
1. Introduction
The Pliocene and Pleistocene epochs (Plio-Pleistocene; 5.3–0  million years before present [Ma]) encompass 
several major climate state changes as well as transitions in the frequency and amplitude of climate cycles, 
including gradual high-latitude cooling, intensification of Northern Hemisphere glaciation (iNHG) (∼2.75 Ma), 
and a progression from strongly 21,000-year (21-kyr) to 41- to 100-kyr periodicity in marine temperatures and 
ice volume (Herbert et al., 2010; Lisiecki & Raymo, 2005, 2007). Oceanic trends during the Plio-Pleistocene are 
well characterized, but until relatively recently, the dearth of long terrestrial records has limited our understand-
ing of the evolution of continental climate (Table 1). Shifts in the secular trend and periodicity of eastern African 
hydroclimate across the Plio-Pleistocene are particularly important given their relationship to human evolution, 
and yet existing records are often conflicting, short, low-resolution, and/or concentrated in certain areas.

Offshore records of North African dust provided the first long, high-resolution records sensitive to terres-
trial conditions. Dust concentrations were initially believed to increase around the Plio-Pleistocene boundary 
(deMenocal, 1995), suggesting that global cooling and ice volume growth caused African drying (although statis-
tical reanalysis of dust records suggests no significant flux increases until ∼2–1.5 Ma (Trauth et al., 2009)), in 
conjunction with northeastern African Miocene-Pliocene forests yielding to scrub- and grasslands around 2.5 Ma 
(Bonnefille,  1983; Cerling,  1992; Griffin,  1999; WoldeGabriel et  al.,  2001; Yemane et  al.,  1985). However, 
it has become increasingly apparent that African rainfall and vegetation may have different controls (Crocker 
et  al.,  2022; O'Mara et  al.,  2022; Polissar et  al.,  2019; Windler et  al.,  2023), such that paleo-vegetation and 
-hydroclimate proxies cannot be assumed to be linked in simple ways.

Abstract Terrestrial-marine dust fluxes, pedogenic carbonate δ 13C values, and various paleovegetation 
proxies suggest that Africa experienced gradual cooling and drying across the Pliocene-Pleistocene 
(Plio-Pleistocene) boundary (2.58 million years ago [Ma]). However, the timing, magnitude, resolution, and 
relative influences of orbitally-driven changes in high latitude glaciations and low latitude insolation differ 
by region and proxy. To disentangle these forcings and investigate equatorial eastern African climate across 
the Plio-Pleistocene boundary, we generated a high-resolution (∼3,000-year) data set of compound-specific 
n-alkane leaf wax δ 2H values—a robust proxy for atmospheric circulation and precipitation amount—from the 
HSPDP-BTB13-1A core, which spans a ∼3.3–2.6 Ma sequence in the Baringo-Tugen Hills-Barsemoi Basin 
of central Kenya. In combination with the physical sedimentology, our data indicate that precipitation varied 
strongly with orbital obliquity, not precession, during the late Pliocene, perhaps imparted by variations in 
the cross-equatorial insolation gradient. We also observe a marked shift toward wetter conditions beginning 
∼3 Ma that corresponds with global cooling, drying in western Australia, and a steepening of the west-east 
zonal Indian Ocean (IO) sea surface temperature (SST) gradient. We propose that northward migration of the 
Subtropical Front reduced Agulhas current leakage, warming the western IO and causing changes in the IO 
zonal SST gradient at 3 Ma, a process that has been observed in the latest Pleistocene-Holocene but not over 
longer timescales. Thus, the late Cenozoic moisture history of eastern Africa is driven by a complex mixture of 
low-latitude insolation, the IO SST gradient, and teleconnections to distal high-latitude cooling.
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The relative importance of high and low latitude forcings to the orbital-scale pacing of the eastern African 
monsoon is also uncertain. Mediterranean sapropels (Emeis et al., 2000; Hilgen, 1991; Lourens et al., 1996; Rose 
et al., 2016; Rossignol-Strick, 1983, 1985) and alkenone fluxes (Herbert et al., 2015), some northern African 
dust flux records (Skonieczny et al., 2019), and other eastern African indices of hydroclimate (Caley et al., 2018; 
Foerster et al., 2022; Joordens et al., 2011; Lupien et al., 2018, 2022; Nutz et al., 2017; Partridge et al., 1997) 
and vegetation (Lupien et al., 2018, 2021; Yost et al., 2021) suggest that low-latitude seasonal insolation, mainly 
paced by precession (19–23 kyr), exerts an outsized influence on hydroclimate. However, other dust time series 
(deMenocal, 1995, 2004; Larrasoaña et al., 2003; Tiedemann et al., 1994; Trauth et al., 2009) and elemental 
X-ray fluorescence (XRF) ratios (Crocker et al., 2022) contain a strong 41-kyr (obliquity) signal. Obliquity in 
low-latitude records is traditionally thought to derive from polar ice sheets and their influence on global atmos-
pheric circulation (deMenocal, 2004; Trauth et al., 2009), but the interhemispheric 21 June insolation gradient 
in the tropics (23.5°N–23.5°S) also has a prominent 41 kyr component. A higher cross-equatorial gradient invig-
orates the winter Hadley cell, enhancing moisture transport into the summer hemisphere (Bosmans et al., 2015; 
Mantsis et al., 2014); obliquity controls the Earth's tilt and therefore this gradient, and may explain the 41 kyr 
cycles in Pliocene African (Kuechler et al., 2018) and Australian (Auer et al., 2019; Christensen et al., 2017; 
Taylor et al., 2021) and later Pleistocene (O'Mara et al., 2022) hydroclimate records before and after the “41 kyr 
world” of ∼2.75–0.8 Ma (Lisiecki & Raymo, 2007). A link between ice volume and rainfall is suggested by the 
eastern-central portions of Africa that were drier during the Last Glacial Maximum (LGM) than today despite 
similar orbital geometries (Garelick et al., 2021; Gasse, 2000; Otto-Bliesner et al., 2014), yet this teleconnection 
is spatially variable and may have developed recently (within the last 100 ka) (Lupien et al., 2022).

Indian Ocean (IO) sea surface temperatures (SSTs) and zonal SST gradients are known to play a critical role in 
interannual to decadal variability of African rainfall (Abram et al., 2008; Saji et al., 1999; Ummenhofer et al., 2009; 
Webster et al., 1999), but their longer-term influence is poorly known. During large modern positive IO Zonal 
Dipole (IOZD) events, an anomaly of 3°C in the west-east SST difference (ΔSSTW-E) can cause eastern African 
flooding and western Indonesian drought (Abram et al., 2008). ΔSSTW-E has been shown to modulate eastern Afri-
can and western Indo-Australian precipitation amounts and isotopic composition on seasonal (Saji et al., 1999; 
Ummenhofer et al., 2009; Vuille et al., 2005; Webster et al., 1999) to multidecadal (Abram et al., 2008, 2020; 
Tierney et al., 2013) timescales, and is also thought to drive millennial (Konecky et al., 2014; Tierney et al., 2011) 
and glacial-interglacial (Di Nezio et al., 2016) changes, but the long-term rainfall–IO SST relationship has only 
been examined on a site-by-site basis and not beyond the late Pleistocene. The influence of the El Niño-Southern 
Oscillation (ENSO) and the Pacific Ocean has also been invoked to explain long-term changes in eastern African 
rainfall (de Oliveira et al., 2018; Kaboth-Bahr et al., 2021; Kaboth-Bahr & Mudelsee, 2022; Pausata et al., 2017), 
although climate models suggest the IO SST gradient exerts a more direct influence (Goddard & Graham, 1999; 
Latif et al., 1999). Processes that alter IO ΔSSTW-E on geologic timescales include the northwards movement of 
New Guinea-Australia and growth of Halmahera in the Pliocene, constrict ing the Indonesian Throughflow (ITF) 
and therefore Pacific-eastern IO exchange (Cane & Molnar, 2001; Jochum et al., 2009; Rodgers et al., 2000; 
Sarnthein et al., 2018), and the meridional migration of the Antarctic subtropical front (STF), which can weaken 
Agulhas leakage as it approaches South Africa (Bard & Rickaby, 2009; Caley et al., 2012), thereby trapping heat 
in and warming the western IO (Civel-Mazens et al., 2021).

An improved understanding of terrestrial eastern African hydroclimate could reveal the underlying forcings 
of African rainfall variability, improve climate prediction,  and illuminate drivers of early hominin evolution 
(Campisano et  al.,  2017). The Hominin Sites and Paleolakes Drilling Project (HSPDP) recovered a ∼228  m 
sediment drill core from the Baringo-Tugen Hills-Barsemoi (BTB) Basin, HSPDP-BTB13-1A (hereaf-
ter BTB13), which spans ∼3.3–2.6  Ma (Campisano et  al.,  2017; Cohen et  al.,  2016). This interval includes 
iNHG and heightened 41 kyr cyclicity in benthic δ 18O values, several pulses of large lakes in eastern Africa 
(Trauth et al., 2005, 2007), and evolutionary innovations associated with Australopithecus and Homo lineages 
(deMenocal, 2004; Maslin et al., 2014; Shultz et al., 2012). At the basin scale, sedimentological and ecological 
indicators in BTB13 suggest that some aspects of late Pliocene environmental variations were paced by orbital 
precession (Deino et al., 2006, 2021; Kingston et al., 2007; Lupien et al., 2022; Yost et al., 2021), but a long, 
continuous paleoprecipitation record is still lacking.

In sum, the relative influences of precession (local seasonal insolation) versus obliquity (ice volume, the 
cross-equatorial insolation gradient) and IO ΔSSTW-E in the late Pliocene—and the extent to which their evolution 
across iNHG—influenced African climate are still largely unknown and difficult to resolve without high resolution 
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paleohydrological data. To address these issues, suborbitally resolved leaf wax n-alkane compound-specific 
hydrogen isotope (δ 2Hwax) data from the Baringo Basin are used here to reconstruct rainfall variations in equa-
torial Kenya across the Plio-Pleistocene boundary. We examine changes in both secular trend and cyclicity of 
our record to evaluate the importance of global temperature and high-latitude glaciation versus local seasonal 
insolation. We also compare eastern African and western Australian paleohydroclimate data to ΔSSTW-E over the 
last ∼3.5 Ma to assess the strength of IO Walker circulation over the Plio-Pleistocene. Given that IO ΔSSTW-E is 
projected to shift toward a mean positive IOZD state in the near future (Abram et al., 2008; An et al., 2022; Cai 
et al., 2009, 2013, 2014), intensifying the eastern African “monsoon” (Ogega et al., 2020; Shongwe et al., 2011), 
it is imperative that we improve our predictions of IO SSTs and ΔSSTW-E and their mechanistic links with rainfall 
in the twenty-first century and beyond.

1.1. Climatic-Geologic Setting
BTB is an isolated lacustrine basin in the central Kenyan eastern African Rift System that hosts the present-day 
Lake Baringo (Figure 1). The BTB13 site (0.5546°N, 35.9375°E) is located approximately 10 km southwest of 
the lake and 10 km east of the Tugen Hills. Seasonal rainfall is primarily controlled by the meridional transit of the 
Intertropical Convergence Zone (ITCZ), with rainfall maxima coincident with biannual temperature maxima in 
October–December (“short rains”) and March–May (“long rains”) when the ITCZ crosses the equator (Herrmann 
& Mohr, 2011). Precipitation variability is also correlated with IO ΔSSTW-E and ENSO (Abram et al., 2020), 
although the IOZD more directly regulates rainfall than ENSO due to nonlinearities in the IOZD-ENSO rela-
tionship (Nicholson, 1997; Nicholson & Kim, 1997). During a positive IOD event, warmer-than-average SSTs 
develop in the western IO, and the ascending eastern African and descending Indo-Australian branches of the 
Walker Circulation result in increased African and reduced Indo-Australian rainfall (Abram et al., 2008; Saji 
et al., 1999; Webster et al., 1999). Conversely, during a negative IOZD, when the eastern IO is warmer, the Mari-
time Continent gets wetter and eastern Africa dries.

The modern-day isotopic composition of central Kenyan rainfall is anticorrelated with precipitation amount on 
seasonal timescales (Figure 3). Kenya has two Global Network of Isotopes in Precipitation (GNIP) stations with 
meteoric δ 2H (δ 2HH2O) data (IAEA/WMO, 2023); rainfall amount (mm) and δ 2HH2O values (‰ VSMOW) are 
negatively correlated year-round at Muguga (r = −0.64, p < 0.05) and winter-summer at Kericho (January–

Figure 1. Locations of Kenyan Global Network of Isotopes in Precipitation stations (green), HSPDP-BTB13-1A (white 
star), and other Pliocene-Holocene terrestrial hydroclimate (white circle) and sea surface temperature (SST) records (cross). 
Background is annual field correlations (r) between an 1,800-year preindustrial control run of CESM1 SSTs and mean annual 
eastern African rainfall (averaged over −5.183–7.068°N and 35–46.25°E) (Tierney et al., 2013). See Table 1 and Figure 4 for 
site names.
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August r = −0.80, p < 0.05; year-round r = −0.17, p < 1) (Figure 3). Mean annual eastern African rainfall is also 
positively correlated with a large IO ΔSSTW-E (Tierney et al., 2013) and  18O- or deuterium-depletion (Konecky 
et al., 2014; Vuille et al., 2005).

1.2. Orbital Forcing of Eastern African Hydroclimate
Although long, high-resolution terrestrial hydroclimate records spanning the Plio-Pleistocene boundary from the 
IO rim are sparse, those that exist—IODP Site U1478 δ 2HC28 values (Taylor et al., 2021) and International Ocean 
Drilling Program (IODP) Site U1463 K % (Auer et al., 2019; Christensen et al., 2017)—are paced most strongly 
by obliquity and eccentricity. In the mid- to later Pleistocene, however, many younger eastern African records 
have a strong 19–23-kyr precessional imprint (Caley et al., 2018; Foerster et al., 2022; Lupien et al., 2018, 2022; 
Partridge et al., 1997; Simon et al., 2015). This suggests a complex set of high- and low-latitude African and IO 
climate forcings (e.g., deMenocal, 1995, 2004).

1.3. Prior Work on HSPDP-BTB13-1A
The studied interval lies within the Chemeron Formation (5.3–1.6  Ma) (Chapman & Brook, 1978; Deino & 
Hill, 2002; Hill et al., 1986), which consists of a mix of fluviolacustrine sands, clays, silt, conglomerate, and 
volcanic ash. The Bayesian age model of BTB13 is based on  40Ar/ 39Ar dating of tuffaceous layers, correlations of 
diatomite contacts in the core with those in nearby outcrop (Deino et al., 2021), trace-element tephrostratigraphy 
(Garello, 2019), and magnetostratigraphy (Sier et al., 2021). In the top 55 m (∼2.68–2.55 Ma), the model's 95% 
confidence interval is under ±20 kyr. From 55 m to core bottom, the 95% confidence interval can range up to 
±60 kyr. However, individual control point errors range from 3 to 87 kyr, averaging 14 kyr (±1σ), and despite 
Bayesian uncertainty envelopes, control points suggest highly linear sedimentation rates (on >10 1 kyr timescales) 
within the 2.75–2.58, 2.93–2.75, and 3.28–2.93 Ma windows (Figure 2a).

Prior sedimentologic and micropaleontologic work on BTB13 and nearby outcrops suggest that the Baringo Basin 
experienced semi-wet, fluviolacustrine-alluvial-deltaic conditions prior to ∼3.04 Ma. Afterward, the environ-
ment alternated between shallow, marshy lakes and C4 grasslands and deeper lakes and C3 grasslands (Westover 
et al., 2021). Based on paleoecological proxies such as biomarker δ 13CC28 values (Lupien et al., 2019) and phyto-
lith ratios (Yost et  al.,  2021), C4 grasses increased relative to forest by 3.05–3  Ma. Ichthyolites (Billingsley 
et al., 2021) and diatomite strata (Westover et al., 2021) increase in abundance between 3.04 and 2.95, indicating 
lake highstands favorable to diatoms and fish; diatom assemblages (Kingston et al., 2007; Westover et al., 2021) 
and fish fossil δ 13C values (Billingsley et al., 2021) are both characteristic of deep lacustrine environments. Alter-
nating diatomites and analcime-bearing sedimentary strata diagnostic of alkaline, highly-evaporated brines imply 
repeated and abrupt wet-dry transitions from 2.99 Ma onwards (Minkara, 2017). The youngest set of BTB13 
diatomites observed in the core and exposed nearby (D8–D4 (Westover et al., 2021)) correspond to 23-kyr-paced 
30°N 21 June insolation maxima from ∼2.68 to 2.58 Ma (Deino et al., 2006).

The Baringo Basin thus documents pronounced environmental change, including apparent incongruous hydrocli-
matic shifts (e.g., more frequent lake highstands alongside grassland expansion). Thus far it has been difficult to 
conclusively disentangle climatic and tectonic influences on the existing proxy records, particularly on >100 kyr 
timescales. Phytolith indices (Yost et al., 2021) and the pacing of diatomites D8–D4 (Deino et al., 2006; Kingston 
et al., 2007) suggest that precipitation variability was at least partially forced by orbital precession; however, 
the absence of highstands (i.e., diatomites) during precessional insolation maxima prior to 3.05  Ma remains 
unexplained.

2. Materials and Methods
2.1. Core Scanning X-Ray Fluorescence and Magnetic Susceptibility
A Geotek MSCL-XYZ multisensor core logger was used to measure magnetic susceptibility (MS) at 0.5 cm inter-
vals. MS varies with the relative amount of magnetic minerals and therefore the relative proportions of weakly- 
or nonmagnetic biogenic silica, carbonates, and organic matter versus iron-rich detrital sediment (Hounslow 
& Maher, 1999; Verosub & Roberts, 1995). It is commonly employed as an indicator of weathering or runoff 
(Bloemendal & deMenocal, 1989; Larrasoaña et al., 2008).
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Continuous XRF scanning yielded estimates of elemental concentrations in BTB13. Si/Ti is a proxy for biogenic 
silica concentrations (Brown, 2015; Johnson et al., 2011; Westover et al., 2021), that is, diatom abundance, and 
therefore lake depth and productivity. These data provide the highest-resolution measurements available from 
BTB13 and can be used to test if local basin-scale responses result from changes in atmospheric circulation 
suggested by our δ 2Hwax measurements.

2.2. Leaf Wax Biomarkers
Plant epicuticular waxes protect leaves from dehydration and damage and are resistant to diagenesis on geologic 
timescales (T. I. Eglinton & Eglinton, 2008; Sessions et al., 2004). Since environmental (soil, rain-) water is the 
primary hydrogen source for photoautotrophic biosynthesis, the hydrogen isotopic composition of plant epicu-
ticular lipids (δ 2Hwax) correlates strongly with δ 2HH2O values (Sachse et al., 2012). Long-chain n-alkanes derive 

Figure 2. (a) Bayesian age model and lithologies of HSPDP-BTB13-1A (BTB13) (Deino et al., 2021). BTB13 δ 2HC31 values 
plotted against (b) depth and (c) age, with horizontal lines indicating ±1σ of age control points and gray shading indicating 
analytical δ 2H ±1σ. Dashed lines denote the same control points in depth/age space.
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Figure 3. Mid-twentieth century monthly mean precipitation amounts and δ 2HH2O values from Kenyan Global Network of Isotopes in Precipitation stations with 
annual weighted mean δ 2HH2O values from 1967 to 1969 (dashed lines), a core-top (i.e., modern day) δ 2Hprecip reconstruction from modern-day Lake Baringo (Bessems 
et al., 2008) (green line), and a box and whisker plot of reconstructed Plio-Pleistocene HSPDP-BTB13-1A δ 2Hprecip values. Vertical black lines denote interannual 
δ 2HH2O variance.

Figure 4. Correlations (r) between (a) Plio-Pleistocene and (b) Pleistocene-Holocene hydroclimate proxy data and ΔSSTW-E. 
If symbols are outlined, the correlation is significant at or above the 95% confidence range (p ≤ 0.05). Certain hydroclimate 
records and δ 18Op values were inverted so that a positive r always denotes a positive moisture-ΔSSTW-E relationship. The 
line style used for sea surface temperature (SST) transects denotes the type of proxy used (dashed = TEX86; dotted = δ 18Op 
values; solid = Uk′

37 ). (See Table 1 for references.) Terrestrial sites compared with more than one SST transect/paired SST 
measurements have multiple symbols.
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primarily from higher-order terrestrial plants and grasses (Sachse et al., 2012), and so their δ 2Hwax values track 
meteoric rather than lacustrine δ 2HH2O values. Although δ 2HH2O values are subject to fractionation by altitude, 
temperature, etc., in the tropics they are largely a function of precipitation amount and the progressive Rayleigh 
fractionation that depletes rainwater of deuterium (Dansgaard, 1964; Rozanski et al., 2013). Because δ 2HH2O 
values are determined by broader atmospheric processes, δ 2Hwax values reflect regional (10 2–10 3 km 2) hydro-
climate variations and are therefore relatively insensitive to changes in basin-scale (<10 km 2) geomorphology. 
Thus, here, we report n-alkane δ 2Hwax values as an indicator of equatorial eastern African hydroclimate.
A Thermo Fisher (Dionex) Accelerated Solvent Extractor 350 (solvent: 9:1 dichloromethane: methanol) was 
used to extract lipids from freeze-dried, homogenized sediment. N-alkanes were purified from the total lipid 
extract by sequential flash aminopropyl (60  Å), silica gel (230–400 mesh), and silver nitrate-impregnated 
silica gel (∼10 weight percent, +230 mesh) column chromatography. Alkane abundances were measured on 
Agilent 6890 and 7890 gas chromatography (GC)-flame ionization detectors with Agilent HP-1 MS columns 
(30 m × 0.25 mm × 0.25 μm) and quantified using the TEXPRESS MATLAB package (Dillon & Huang, 2015).
We obtained C31 and C33 n-alkane δ 2H (δ 2HC31, δ 2HC33) and δ 13C values (δ 13CC31, δ 13CC33) using an Agilent 6890 GC 
equipped with an RTX-5 MS column (30 m × 0.32 mm × 0.25 μm) coupled to a Thermo Delta V Plus isotope ratio 
mass spectrometer whose pyrolysis (hydrogen)/combustion (carbon) reactor was held at 1,410–1,425°C (hydrogen) or 
1,100°C (carbon). The oven program was: hold for 2 min at 50°C, increase to 230°C at 15°C/min, increase to 320°C at 
4°C/min, hold for 8 min. H+

3
 factors (Sessions et al., 2001), measured at least every 3 days, averaged 2.00 ± 0.05 (1σ). 

A mixture of n-alkane standards (δ 2HC29 = −162.6 ± 2.2‰; δ 2HC31 = −271.9 ± 2.0‰; δ 2HC32 = −212.4 ± 1.0‰; 
δ 13CC29 = −29.30 ± 0.02‰; δ 13CC31 = −29.43 ± 0.01‰; δ 13CC32 = −29.47 ± 0.02‰) from Arndt Schimmelmann 
(Indiana University) was injected before every δ 2H or every other δ 13C measurement. The mean difference between 
bracketing measured and reported C29–C32 δ 2H values was applied to measured δ 2HC31 and δ 2HC33 values to correct for 
instrument offset and drift. Reported values (Figures 4 and 5) are the average of multiple individual measurements and 
reported error values are ±1σ if a sample was replicated ≥3 times; the difference between duplicate δ 2H or δ 13C values 
if measured twice; and the difference between bracketing Indiana δ 2HC31 or δ 13CC31 values if injected once.
We measured δ 2HC31 values in 298 samples to create a ∼2.4-kyr resolution record in order to characterize the short-
est Milankovitch cycles (19, 23 kyr). We also measured leaf wax isotopes in recent (<0.2 ka) sediments from Lake 
Baringo (Bessems et al., 2008) as a modern-day baseline (Figure 3). Hereafter, we focus on the paleohydrology of 
eastern Africa via BTB13 δ 2Hwax values; the paleoecological implications of the δ 13Cwax data will be discussed in a 
future publication and are only used here to reconstruct the hydrogen isotopic composition of rainwater (δ 2Hprecip).

2.3. δ 2Hprecip Calculations
δ 2Hprecip values can be estimated using δ 2Hwax and δ 13Cwax values (Collins et al., 2013). Here, we use them as a 
first-order constraint on the magnitude of hydrologic change implied by the δ 2HC31 record by comparing them 
to modern δ 2HH2O values (Figure 3), but since the δ 2HC31 data are higher-resolution (n = 298) than δ 2Hprecip 
(n = 200), all analyses will be performed using δ 2HC31 values.
Water-wax fractionation (εwax-H2O) differs by plant species and can be estimated from δ 13Cwax measurements; using 
100% tropical C3 and C4 δ 13CC31 endmembers of −36.7 ± 3.2‰ and −22.0 ± 2.6‰ (Ruan et al., 2019), respectively, 
δ 13Cwax values provide the relative abundance of C3 (fC3) and C4 (fC4) plants in terrestrial vegetation surrounding BTB 
via a linear mixing model (e.g., Garelick et al., 2021; Konecky et al., 2016; Lupien et al., 2022; Shanahan et al., 2015):

𝑓C3 =
(

𝛿
13CC31–𝛿

13CC31C4

)

∕
(

𝛿
13CC31C3–𝛿

13CC31C4

)

 

𝑓C4 = 1–𝑓C3 

A tropical (30°N–30°S) subset of δ 2Hwax and δ 13Cwax values in modern vegetation yields an average apparent 
εC31-H2O of C3 and C4 plants—εC31-precip C3 and εC31-precip C4—of −123 ± 40 and −136 ± 28‰, respectively (Ruan 
et al., 2019). Thus,

𝜀C31-H2O =
(

𝑓C3 ∗ 𝜀C31-precipC3

)

+
(

𝑓C4 ∗ 𝜀C31-precipC4

)

 

and

𝛿
2Hprecip =

[(

𝛿
2HC31 + 1000

)

∕(𝜀C31-H2O∕1000 + 1)
]

–1000 
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2.4. Plio-Pleistocene Terrestrial Hydroclimate and Indian Ocean Temperature Data Compilation
To evaluate the climatic controls on Plio-Pleistocene eastern African hydroclimate, we analyze long-term 
(>100 kyr timescales) variations in our data relative to other long records from across the IO basin (Table 1). 
Vegetation data sets (Castañeda et al., 2016; Feakins et al., 2005) are excluded, as African plant assemblages may 
depend on other factors than rainfall such as pCO2 (Crocker et al., 2022; O'Mara et al., 2022; Polissar et al., 2019). 
We exclude records shorter than 200 kyr for reasons explained below.

Plio-Pleistocene hydroclimate data include δ 2Hwax data from the Baringo Basin, IODP Site U1478 (Taylor 
et al., 2021), and Deep Sea Drilling Project (DSDP) Site 231 (Liddy et al., 2016). To increase geographical and 

Figure 5. Global and local eastern African climate parameters, including (a) the LR04 benthic foraminiferal δ 18O stack 
(Lisiecki & Raymo, 2005); (b) 21 June 23.5°N–23.5°S insolation gradient (black); (c) BTB13 ln magnetic susceptibility, with 
blue bars denoting significant diatomite strata D1–D8 (Westover et al., 2021); (d) BTB13 X-ray fluorescence Si/Ti; and (e) 
BTB13 δ 2HC31 values. Vertical solid red line shows the timing of the single most abrupt shift in mean. Solid horizontal red 
lines show mean values before and after the changepoint. Vertical dashed red line shows the timing of the single most abrupt 
shift in slope and horizontal dashed red lines show the trend in δ 2HC31 values before and after. Gray shaded intervals indicate 
analytical error (±1σ).

 25724525, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023PA

004671 by U
niv of C

alifornia Law
rence B

erkeley N
ational Lab, W

iley O
nline Library on [03/09/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Paleoceanography and Paleoclimatology

MITSUNAGA ET AL.

10.1029/2023PA004671

10 of 22

temporal coverage, we also analyzed hydrological proxy (δ 2Hwax and elemental XRF) records from the Pleisto-
cene (2.1–0 Ma) (Caley et al., 2018; Foerster et al., 2022; Johnson et al., 2016; Lupien et al., 2018, 2022; Owen 
et al., 2018; Partridge et al., 1997; Potts et al., 2020; Simon et al., 2015; Tierney et al., 2017). In the present, 
drought in Australia coincides with heavy rains in eastern Africa during a positive IOZD event. We used natural 
gamma radiation (NGR) K % (Auer et al., 2020; Christensen et al., 2017), which reflects detrital sedimentation 
generally, and the XRF (K + Al)/Ca ratio (Auer et al., 2019), which is more specifically controlled by riverine 
influx, from western Australian IODP Site U1463 to test this teleconnection across the Plio-Pleistocene boundary 
(Figures 1 and 6).
IO SST data were selected from locations where preindustrial-modern SSTs and eastern African precipitation 
are strongly correlated (Tierney et al., 2013) (Figure 1). For this reason, we exclude central IO DSDP Site 214 
whose Mg/Ca SSTs are intermediate between western and eastern values (Karas et al., 2009). We construct five 
late Pliocene IO ΔSSTW-E transects from existing SST records based on comparisons between the same temper-
ature proxies (Table 1; Figure 4a). To mitigate proxy biases related to seasonality, formation depth, etc. (Tierney 
& Tingley, 2015), we avoid mixing and matching TEX86 or Mg/Ca temperatures or planktic foraminiferal δ 18O 
(δ 18Op) values. While δ 18Op values are responsive to both temperature and ice volume, multi-proxy SST recon-
structions suggest that TEX86 and δ 18Op trends are relatively interchangeable (De Vleeschouwer et al., 2022; 
Smith & Castañeda, 2020), independently confirmed by Δ47 measurements (De Vleeschouwer et al., 2022). In 
the Pleistocene, long SST records are sparse; only one proxy-consistent (Uk′

37 ) zonal transect can be constructed 
that spans 2.5–0 Ma (Table 1; Figure 4b).
We also use existing paleo-data sets to discern the relative influences of potential high northern and southern lati-
tude processes on eastern African hydroclimate and IO ΔSSTW-E. Extensive SST (Clotten et al., 2018; Lawrence 
et al., 2009; Naafs et al., 2020), ice-rafted debris (IRD) (Bailey et al., 2013), and foraminiferal δ 18O data (Bartoli 
et al., 2005; Kleiven et al., 2002; Lisiecki & Raymo, 2005) exist from the Arctic/North Atlantic. We use the corre-
lation between southwest IO SSTs, which reflect the strength of the IO-side Agulhas current (Taylor et al., 2021), 
and southern Atlantic SSTs, which track the meridional migration of the STF (Martínez-Garcia et al., 2010), to 
evaluate the effects of Antarctic cooling on IO temperatures. If these are anticorrelated—i.e., if the Mozambique 
Channel warms when the STF moves north—it might indicate that this teleconnection was active in the Pliocene 
and influencing ΔSSTW-E. We interpolated these two SST records to the same evenly spaced ∼9-kyr resolution 
and performed a running 10-point linear regression of Site 1090 (Uk′

37 ) and U1478 (TEX86) SSTs; the Pearson's 
r is shown in Figure 8. This involves the comparison of disparate proxies, but is unavoidable due to the dearth of 
Pliocene Southern Atlantic/IO SST records.

2.5. Spectral Analyses and Resampling Methods
Due to variable resolution, comparing ΔSSTW-E to terrestrial hydroclimate requires multiple resampling steps. 
Ultra-high-resolution (<0.1  kyr) XRF data (CD154-10-06P, MAL05-1, HSPDP-CHB14-2, ODP-OLO12-1A) 
were interpolated to a common 0.5 kyr step. For every ΔSSTW-E-hydroclimate pair, we calculated the mean reso-
lutions of the two SST data sets over the timespan that they overlapped with the hydroclimate proxy record and 
interpolated the SST data sets to the lower of the two resolutions. Age model uncertainties could bias the short-
term correlation between precipitation and ΔSSTW-E, so we focus on long-term relationships by using a low-pass 
sixth order Butterworth filter on both ΔSSTW-E and the hydroclimate proxy and exclude short (<200 kyr) data sets 
(e.g., Cohen et al., 2007; Ziegler et al., 2013). Given age model uncertainty (up to ∼40 kyr) and the low resolution 
of ΔSSTW-E (>40 kyr) in certain areas/times, we opted to only examine long term variance. For <250 kyr records, 
the low-pass filter removed <100 kyr trends; for longer data sets, it removed <200 kyr frequencies. Finally, we 
interpolated low-pass filtered ΔSSTW-E and hydroclimate data to the same 20 evenly sampled points to calculate 
the correlation coefficient (Pearson's r) of a linear regression of the two. For IODP Site U1478 and DSDP Site 
231, where δ 2Hwax values and TEX86 were measured on the same samples, we calculated r among δ 2Hwax values 
and SSTs without any interpolation. We performed a similar comparison between hydroclimate (XRF Fe/Ca) and 
SSTs (the first principal component [PC1] of Mg/Ca and foraminiferal assemblages) in the Pleistocene MD96-
2048 core, but this additionally required interpolation to the mean resolution of the SST PC1.
The values for some hydroclimate and SST proxies are inversely related to precipitation amount and temperature, 
so all isotope (δ 2Hwax, δ 18Op values) and certain XRF data sets (K/Zr, Na/Ca, Ca) were multiplied by −1 prior 
to calculating r such that a positive r always indicates a positive eastern African moisture-ΔSSTW-E relationship 
(Table 1; Figure 4).
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We pinpoint the most significant secular changes in BTB13 and western Australian hydroclimate records based 
on the timing of the single largest change in mean and/or slope of the time series via MATLAB's findchangepts 
function (Killick et al., 2012; Lavielle, 2005). These data were first interpolated to a constant time-step equal to 
the mean resolution of the original data.

We used multiple methods to characterize the changing strengths of different frequencies of variability in BTB13 
hydroclimate records. Lomb-Scargle power spectra detect periodicity in unevenly sampled data sets, but require 
a minimum sample resolution and therefore do not function during low-resolution periods such as the upper 
70 kyr of the δ 2HC31 record, while evolutionary Wavelet power spectra require interpolation to a constant timestep 

Figure 6. Spectral characteristics of the BTB13 δ 2HC31 record. (a) Unfiltered (gray) and 36–46 kyr (black) and 95–105 kyr 
(dash-dotted) bandpass filtered δ 2HC31 values. (b) δ 2HC31 evolutionary wavelet power spectrum. Dashed white line denotes 
cone of influence. (c) Lomb-Scargle power spectra of 2.80–2.58 Ma (red), 2.95–2.75 (purple), and 3.28–2.90 Ma (green) 
intervals. Dashed lines denote false alarm probability. (d) 36–46 kyr-bandpass filtered δ 2HC31 values (black) and 21 June 
23.5°N–23.5°S insolation gradient (orange). (e) Wavelet cross-spectrum of BTB13 δ 2HC31 values and 21 June 23.5°N–23.5°S 
insolation gradient. Dashed white line denotes cone of influence. Arrows (≥0.60 magnitude-squared coherence) pointing to 
the left indicate 0° phase lead/lag.
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but still work in low-resolution intervals. To ensure that spectral power was not an artifact of upsampling, we 
confirmed the wavelet results with Lomb-Scargle power spectra. To assess the spectral coherency between 
two paleoclimate data, we interpolated both to the same timestep—the mean resolution of the lower-resolution 
record—and performed an evolutionary Wavelet cross-spectral analysis (Trauth, 2021).

3. Results
3.1. HSPDP-BTB13-1A N-Alkane δ 2H Values
Biomarker concentrations and therefore sampling resolution were lowest in the uppermost 80 kyr and within 
diatomites D8–D6 in particular (Westover et  al.,  2021). BTB13 δ 2HC31 and δ 2HC33 values covary (r  =  0.69; 
p < 0.001; n = 298); C31 n-alkanes were typically the most abundant, followed by C33 and C29. Therefore, only 
C31 isotope data sets are interpreted here. δ 2HC31 values average −142.7‰ and range from −176.6 to −114.2‰.
The carbon preference index (CPI) denotes the dominance of odd- over even-carbon alkanes and is used to 
identify diagenetically degraded hydrocarbons, which typically have CPIs of ∼1 (Bray & Evans, 1961; Bush & 
McInerney, 2013; G. Eglinton & Hamilton, 1967; Marzi et al., 1993).

CPI27−35 = [Σodd(C27 − C33) + Σodd(C29 − C35)]∕2[Σeven(C28 − C34)] 

The mean CPI27–35 in BTB13 is 3.26 (0.85–7.16; n = 382), indicating generally good wax preservation. CPI27–35 
and δ 2HC31 values are weakly but significantly correlated (r = 0.27; p < 0.001), but none were excluded from 
analyses on this basis for several reasons. First, CPI27–35 variance explains <10% of the variance in the δ 2HC31 
signal. Second, the depositional environment is unlikely to be deep or warm enough for significant deuterium 
substitution in alkanes (Leif & Simoneit, 2000; Schimmelmann et al., 2006). Third, oxidative degradation of 
waxes is expected to be heightened during dry periods such that CPI would be anticorrelated with δ 2HC31 values 
(Pond et al., 2002; Schimmelmann et al., 2006), but this is the opposite to what we observe. Finally, excluding 
low δ 2HC31 data below a CPI value of 3.628, the point at which the CPI27–35-δ 2HC31 relationship is insignificant 
at the 95% confidence level (i.e., p > 0.05), does not affect any of the major features of the δ 2HC31 record (Figure 
S1 in Supporting Information S1).
δ 2Hprecip and δ 2HC31 values are highly correlated (r = 0.99) and the standard deviation in εC31-H2O is 1.7‰, much 
smaller than δ 2H variability. The δ 2Hprecip value (−27.0‰) estimated from Lake Baringo core-top plant waxes 
(Bessems et al., 2008) approximates twentieth century weighted mean annual δ 2HH2O values at Muguga (−22.5 
to −16.8‰) and Kericho (−46.5 to −10.2‰) GNIP stations (Figure 3), indicating that our δ 2Hprecip methodology 
plausibly approximates mean annual δ 2HH2O values. The total range in Plio-Pleistocene BTB13 δ 2Hprecip values 
(∼60‰) is slightly greater than the mannual range in modern Kenyan δ 2HH2O values (40–50‰).
Seven of eight diatomites are contemporaneous with δ 2HC31 minima. (No δ 2HC31 measurements were made 
within D7.) Change point analysis, confirmed by a running 70-point Mann-Whitney test (Mann & Whitney, 1947) 
(Figure S2 in Supporting Information S1), indicates a ∼−11.5‰ (Student's t-test p < 0.001) shift around 3 Ma 
(Figure 5e), suggesting wetter mean conditions starting at this time. Mean δ 2HC31 values appear more enriched 
from 2.65 to 2.58 Ma, but since this is at the record's edge and is relatively low-resolution, it is difficult to deter-
mine if this is a permanent reversion to a drier state.

3.2. Spectral Characteristics of HSPDP-BTB13-1A Data Sets
Evolutionary Lomb-Scargle spectra of both MS and Si/Ti are largely dominated by longer (41-, 100-kyr) frequen-
cies, except for the interval from 2.68 to 2.58 Ma containing precessionally-paced diatomites D8–D4 (Figure S3 
in Supporting Information S1). Evolutionary wavelet spectra of δ 2HC31 values reveal that precession is largely 
absent; obliquity dominates at the beginning and end of the core (3.2–2.95 and 2.7–2.58 Ma), while 100-kyr 
variability is strongest in the middle (2.95–2.7 Ma) when 23.5°N–23.5°S summer insolation gradient amplitude 
is lowest (Figure 6b). Lomb-Scargle periodograms show that the strong obliquity and eccentricity imprints from 
3.28 to 2.95 and 2.95 to 2.7 Ma, respectively, are statistically significant (p < 0.05); 41 and 100 kyr variability 
in the last 120 kyr (2.7–2.58 Ma) are not (p < 0.5), likely due to low sampling resolution, but the 100 and 41 kyr 
peaks are still the most prominent (Figure 6c).

The highly linear sedimentation rates in BTB13 (within three large zones) should not strongly impact the results of 
Wavelet or Lomb-Scargle analyses (Figures 6b and 6c), though the age model imprecision limits phase (lead/lag) 
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determinations (Figures 6d and 6e). Assuming the model is accurate, δ 2HC31 
values display zero phase lag and significant (>0.60) spectral coherence with 
MS in the 41- and 100-kyr bands (Figure S4a in Supporting Information S1). 
BTB13 δ 2HC31 values are coherent and in-phase with the 23.5°N–23.5°S 
21 June insolation gradient in the 41-kyr band (Figures 6d and 6e). δ 2HC31 
values and the gradient are less strongly coherent in the 19-, 23-, and 100-kyr 
bands and phase relationships vary between 0 and 180°. δ 2HC31 values and 
the benthic δ 18O stack (Lisiecki & Raymo, 2005) are strongly coherent in the 
41-kyr band in the upper 200 kyr (Marine Isotope Stages 103, G1, and G3) 
(Figure S4b in Supporting Information S1). δ 2HC31 values and 21 June inso-
lation at 30°N are spectrally coherent in the 19–23, 41, and 100 kyr bands; 
they are weakly in-phase in the 41-kyr band but antiphased in the 19, 23, 
and 100 bands (Figure S4c in Supporting Information S1). 36–46 kyr band-
pass filtered δ 2HC31 values are in-phase with the 41 kyr component of the 
23.5°N–23.5°S 21 June insolation gradient (3.28–2.95 and 2.75–2.58 Ma) 
but out of phase with 36–46 kyr bandpass filtered benthic foraminiferal δ 18O 
values (Lisiecki & Raymo, 2005) and Arabian Sea (Herbert et al., 2015) and 
Southern Ocean (Martínez-Garcia et al., 2010) SSTs (Figure S5 in Support-
ing Information S1).

3.3. Indian Ocean Zonal Gradients During the Plio-Pleistocene
When limited to BTB13's timespan, western Australian NGR K % and XRF 
(K + Al)/Ca data exhibit clear drying changepoints around 3.03–3.08 Ma 
(Figure  7), in agreement with pollen-inferred western Australian drying 
about 3.0 (Martin & McMinn, 1994) to 2.9 Ma (Dodson & Macphail, 2004) 
as well as the wetter changepoint in BTB. While the BTB13 record only 
extends to ∼2.6 Ma, the longer DSDP Site 231 and IODP Site U1478 δ 2Hwax 
records suggest drying in eastern African by 2.5  Ma (Liddy et  al.,  2016; 
Taylor et al., 2021).

Most Pliocene ΔSSTW-E data indicate an increase in the gradient between 
3.05 and 2.95 Ma, followed by a gradual decrease until 2.6–2.5 Ma with a 
range in low-pass filtered ΔSSTW-E of ∼5°C or ∼1‰ (Figure S6 in Support-
ing Information S1). ODP Sites 709–763 Mg/Ca values are the exception—
there are no major secular trends in ΔSSTW-E, which only varies by ∼1°C. As 

foraminiferal Mg/Ca might be affected by changing Plio-Pleistocene seawater Mg/Ca in addition to temperature 
(Evans et al., 2016; Fantle & DePaolo, 2006; Medina-Elizalde et al., 2008; O'Brien et al., 2014) and choice of 
depth versus carbonate saturation-based correction at the deeper Site 709C (Regenberg et al., 2006), we infer that 
Mg/Ca at Site 709C Mg/Ca measures SST less well than other proxies. In the later Pleistocene, ΔSSTW-E is stable 
from 2.2 to 1.2 Ma, declines until the latest Pleistocene, and increases sharply within the last 50–100 kyr (Figure 
S7 in Supporting Information S1).

Plio-Pleistocene IO ΔSSTW-E is not consistently driven by either the East or West IO. Warming/cooling change-
points are roughly simultaneous and of equal magnitude (Δδ 18Op  ≈  0.5‰) around 3  Ma (Kaboth-Bahr & 
Mudelsee, 2022). Similarly, both western and eastern IO trends contribute to changes in late Pliocene TEX86 
ΔSSTW-E (Figures S8a and S8b in Supporting Information S1). In the later Pleistocene, eastern IO warming is 
responsible for the collapse in Uk′

37 ΔSSTW-E around 0.8 Ma, but cooler glacial periods at Site 722 cause most 
ΔSSTW-E decline after 0.5 Ma (Figure S8d in Supporting Information S1).

On >100  kyr timescales, nine of 13 eastern African hydroclimate records (including BTB13 δ 2HC31 values) 
are significantly correlated (p  <  0.05) with (non-Mg/Ca) ΔSSTW-E. In eight of these nine, higher terrestrial 
moisture coincides with a larger ΔSSTW-E; the exception is Lake Malawi Ca % (Johnson et al., 2016). Of the 
four Plio-Pleistocene records with paired δ 2Hwax-SST values, three are significantly (p < 0.05) and positively 
correlated such that warmer western IO SSTs are associated with higher precipitation. Of the four SST tran-
sects we compared to BTB13, precipitation and ΔSSTW-E are significantly and positively correlated in two 

Figure 7. (a) Natural gamma radiation K % and (b) X-ray fluorescence ln 
((Al + K)/(Ca)) data from West Australian International Ocean Drilling 
Program Site U1463 (Auer et al., 2019; Christensen et al., 2017). Vertical 
solid red line shows the timing of the single most abrupt shift in mean. Solid 
horizontal red lines show mean values before and after the changepoint. 
Vertical dashed red line shows the timing of the single most abrupt shift in 
slope and horizontal dashed red lines show trends before and after.
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(Table 1). In short, BTB13 δ 2HC31 values and broader eastern African hydroclimate generally track IO ΔSSTW-E 
on extra-orbital (>100-kyr) timescales.

Since most individual IO SST records (Figure S8 in Supporting Information S1) and therefore ΔSSTW-E are too 
low-resolution to extract <100 kyr trends, we do not perform spectral analyses on either. The exception is ODP 
722 (Herbert et al., 2015), which exhibits 19, 23, 41, and 100 kyr variance over the BTB13 timespan (Figure S9 
in Supporting Information S1).

3.4. Coupling of Plio-Pleistocene Southern Ocean and Agulhas Temperatures
Site 1090 and U1478 SSTs are strongly positively correlated (r = 0.2 to 0.8) between 3.5 and 3.2 Ma but switch 
to anticorrelated (r = −0.2 to −0.5) from 3.1 Ma on. Correlations are statistically significant (p < 0.05) when r is 
>0.4 or <−0.4, particularly immediately prior to/after the changepoint at ∼3.1 Ma (Figure 8).

4. Discussion
4.1. Interpretation of BTB13 Paleoclimate Proxies and Data
While existing BTB13 data coherently demonstrate that the basin underwent significant hydrologic and environ-
mental change, it is unclear if these events were localized or attributable to regional eastern African atmospheric 
circulation. Since leaf lipids are more broadly geographically sourced, they presumably record conditions beyond 
BTB; the high coherence between δ 2HC31 values and MS (Figure S4a in Supporting Information S1) suggests that 
local hydrology is largely controlled by regional climate and that δ 2HC31 values are primarily a function of the 
“amount effect,” a range of atmospheric processes that result in the negative correlation observed between rain-
fall amount and its isotopic composition and the primary control on tropical eastern African δ 2HH2O and thereby 
δ 2Hwax values (Dansgaard, 1964; Rozanski et al., 2013). Others include elevation, temperature, and moisture 
source.

While the timing of specific rifting events are poorly constrained (Macgregor, 2015), much of the major uplift 
had occurred by 13.5 Ma (Wichura et al., 2010). Terrestrial temperatures are largely unknown, but western IO 
SST records show 2–3°C sustained temperature change over BTB13's timespan (Figure S8 in Supporting Infor-
mation S1), too small to explain the 60‰ range in δ 2HC31 values (Figures 2 and 4). Assuming little temperature or 
elevation change in the late Pliocene Baringo Basin, variations in moisture source (i.e., Congo vs. IO) are the only 

Figure 8. (a) Sea surface temperatures (SSTs) from ODP Site 1090 (Uk′
37 ) (Martínez-Garcia et al., 2010) (purple) and 

International Ocean Drilling Program Site U1478 (TEX86) (Taylor et al., 2021) (gold). (b) A running 10-point Pearson's r of 
Site 1090 and U1478 SSTs. Filled circles indicate intervals where correlation is statistically significant (p ≤ 0.05). Shading 
indicates the timespan of BTB13. (c) Locations of Sites 1090 and U1478, the modern-day subtropical front (Orsi et al., 1995), 
and the Agulhas leakage (thick arrow) and retroflection/return current (dashed arrows) (Bard & Rickaby, 2009; Graham & 
De Boer, 2013). Background is 0.25° × 0.25° gridded 1982–2010 average SSTs (Reynolds et al., 2007).
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other plausible driver of δ 2HH2O change (Levin et al., 2009; Tierney et al., 2011), but the strong positive correla-
tion and in-phase spectral coherence of δ 2HC31 values and MS (Figure S4a in Supporting Information S1) suggest 
that deuterium-depleted rainfall is indeed associated with higher erosion and runoff. The δ 2HC31 changepoint at 
3 Ma also coincides with the first appearance of diatomites (Westover et al., 2021) and fish fossils (Billingsley 
et al., 2021) and thus deeper lakes in the region. These physical proxies should be insensitive to δ 2HH2O change; 
this implies that enhanced precipitation drove fluctuations in lake levels, and therefore that δ 2HC31 values are a 
robust indicator of rainfall amount and actual changes in the local water budget.

4.2. Mechanisms Behind Indian Ocean Dipole-Like Behavior at 3 Ma
While IO ΔSSTW-E demonstrably influences eastern African hydrology on seasonal to glacial-interglacial 
timescales (Abram et al., 2008, 2020; Di Nezio et al., 2016; Konecky et al., 2014; Saji et al., 1999; Tierney 
et al., 2011, 2013; Ummenhofer et al., 2009; Webster et al., 1999), trans-IO Walker circulation has yet to be 
observed at the orbital scale. The coincidence of (opposing) African and Australian hydroclimate shifts and 
heightened ΔSSTW-E between 3.1 and 2.9 Ma suggests that the latter is driving the former. Here, we consider 
several possible mechanisms for increasing ΔSSTW-E, including the restriction of the ITF current, iNHG-driven 
meridional migration of the ITCZ, and Antarctic-driven meridional migration of the STF.
The northwards drift of New Guinea-Australia and the growth of Halmahera in the Pliocene (Cane & Molnar, 2001) 
may have constricted Pacific-IO heat exchange via the ITF (Jochum et al., 2009; Rodgers et al., 2000; Sarnthein 
et  al.,  2018), replacing warm southern Pacific with cold northern Pacific water and increasing IO ΔSSTW-E 
(Kaboth-Bahr et al., 2021; Kaboth-Bahr & Mudelsee, 2022). However, proxy data indicate no significant change 
in Pacific ΔSSTW-E until ∼1.7 Ma (Wara et al., 2005), and eastern IO cooling associated with ITF restriction is 
thought to have occurred by 3.5 Ma (Auer et al., 2019; Gourlan et al., 2008; Karas et al., 2011), well before the 
BTB13/Site U1463 ∼3 Ma changepoint. Furthermore, if the ∼3 Ma changepoints in eastern Africa and western 
Australia were the result of permanent ITF restriction, IO Walker Circulation should have been permanently 
affected, but several measures of SST and hydroclimate rebound within ∼500 kyr (Figure S8 in Supporting Infor-
mation S1). Finally, late Pliocene Uk′

37 SSTs at ODP Site 722 exhibit no trend (Herbert et al., 2015), suggesting 
that changes in the Leeuwin Current do not necessarily propagate across the entire IO (van der Lubbe et al., 2021).
Similarly, high-northern latitude cooling can influence tropical rainfall through several processes, including lati-
tudinal migration of the ITCZ (Broccoli et  al., 2006; Chiang & Bitz, 2005; Chiang et  al.,  2003; Lechleitner 
et al., 2017; Mischell & Lee, 2022). With few exceptions (Sarnthein et al., 2009), North Atlantic SSTs exhibit 
little secular change in the late Pliocene (Clotten et al., 2018; Lawrence et al., 2009; Naafs et al., 2020). No global 
(Lisiecki & Raymo, 2005) or North Atlantic (Bartoli et al., 2005; Kleiven et al., 2002) benthic  18O-enrichment 
or IRD pulses (Bailey et al., 2013) occur until 2.9–2.7 Ma. Therefore, the changepoints in the Baringo Basin and 
Site U1463 postdate the tectonic reorganization of Indonesia but predate iNHG.
We propose that Antarctic cooling and the northward migration of the STF drove simultaneous temperature 
change on both ends of the IO, thereby enhancing the eastern Africa-western Australia precipitation dipole at 
∼3 Ma. The Agulhas current, which transfers warm surface waters from the IO to the Atlantic around the Cape of 
Good Hope, weakens during glacial periods, as the STF approaches South Africa and weakens Agulhas leakage 
(Bard & Rickaby, 2009; Caley et al., 2012). Surface warmth retroflects along the Agulhas Return Current and 
heats the western IO (Civel-Mazens et al., 2021). Thus, Southern Hemisphere glaciation/STF migration steepens 
IO ΔSSTW-E, causing a wetter coastal equatorial eastern Africa during cool intervals such as the LGM (Di Nezio 
et al., 2016).
Thus far, this teleconnection has only been demonstrated in the mid-late Pleistocene. The initiation of anticor-
related ODP Site 1090 and IODP Site U1478 SSTs about 3.1 Ma (Figure 8) corresponds to other late Pliocene 
Southern Ocean cooling steps including the emergence of persistent Antarctic summer sea ice around 3.03 Ma 
(Riesselman & Dunbar, 2013), cooler Uk′

37 SSTs at Tasman Sea DSDP Site 593 (McClymont et al., 2016) and 
ODP Site 1125 (Fedorov et  al.,  2015), and increased STF-diagnostic nannofossils at Tasman Sea ODP Site 
1172 (Ballegeer et al., 2012) around 3.1 Ma, interpreted as evidence for the northwards migration of the STF 
(McClymont et al., 2016). Prior to ∼3.3 Ma, the STF perhaps did not approach near enough to the Cape of Good 
Hope to significantly affect the Agulhas, and 1090 and U1478 temperatures covaried. The causes of these STF 
movements are possibly related to Northern Component Water leakage at ∼3 Ma (Poore et al., 2006) but require 
additional study.
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4.3. Plio-Pleistocene Orbital Variability in the Baringo Basin
Although the dominant orbital periodicities in the more numerous Pleistocene-Holocene eastern African hydro-
climate records are 19–23 kyr precession, the obliquity and eccentricity components of extant Plio-Pleistocene 
data suggest a more complex set of forcings, or at least changing dynamics over time (Section 1.2). The strong 
obliquity signal in BTB13 δ 2HC31 values (Figure 6)—the highest-resolution Plio-Pleistocene leaf wax isotope 
record to date—further signifies hydroclimatic influences outside of local insolation. Given that age model 
uncertainties are larger than the periodicity of precession over much of the core, we cannot conclusively prove 
that precession is absent or present, so we focus on the longer (40–100 kyr) cycles, which should be relatively 
unaffected given the highly linear long-term sedimentation rates (Figure 2a); for precession to be present but 
obscured throughout would require highly nonlinear sedimentation between obliquity minima/maxima.
Assuming that the BTB13 age model is accurate on >10 1 kyr timescales, we propose that 41 kyr variability in 
Plio-Pleistocene eastern African rainfall is set by the interhemispheric 21 June 23.5°N–23.5°S insolation gradi-
ent. The gradient is a better candidate for the source of obliquity variance in BTB13 δ 2HC31 values than variations 
in global ice volume and temperature, Arabian Sea SSTs, or Southern Ocean SSTs (Figure S5 in Supporting 
Information  S1), since the 41  kyr component of δ 2HC31 values is out of phase with marine 41 kyr variance 
(Figures S4 and S5 in Supporting Information S1) but coherent with 0° phase lag with the insolation gradient 
(Figure 6). This relationship could explain why 41-kyr cycles are strongly present in BTB13 and Site U1478 
δ 2Hwax values and Site U1463 K %, before iNHG, and in North African precipitation after the mid-Pleistocene 
transition (O'Mara et al., 2022), even when obliquity is not the dominant frequency of the benthic δ 18O record 
(Lisiecki & Raymo, 2007).
The strongly 100-kyr component of the δ 2HC31 record in the 2.75–2.95 interval has several potential sources. 
Eccentricity typically modulates the strength of precession (Foerster et al., 2022; Trauth et al., 2007), but BTB13's 
δ 2HC31 spectrum lacks 21-kyr periodicity, as do the MS and Si/Ti spectra until 2.68 Ma (Figure S3 in Supporting 
Information S1). (Age model uncertainties in BTB13 range up to ±50 kyr in the middle 300 kyr [3–2.7 Ma] 
(Deino et al., 2021), greater than 1–2 precession cycles.) 100 kyr periodicity, which is also observed in southern 
Ethiopian hydroclimate post-MPT (Foerster et al., 2022), could also be the result of 100-kyr ENSO-like fluctu-
ations in pan-African moisture balance (Kaboth-Bahr et al., 2021), perhaps transmitted via the IO, which also 
displays some 100 kyr variance in the late Pliocene (Figure S9 in Supporting Information S1), although it is 
unclear whether teleconnections between tropical Pacific SST gradients and African moisture balance exist prior 
to the establishment of global ∼100-kyr variability around 800 ka (Lisiecki & Raymo, 2005) or zonal gradients 
in equatorial Pacific SSTs at 1.7 Ma (Wara et al., 2005). It is also noteworthy that eccentricity only appears to 
dominate when cross-equatorial insolation gradient variability is at its most muted, suggesting a more complex 
interplay of orbital forcings than previously realized.
The spectral imprint of IO SSTs and ΔSSTW-E on eastern African precipitation is also difficult to quantify on 
orbital (<100–200  kyr) timescales because most Plio-Pleistocene IO records are not sufficiently resolved to 
extract 19-, 23-, or even 41-kyr cyclicity, compounded by the interpolation required to calculate ΔSSTW-E. δ 2HC31 
values remain most coherent with the cross-equatorial insolation difference, suggesting that they represent the 
hybrid influences of the meridional insolation gradient on orbital and IO Walker Circulation on supra-orbital (and 
possibly orbital) timescales. Ultimately, higher-resolution paired terrestrial-marine archives are likely required to 
fully disentangle these processes and assess if eastern African hydroclimate derives its 19–100-kyr components 
from the IO.

5. Conclusions
Geochemical (Si/Ti, δ 2HC31 values) and physical (MS) proxy data from BTB13 show an increase in moisture 
around 3 Ma as well as prominent 41-kyr periodicity between ∼3.3 and 2.6 Ma. Many eastern African hydrocli-
mate records contain a dominant 21-kyr periodicity associated with orbital precession (Caley et al., 2018; Foerster 
et al., 2022; Joordens et al., 2011; Lupien et al., 2018, 2021, 2022; Nutz et al., 2017; Partridge et al., 1997; Yost 
et al., 2021). Proxy evidence, and particularly sedimentologic records of lake levels, from BTB13 do demonstrate 
a strong influence of precession in the Baringo Basin; our δ 2HC31 record likely cannot resolve this periodicity. 
Nevertheless, the 41-kyr precipitation cycle in BTB appears coupled to the cross-equatorial insolation gradient, 
suggesting that additional controls beyond hemispheric seasonal insolation forcing are important to equatorial 
eastern African rainfall.
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BTB13 δ 2HC31 values are positively correlated with zonal δ 18Op and SST gradients across the southern and 
central IO and, combined with drying in western Australia between 3.1 and 3 Ma (postdating the closure of 
the Indonesian Seaway), suggest that a Walker Circulation-driven precipitation dipole has governed trans-IO 
climate since at least the late Pliocene—over a million years before the Pacific (Wara et al., 2005). This implies 
that a high ΔSSTW-E overrode the thermodynamic effects of global cooling and drying in eastern Africa across 
the Plio-Pleistocene boundary. In contrast, mid- to late Pleistocene cooling (1.1 Ma-present) and a ΔSSTW-E 
decline generally resulted in a drier eastern Africa (Caley et al., 2018; Foerster et al., 2022; Owen et al., 2018). 
The ΔSSTW-E increase around 3 Ma (+3 to 5°C) is comparable to present-day ΔSSTW-E values associated with 
major IOZD events (Abram et al., 2008), while the ∼−11.5‰ δ 2Hprecip shift at ∼3 Ma is roughly equivalent to ¼ 
of modern annual variance (Figure 3). If anthropogenic warming enhances ΔSSTW-E and thereby precipitation 
similarly to ∼3 Ma, adaptation and mitigation efforts must account for the higher likelihood of extreme wet events 
and increased mean annual rainfall in equatorial eastern Africa (Ogega et al., 2020; Shongwe et al., 2011).

Data Availability Statement
BTB13 δ 2Hwax, δ 13Cwax, MS, and XRF Si/Ti data presented here are available from the National Oceanic and 
Atmospheric Administration's Paleoclimatology Data service (Mitsunaga et al., 2023).
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