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Abstract— This work presents the first resistive random access
memory (RRAM)-based compute-in-memory (CIM) macro
design tailored for genome processing. We analyze and demon-
strate two key types of genome processing applications using
our developed CIM chip prototype: the state-of-the-art (SOTA)
burrows–wheeler transform (BWT)-based DNA short- read align-
ment and alignment-free mRNA quantification. Our CIM macro
is designed and optimized to support the major functions essen-
tial to these algorithms, e.g., parallel XNOR operations, count,
addition, and parallel bit-wise and operations. The proposed
CIM macro prototype is fabricated with monolithic integration of
HfO2 RRAM and 65-nm CMOS, achieving 2.07 TOPS/W (tera-
operations per second per watt) and 2.12 G suffixes/J (suffixes
per joule) at 1.0 V, which is the most energy-efficient solution to
date for genome processing.

Index Terms— Compute-in-memory (CIM), genome sequenc-
ing alignment, mRNA quantification, resistive random access
memory (RRAM).

I. INTRODUCTION

POWERED by high-throughput next-generation sequenc-
ing (NGS) technologies, the latest DNA sequencing

method accurately decodes nucleotide (nt) sequences within
genomes and assesses molecular activities in cells [1], [2].
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This breakthrough supports various biomedical applications,
including disease diagnostics [3], cancer risk assessment [4],
personalized patient treatment [5], prenatal testing [6], and
more. These biomedical applications heavily rely on fast and
low-cost genome analysis [7], [8], [9].

Despite the significant reduction in sequencing costs due
to the rapid growth of sequencing technologies, the current
bottleneck lies in the compute-intensive nature of large-scale
genome processing. For instance, DNA short-read (i.e., short
DNA sequences) alignment involves aligning hundreds of
millions of DNA short-reads to a 3.2 billion-length genome.
Similarly, mRNA quantification entails measuring the expres-
sion level of hundreds of thousands of mRNA isoforms
based on hundreds of millions of DNA short-reads for each
patient sample. The existing genome analysis algorithms [10],
[11], [12], [13], [14], [15], [16] still require several hours
to days to process the large-scale genomic data, even on
advanced computing architectures such as CPUs, GPUs, and
ASICs, highlighting the persistent challenges posed by the
data-intensive nature of these genome analysis processes.

Prior works have shown that genome processing is primar-
ily bottlenecked by data movement and OFF-chip memory
access [17], [18]. This memory wall bottleneck [19] is a
well-known phenomenon plaguing traditional von-Neumann
computers. A promising solution to the von-Neumann bot-
tleneck is the compute-in-memory (CIM) paradigm where
memory and compute are not treated as isolated elements.
Instead, compute is interleaved inside memory for higher
throughput and reduced data traffic [20]. Several prior works
have reported significant improvement in genome analysis
throughput with CIM architectures [17], [21], [22], [23], [24],
[25]. However, most CIMs for genome processing have not
been implemented on a custom chip.

The key contributions of this work are summarized below.

1) First RRAM-based CIM chip prototype for genome
short-read alignment and quantification. To the best of
the authors’ knowledge, we demonstrate the first resis-
tive random access memory (RRAM)-based CIM chip
prototype designed and optimized for genome process-
ing. We have demonstrated and evaluated two critical
genome processing tasks: burrows–wheeler transform
(BWT)-based DNA short-read alignment and mRNA
quantification where each short-read ranges from 50 to
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300 nucleotides (nts). Our designed CIM macro supports
all the core instructions required by the alignment and
quantification algorithms, i.e., XNOR-based match, par-
allel AND operations, count, and addition. As designed,
each CIM macro works independently as a paral-
lel “alignment/quantification core” that could process
locally correlated genomic data to significantly improve
system parallelism and throughput. The CIM macro is
implemented in a prototype chip that monolithically
integrates HfO2 RRAM and 65-nm CMOS, achieving
the best energy efficiency to date with a throughput of
2.07 TOPS/W (tera-operations per second per watt) and
2.12 G suffixes/J (suffixes per joule) at an operating
voltage of 1.0 V.

2) Performance benchmarking: We conduct a comprehen-
sive evaluation and benchmarking of the performance
and energy efficiency of our design with a spectrum
of recent advancements in the field. For the short-
read alignment, our benchmarking includes a range
of technologies: traditional CPU and GPU systems,
CMOS-based ASIC designs [26], [27], and FPGA [28].
Our design demonstrates a remarkable performance
improvement, achieving up to a 41-fold increase in
throughput compared with these conventional systems.
Moreover, in terms of energy efficiency, our design
outperforms the existing solutions by up to ⇠5.73⇥.
For mRNA quantification, we conduct the analysis
by adapting and mapping our quantification-in-memory
algorithm to both our CIM design and other state-of-
the-art (SOTA) non-volatile memory based CIM designs
that are tailored for bit-wise logic operations. Our CIM
design not only demonstrates higher energy efficiency
but also achieves the best normalized throughput against
column parallelism.

II. BACKGROUND AND MOTIVATION

A. Short-Read Alignment
The sequencing data obtained from a single patient sample

include hundreds of millions of DNA short-reads, each ranging
from 50 to 300 nts (A, T, C, G) in length. These short-reads
lack positional information. To address this, aligning these
short-reads with the reference genome becomes crucial for
most genomic analyses [29], [30]. However, this alignment
task is challenging due to the extensive nature of the refer-
ence genome. Despite the development of numerous sequence
alignment algorithms over the past decades, even the most
efficient ones, like BWA [15], [31] or Bowtie2 [12], still
require hours or days for alignment. The extended processing
time for aligning such large amounts of data poses a challenge,
limiting the widespread use of genomic information in disease
diagnosis and prognosis within clinical and hospital settings.

B. mRNA Quantification
mRNA transcription is a fundamental aspect of cellular

function. The level of mRNA transcription directly influences
the amount of protein synthesized by a cell, and it plays a
central role in various biological processes, offering insights

into health, disease, and therapeutic interventions [32], [33].
Therefore, the efficient and accurate quantification of mRNA
transcription levels becomes crucially important.

The current alignment-free technique focuses on determin-
ing the mRNAs from which the short-reads are generated
rather than their exact locations [34]. Despite the efficacy of
this strategy in preserving accuracy, there remains a need to
map each short-read to hundreds of thousands of mRNAs for
quantification, demanding substantial computational resources.
To tackle this challenge, it is essential to develop an efficient
and fast hardware accelerator, specifically designed for the
compute- and data-intensive demands of the alignment-free
mRNA quantification process.

C. Acceleration of Alignment

There have been several prior works that accelerate
short-read alignment in CPUs [35], GPUs [36], [37], [38],
and ASICs [18], [26], [27], [39], [40]. Notably, there have
also been simulation-based efforts in the realm of CIMs [17],
[22], [23], [25].

1) Alignment in CPUs and GPUs: The SOTA CPU-based
implementation [35] provides end-to-end acceleration through
instruction-level re-organization that promotes more efficient
caching. It also uses SIMD instructions to amortize control
overhead and mask the memory wall through aggressive pre-
fetching. These techniques provide a speedup of up to 2.4⇥
�3.5⇥ over the existing CPU-based software implementa-
tions. Liu and Schmidt [36] accelerate alignment on Nvidia
GPUs using CUDA. It offers a heterogeneous CPU–GPU
acceleration and claims a speedup of 1.6⇥ �2.7⇥ over the
CPU-only implementations.

2) Alignment in ASICs: A simulation-based ASIC imple-
mentation [41] has shown ⇠24⇥ improvement compared with
software baselines for aligning long sequence reads. Another
simulation-based ASIC, NvWA [18] addresses the diversity
and scheduling problem between seeding and seed-extension
phase. It provides speedups of over 493⇥ compared with
CPU baseline, 200⇥ over [37] and 12⇥ over [40]. As for
real silicon implementations, [26] represents one of the first
works in a 40-nm prototype chip. It achieves >16⇥ throughput
improvement over GPU. Another work [27] based on 28-nm
CMOS implements an SoC that performs read mapping along
with other steps in the genome sequencing pipeline.

3) Alignment in CIMs: CIM has been established as a
promising solution to accelerate data-intensive tasks by reduc-
ing dominating data traffic. Li et al. [17] accelerate alignment
in DRAMs and offer >1820⇥ speedup over conventional
methods. Whereas [22], [23], [25] accelerate alignment in
non-volatile memories (NVMs), reaping the benefits of both
CIM speedup and non-volatile storage. Prior works like [22],
[23] accelerate alignment by forming every RRAM device
several times for each short-read alignment and using multi-
bit analog-to-digital converters (ADCs) which have high error
rates. This is not tolerable, especially for alignment where
error resilience must be less than 0.1% (software base-
line for short-read alignment). To alleviate this bottleneck,
we design our macro in a mostly digital fashion without
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Fig. 1. BWT-based genome alignment steps. Given the reference genome
“ATCCGTA” finds the occurrence of query “CGT” with backward search.

the need for forming during alignment. All prior NVM-CIM-
based alignment works [22], [23], [25] are simulation-based
implementations that do not represent real-world metrics.
To our knowledge, we are the first to demonstrate working
RRAM/CMOS-based CIM for short-read alignment on real
silicon implementation.

III. GENOME CIM ALGORITHMS

A. Alignment-in-Memory Algorithm

Fig. 1 shows the original BWT-based backward search
method to find the occurrence in a reference sequencing.
It consists of three main steps.

1) First, given a reference genome sequence, it begins
by generating all possible rotations of this sequence
through cyclic rightward shifts, assigning each rotation
an increasing index in the suffix array (SA) column.

2) Next, it lexicographically sorts these rotations and
assigns new indices. The last column of this sorted array
is known as the BWT [15].

3) Finally, using the first and last columns, the occur-
rence of a substring can be located through backward
searching.

Fig. 1 demonstrates an example of the process of how to search
for the occurrence of “CGT” from the reference sequence
“ATCCGTA$,” where “$” denotes the end of the sequence.
Two pointers, “low” and “high,” are initialized to the beginning
(0) and end (8) of the first column, respectively. After the
backward search, the occurrence location is indicated by these
two points.

In our prior works [25], [30], we have developed a
CIM-friendly DNA short-read alignment algorithm, called
alignment-in-memory as shown in Algorithm 1. Compared
with the original BWT algorithm [15], [31], we have replaced
the operators with equivalent CIM-friendly bit-wise logic oper-
ations. Similar to the original algorithm, the pre-computation is
needed based on the reference genome S to construct required

Algorithm 1 Genome Alignment-in-Memory
Require: : Pre-Compute and Data Mapping: Partition pre-computed BWT, Marker

Table (MT ), and Suffix Array (SA).
input: Genome Short-Read R
output: Positions of short-read R in reference genome S
Step-1. Initialization:

1: low 0 , high |S|� 1
Step-2. Backward Search:

2: for i := |R|� 1 to 0 do
3: low Bound(MT [blow/dc], R[i], low)

4: high  Bound(MT [bhigh/dc], R[i], high)

5: if low � high then
6: break & return 0 F there is no exact alignment
7: end if
8: end for

Step-3. Get matched positions from the stored suffix array based on a search result:
9: for j := low to high � 1 do

10: posi tions  MEM(SA[ j]) F Read positions from Suffix Array memory
11: end for

Define procedure Bound:
12: Procedure: Bound(MT , nt, id) F compute matched interval
13: CM  0 F Initialize variable CM (Count Match)
14: for j := 0 to j < (id mod d) do F count number of nt within the BWT region
15: if XNOR_Match(nt, BW T [id � (id mod d) + j]) == 1 then
16: CM = CM + 1
17: end if
18: end for
19: marker  MEM(MT [bid/dc], nt]) F Read Marker Table value
20: return ADD(marker, CM)

21: end Procedure

Fig. 2. Pre-computed tables for BWT-based alignment.

reference tables as shown in Fig. 2. This pre-computation
is a one-time effort as different query sub-strings use the
same BWT during the backward search. The BWT is saved
as occurrence table (denoted as Occ.). To reduce storage
needs, Occ. is sampled for every “d” rows (d = 32 in our
macro design). Therefore, to accurately determine the exact
occurrence, it is necessary to count the nts within each “d”
interval. The BWT and MT table mapping require a one-
time write, and only memory-read-based operations are needed
during alignment computation. Therefore, they are well-suited
for CIM leveraging NVMs, such as RRAM.

The process described in Algorithm 1 is mainly imple-
mented through the Bound(MT , nt, id) procedure, which
iteratively updates interval bound pointers (either low or
high). To make the algorithm hardware-friendly for the
CIM platform, all the computations leverage certain bit-wise
logic functions, i.e., XNOR_Match and ADD. XNOR_Match

conducts parallel in-memory match operation to determine
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Algorithm 2 mRNA Quantification-in-Memory
Require: : Construct index_table-T for each genome S. The index table consists of

K-mers and associated k_comp classes.
input: Genome Short-Read R
output: Compatible transcripts of short-read R in reference genome S

1: Initialize result = ones(t , m) F t is the number of index tables, m is the number
of transcript.

2: input = R[i = 0: j = k] F k is the length of K-mer.
3: for input in short_read do
4: Initialize k_mer_idx = ones(t , n) F n is the number of K-mers in each

index_table.
5: parfor t_i in length(T ) do F Partition the data and Ops for high parallelism.
6: for i in [0 : k] do
7: xnor_result[t_i] = XNOR_Match(input[i], T [t_i][k_mer ][i])
8: k_mer_idx[t_i] = AND(k_mer_idx[t_i], xnor_result[t_i])
9: end for

10: k_comp = MEM(T [t_i][k_comp][K _mer_idx]) F Read the K-comp.
11: result[t_i, :] = AND[result (t_i, :], k_comp)
12: end parfor
13: input = short_read[i + 1 : j + 1]
14: end for
15: Return result F result indicates the compatible transcripts of all genes.

Fig. 3. Example steps in mRNA quantification-in-memory.

whether current input nt matches with BWT elements stored
in the current memory array, and then updates the CM
(Count_Match) based on matching result (lines 14–18 in
Algorithm 1). ADD performs 32-bit integer addition to imple-
ment “marker+CM ,” then the computed sum will be returned
as the main Bound function output (line 20). For a more com-
prehensive understanding of the textitalignment-in-memory
algorithm and its adaptation of the BWT backward search,
we encourage readers to refer to our prior publication [25],
[30].

In summary, to implement all the alignment-related com-
putations in Algorithm 1, the CIM platform needs to support
parallel XNOR operations between input nt and decoded BWT
elements (line 15), count the XNOR results (line 16), read the
marker from marker table (line 19), and add it to the current
counter value (line 20).

B. Quantification-in-Memory Algorithm
The CIM-friendly mRNA quantification-in-memory

algorithm is depicted in Algorithm 2 and Fig. 3, motivated
by our prior work [42]. It involves three key steps.

1) Index table construction.
2) Input generation and K-mer XNOR_Match.
3) K-comp AND to identify the transcript.
The human genome comprises thousands of genes, and each

gene is represented by one index table. Every index table
contains two parts: K-mers (a substring of length k from a
longer sequence) and K-comp (set of transcripts that share
a common k-mer) (requirements in Algorithm 2). All the

transcripts’ sequences of a gene are sliced into substrings
of length “k,” termed “k-mers,” starting from each position;
and for each K-mer, the K-compatibility (“K-comp”) classes
are defined based on its occurrence in the transcript. The
K-comps is represented as a binary 1-D vector: “1” denotes
the presence of the k-mer, while “0” indicates its absence.
It is important to note that the construction of this index table
is a one-time process for each gene. Once constructed, these
tables are stored within the CIM platform for efficient access
and utilization.

After the construction, a sliding window, matching the
length of the K-mers, generates inputs from every short-read
(lines 2 and 13). Each input is then processed against every
gene’s index table to identify exact matches using a bit-wise
XNOR logic implemented in hardware (lines 5–8).

When a match is found in an index table, its corresponding
K-comp value is recorded and processed (lines 10 and 11).
If no match is found, the short-read does not belong to any
transcript in this gene and is discarded for this index table by
returning an all-zero vector. This all-zero vector is generated
by the MEM function when the requested k_mer_idx is an
all-zero vector, indicating that the requested K-comps do not
exist.

To illustrate the process, one example is presented in Fig. 3.
K-mer length is 3 in this example. Assuming this gene has
three transcripts, resulting in the K-comp length as 3. Each
input will be fed into the pre-generated index table to find the
exact match and its corresponding K-comp. Bit-wise AND is
then performed on all the selected K-comps to produce the
final output. In this example, based on the final AND output
of “100,” transcript 0 is found as the compatible transcript.
Note that, the final output may have multiple “1”s, indicating
more than one transcript is compatible.

The primary operations in our quantification-in-memory
algorithm are K-mer matching (via XNOR_Match) and AND
for matched K-comps. The matching operations across differ-
ent index tables are independent, and each CIM array can act
as a separate process engine, fully exploiting the parallelism
of CIM architecture. For a more detailed explanation and
analysis of the CIM-friendly mRNA quantification-in-memory
algorithm, refer to [34] and [42].

In summary, to facilitate alignment and quantification, the
CIM design must support the following major operations:
XNOR_Match; regular memory access and read (MEM);
ADD; and bit-wise AND. It is worth noting that unlike
many RRAM crossbar array-based machine learning (ML)
accelerator designs that leverage high parallelism to effi-
ciently implement vector–matrix multiplication or dot-product
operations, genome alignment and quantification require very
different logic operations and workflows that cannot be simply
modeled as dot products. Therefore, a new design specifically
targeting genome processing is desired to fully leverage the
benefits of CIM.

IV. CIM RRAM MACRO DESIGN

Fig. 4 shows the proposed architecture and circuits of
one CIM RRAM macro for alignment and quantifica-
tion operations. The computational array consists of one
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Fig. 4. CIM macro architecture and circuits.

Fig. 5. (a) Circuits for XNOR operation. (b) Read operation (MEM) through
existing circuits.

64 ⇥ 64 RRAM array, SL/WL/bitline (BL) decoder, sense
amplifier (SA), counter, adder, transmission gate (TG), level
shifter, etc. Note that in this work, we mainly treat each RRAM
device as single-level cell (SLC) with two distinct resistance
states, i.e., high-resistance state (HRS) and low-resistance state
(LRS).

A. Parallel XNOR Operation (XNOR_Match)
For XNOR_Match operation, two rows storing the two

operands will be simultaneously activated, as one example
shown in Fig. 4. This forms a voltage divider circuit in each
BL, where the BL voltage is determined by the two connected
RRAM cells in the same column, as shown in Fig. 5(a). Two
complementary TGs controlled by source-line (SL) decoder
and drivers are used to provide the operating voltages. When
the decoder’s output is set to “1,” the TG at the corresponding
row connects the selected SL to VSL, and when the output is
set to “0,” the corresponding SL is connected to GND.

During XNOR operation, two rows are activated simulta-
neously where the first row corresponds to the first XNOR
operand, given input nt in Ref region through connecting
the corresponding TG to the VSL. The second activated row
corresponds to the second XNOR operand, i.e., BWT for
alignment application or K-mers for quantification application.
For the second activated row, the TG is connected to GND,
for forming the voltage divider circuit [Fig. 5(a)]. When the
resistance of R1 is equal or very close to R2, the voltage
at the BL (VBL) should be around half of VSL, meaning a

“match” is found. Otherwise, the deviated VBL represents “not
matched.”

To detect the VBL around half of VSL for implementing
such a matching function, we design two SAs as voltage
comparators per BL, where they share the same BL but
with different reference voltages: Vref1 and Vref2. An and
logic gate is connected to the output of two SAs, so that it
only outputs “1” when Vref1 < VBL < Vref2, thus imple-
menting an XNOR-based matching function. As described
earlier, the examples R1 and R2 here represent the two
operands being compared, where each column outputs “1”
when the two operands being compared are identical. With
the operation being independent of other columns, it enables
64 parallel XNOR operations in one cycle. For the in-memory
XNOR_Match operation discussed above, the sensing margin
is mainly dependent on the RRAM’s ON/OFF ratio, variation,
and VSL. Given our SLC RRAM devices, each nt requires
two RRAM cells to represent the four different types of
nts, e.g., “A” (LRS-LRS), “C” (LRS-HRS), “G” (HRS-LRS),
and “T” (HRS-HRS), as shown in Fig. 5(a). Therefore, two
adjacent RRAM cells on the same row are used to represent
a single nt. The 64 parallel XNOR operations are transferred
to 32 nts (interval “d” described in Section III-A) matching
operation with the peripheral circuits in counter.

In our design, to support independent RRAM programming,
two complementary TGs are also present on BLs. During the
XNOR_Match operation, BL is connected to SAs through the
TGs. During RRAM cell programming, the BL is disconnected
from SAs. The column decoder assigns the selected BL to an
analog IO pad that provides Form/Set/Reset pulses to arbitrary
RRAM cells in the array. VWL, VSL, and VBL are directly
connected to different analog IO pads to provide arbitrary
pulses for RRAM device programming and testing.

B. Normal Memory Access (MEM)

As required by both the alignment and quantification algo-
rithms discussed earlier, the proposed design also needs to read
data from memory for further processing. Instead of having
a separate read circuit, we share the two SAs used for the
CIM mode, also for such MEM function. We use the existing
CIM scheme of activating two rows simultaneously and the
existing XNOR_Match circuit. However, it is crucial that all
RRAM cells in one of these activated rows are programmed in
LRS. As illustrated in Fig. 5(b), it can be seen that when R1
is in the LRS state, the XNOR_Match output is equivalent to
reading R2’s status. As explained in Section V, the first four
rows of the RRAM macro are always reserved as references
representing four different types of nt, corresponding to current
input nt. In this setup, the first row is always programmed at
the all-LRS state to encode nt “A.” Thus, the read operation
could be implemented through activating the first row and the
row needs to be read using the existing peripheral circuits.

C. Other Peripherals for Count/ADD/AND

The other required “Counter” and “Adder” for the alignment
task are implemented with digital circuits, subsequent to the
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Fig. 6. Dataflow of alignment in CIM macro. (a) Match&count. (b) ADD.

dual SAs. A latch is associated with each BL and is positioned
after the voltage comparator to temporarily store the result.

For the quantification task, an extra “and” operation is
needed. To minimize the add-on logics and provide the
switch knob to disable such function in alignment workload,
we propose to repurpose the latches for the dual SAs to
execute AND operation. It could be achieved by connecting
the output of each latch to its enable port through an OR
gate. This configuration not only allows the latch to store
the current XNOR_Match result but also enables a bit-serial
AND function, continuously performing the AND operation
between the incoming input and the previously stored result.
More importantly, the or gate between the latch’s output and
enable port provides the flexibility to activate or deactivate
this and function as needed. For the alignment task, the and
function is not required. In this scenario, the decoder emits
a control signal (ctrl_en) to the or gate, ensuring that the
latch’s enable port is always active, thereby functioning as
a standard latch. Conversely, during the quantification task,
the and function is activated after each XNOR_Match and
MEM operation. Here, the decoder generates the ctrl_en signal
only for the initial cycle to initialize the latch. From the
second cycle onward, the latch’s behavior is controlled by
its previous output. If any input to the latch is “0,” the
latch becomes disabled, maintaining a “0” state regardless of
subsequent inputs. This mechanism mirrors the principle of an
and operation, where the result is “0” if any input is “0.”

With the aforementioned innovations, the proposed CIM
RRAM macro can execute all the five essential functions
required for alignment and quantification: XNOR_Match,
MEM, Count, ADD, and AND.

V. DATAFLOW AND MAPPING

A. Alignment-in-Memory Dataflow and Mapping
Our preliminary work [25] has developed correlated data

partition and memory mapping methodologies that could par-
tition the BWT and MT tables based on the target CIM macro
memory size and map them onto RRAM arrays to eliminate
frequent data movement. Such correlated data partition also

guarantees that each macro could work independently as an
alignment core to process within the local memory array with
correlated data partitions. We refer details of the data partition
algorithm to [25] and [30]. When querying a short-read against
the entire reference genome, the CIM-friendly alignment cap-
italizes on the independence of these CIM macros and their
inherent high parallelism. This setup enables simultaneous
search of short-reads across the entire reference genome, with
each CIM macro efficiently processing its allocated segment
within the local memory array. As a result, the overall search
operation is fast and efficient, leveraging distributed data
partitions across macros.

Fig. 6 shows the data mapping and dataflow of alignment
operation in one CIM macro. For each CIM macro, the
memory array is divided into three zones for storing and
processing three data types: 1) rows [0:3] defined as Ref where
one whole row is programmed as the same genome nt from
[A,C,G,T] as a compute reference; 2) rows [4:15] storing the
BWT partition for the current CIM macro; and 3) rows [16:63]
storing the MT table partition for current CIM macro. With the
1-bit per cell encoding scheme, a 64 ⇥ 64 crossbar array can
store the BWT and MT for a fragment of the reference genome
up to 384 nts long. Reference genomes longer than this will
be partitioned and mapped onto multiple RRAM macros for
parallel processing.

As illustrated in Fig. 6, the core alignment process in one
macro requires two main stages: match&count and ADD.
The match&count stage includes the parallel in-memory
XNOR_Match and counting the matching result using a digital
counter. For XNOR_Match, the first operand is the input nt
(A/T/C/G), where the corresponding row in Ref region will
be activated representing current Bound function input. The
second operand is a sub-list of BWT elements decoded by
index-id and d (line 15 in Algorithm 1). Therefore, in this
stage, two decoded rows (one from Ref and one from the BWT
region) will be activated to implement parallel XNOR-based
match and count outputs (lines 14–18). An example is given
in Fig. 6(a), for the task of finding the match between the
input nt “A” and a BWT row “TAATG.” The first row in
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Fig. 7. Mapping and dataflow of quantification in CIM macro. (a) XNOR_Match between input nts and local stored K-Mers. (b) Serial bitwise AND operation
among XNOR_Match results to identify the compatibility.

the reference part of the macro (stores all “A”) and the
corresponding BWT row are activated. This activation scheme
resulting XNOR operation produces “01 100.” The XNOR result
is sent to the digital counter, which converts this pattern into
its binary-encoded representation of “00 010.” In the following
ADD stage [Fig. 6(b)], the corresponding marker value from
MT (line 19) will be fetched and added to the current counter
result (line 20) through a digital adder. Finally, the ADD result
is returned as the main Bound function output, which will
be used during the processing of the next nt in the same
short-read.

B. Quantification-in-Memory Dataflow and Mapping
Similar to the alignment process, the CIM-friendly mRNA

quantification also capitalizes on the independent nature and
high parallelism of CIM macros (as outlined in line 5 of
Algorithm 2). Each gene constructs its own unique index
table. During the processing of a short-read, this read is
concurrently distributed to all the CIM macros. Each macro,
holding a distinct index table, executes the following steps
to process with its unique gene within the local memory
array. The ON-chip RRAM array is strategically partitioned
into two distinct sections, one stores the pre-computed index
table’s K-mers and the other holds the corresponding K-comp.
K-mers are stored in a transposed orientation along
column-wise marked as K-MerT in Fig. 7. Each K-mer occu-
pies the same column, where each row in the section stores
the same indexed nt among different K-mers. It enables us to
perform the bit-wise XNOR_Match among K-mers in parallel.
K-comps are stored along word-lines in a binary format, where
each column corresponds to a transcript. In this format, the
binary value in each column indicates whether the associated

K-mer is part of the corresponding transcript. For example,
a “1” in the zero-indexed column signifies that the K-mer of
this K-comp is present in transcript T0.

When the short-read is received, the first step is to generate
inputs with a sliding window to guarantee the input has the
same length as the K-mer for the following XNOR_Match.
With the generated input, we activate two rows in the sub-array
to perform the XNOR_Match. Since the K-mers are stored in
a transposed format and the XNOR operation is executed bit-
wise, it requires K cycles to identify a matched K-mer, where
K is the length of the K-mer.

As illustrated in Fig. 7(a), the input “ATA” takes three
cycles to locate the matching K-mer in the sub-array. In each
cycle, we simultaneously activate two rows: one row from the
reference section, representing the input nt, while the other row
holds the nt of K-mers at various indices. To optimize parallel
computing efficiency, all the BLs are simultaneously activated
to perform XNOR_Match between the nt from the current
input and the selected K-mers in parallel, processing each bit
in tandem. As previously discussed, during the initial cycle,
the outcomes of these XNOR_Match are captured in latches,
activated via the Ctrl_en signal. During the subsequent cycles,
these latched results are fed back into the system, controlling
the enable pins of the latches. This setup ensures that when a
latched result switches to “0,” the corresponding latch becomes
disabled and ceases to update. This feedback mechanism,
operating through the enable signal, essentially acts as a
serial bitwise AND operation among the XNOR_Match results
(line 8). After three cycles, the final result of “10 000” is
obtained, which indicates that one match is found, and “ATA”
is stored in the first column. Thus, the K-comp stored in the
first row of the corresponding K-comp sub-array is selected
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Fig. 8. Chip micrograph and layout with module-level breakdown.

for the subsequent AND operation. The corresponding K-comp
value “11 100” will be read out and saved into the latches. The
decoder sequentially activates the rows in the K-comp section
based on the previous XNOR_Match result. The same AND
operations are conducted by the latches, using the previous
AND result stored within. When all the inputs are processed,
the final result is saved in latches, indicating the transcript
compatibility of the current short-read. Fig. 7 provides an
example of processing three inputs. However, it is possible that
an exact match might not exist within the K-mer array. In such
scenarios, the result of the XNOR_Match process would yield
an all-zero output. This outcome is detected by the system.
Consequently, no K-comp is activated for subsequent AND
operations, and the decoder directly issues a “Not Found”
signal in response to this non-match situation.

VI. RESULTS AND ANALYSIS

A. Chip Measurement Result
Our prototype chip (Fig. 8) was fabricated using a custom

65-nm CMOS process with monolithic integration of HfO2
RRAM between metal 1 (M1) and metal 2 (M2) using a
300-mm wafer platform at the Albany NanoTech Complex
in Albany, NY. Briefly, a standard 65-nm CMOS process
flow was used for transistor fabrication, with RRAM bottom
electrode, switching layer, oxygen exchange layer, and top
electrode implemented at the interface of M1 and via 1 (V1).
RRAM integration was performed in the same 300-mm pro-
cessing line as the CMOS levels, and a standard 65-nm
back end of line (BEOL) processing was performed after
implementing the RRAM layers. More detailed device-level
RRAM characteristics and fabrication processes were reported
in the prior publication [43].

As shown in Fig. 9, we designed the automated process
of the FORM/SET/RESET/READ operations for the RRAM
array. Repeatable pulses are sent from SL/BL to BL/SL for
each device during the programming process until the targeted
resistance level is achieved, or the writing attempts reach the
maximum limit. The WL is used for address indexing of the
one transistor and one RRAM (1T1R) cell in the RRAM array,
and the typical values for programming voltage amplitude (V ),
pulsewidth (PW), and gate control voltage (VWL) are listed
in Table. I and summarized below.

1) FORM: Vform = 3.8 V applied from SL to BL, PW =
10 µs, VWL = 1.8 V, and repeat limit is 50 times; 2) SET:

Fig. 9. RRAM chip testing environment.

TABLE I
RRAM CELL PROGRAMMING PARAMETERS

Fig. 10. (a) Distribution of measured RRAM resistances. (b) BL sensing
voltages for CIM results, based on measurements across five chips.

Vset = 1.2 V applied from SL to BL, PW = 1 µs, VWL =
1.5 V, and target resistance value is <3 k�; 3) RESET: Vreset =
3.3 V applied from BL to SL, PW = 100 ns, VWL = 3.3 V,
and target resistance value is >50 k�; and 4) READ: Vread =
0.2 V and VWL = 3.3 V.

In this work, as discussed earlier, we test and report the
measurement results of the 1-bit/cell RRAM scheme as the
intermediate resistance levels required for more than 1-bit/cell
operation exhibit significant variance. Fig. 10(a) shows the
measured RRAM LRS/HRS distribution across five test chips
and the corresponding pattern match voltage distribution
shown in Fig. 10(b), where the center voltage distributions
represent the BL voltage values with “MATCH” results. For
the XNOR_Match operation, the VSL voltage is up-bounded to
0.45 V and the VWL is 3.3 V. As we observed, a VSL voltage
higher than 0.45 V may disturb RRAM resistance during
inference operation. All the digital parts including SL/BL/WL
decoders, counter/adder, SA, and scan-chains were powered
up with 1.2 V for the experiment to generate Fig. 10(b). The
highly parallel operations necessitate the activation of all the
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Fig. 11. Chip measurements with voltage scaling. (a) Frequency/throughput
and (b) energy efficiency.

Fig. 12. (a) Chip area breakdown and (b) chip specifications and performance
summary.

SAs simultaneously, which may impact the static mismatch
of the SAs. The experimental results reveal that the static
mismatch follows a distribution with a mean of 1.9 mV and
a standard deviation (sigma) of 14.07 mV. This distribution
falls within the approximate 80-mV sensing margin [as shown
in Fig. 10(b)], ensuring the correct XNOR result of the CIM
macro.

The chip’s core power consumption comes from two main
sources: analog supply and digital supply. The analog supply
feeds in from the SL through the given path of RRAM devices,
with a fixed voltage at 0.45 V, to maximize the sensing margin
while still preventing RRAM cells from destructive read
operation. Analog power varies with test vectors from 150 to
400 µW, as a result of different numbers of HRS and LRS in
the circuit paths. In the energy efficiency calculation, we take
250 µW as the average analog power, where at this point the
HRS and LRS cells are 50% each in the test vectors.

The digital power includes digital decoder, clock generator,
and digital driver for WL/SL/BL and SAs. The digital power
strongly correlates with the supply voltage and operating
frequency. We performed measurements with voltage scaling
for the digital circuits from 0.9 to 1.2 V, to explore the optimal
voltage for the highest energy efficiency and the maximum
frequency, and the results are shown in Fig. 11. In Fig. 11(a),
we show the maximum frequency and throughput with voltage
scaling. The maximum frequency ( fMAX) indicates the highest
frequency at each supply voltage where all the circuit functions
remain correct. The definition of throughput in this work is
OPs/t ⇥ fMAX, where OPs is the number of operations in
one XNOR_Match operation, which is 64 XNOR and counting
(sum up 64 1-bit numbers), in total 128 for this work. t is
the required number of cycles for the circuits to process the
outputs from the RRAM array, which is 5 in this work for
SAs and the parallel adder. At 1.2-V supply, we achieve the

TABLE II
ALIGNMENT COMPARISON WITH PRIOR RELATED WORKS

maximum frequency of 84.5 MHz and maximum throughput
of 2.16 GOPS. As the supply voltage reduces, the frequency
and throughput reduce largely linearly.

Fig. 11(b) shows the digital energy efficiency and overall
(including digital and analog parts) energy efficiency. As the
supply voltage reduces, the digital energy efficiency increases,
while the analog energy efficiency degrades due to lower
maximum frequency. The overall energy efficiency, which
combines both digital and analog parts, reaches its maximum
value of 2.07 TOPS/W at 1.0-V supply and a maximum
frequency of 52.15 MHz.

B. System-Level Performance Evaluation

In addition to the previously discussed chip measurement
results and performance analysis (as summarize in Fig. 12),
we have also carried out a system-level performance evaluation
for both the applications.

1) Alignment-in-Memory: Table II shows the comparison
of our chip prototype design with five different types of
genome alignment platforms: CPU/GPU as general purpose
processors, FPGA [28] implementation, and ASIC design
[26], [27]. While CPUs/GPUs run at faster frequencies and
have more ON-chip memory, the “memory wall” limits their
absolute throughput and energy efficiency. An FPGA-based
implementation achieves higher performance due to its large
scale (eight FPGAs in this implementation) and dedicated
dataflow graph. The related prior CMOS ASIC designs show
improved performance, particularly in terms of throughput-to-
area ratio, compared with CPUs/GPUs and FPGAs. Benefiting
from the unique CIM architecture, our proposed CIM macro
achieves the best performance, particularly in energy efficiency
and throughput-to-area ratio. Leveraging the high parallelism
and reduced data movement of CIM architecture, our design
achieves ⇠41.6⇥ higher throughput and ⇠5.73⇥ energy effi-
ciency improvement against the SOTA CMOS ASIC design.

2) Quantification-in-Memory: To the best of our knowl-
edge, our chip design is unique in its application to
mRNA quantification. For a fair comparison, we select
SOTA NVM-based CIM designs that support high-parallelism
XNOR operations as benchmarks. We adapt our CIM-friendly
quantification-in-memory algorithm to these designs and
extrapolate their original performance metrics to estimate their
efficacy in mRNA quantification. The comparative results are
detailed in Table III.

In our analysis, we assume a short-read length of 100 nts
and a k-mer length of 12 nts, making these parameters
compatible with all the considered CIM designs. Unlike our
design, the competing designs, primarily developed for ML
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TABLE III
QUANTIFICATION COMPARISON WITH PRIOR RELATED WORKS

applications, are configured to activate all the columns and
rows simultaneously. This setup enables them to execute
XNOR operations with all the saved data in a single step.
However, these designs rely on ADCs or time-to-digital
converters (TDCs) to count XNOR matches per column, a pro-
cess necessary for identifying the matched k-mer index. The
energy-intensive and time-consuming nature of ADC/TDC not
only limits throughput but also requires a larger area. The
TDC and ADC designs in [45] and [46] occupy 2.5–2.6⇥
the area of the NVM array, while the SAs in our design
occupy only around 20% of the NVM array’s area. Specif-
ically, the NVM array size in [46] is 256 ⇥ 512, which
is 32⇥ larger than our RRAM array. Moreover, in contrast
to our design, which uses the simple 1T1R cell structures,
the competing designs require more complex two-transistor-
two-RAM or two-transistor-two-MTJ (2T2R/2T2M) cells for
high-parallelism XNOR operations. These factors contribute to
our design demonstrating performance metrics closely aligned
with [45], [46], despite their fabrication using a significantly
more advanced technology node.

VII. CONCLUSION

This work presents the first RRAM-based CIM macro
tailored to advance the acceleration of genome processing.
We delved into workflows of both the BWT-based genome
short-read alignment and alignment-free mRNA quantification
and identified the major required operations, including highly
parallel XNOR_Match, AND, and ADD, which are seamlessly
integrated into our fabricated 65-nm CIM macro chip. This
innovative CIM macro design not only leverages the high par-
allelism of CIM architecture but also keeps the low complexity
of the circuit, making complex genome processing tasks
more efficient and less resource-intensive. Our experiments
and measurements highlight the significant improvement in
energy efficiency and throughput over SOTA different types of
computing platforms, including CPUs, GPUs, previous CMOS
ASIC designs, and prior CIM designs that use the same algo-
rithms. This significant performance improvement offers the
potential for a novel computing solution for energy-efficient,
high-performance, and fast genome processing platform.
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