € B,(v(0)) U B,(y(1))

for some p > 0.
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