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Abstract. We study the e↵ective fronts of first order front propagations in two dimensions4
(n = 2) in the periodic setting. Using PDE-based approaches, we show that for every ↵ 2 (0, 1), the5
class of centrally symmetric polygons with rational vertices (i.e., vectors in

S
�2R �Z2) and nonempty6

interior is admissible as e↵ective fronts for front speeds in C1,↵(T2, (0,1)). This result can also be7
formulated in the language of stable norms corresponding to periodic metrics in T2. Similar results8
were known long time ago when n � 3 for front speeds in C1(Tn, (0,1)). The two dimensional case9
is much more subtle due to topological restrictions. In fact, for given C1,1(T2, (0,1)) front speeds,10
the e↵ective front is C1 and hence cannot be a polygon. Our regularity requirements on front speeds11
are hence optimal. To the best of our knowledge, this is the first time that polygonal e↵ective fronts12
have been constructed in two dimensions.13
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1. Introduction. In this paper, we are concerned with fine properties of the17

e↵ective fronts of first order front propagations in oscillatory periodic environment in18

two dimensions. The front propagation is modeled by the following Hamilton-Jacobi19

equation with oscillatory periodic coe�cient:20

(1.1)

(
u
"
t + a

�
x
"

�
|Du

"| = 0 in Rn ⇥ (0,1),

u
"(x, 0) = g(x) on Rn

.
21

Here, " 2 (0, 1), g 2 BUC (Rn) \ Lip (Rn) is the initial data, where BUC (Rn) is22

the space of bounded, uniformly continuous functions on Rn. The coe�cient a :23

Rn ! (0,1) determines the normal velocity in the underlying front propagation24

model. Throughout the paper we deal with a that is continuous, Zn-periodic and25

non-constant positive function. Denote by Tn = Rn
/Zn the n-dimensional flat torus.26

We then write a 2 C(Tn
, (0,1)).27

We now give a minimalistic review of the literature on the qualitative homoge-28

nization of (1.1), which fits in the classical and standard framework (see [18, 10, 21]).29

As " ! 0, the solution u
" of (1.1) converges, locally uniformly on Rn ⇥ [0,1), to the30

solution of the e↵ective (homogenized) problem:31

(1.2)

(
ut +H(Du) = 0 in Rn ⇥ (0,1),

u(x, 0) = g(x) on Rn
.

32
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2 W. JING, H. V. TRAN, AND Y. YU

Here, H is the e↵ective Hamiltonian determined by the Hamiltonian H(x, p) = a(x)|p|33

of (1.1) in a nonlinear way as follows. For each p 2 Rn, H(p) is the unique real number34

such that the following equation admits a continuous viscosity solution35

(1.3) a(y)|p+Dvp(y)| = H(p) in Tn
.36

This is the well-known cell (ergodic) problem. Although H(p) is unique, vp is not37

unique in general even up to additive constants. It is known that H(p) has the38

following inf-max representation formula (see e.g., [21])39

H(p) = inf
�2C1(Tn)

max
y2Tn

a(y)|p+D�(y)| = inf
�2C1(Tn)

max
y2Tn

a(y)|p+D�(y)|.(1.4)40
41

Clearly, H is convex, even, and positively homogeneous of degree 1. We sometime42

writeH = Ha to emphasize the dependence on the function a. Due to those properties43

of Ha, its 1-sublevel set44

Sa := {p 2 Rn : Ha(p)  1}45

belongs to W, which denotes the collection of all convex compact sets in Rn that are46

centrally symmetric with nonempty interior.47

Due to the 1-homogeneity of Ha, it is determined by Sa. By e↵ective front we48

mean the dual set Da of Sa, defined by49

(1.5) Da := {q 2 Rn : q · p  1, 8 p 2 Sa}.50

Da is also convex and it is known to be the large time average limit of the so-called51

reachable set that arises in the control representation of (1.1). See more discussions52

in Remark 1.3.53

As in general homogenization theory, the function a in (1.1) models the periodic54

environment that rules the front propagation in the microscopic scale. In the limit as55

" ! 0, the homogenized problem (1.2) captures the e↵ects of the oscillatory periodic56

environment on front propagations in the macroscopic level. From both mathematical57

and practical point of views, it is very important and interesting to characterize certain58

finer details of the e↵ective Hamiltonian H, or equivalently, those of the set Sa in the59

current setting. For example, in combustion literature, the well-known G-equation60

is often used as another front propagation model, and the e↵ective burning velocity61

associated to it is sometimes taken to be isotropic for convenience (see [17]). This62

strongly motivates the following question.63

Question 1.1. For what kind of W 2 W does there exist a 2 C(Tn
, (0,1)) such64

that Sa = W?65

Here, we set a in the regularity class C(Tn
, (0,1)) since this is most common in66

the homogenization theory of Hamilton-Jacobi equations. In environments of compos-67

ite materials, piecewise constant functions (or more generally, L1(Tn
, (0,1)) func-68

tions) are probably more suitable.69

The above question is often called the realization problem, which remains largely70

open. Below we summarize what is known so far. Most of them were formulated in71

equivalent forms in terms of � functions in the Aubry-Mather theory or in terms of72

the stable norms of periodic metrics in geometry; see Remark 1.3.73

1. When n � 3, all centrally symmetric polytopes with rational vertices and74

nonempty interior are realizable for some front speed a 2 C
1(Tn

, (0,1)).75
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 3

This was first studied in the seminal work [13], and completed by [3, 2, 16, 15]76

via di↵erent approaches. Hence, the set of realizable convex sets are dense77

in W. Very little is known about finer properties of Sa except along some78

irrational directions (see [7] for instance).79

2. When n = 2, the result in [8] implies that @Sa is C
1 if a 2 C

1,1(T2) due to80

some topological restrictions in two dimensional spaces and due to the fact81

that the initial value problem of the ODE system ⇠̇ = V (⇠) has a unique82

solution for V 2 Lip(R2). If we assume further that a 2 C
1(T2

, (0,1)),83

then there are other restrictions on Sa: for example, [4] yields that Sa cannot84

be a strictly convex set other than a disk.85

A very natural question arising from (2) above is: for n = 2, are all centrally86

symmetric polygons with rational slopes and nonempty interior realizable if we lower87

the regularity of a to C
1,↵(T2

, (0,1)) for ↵ 2 (0, 1)? See [6, 5] for more questions on88

possible shapes and di↵erentiability properties of Sa. Hereafter, a polygon is said to89

be centrally symmetric with rational slopes if it can be expressed as90

(1.6) P = {p 2 Rn : max
1im

|qi · p|  1}91

for m given rational vectors {qi}mi=1 ⇢ Rn.92

The following is our main result, which gives an a�rmative answer to the above93

question.94

Theorem 1.2. Assume that n = 2. Then, for any ↵ 2 (0, 1) and for any centrally95

symmetric polygon P with rational slopes and nonempty interior, there exists a 296

C
1,↵(T2

, (0,1)) such that97

Sa = P.98

Remark 1.3. We can formulate the result of Theorem 1.2 in the language of stable99

norms corresponding to periodic metrics as follows. We view a 2 C(T2
, (0,1)) as a100

Z2-periodic function in R2, and it defines a Riemannian metric101

g =
1

a(x)
(dx2

1 + dx
2
2)102

on R2 that is clearly periodic. Let da(·, ·) denote the distance function induced by103

this metric. The stable norm associated to g, or a, is well defined by104

kvka = lim
�!1

da(0,�v)

�
, v 2 R2

.105

See [6] for more background. In particular, it was proved there that, for all v 2 R2,106

|�kvka � da(0,�v)|  C107

for a universal constant C > 0. In view of the connection between the stable norm108

k·ka and the e↵ective HamiltonianHa, given a polygon P with rational slopes {qi}mi=1,109

Sa = P means that the unit ball B
a
1 of the stable norm satisfies110

B
a
1 = conv ({±qi : 1  i  m}) .111

Here, conv(E) is the convex hull of a set E, i.e., the smallest convex set that contains112

E. It is standard to check that B
a
1 is the dual set of Sa in Rn; see (1.5). In [15], we113

wrote B
a
1 as Da. Thus, Theorem 1.2 implies that all centrally symmetric polygons114

with rational vertices and nonempty interior are realizable as unit balls of the stable115

norms associated to some a 2 C
1,↵(T2

, (0,1)).116
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4 W. JING, H. V. TRAN, AND Y. YU

Remark 1.4. Thanks to [23, Theorem 1.1], for a 2 C(T2
, (0,1)), @Sa cannot have117

an edge of irrational slope. Thus, our main result, combined with [23], shows that a118

polygon is an e↵ective front for some a 2 C(T2
, (0,1)) if and only if it is centrally119

symmetric with rational vertices and nonempty interior.120

In view of the duality between Sa and B
a
1 , Question 1.1 can also be reformulated121

in terms of unit balls of stable norms.122

Question 1.5. For what kind of W 2 W does there exist a 2 C(Tn
, (0,1)) such123

that B
a
1 = W?124

We mention that it was proved in [20] that there exists a 2 C
1(T2

, (0,1)) such125

that126

(1.7) {±qi : 1  i  m} ⇢ @B
a
1 ,127

i.e., the stable norm is partially prescribed. Our PDE based approach also provides128

a very simple proof of this fact. See Remark 2.3 at the end of Section 2.129

It is worth mentioning that Questions 1.1 and 1.5 also appear in the first pas-130

sage percolation literature, where the unit ball of the stable norm is called the limit131

shape. In the general stationary ergodic setting, that is a : Rn ⇥ ⌦ ! (0,1) being a132

stationary ergodic random field, it was proved in [9] that the limit shape exists and is133

a deterministic convex compact set in Rn. Then, it was shown in [12] that any sym-134

metric compact convex set C with nonempty interior is a limit shape corresponding135

to some stationary ergodic a. However, when a is restricted to the independent and136

identically distributed (i.i.d.) setting, Question 1.5 is completely open, and it is of137

great interests to study properties of the limit shape. We refer the readers to [1] for138

detailed discussions and a list of extremely interesting open problems. For example,139

it is expected that the n-dimensional cube is not a possible limit shape in the i.i.d.140

setting.141

As an immediate consequence of Theorem 1.2, we obtain the following result,142

which also follows from the less delicate inclusion (1.7).143

Corollary 1.6. The two collections144

�
Sa : a 2 C

1(T2
, (0,1))

 
and

n
B

a
1 : a 2 C

1(T2
, (0,1))

o
145

are both proper dense sets in W.146

Our proof of Theorem 1.2 is done by explicit construction and relies on the char-147

acterization (1.4). Similar to the proof in [15] for higher dimensional cases (n � 3),148

a rough idea to construct a is sort of clear: form a network of curves pointing to the149

rational directions {qi}mi=1, and assign values of a appropriately in this network. The150

curves in this network serve as highways so that proper assignment of values of a here151

guarantees that qi’s are in the e↵ective front, proving the lower bound. Let a be very152

small away from the network of highways so that, to check the upper bound, we can153

choose appropriate test functions in (1.4) and still concentrate on behaviors close to154

the network. In three dimensions this strategy is easy to carry out since we can easily155

choose disjoint straight lines as highways pointing to the directions {qi}mi=1, thanks to156

the availability of space. In two dimensions, however, those highways always intersect157

and it is very delicate to design a near the intersection points to make everything still158

compatible.159
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 5

We would like to mention that this paper belongs to an ongoing project of sys-160

tematic studies of inverse problems in periodic homogenization of Hamilton-Jacobi161

equations (see [19, 14, 22]).162

The rest of the paper is organized as follows. The proof of Theorem 1.2 is given163

in Section 2. Some auxiliary results are given in Appendix A.164

2. Proof of Theorem 1.2. Let P be a centrally symmetric polygon with ra-165

tional slopes {qi}mi=1 of the form (1.6). Since n = 2, we can assume that the rational166

vectors {qi}mi=1 ⇢ R2 are arranged clockwise; see Figure 1. For each i = 1, ..,m, there167

is a unique real number �i > 0, and a unique irreducible integer vector (ki, `i) 2 Z2168

so that169

qi = �i (ki, `i).170

Note that by the definition (1.6), {qi}mi=1 form normal vectors of half of the faces of171

P . By symmetry, we order the other half by172

qm+i = �qi, 1  i  m.173

Let pi be the vertex of P between qi and qi+1 for 1  i  2m� 1. Then the vertices174

{pi}mi=1 of P (in fact, half of them) are determined by175

(2.1) pi · qi = pi · qi+1 = 1 and max
j 6=i,i+1
1jm

|qj · pi| < 1, 1  i  m.176

177

Fig. 1: Polygon P with vertices p1, p2, . . . , p2m

Lemma 2.1. Suppose that ⇠ 2 C
1([0, T ],R2) satisfies that178

⇠(T )� ⇠(0) = (k, `) 2 Z2
.179

Then for 1
� :=

R T
0

1
a(⇠(t)) |⇠̇(t)| dt, we have180

H(p) � � p · (k, `), 8p 2 R2
.181
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6 W. JING, H. V. TRAN, AND Y. YU

Proof. Without loss of generality we assume � > 0. Owing to the inf-max formula182

(1.4), it su�ces to show that for any fixed p 2 R2 and for any � 2 C
1(T2),183

M := max
x2R2

a(x)|p+D�(x)| � � p · (k, `).184

Let u(x) = p · x+ �(x). Then, we compute and check185

p · (k, `) = u(⇠(T ))� u(⇠(0)) =

Z T

0
(p+D�(⇠(t)) · ⇠̇(t) dt  M

�
.186

The desired inequality follows immediately.187

Proof of Theorem 1.2. Given a polygon P ⇢ R2 with rational slopes {qi}Mi=1, let188

{pi}Mi=1 (and the vectors opposite to them) be the vertices of P . Given ↵ 2 (0, 1),189

our goal is to construct a speed function a 2 C
1,↵(T2

, (0,1)) so that the associated190

e↵ective Hamiltonian H = Ha satisfies the following properties:191

(i) for all p 2 R2, and for all i = 1, 2, . . . ,m,192

(2.2) H(p) � max
1im

|qi · p|.193

(ii) for all i = 1, 2, . . . ,m,194

(2.3) H(pi)  1.195

In view of (1.6), the first inequality shows {H(p)  1} ⇢ P , i.e., Sa ⇢ P . On the196

other hand, since P is the convex hull of {±pi}Mi=1 and H(p) is convex and even, the197

second inequality above implies H(p)  1 for all p 2 P , i.e., P ⇢ Sa. This would198

prove Theorem 1.2.199

Before diving into details, let us first present the basic idea of constructing the
weight function a: for 1  i  m and each prescribed direction qi, choose a suitable
periodic curve ⇠i with rotation vector parallel to qi that form a network. By assigning
suitable values of a(x) along ⇠i, we can use Lemma 2.1 to obtain (2.2) in a rather
straightforward way. The other inequality (2.3) is more subtle. To achieve that, for
each i, the key is to build a periodic smooth subsolution vi of

a(x)|pi +Dvi|  1 on R2
.

Moreover, we need both ⇠i and ⇠i+1 to be gradient flows of ui = pi · x + vi asso-200

ciated to the common vertex pi (see the paragraph below for motivations). Due to201

the two dimensional topological restrictions, ⇠i and ⇠i+1 have to be tangent at their202

intersections. Accordingly, we need to let ui equal to a function with multiple gra-203

dient flows starting from the intersection points. This is why we cannot simply use204

straight lines for ⇠i as in the three dimensional case, and the lower regularity of a(x)205

is necessary. In order to glue the pieces together, we choose ui = uj near intersection206

points (⇠i+Z2)\(⇠j+Z2) and then properly extend to a neighborhood of the network207

using methods in the Appendix, which provides the value of a(x) near the network208

by denoting a(x) = 1
|Dui| near ⇠i + Z2 for each i. Finally, for each i, extend ui to R2209

and adjust a(x) to make it close to 0 away from the network, which will ensure that210

ui is a subsolution in the whole plane.211

We would like to remark that the above construction method is more or less
necessary. In fact, suppose that a(x) is a continuous function with given form of H.
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 7

By the classical Aubry-Mather theory and suitable approximations, we can show that
for each i = 1, 2, ..,m, there exists a Lipschitz continuous periodic viscosity solution
vi to

a(x)|pi +Dvi| = 1 on R2

and vi has two periodic gradient flows ⇠i and ⇠i+1 with rotation vectors parallel to qi212

and qi+1 respectively.213

Step 1. Creation of a suitable network. First we choose m lines {Li}mi=1 in R2214

such that Li is parallel to qi and, when projected to T2, no three lines intersect at the215

same point. Then, by (2.1), for every two distinct points x and y on Li, we have that216

|pi · (x� y)| > max
j 6=i�1,i
1jm

|pj · (x� y)|.217

Consider all integer translations of Li, which form a network
Sm

i=1

�
Li + Z2

�
. Let218

I = the collection of all intersection points in
m[

i=1

�
Li + Z2

�
.219

Note that the intersection set I is Z2-periodic. Denote220

d = min{|x� y| : x 6= y, x, y 2 I}.221

Due to the rationality of qi’s, I/Z2 is finite and d > 0.222

223

Fig. 2: Intersection points on Li

Next, in a small neighborhood of each fixed intersection point in I, we perturb the224

two corresponding intersecting lines a bit to create gradient flows of an appropriate225
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8 W. JING, H. V. TRAN, AND Y. YU

function. Since this is purely local, by linear transformations and translations, it226

su�ces to show how to perform this procedure in a neighborhood of the origin (0, 0)227

provided that L1, L2 are the x1-axis and x2-axis, respectively.228

Let ↵ 2 (0, 1) as fixed in Theorem 1.2, pick k 2 N so that229

↵  1� 1

2k
.230

Consider the potential function231

u(x1, x2) = Ck

✓
x
4k
1

Ck
+ x

2
2

◆1� 1
4k

+ 2x1,232

where Ck > 1 is a positive constant to be determined. Clearly, u 2 C
1,1� 1

2k (R2) and233

is C2 away from the origin. We say a curve � : J ⇢ R ! R2 is a gradient flow of the234

potential function u if it solves235

�̇(t) = Du(�(t)), t 2 J,236

where J is the maximal open interval of the solution and, without loss of generality,237

we may assume 0 2 J . Moreover, we say a gradient flow passes through the origin if238

�(0) = 0.239

To modify L1 and L2 locally near the intersection point (here set to be the origin240

(0, 0)), we show that for the potential function u defined above, there are infinitely241

many gradient flows of it passing through the origin. We can then keep L1, for242

instance, while replacing L2 by (the image of) a di↵erent gradient flow of u near the243

origin.244

Lemma 2.2. Fix Ck > 2k(4k + 1). Then, u has infinitely many distinct gradient245

flows passing through the origin.246

Proof. Consider the curve �1(t) = (f(t), 0), where f is the unique solution to247

(
ḟ(t) = 2 + C

1
4k
k (4k � 1)f(t)4k�2

,

f(0) = 0.
248

Apparently, �1 : J ! R2 is a gradient flow of u passing through the origin, where J249

is the maximal open interval containing 0 of the solution.250

To prove the lemma, it su�ces to show that if ⇠(t) = (x1(t), x2(t)) : J ! R2 is a251

gradient flow of u and252

⇠(0) 2 D := {(a, b) : 0 < a < 1, 0 < b < a
2k},253

then254

⇠(J \ (�1, 0)) \ (0,1)2 ⇢ D.255
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EFFECTIVE FRONTS OF POLYGON SHAPES IN TWO DIMENSIONS 9

256

Fig. 3: Graph of ⇠ in D

Note that x1(t) and x2(t) are both increasing within D, the above statement would257

imply that ⇠ must intersect the flow �1 (the x1 axis) at the origin. By translation in258

time, we obtain a di↵erent gradient flow of u passing through the origin.259

Now suppose the statement fails, then there exists ✓ < 0 such that260

0 < x2(✓) = x
2k
1 (✓) and 0 < x2(t) < x

2k
1 (t) < 1 for t 2 (✓, 0).261

At ✓,262

Ckx
2k�1
1 (✓)

1 + 4k
<

ux2(x1(✓), x2(✓))

ux1(x1(✓), x2(✓))
=

x
0
2(✓)

x
0
1(✓)

 2kx2k�1
1 (✓).263

This contradicts the choice of Ck. The proof is complete.264

By this construction, we are able to form m periodic curves {L̃i}mi=1 and their265

integer translations such that, for some small r 2 (0, d
10 ),266

1. L̃i = Li away from the set Ir = {x 2 R2 : d(x, I)  r};267

2. the set of intersection points remains the same, i.e., for i 6= j and any integer268

vector v 2 Z2,269

L̃i \ (L̃j + v) = Li \ (Lj + v);270

Equivalently, L̃i \ L̃j = Li \ Lj when projected to T2.271

3. given i 6= j and an integer vector v 2 Z2, if L̃i and L̃j + v intersect at272

x = xi,j,v, then there exists a C
1,↵ function u = ui,j,v in B r

2
(x) such that273

• |Du(x)| � 1 in B r
2
(x);274

• withinB r
2
(x), L̃i and L̃j+v are two gradient flows of u that only intersect275

at x;276

• (periodicity) if two intersection points xi,j,v = xi0,j0,v0 + w for some277

w 2 Z2, then278

ui,j,v(x+ w) = ui0,j0,v0(x) for x 2 Br(xi0,j0,v0).279

This says that u is well defined on I r
2
when being projected to the flat280

torus T2.281
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10 W. JING, H. V. TRAN, AND Y. YU

The perturbed network is henceforth denoted by282

� =
[

1im

(L̃i + Z2).283

284

Fig. 4: Local perturbation at the intersection of L1 and L2

Step 2. Initial choice of a0. We can choose r0 2 (0, r
2 ) and a0 2 C

1,↵(T2
, (0,1))285

such that a0 is C1 away from the set I and satisfies the following conditions.286

1. for each given intersection point x = xi,j,v 2 I and the associated function287

u = ui,j,v from the above288

a0(y) =
1

|Du(y)| for x 2 Br0(x);289

2. for every two intersection points x, y on L̃i for 1  i  m (i.e., x, y 2 L̃i \ I),290

the weighted length li(x, y) between x and y along L̃i satisfies291

(2.4) li(x, y) :=

Z 1

0

1

a0(⇠(t))
|⇠̇(t)| dt = |pi · (x� y)|.292

Here, ⇠ : [0, 1] ! L̃i is an arbitrary parametrization of L̃i between x and y. In293

particular, the weighted length of each period (i.e., from x to x+ (ki, `i)) of L̃i is
1
�i
.294

The existence of a0 is clear provided r > 0 is small enough. By Lemma 2.1,295

(2.5) Ha0(p) � max
1im

|qi · p|, 8p 2 R2
.296

For i = 1, 2, ...,m, let ⇠i : R ! L̃i be the smooth reparametrization of L̃i such that297

|⇠̇i(t)| =
1

a0(⇠i(t))
for t 2 R.298

For each � > 0 and i = 1, 2, . . . ,m, define L̃i,� = {x : d(x, L̃i) < �} and let299

�� = {x 2 R2 : d(x,�) < �} =
m[

i=1

(L̃i,� + Z2).300
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Owing to Lemma A.1 and the periodicity of �, there exists a universal �0 2 (0, r0)301

such that for each i = 1, 2, ...,m, there exists wi 2 C
1,↵(L̃i,�0) such that wi is C

1302

away from intersection points and303

1. ⇠̇i(t) = Dwi(⇠i(t)) for all t 2 R, i.e., ⇠i is the gradient flow of wi;304

2. Dwi(x) = Dui,j,v(x) for x 2 B�0(xi,j,v), for each intersection point xi,j,v305

along L̃i ;306

3. infx2L̃i,�0
|Dwi(x)| > 0.307

Then, for x 2 ��0 , we define308

a0(x) =
1

|Dwi(x� v)| if x� v 2 L̃i,�0 for v 2 Z2
.309

Extend a0 so that it belongs to C
1,↵(T2

, (0,1)) and is smooth away from I.310

311

Fig. 5: Part of ��0

Step 3. Adjustments of a0. Next we need to construct ã 2 C
1,↵(T2

, (0,1)) that312

is smooth away from I,313

ã = a0 on �,314

and, for 1  i  m, H ã(pi)  1. Since ã agree with a0 of the previous section along315

L̃i’s, the property (2.4) and, by Lemma 2.1, the inequality (2.5) are preserved. Hence,316

both (2.2) and (2.3) hold for ã. This finishes the proof of Theorem 1.2.317

Note that, owing to (2.1), for given i 2 {1, 2, ..,m}, the following points hold318

• for j = i, i+ 1 and two intersection points x, y 2 Lj ,319

|pi · x� pi · y| = lj(x, y);320

• for j 6= i, i+ 1 and every two distinct intersection points x, y 2 Lj ,321

|pi · x� pi · y| = |pi · (x� y)|  max
l 6=j�1,j

|pl · (x� y)| < |pj · (x� y)| = lj(x, y).322
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In light of Remark A.2 and the periodicity of �, there exists µ0 2 (0, �0) such that for323

each i = 1, 2, ...,m, there exists a function ũi 2 C
1,↵(�µ0) such that324

8
>>><

>>>:

ũi 2 C
1,↵(��0), ũi 2 C

1(�µ0\I),
inf��0

|Dũi| > 0,

ũi � pi · x is Z2-periodic in �µ0 ,

|Dũi|  |Dwi| in �µ0 ,

325

and for any intersection point x = xj,k,v 2 I,326

Dũi = Dwj = Duj,k,v in Bµ0(xi,j,v).327

We extend ũi � pi · x to vi 2 C
1,↵(T2) such that vi is C

2 away from I, and for328

ui = pi · x+ vi,329

ui = ũi on �µ0
2
.330

Now let331

K1 = max
1im

max
x2R2

|Dui(x)| and K2 = max
x2R2

a0(x).332

Choose �(x) 2 C
1(T2

, (0, 1]) such that333

�(x) =

8
<

:

1 for x 2 �µ0
4
,

1
K1(1+K2)

for x 2 R2\�µ0
2
.

334

Finally, let335

ã(x) = �(x)a0(x) for x 2 R2
.336

Then, for i = 1, 2, ...,m,337

8
<

:

ã(x)|p+Dvi(x)|  ã(x)|Dwi(x)| = �(x)  1 for x 2 �µ0
2
,

ã(x)|p+Dvi(x)| = a0(x)|Dui(x)|
K1(1+K2)

 1 for x 2 R2\�µ0
2
,

338

which says339

max
x2R2

ã(x)|p+Dvi(x)| = max
x2R2

ã(x)|Dui(x)|  1.340

By the inf-max formula (1.4), for 1  i  m,341

H ã(pi)  1.342

This verifies that ã constructed above has the desired properties, and the proof of343

Theorem 1.2 is completed.344

Remark 2.3. Our method also provides a simple proof of the following result in345

[20]: there exists a 2 C
1(T2

, (0,1)) such that346

(2.6) {±qi : 1  i  m} ⇢ @B
a
1 .347

In fact, to prove this claim, no gradient matching is needed at the intersections. Steps348

1 and 2 in the proof of Theorem 1.2 are not needed. Below we give some adaptions349

to get (2.6). We use the straight line network [m
i=1

�
Li + Z2

�
directly.350
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1. Pick a 2 C
1(T2

, (0,1)) such that a = 1 in a small neighborhood of I, and351

(2.4) holds with a, Li in place of a0, L̃i, respectively.352

2. In Step 3 of the proof of Theorem 1.2, choose ui as353

ui(x) =
qi

|qi|
· (x� xi,j,v) + pi · xi,j,v354

near each intersection point xi,j,v. Then, using the method of characteristics355

(see [11, Chapter 3] for instance), we extend ui(x) to a smooth function on356

�� for some � > 0 such that357

a(x)|Dui(x)| = 1 in ��.358

3. Finally, following the same arguments in Step 3 of the proof of Theorem 1.2,359

we can conclude.360

Appendix A. Some auxiliary lemmas.361

Lemma A.1. Suppose that � : [0, 1] ! R2 is a smooth curve satisfying that362

1. mint2[0,1] |�̇(t)| > 0 and �(t1) 6= �(t2) for t1 6= t2;363

2. there exist r > 0 and u0, u1 2 C
1(R2) such that364

(
�̇(t) = Du0(�(t)) for t 2 [0, r],

�̇(t) = Du1(�(t)) for t 2 [1� r, 1].
365

Then, there exist � > 0, an open neighborhood U of �, and u 2 C
1(U) such that366

8
><

>:

infU |Du| > 0,

Du = Du0 in B�(�(0)),

Du = Du1 in B�(�(1))

367

and368

�̇(t) = Du(�(t)) for t 2 [0, 1].369

The proof of the above lemma is standard, and we leave it as an exercise for the370

interested readers.371

Remark A.2. Consider the same set-up of Lemma A.1. Let a(�(t)) = 1
|Du(�(t))|372

for t 2 [0, 1], and373

M =

Z 1

0

1

a(�(t))
|�̇(t)| dt = u(�(1))� u(�(0)).374

For each r 2 (�M,M), let ⌧ > 0 be su�ciently small, and choose h 2 C
1(R) so that375

8
><

>:

h(t) = t for t 2 [0, ⌧
2 ],

h(t) = r + t�M for t 2 [M � ⌧
2 ,M ],

|h0(t)|  1 for all t 2 [0,M ].

376

Then, ur = h(u� u(�(0))) + u(�(0)) satisfies that377

ur(�(0)) = u(�(0)), ur(�(1)) = u(�(0)) + r.378

Moreover, we also have |Dur|  |Du| in U and379

Dur(x) = Du(x) for x 2 Bµ(�(0)) [Bµ(�(1))380

for some µ > 0.381

This manuscript is for review purposes only.



14 W. JING, H. V. TRAN, AND Y. YU

Acknowledgments.382

REFERENCES383

[1] A. Au�nger, M. Damron, J. Hanson, 50 Years of First-Passage Percolation, American Mathe-384
matical Society, University Lecture Series 68, 2018.385

[2] I. Babenko, F. Balache↵, Sur la forme de la boule unité de la norme stable unidimensionnelle,386
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