
Normalizing Flows Aided
Variational Inference: A Useful

Alternative to MCMC?

Sumegha Premchandar, Bhattacharya Shrijita,
and Maiti Tapabrata

1. Introduction
Amajor area of contemporary statistics research is learning
to model probability distributions of varying complexity.

Sumegha Premchandar is a graduate student at Michigan State University. Her
email address is premchan@msu.edu.
Bhattacharya Shrijita is an assistant professor in the Department of Statistics
and Probability at Michigan State University. Her email address is bhatta61
@msu.edu.
Maiti Tapabrata is a professor in the Department of Statistics and Probability
at Michigan State University. His email address is maiti@msu.edu.

Communicated by Notices Associate Editor Richard Levine.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2742

The problem of learning to characterize probability distri-
butions broadly takes two forms: estimating a probability
density given samples from it and approximating densities
that are known only up to a normalizing constant. The lat-
ter avenue of research has applications in Bayesian infer-
ence, where we wish to generate samples from the poste-
rior distribution of model parameters given observed data.

This review aims to discuss the use of normalizing flows
for variational inference (VI), a method wherein we can
approximate and sample from complex probability den-
sities [RM15]. This type of probabilistic modeling lies
in the second avenue of research, where we do not have
a normalizing constant for probability densities of inter-
est. VI is a tool that emerged in machine learning to

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1059



approximate probability densities. It is often applied in
Bayesian statistics as a more scalable alternative to Markov
Chain Monte Carlo (MCMC) methods for large datasets.
Although scalable, earlier works such as mean-field or
structured VI are limited when approximating more com-
plex, multimodal probability distributions. Normalizing
flows are mappings from a simple base distribution to a
more complex probability distribution. They are primar-
ily used for modeling continuous distributions and can be
used to specify very flexible probability models, thus im-
proving the accuracy of VI algorithms.

There already exist comprehensive reviews for normal-
izing flow methods in general. An overview of different
normalizing flow families is provided in [KPB2005], while
[PNR+21] goes into depth on each family of flow models
and extends this discussion to newer areas, such as flows
for discrete variables. These reviews are an overarching
look at flows for probabilistic modelling and are focussed
on applications in the machine learning literature. Discus-
sion of applications of a more classical statistical nature is
limited. An excellent exposition and survey of VI from a
statistical lens is given in [BKM17]. However, they only
cover variational families of a parametric nature, such as
mean-field and structured VI. We extend the discussion to
variational families specified by normalizing flow models.
Further, our review is written for readers entirely new to
the area.

In latent variable modeling, we aim to learn the con-
ditional distribution of latent variables 𝒛 = (𝑧1, 𝑧2, … 𝑧𝑑)
given observed data 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑛), that is, 𝜋(𝒛|𝒙). We
explain how solving this problem is useful in Bayesian
statistics. In parametric statistics, stochasticity in the ob-
served data is often described using a specific probability
distribution 𝑝(𝒙|𝒛), where 𝒛 needs to be estimated from
the data 𝒙. In Bayesian inference, we assume a prior distri-
bution 𝜋(𝒛) on 𝒛 representing our beliefs about the model
parameter prior to observing the data. Based on the data,
we update our beliefs via the posterior distribution 𝜋(𝒛|𝒙).
The posterior can be calculated by Bayes theorem:1

𝜋(𝒛|𝒙) = 𝑝(𝒙|𝒛)𝜋(𝒛)
∫𝒛 𝑝(𝒙|𝒛)𝜋(𝒛)𝑑𝒛

.

For cases where the marginal likelihood 𝑚(𝒙) =
∫𝒛 𝑝(𝒙|𝒛)𝜋(𝒛)𝑑𝒛 is intractable we resort to approximate in-
ference. MCMC methods have long been the go-to for
sampling from posterior distributions when 𝑚(𝒙) cannot
be computed. MCMC algorithms generate samples from a
Markov Chain whose stationary distribution converges to
the target distribution of interest. One prominent example
is the Metropolis-Hastings method [CG95], of which the

1In much of the Bayesian inference literature, 𝜃 will be used for the unknown
parameter instead of 𝒛. We use 𝒛 to be consistent with general VI literature
[BKM17], [RM15].

Gibbs sampling algorithm [CG92] is a special case. How-
ever, these methods may not always scale well to high-
dimensional models and can be slow to converge for mul-
timodal distributions. VI has shown promise as a scalable
alternative to MCMC. In VI, the target distribution is ap-
proximated by a family of distributions 𝑄 among which
we choose the optimal distribution 𝑞𝜙∗ to be “closest” to
the target. To determine “closeness,” KL-divergence is of-
ten used. Intuitively, KL-divergence is something akin to a
distance between 2 probability distributions. Thus, prob-
abilistic modeling with VI becomes an optimization prob-
lem:

𝑞𝜙∗ ∈ argmin𝑞𝜙∈𝑄 𝐾𝐿(𝑞𝜙‖𝜋(.|𝒙)).
Mean-field VI (MF-VI) is a popular approach in which

the variational family 𝑄 is defined based on the assump-
tion that latent variables are independent. The mean-field
assumption is useful for faster computations during opti-
mization but is restricted in the complexity of densities we
can approximate. Structured VI takes this one step further
by allowing dependencies across latent variables. How-
ever, even with Structured VI we cannot guarantee that we
can approximate any density arbitrarily well. This is where
normalizing flows come in.
When should we use normalizing flows VI? In [BKM17],
the authors observe that “VI is suited to large data sets
and scenarios where we want to quickly explore many
models; MCMC is suited to smaller data sets and scenar-
ios where we happily pay a higher computational cost
for more precise samples.” While this is generally true
of MF-VI, normalizing flows VI lies somewhere between
MCMC and other variational approximation approaches
in terms of computational efficiency and accuracy. To
shed some light on how normalizing flows VI compares
to other sampling methods such as MCMC and MF-VI, we
implement variational inference with neural autoregres-
sive flows [HLCK18] for several examples. These examples
cover classical Bayesian statistical applications in exponen-
tial family models, Gaussian linear regression and logistic
regression. We cover scenarios of varying dimensions and
complexity of the target distribution. This gives us a high-
level idea of scalability vs. accuracy for these methods but
is by no means a rigorous treatment of the topic.

We begin the following section by introducing normal-
izing flows and elaborate on how to use them for VI. We
then proceed to examples in Section 3. Finally, we discuss
some important takeaways & challenges remaining in the
area in Section 4.

2. Normalizing Flows
The main idea behind normalizing flows is to transform
some simple base distribution on a continuous support
into a “target” distribution that is usually more complex,
via a series of bijective, differentiable transformations (dif-
feomorphisms).

1060 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



Let 𝑍 ∈ ℝ𝑑 be a random variable whose density we wish
to model. We begin with a random variable 𝑈 sampled
from some base distribution 𝑝𝑈(𝒖) also defined on sup-
port ℝ𝑑 and apply a diffeomorphism 𝑇 ∶ ℝ𝑑 → ℝ𝑑 such
that 𝑍 = 𝑇(𝑈). The density of 𝑍 is then given by the change
of variable formula:

𝑝𝑍(𝒛) = 𝑝𝑈(𝒖)|𝐽𝑇(𝒖)|−1.
|𝐽𝑇(𝒖)| denotes determinant of Jacobian of 𝑇 w.r.t 𝒖. Thus,
the function 𝑇 transforms the density 𝑝𝑈(𝒖) into 𝑝𝑍(𝒛).
This process, wherein samples from one probability den-
sity “flow” through a mapping to obtain another density
is called a normalizing flow.

A natural question to ask is whether normalizing flows
can be used to transform a simple base distribution (e.g.,
uniform or standard normal distribution) into any target
distribution. [PNR+21] contains a constructive argument
to show that normalizing flows can indeed recover any tar-
get density under rather general conditions. In practice,
this is heavily dependent on the transformations 𝑇 that
we employ.
Discrete and continuous-time flows. Normalizing flows
are mainly of two types—discrete time (finite flows) and
continuous time (infinitesimal flows) [PNR+21]. Discrete-
time normalizing flows are constructed by choosing a fi-
nite sequence of transformations 𝑇1, 𝑇2, … 𝑇𝐾 and applying
them successively to some base distribution 𝑝𝑈(𝒖) such
that 𝒛𝐾 = 𝑇𝐾 ∘𝑇𝐾−1 …∘𝑇1(𝒖). Since we choose all transfor-
mations to be diffeomorphisms, the change of variables
formula applies and we have:

𝑝𝑍𝐾 (𝒛𝐾) = 𝑝𝑈(𝒖) × |𝐽𝑇𝐾 (𝒛𝐾−1)|−1

× |𝐽𝑇𝐾−1(𝒛𝐾−2)|−1⋯× |𝐽𝑇1(𝒖)|−1.
The number of transformations 𝐾, is often called the flow
depth. Increasing flow depth can help us model progres-
sively more complex densities at the expense of increased
computational cost due to the calculation of the determi-
nant for Jacobian matrices 𝐽𝑇𝑘(.).

We can think of discrete time flows as modelling the
evolution of a probability density at 𝐾-many time points.
In contrast, continuous-time normalizing flowsmodel this
evolution continuously from some time 𝑡 = 0 to 𝑇 as

an ordinary differential equation
𝑑𝒛𝑡
𝑑𝑡

= 𝑓(𝑡, 𝒛𝑡). A well-
known example of a continuous time flow is the Hamil-
tonian flow, which is used for MCMC sampling [Nea11].
2.1. Normalizing flows for variational inference. We
now expand on how normalizing flows are used to aid VI.
As before, let 𝒛 = 𝑧1∶𝑑 be the latent variables, 𝒙 = 𝑥1∶𝑛 be
the observed data and 𝜋(𝒛|𝒙) be the conditional distribu-
tion we wish to sample from:

𝜋(𝒛|𝒙) = 𝑝(𝒙|𝒛)𝜋(𝒛)
𝑚(𝒙) .

VI approximates the target distribution by choosing a fam-
ily of distributions 𝑄 = {𝑞𝜙|𝜙 ∈ Φ} and selecting the op-
timal distribution in this family 𝑞𝜙∗ “closest” to the target
density in terms of KL-divergence:

𝑞𝜙∗ ∈ argmin𝑞𝜙∈𝑄 𝐾𝐿(𝑞𝜙‖𝜋(.|𝒙)). (1)

Other metrics such as more generalized 𝛼-divergence
measures [LT16] can be used in place of KL-divergence.
However, KL-divergence is popular due to its versatility
and relative ease of implementation. The optimization in
(1) is difficult to work with due to the presence of the in-
tractable marginal likelihood 𝑚(𝒙). In practice, we max-
imize the evidence lower bound (ELBO) with respect to
the variational parameters 𝜙 due to its equivalence to (1).
The ELBO is the negative KL-divergence between the vari-
ational distribution 𝑞 and the joint distribution 𝑝(𝒙, 𝒛) of
latent variables and observed data:

max𝑞𝜙∈𝑄ELBO(𝑞𝜙, 𝜋(.|𝒙)) (2)

= max𝑞𝜙∈𝑄{𝔼𝑞𝜙(𝒛)[ ln 𝑝(𝐱, 𝒛)] − 𝔼𝑞𝜙(𝒛)[ ln 𝑞𝜙(𝒛)]}.

Using normalizing flows to aid variational inference
was first popularized in [RM15]. The idea is to start
with some base distribution 𝑞0(𝒛0) and then apply dif-
feomorphisms 𝑇1, 𝑇2 …𝑇𝐾 successively so that 𝒛𝐾 = 𝑇𝐾 ∘
𝑇𝐾−1 …𝑇1(𝒛0). The transformations (𝑇𝑘)𝐾𝑘=1, parameterized
by 𝜙, induce a flexible variational family 𝑄 = {𝑞𝜙(𝒛)|𝜙 ∈
Φ}. We have the following useful relations:

ln 𝑞𝜙(𝒛𝐾) = ln 𝑞0(𝒛0) −
𝐾
∑
𝑘=1

ln | 𝜕𝑇𝑘𝜕𝒛𝑘−1
| (3)

𝔼𝑞𝜙(𝒛)ℎ(𝒛) = 𝔼𝑞0(𝒛0)ℎ(𝑇𝐾 ∘ 𝑇𝐾−1 …𝑇1(𝒛0)). (4)

(3) follows from the change of variable formula and (4)
is a well-known property of expectation. We simplify the
maximization of the ELBO in (2):

max𝑞𝜙∈𝑄𝔼𝑞𝜙(𝒛)[ ln 𝑝(𝒙|𝒛)𝜋(𝒛) − ln 𝑞𝜙(𝒛)]

= max𝑞𝜙∈𝑄{𝔼𝑞0(𝒛0)[ ln 𝑝(𝒙|𝒛𝐾)𝜋(𝒛𝐾)] (5)

+ 𝔼𝑞0(𝒛0)[
𝐾
∑
𝑘=1

ln | 𝜕𝑇𝑘𝜕𝒛𝑘−1
|] − 𝔼𝑞0(𝒛0)[ ln 𝑞0(𝒛0)]}

= max𝑞𝜙∈𝑄{𝔼𝑞0(𝒛0)[ ln 𝑝(𝒙|𝒛𝐾)𝜋(𝒛𝐾)]

+ 𝔼𝑞0(𝒛0)[
𝐾
∑
𝑘=1

ln | 𝜕𝑇𝑘𝜕𝒛𝑘−1
|]}. (6)

Equations (3) and (4) jointly imply (5). We are essentially
re-parametrizing the expectation in terms of the base dis-
tribution 𝑞0. In (6), we are able to drop 𝔼𝑞0(𝒛0)[ ln 𝑞0(𝒛0)]
because it is free of the parameter 𝜙. In practice, optimiz-
ing over 𝑞𝜙 ∈ 𝑄 effectively becomes optimizing over the
parameters 𝜙 of transformations (𝑇𝑘)𝐾𝑘=1. 𝜙 are referred

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1061



to as flow parameters. In general, for 𝑑-dimensional la-
tent variables 𝒛, calculating the determinant of Jacobian
𝐽𝑇𝑘(𝒛𝑘−1) takes 𝑂(𝑑3) time [PNR+21]. Therefore, in addi-
tion to 𝑇1, 𝑇2, … , 𝑇𝐾 being diffeomorphisms, they are often
selected such that computational complexity of calculating
𝐽𝑇𝑘(𝒛𝑘−1) is 𝑂(𝑑).

There are a myriad of ways in which we can choose
the normalizing flow transformations. Intuitively, if we
choose 𝑇𝑘 to be deep neural networks we should be able
to approximate almost any well-behaved function. But
how do we ensure computational feasibility? Neural au-
toregressive flows (NAF) [HLCK18]manage to achieve this
balance. NAF satisfy the “Universal approximation prop-
erty.” This means that they can approximate any proba-
bility distribution within an arbitrarily small error margin
provided the flow depth 𝐾 is large enough. Further, the au-
toregressive structure of these flows ensures the Jacobian
determinants can be computed in 𝑂(𝑑) time. Note that
this is just one among many families of normalizing flows.
Given these nice properties we choose to use NAF for our
examples in Section 3.
2.1.1. Neural autoregressive flows. Autoregressive flows are
among the most popular normalizing flows discussed in
the literature. We discuss some of the principals behind
autoregressive normalizing flows. We concentrate on de-
scribing NAF since we use these for the examples in which
we contrast normalizing flows, MCMC and MF-VI.

Continuing with the same notation, we denote the in-
put from the base distribution by 𝒖 = 𝑢1∶𝑑 and trans-
formed latent variable by 𝒛 = 𝑧1∶𝑑. Autoregressive flows
are constructed such that each transformed variable 𝑧𝑖, 1 ≤
𝑖 ≤ 𝑑 is dependent only on the first 𝑖 inputs 𝑢1∶𝑖. More
specifically, the transformer 𝑇 = (𝜏1, 𝜏2, … 𝜏𝑑) is made up
of 𝑑 many diffeomorphisms such that:

𝑧𝑖 = 𝜏𝑖(𝑢𝑖, 𝑐𝑖(𝑢1∶𝑖−1)) 2 ≤ 𝑖 ≤ 𝑑.

𝜏𝑖 is parameterized by the vector 𝑐𝑖(𝑢1∶𝑖−1). The function
𝑐𝑖 ∶ ℝ𝑖−1 → ℝ𝑚 is referred to as conditioner and it enforces
the autoregressive property for the normalizing flow (see
Figure 1). As the name suggests, NAF uses a neural network
for 𝜏𝑖. The 2 types of transformations used are:

1. Deep Sigmoidal Flow (DSF) - This neural network
uses a single hidden layer.

2. Dense Deep Sigmoidal Flow (DDSF) - This uses a
deep neural network.

For readers new to the topic, think of a neural network
as a somewhat complex function that takes some inputs
and applies a series of operations and transformations to
them. They generally involvemultiplication of inputs with
weight matrices, translation, and the application of cer-
tain “activation” functions. The DSF network is formally

Figure 1. Autoregressive flows.

defined as:

𝑧𝑖 = 𝜎−1(𝒘⊤
𝑖 𝜎(𝒂𝑖.𝑢𝑖 + 𝒃𝑖)) 𝒂𝑖, 𝒘𝑖, 𝒃𝑖 ∈ ℝ𝑘 1 ≤ 𝑖 ≤ 𝑑.

Here 𝑘 is the number of nodes in the hidden layer and
𝜎(𝑥) = 1/(1 + 𝑒−𝑥) is an activation function. 𝒂𝑖 and 𝒘𝑖
are constrained as 𝑎𝑖,𝑗 > 0 ∀𝑖, 𝑗, 0 < 𝑤𝑖,𝑗 < 1,∑𝑗 𝑤𝑖,𝑗 =
1. This ensures invertibility of 𝜏𝑖 [HLCK18]. The DDSF
transformation has the capacity to bemore expressive than
DSF due to the universal approximation properties of deep
neural networks, albeit at an increased computational cost.

Until now we have discussed the choice of the trans-
formers 𝜏𝑖 for NAF. To construct the conditioner there
are no constraints such as invertibility on the functions
𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑑. A natural choice is to use a neural network
for the conditioner as well. However, using a distinct neu-
ral network for each 𝑐𝑖 is computationally infeasible as 𝑑
increases. This is because we have to store and optimize
over 𝑑 networks each with different parameters. [PNR+21]
discusses a range of conditioners that leverage parameter
sharing across 𝑐𝑖. Following [HLCK18], we adopt the pop-
ular masked conditioner approach. Masked conditioners
take 𝑢1∶𝑑 as inputs to a neural network and calculate all

the parameters 𝑐1, (𝑐𝑖(𝑢1∶𝑖−1))
𝑑
𝑖=2 for the transformers in a

single forward pass. For a network with a single hidden
layer, the autoregressive dependency structure is enforced
by multiplying the weight matrices 𝒲1 & 𝒲2 by masking
matrices ℳ1,ℳ2 of the same dimension. ℳ1,ℳ2 consist
of binary 1 − 0 entries such that a 0 entry in ℳ𝑖 implies
the corresponding weighted connection is dropped from
the network. Therefore entries in ℳ1,ℳ2 are chosen such
that there is no connection between the 𝑖th input 𝑢𝑖 and
1, 2 … , (𝑚𝑖) outputs of the network. Here 𝑚 is a multiplier
which tells us how many parameters are required for each
𝜏𝑖. The weight matrices𝒲1 ∈ ℝ𝑑×𝑘 and𝒲2 ∈ ℝ𝑘×𝑚𝑑 corre-
spond to the hidden and output layer respectively for the
conditioner network. See Figure 1 in [GGML15].

1062 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



2.1.2. Implementation. Recall that for normalizing f lows
aided variational inference (FAVI) we maximize the ELBO:

ℒ(𝑞𝜙) = 𝔼𝑞0(𝒛0)[ ln 𝑝(𝒙, 𝒛𝐾)] + 𝔼𝑞0(𝒛0)[
𝐾
∑
𝑘=1

ln | 𝜕𝑇𝑘𝜕𝒛𝑘−1
|].

(𝑇𝑘)𝐾𝑘=1 and 𝒛𝐾 depend on 𝜙 in the equation above. In
general, ℒ(𝑞𝜙) will not have a closed form expression. Ad-
ditionally, standard coordinate-wise gradient ascent algo-
rithms are computationally inefficient for large datasets.
As a result, the Stochastic Gradient Ascent (SGA) algorithm
is often used for optimizing the ELBO.

SGA is an iterative method that uses the following up-
date for the flow parameters 𝜙 at step 𝑡:

𝜙𝑡+1 = 𝜙𝑡 + 𝛼𝑡𝑙(𝜙𝑡).
Here 𝑙(𝜙) is a realization for an unbiased estimator

of ∇𝜙ℒ(𝑞𝜙), the gradient for the ELBO. We can calcu-

late it by sampling 𝒛(1)0 , 𝒛(2)0 , … 𝒛(𝑆)0 from 𝑞0(.) and pass-
ing them through the transformations 𝑇1, 𝑇2, … , 𝑇𝐾 to get
𝒛(1)𝐾 , 𝒛(2)𝐾 , … , 𝒛(𝑆)𝐾 :

𝑙(𝜙) = 1
𝑆

𝑆
∑
𝑠=1

[∇𝜙 ln 𝑝(𝒙, 𝒛(𝑠)𝐾 ) +
𝐾
∑
𝑘=1

∇𝜙 ln |
𝜕𝑇𝑘
𝜕𝒛(𝑠)𝑘−1

|].

SGA almost surely converges to a local minimum for
non-convex functions and global minimum for pseudo-
convex functions when learning rates satisfy ∑∞

𝑡=1 𝛼𝑡 =
∞ & ∑∞

𝑡=1 𝛼2𝑡 < ∞. ([RM51], [Bot98]).
In practice, choosing the learning rate 𝛼𝑡 is nontriv-

ial. When 𝛼𝑡 is too large we may overshoot the maxima
and when 𝛼𝑡 is too small then SGA will learn too slowly.
For our experiments, we use the Adam algorithm [KB14]
which uses an adaptive learning rate that incorporates in-
formation about the scale of different components in the
parameter vector 𝜙. We use a standard normal distribution
for 𝑞0(𝑧0).

Note that, the outputs of the normalizing flow trans-
formations 𝒛𝑘 are unconstrained, i.e., they belong to ℝ𝑑,
since they are outputs of a neural network. Sometimes the
latent variable space is restricted, for example, our model
may have a variance parameter 𝜎2 > 0. More formally,
when 𝑧𝑖 ∈ 𝑆 ⊂ ℝ we apply a final transformation 𝑇𝐾+1
to constrain 𝑧𝐾,𝑖. For instance, if 𝑧𝑖 > 0 then we set
̃𝑧𝐾,𝑖 = ln(1 + 𝑒𝑧𝐾,𝑖 ).

3. Illustrative Examples
Here, we implement the FAVI algorithm on some exam-
ples. We also provide comparisons to MCMC and MF-VI
where applicable. Note that MCMC comprises a wide class
of algorithms ranging from the more basic Random Walk
Metropolis Hastings (RW-MH) and Gibbs sampling meth-
ods to approaches that make use of gradient information
such as the Hamiltonian Monte-Carlo (HMC) [Nea11].

Figure 2. Stochastic gradient ascent for 𝜙 ∈ ℝ.

(a) 𝜋(𝑝|𝑦1∶𝑛) - Bernoulli, Beta.

(b) 𝜋(𝜇,𝜍2 |𝑦1∶𝑛) - Normal, Inverse Gamma.

Figure 3. Exponential family density plots.

We use either the RW-MH or Gibbs sampling methods as
a baseline since these are widely used in classical applica-
tions of Bayesian inference. See Section 4 for a detailed
discussion of contemporary MCMC literature. Section 3.1
discusses FAVI for exponential family models, followed by
3.2 in which we sample from un-normalized energy den-
sity functions. We then move onto Bayesian linear and
logistic regression in 3.3 and 3.4. Through these examples
we hope to elucidate how FAVI works in different contexts.
3.1. The exponential family. In many applications of
Bayesian inference the complete conditionals 𝑝(𝑧𝑖|𝑧−𝑖, 𝒙)
1 ≤ 𝑖 ≤ 𝑑 of latent variables belong to the exponential fam-

ily 𝒫 = {ℎ(𝑧𝑖)
𝐴(𝜂)

exp 𝜂𝑡𝑡(𝑧𝑖)}. This class of models is known

as conditionally conjugate exponential family models and
its broad applicability makes it of interest to statistical

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1063



(a) ELBO vs. Training Epochs.

(b) 𝜋(𝑝|𝑦1∶𝑛): epochs = 2.

(c) 𝜋(𝑝|𝑦1∶𝑛): epochs = 20.

Figure 4. Convergence of FAVI - Bernoulli, Beta.

practitioners. [BKM17] discusses the derivation for coordi-
nate ascent variational inference (CAVI), anMF-VImethod,
for this class of models. It is natural to extend this discus-
sion to the FAVI algorithm for exponential family models.

FAVI performing well on low-dimensional examples is
a necessary but not sufficient condition for them to be re-
liable for high-dimensional VI problems. This motivates
our choice of examples:

1. (𝑦𝑖)𝑛𝑖=1|𝑝
i.i.d∼ Bernoulli(𝑝) 𝜋(𝑝) ∶ 𝑝 ∼ Beta(𝑎, 𝑏)

2. (𝑦𝑖)𝑛𝑖=1|𝜇, 𝜎2
i.i.d∼ 𝑁(𝜇, 𝜎2), 𝜋(𝜇, 𝜎2) ∶ 𝜇 ∼ 𝑁(0, 𝜏2) ⟂⟂

𝜎2 ∼ Inv-Gamma(𝑣1, 𝑣2)
In the first case the posterior has a closed form with

which we can compare the density obtained by flows.

𝑝|𝑦1∶𝑛 ∼ Beta(𝑎 + 𝑛 ̄𝑦, 𝑏 + (𝑛 − 𝑛 ̄𝑦))
For the second example, we compare with results ob-

tained by Gibbs sampling. We also include results from
MF-VI.

We see from Figure 3 that FAVI, MF-VI, and Gibbs pro-
duce similar results. Figure 4 is a demonstration of how
the density obtained from FAVI converges to the true dis-
tribution over the training epochs. From the plot of ELBO
against epochs we see that at around the 20𝐭𝐡 epoch there
is a plateau. This indicates the density from FAVI has
changed shape and is approaching the true distribution.
3.2. Sampling from multimodal densities. The primary
advantage of normalizing flows is their ability to recover
highly multimodal target distributions with complex de-
pendencies. In [HLCK18], authors use NAF to sample
from multimodal energy density functions, for which the
normalizing constant is unknown. They do not however,
provide a comparison to MCMC methods. Given that
MCMC methods are theoretically guaranteed to converge
to the target distribution of interest, we believe it would
be useful to include this comparison. We contrast both ac-
curacy and computational time for NAF and the RW-MH
Algorithm, for sampling from the energy density functions
𝑈1 − 𝑈9 (see Figure 5).

We compare the two methods based on run-time and
kernel density estimates (k.d.e). Run-time is measured
from the first iteration for the algorithm till convergence.
For comparing the densities generated by both meth-
ods we calculate kernel density estimates (k.d.e) from
the samples. We use a Gaussian kernel, on a grid
of size 200 × 200. We then calculate square root of
sum of squares error (√𝐒𝐒𝐄) for k.d.e over the grid as

√∑𝑁=40,000
𝑖=1 ( ̂𝑓(𝒙𝑖) − 𝑓True(𝒙𝑖))2. Here, ̂𝑓(.) is the kernel

density estimator obtained from either the FAVI/RW-MH
algorithm and 𝑓True(.) is the true density.2 This is equiv-
alent to the Frobenius norm of errors between true and
estimated density on our grid.
Determining convergence. For assessing convergence of
the random-walk Metropolis Hastings we visually inspect
the autocorrelation and trace plots. The plots for many en-
ergy functions display non-negligible autocorrelation upto
lag 40, therefore we thin the samples by 40 and run the
chain for 400,000 samples. We choose this run-time in or-
der to obtain a sufficient sample size of 10k to get richer
kernel density plots. We run FAVI for 15k epochs based
on stabilization of the loss function and also generate 10k
samples after training. For both, the RW-MH and FAVI al-
gorithms there is a degree of subjectivity to determining
convergence since we use visual inspection. Empirical con-
vergence criteria such as trace plots, 𝑅̂ [GR92] and zero
autocorrelation in the samples does not guarantee conver-
gence of the Markov chain. Although satisfying these cri-
teria is not sufficient for convergence, it is necessary for us
to gain confidence that the Markov chain is approaching
the stationary distribution.

2Since we do not have the closed form for the true density we normalize the en-
ergy functions using numerical integration from SciPy’s integrate module.

1064 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



Results. Table 1 reports the average√SSE of k.d.e for both
FAVI and RW-MH algorithms across the best three of five
trials (based on loss) ± standard deviation. We chose the
best three because the loss does not converge in all cases
for the FAVI algorithm, due to sensitivity to choice of ini-
tialization and the presence of local minima.3 We observe
that the RW-MH algorithm outperforms FAVI in terms of
k.d.e metrics by a small–medium margin with one excep-
tion, 𝑈6. We also see from the standard deviations that
the RW-MH algorithm is more stable than FAVI, which is
highly sensitive to the initialization of flow parameters 𝜙.
For instance, 𝑈5 has a standard deviation of √SSE 0.95
for FAVI and only 0.01 for RW-MH. In terms of compu-
tational time, approximately half of the energy functions
have run-time of a similar order for the FAVI and RW-MH
algorithms. For the remaining functions we observe:

1. For 𝑈3 and 𝑈5 the RW-MH algorithm takes approxi-
mately 60% of the run-time that FAVI does.

2. For 𝑈4 and 𝑈9 the trend is reversed and FAVI takes
only 30% of the RW-MH algorithm run-time.

Upon closer examination of the function forms we see that
𝑈3 and 𝑈5 are relatively simple functions to evaluate over
a particular sample whereas 𝑈4 and 𝑈9 are complex func-
tions, being a mixture of multiple densities. 𝑈4 is a mix-
ture Gaussian density with four components and 𝑈9 is a
mixture of 𝑈3 and part of 𝑈8. Thus, unlike FAVI, the RW-
MH algorithm does not scale as complexity of the target
density increases.

Figure 5. True density.

3.3. Linear regression. In this section we implement the
FAVI algorithm on a Bayesian linear regression example to
sample from the posterior of regression parameters given

3Although not standard practice, we report results across different initializations
to contrast the stability across FAVI and MCMC. Further, run-time varies across
trials and averaging gives us a better idea of the true run-time.

(a) Histogram - RW-MH.

(b) Histogram - FAVI.

Figure 6. Energy density functions 𝑈1 − 𝑈9.

Avg. √𝐒𝐒𝐄 Avg. Run-time

Ef FAVI RW-MH FAVI RW-MH

𝑈1 0.98 ± 0.05 0.94 ± 0.01 114 ± 1 119 ± 4

𝑈2 0.46 ± 0.03 0.42 ± 0.01 118 ± 7 173 ± 31

𝑈3 0.20 ± 0.01 0.18 ± 0.01 109 ± 3 68 ± 8

𝑈4 0.62 ± 0.04 0.56 ± 0.02 122 ± 1 465 ± 84

𝑈5 1.72 ± 0.95 1.17 ± 0.01 111 ± 2 69 ± 4

𝑈6 1.21 ± 0.03 1.25 ± 0.00 145 ± 15 212 ± 40

𝑈7 1.07 ± 0.01 1.07 ± 0.02 122 ± 7 166 ± 8

𝑈8 1.11 ± 0.04 1.10 ± 0.00 127 ± 12 251 ± 13

𝑈9 1.25 ± 0.04 1.15 ± 0.01 131 ± 2 303 ± 45

Table 1. Avg. √SSE ± s.d. of k.d.e. for 𝑈1 − 𝑈9 (smaller values
are better). | Avg. algorithm run-time in seconds ±s.d. for
𝑈1 − 𝑈9 (smaller values are better).

the data, 𝜋(𝛽, 𝜎2|𝐷). We use the framework below:

𝑦𝑖 ∼ 𝒙⊤𝑖 𝛽 + 𝜀𝑖, 𝛽 ∈ ℝ𝑝, 𝜀𝑖
i.i.d∼ 𝑁(0, 𝜎2) 1 ≤ 𝑖 ≤ 𝑛

𝜋(𝛽, 𝜎2) ∶ 𝛽 ∼ 𝑁(0, 𝜏2𝐼𝑝) ⟂⟂ 𝜎2 ∼ Inv-Gamma(𝑎, 𝑏).

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1065



We compare FAVI to both MF-VI and the Gibbs sam-
pling algorithm. We use Gibbs sampling because it re-
lies on the complete conditionals for latent variables
𝜋(𝛽|𝑦1∶𝑛, 𝜎2) and 𝜋(𝜎2|𝑦1∶𝑛, 𝛽)which are easily available in
this case. Through this example, we can gain some insight
on the scalability and accuracy contrast between the three
methods in a classical statistical setup. To assess effect of
both sample size and dimensionality on the performance
of these methods we use a grid of (𝑛, 𝑝) combinations. We
allow 𝑛 (sample size) to take values 50, 100, and 200, while
𝑝 (𝛽 dimension) takes values 2, 20, 50, and 100.

For our experiments, we simulate the true data gener-
ating 𝛽0 from the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚( 1

2
, 2) distribution. We assume

𝜎0 = 𝜏 = 1where 𝜎0 is the true value of model parameter 𝜎.
The 𝑝-dimensional predictor variables𝒙1, 𝒙2 …𝒙𝑛 ∈ ℝ𝑝 are
simulated from amultivariate normal distribution𝑁(0, 𝐼𝑝).
For the cases where 𝑝 ≥ 20, we set only 20% of the variables
to be non-zero in order to ensure the latent variable space
is sparse, that is, 𝐾 << 𝑝 where 𝐾 is the number of non-
zero components in 𝛽0.

Similar to Section 3.2, convergence of the Gibbs sam-
pling algorithm is determined by a combination of trace
and autocorrelation plots. We thin the samples by a fac-
tor of 10 to ensure 0 autocorrelation. We initialize 𝛽 with
its O.L.S estimate for faster convergence. Convergence of
FAVI and MF-VI is ascertained via stabilization of the loss
function.
Results. In order to visualize the difference between den-
sities approximated by the three approaches (FAVI, MF-VI
and Gibbs) we use kernel density plots. For the case where
𝑝 = 2, we can easily visualize the posterior distributions of
𝛽 and 𝜎2. For higher-dimensional examples we use the ker-
nel density plots for SSE of 𝛽; 𝑔(𝛽) = ‖𝛽 − 𝛽0‖22 where 𝛽
is sampled from the posterior 𝜋(𝛽|𝑦1∶𝑛). We present den-
sity plots for 𝑛 = 100 and varying 𝑝 in Figure 8. We report
the model predictive root mean squared error (√𝐌𝐒𝐄) on

test data √∑𝑛test

𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)2/𝑛test. Here ̂𝑦𝑖 = 𝒙⊤𝑖 ̂𝛽 is the pre-

dicted value for the 𝑖th sample based on mean of the pos-
terior samples ̂𝛽 = 1/𝑁 ∑𝑁

𝑛=1 𝛽𝑛. Here 𝑁 is the number of
𝛽 samples generated and is set to be 10k. To get a sense
of variance of the posterior distribution for 𝛽 we also re-
port 𝑠𝛽. This is obtained by first computing sample stan-
dard deviation from posterior samples for each 𝜋(𝛽𝑖|𝑦1∶𝑛)
as 𝑠𝛽𝑖 = (1/(𝑁 − 1))∑𝑁

𝑛=1(𝛽𝑛𝑖 − 𝛽𝑖)2 for 1 ≤ 𝑖 ≤ 𝑝. We
then aggregate these by averaging across dimensions as
𝑠𝛽 = (1/𝑝)∑𝑝

𝑖=1 𝑠𝛽𝑖 . By reporting√MSE and 𝑠𝛽 we are able
to capture model predictive performance and uncertainty
quantification for the three methods.

We observe fromdensity plots that for cases where𝑝 = 2
the difference across 3 algorithms is insubstantial (Figure
7). As dimension 𝑝 increases we see that the FAVI results

(a) 𝜋(𝜍2 |𝑦1∶𝑛)

(b) 𝜋(𝛽1, 𝛽2 |𝑦1∶𝑛).

Figure 7. Linear regression: 𝑛 = 100, 𝑝 = 2.

are reasonably close to Gibbs sampling (the gold standard)
butMF-VI produces a peaked distribution, indicating it un-
der estimates uncertainty in the samples (Figure 8). Per-
formance metrics in Table 2 show that all 3 methods have
similar predictive performance. For uncertainty quantifi-
cation, 𝑠𝛽 shows that MF-VI has lower posterior variance
in general than the other two methods, while FAVI is com-
parable to Gibbs. There are 2 notable exceptions when
𝑛 = 100, 𝑝 = 100 and 𝑛 = 50, 𝑝 = 100. In these cases MF-
VI has larger 𝑠𝛽 by 0.01 points than FAVI but this difference
is insubstantial.

For the 3 cases where 𝑝 ≥ 𝑛, the Gibbs sampling algo-
rithm breaks down due to the instability of the following
matrix inversion: (𝐼𝑝/𝜏2+𝑋⊤𝑋/𝜎2)−1 . Since FAVI, like MF-
VI, does not require thematrix inversion step and can spec-
ify an arbitrarily flexible family of densities, it could be a
promising alternative to Gibbs sampling in such a set-up.4

Table 3 reports average algorithm run-times ± s.d.
across 5 trials. In general, MF-VI runs the fastest, followed
by Gibbs sampling and then FAVI. However, for the high-
lighted cases of 𝑝 = 50 and 𝑛 ≥ 100 this trend switches
and Gibbs sampling becomes slower than FAVI. Given that
Gibbs sampling breaks down in high dimension, it is diffi-
cult to discern a pattern and contrast scalability of the two
methods.

4There are modifications of Gibbs sampling that can circumvent this and a more
thorough exploration is required.

1066 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



(a) 𝑛 = 100, 𝑝 = 20.

(b) 𝑛 = 100, 𝑝 = 50.

Figure 8. Linear regression: Density plots of ‖𝛽 − 𝛽0‖22 where 𝛽
is sampled from 𝜋(𝛽|𝑦1∶𝑛).

Pred √𝐌𝐒𝐄 Avg. 𝛽 s.d. 𝐬𝜷
(𝐧, 𝐩) Gibbs FAVI MF-VI Gibbs FAVI MF-VI

(50, 2) 1.06 1.06 1.06 0.17 0.17 0.16

(50, 20) 0.88 0.92 0.88 0.24 0.23 0.17

(50, 50) * 3.06 3.41 * 0.47 0.46

(50, 100) * 2.93 2.64 * 0.77 0.78

(100, 2) 1.04 1.04 1.04 0.11 0.11 0.11

(100, 20) 1.05 1.05 1.05 0.14 0.14 0.12

(100, 50) 1.93 1.90 1.93 0.17 0.16 0.11

(100, 100) * 2.64 2.92 * 0.46 0.47

(200, 2) 1.07 1.07 1.07 0.08 0.09 0.08

(200, 20) 1.10 1.09 1.10 0.09 0.09 0.08

(200, 50) 1.26 1.26 1.26 0.10 0.10 0.08

(200, 100) 1.86 1.87 1.86 0.14 0.13 0.09

Table 2. Linear regression: Model predicted √MSE (smaller
values are better). | Avg. s.d. of 𝛽 samples. We use * when
the result can’t be computed.

Avg. Run-time (in seconds)

(𝐧, 𝐩) Gibbs FAVI MF-VI

(50, 2) 55 ± 0 252 ± 8 22 ± 1

(50, 20) 79 ± 5 374 ± 21 23 ± 1

(50, 50) * 606 ± 41 122 ± 10

(50, 100) * 1055 ± 84 922 ± 69

(100, 2) 59 ± 4 267 ± 10 24 ± 2

(100, 20) 85 ± 5 383 ± 24 24 ± 1

(100, 50) 953 ± 54 549 ± 23 36 ± 2

(100, 100) * 1087 ± 56 778 ± 80

(200, 2) 57 ± 3 254 ± 13 23 ± 1

(200, 20) 80 ± 0 568 ± 10 23 ± 0

(200, 50) 997 ± 110 567 ± 31 24 ± 2

(200, 100) 833 ± 37 1011 ± 28 35 ± 1

Table 3. Linear regression: Avg. algorithm run-time ± s.d.
over five trials (smaller values are better). We use * when the
result can’t be computed.

3.4. Logistic regression. We consider the following
model:

𝑦𝑖 ∼ Bernoulli(𝑝𝑖), 𝑝𝑖 =
𝑒𝑥⊤𝑖 𝛽

1 + 𝑒𝑥⊤𝑖 𝛽
𝜋(𝛽) ∶ 𝛽 ∼ 𝑁(0, 𝜏2𝐼𝑝).

We use the same simulation set-up for 𝛽 and 𝒙 as of Sec-
tion 3.3 on linear regression. Here we use RW-MH instead
of Gibbs sampling because we no longer have closed form
complete conditionals. Maintaining consistency with pre-
vious experiments, we use trace and autocorrelation plots
to decide on convergence.5 We initialize the RW-MH algo-
rithm with the maximum likelihood estimates for 𝛽. We
use plots and metrics as in 3.3, replacing √MSE by Accu-
racy.
Results. Density plots for 𝛽 when 𝑛 = 100, 𝑝 = 2 are pre-
sented in Figure 9. From the contour plot we see that MF-
VI does not capture the elliptical structure of the joint dis-
tribution of 𝛽 which the other two methods display. For
higher dimensions, kernel density plots of 𝛽 SSE, ‖𝛽−𝛽0‖22
when 𝛽 ∼ 𝜋(𝛽|𝑦1∶𝑛) are presented in Figure 10. Simi-
lar to the trend displayed by Gaussian linear regression,
we see that kernel density plots for MF-VI seem to cen-
ter on a lower SSE. The FAVI and RW-MH algorithms per-
form similarly with respect to uncertainty quantification
as dimension 𝑝 increases but MF-VI has lower aggregate
posterior variance for 𝛽 (See Table 4). All three meth-
ods display identical model predictive Accuracy given by

5For most cases the autocorrelation after thinning is between 0.0 − 0.2, how-
ever when 𝑝 = 100 we allow autocorrelation of 0.4 given computational
considerations.

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1067



Figure 9. Logistic regression: 𝜋(𝛽1, 𝛽2|𝑦1∶𝑛) when 𝑛 = 100,
𝑝 = 2.

(a) 𝑛 = 100, 𝑝 = 20.

(b) 𝑛 = 100, 𝑝 = 50.

(c) 𝑛 = 100, 𝑝 = 100.

Figure 10. Logistic regression: Density plots of ‖𝛽 − 𝛽0‖22
where 𝛽 is sampled from ∼ 𝜋(𝛽|𝑦1∶𝑛).

Accuracy Avg. 𝛽 sd. 𝐬𝜷
(𝑛, 𝑝) MH FAVI MF-VI MH FAVI MF-VI

(50, 2) 0.80 0.80 0.80 0.41 0.40 0.39

(50, 20) 0.90 0.90 0.90 0.56 0.55 0.47

(50, 50) 0.60 0.60 0.60 0.77 0.73 0.61

(50, 100) 0.50 0.50 0.50 0.88 0.85 0.74

(100, 2) 0.60 0.60 0.60 0.36 0.36 0.32

(100, 20) 0.65 0.65 0.65 0.40 0.39 0.34

(100, 50) 0.95 0.95 0.95 0.59 0.55 0.44

(100, 100) 0.70 0.70 0.70 0.77 0.71 0.56

(200, 2) 0.85 0.85 0.85 0.25 0.25 0.25

(200, 20) 0.85 0.85 0.85 0.25 0.25 0.25

(200, 50) 0.55 0.55 0.55 0.40 0.38 0.31

(200, 100) 0.78 0.78 0.78 0.61 0.54 0.42

Table 4. Logistic regression: Model accuracy (larger values
are better). | Avg. s.d. of 𝛽 samples. Here RW-MH is
abbreviated as MH.

∑𝑛test

𝑖=1 𝕀{ ̂𝑦𝑖 = 𝑦𝑖}/𝑛test. The plot of average run-time across 5
trials against dimension 𝑝 presents an interesting contrast
(Figure 11). As expected, MF-VI scales the best, since it has
run-time of approximately the same order regardless of di-
mension. RW-MH algorithm scales poorly ranging from
40s for 𝑝 = 2 to approximately 1000s when 𝑝 = 100. FAVI
on the other hand, only has a run-time in the 400s when
𝑝 = 100, less than half the time of the RW-MH algorithm.
Thus, FAVI is scalable relative to the RW-MHalgorithm and
performs much better than MF-VI at approximating densi-
ties in their entirety, beyond just measures of central ten-
dency.

Figure 11. Logistic regression: Average run-time vs. 𝛽
dimension when 𝑛 = 200.

4. Looking Ahead
This article discusses how normalizing flows are a useful
tool in probabilistic modeling. The examples we covered

1068 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7



in Section 3 confirm that FAVI lies somewhere between ba-
sic MCMCmethods (RW-MH, Gibbs sampling) andMF-VI
with respect to accuracy and scalability. They can approx-
imate multimodal densities and come reasonably close
to MCMC for uncertainty quantification while retaining
some scalability. An exciting feature of FAVI is a high de-
gree of flexibility over the desired levels of expressivity and
scalability for the probabilistic model. This is due to our
ability to select the flow depth, type of transformation, and
the number of flow parameters 𝜙.

There are still many challenges remaining in this area.
There is no rigorous study on the scalability vs. expres-
sivity trade-off in the literature. Many normalizing flow
families such as NAF have universal approximation prop-
erties which allow them to approximate any distribution
arbitrarily well, given enough flow depth. This does not,
however, provide answers on the flow depth required to
achieve desired levels of accuracy. In contrast, MCMC
methods have effective sample size measures, which indi-
cate the minimum amount of samples needed to obtain
the required quality in posterior samples.

Another research direction would be improving FAVI’s
scalability without a significant accuracy loss. We observe
that FAVI can be computationally expensive in Bayesian
inference if the likelihood 𝑝(𝒙|𝒛) is difficult to evaluate.
There are already efforts in this direction. [WLS22] re-
places the likelihood with a surrogate likelihood that we
can learn while training the flow transformations. In addi-
tion, we see in Section 3.2, that FAVI can be highly sensitive
to the initialization of flow parameters 𝜙. Thus FAVI can
take longer to converge to the minima with bad initializa-
tions. It follows that a beneficial avenue of research would
be going beyond naive initializations for FAVI.

As discussed in Section 3, we have used the RW-MH
andGibbs sampling algorithms for our experiments. How-
ever, there exists a range of other MCMC algorithms in
the literature. Among the most popular is the HMC algo-
rithm [Nea11], and its self tuning variant, the No-U-Turn
sampler (NUTS) [HG14]. These methods have achieved
considerable success by leveraging gradient information to
make jumps through the state space for the target distribu-
tions. In fact, HMC scales at 𝑂(𝑑1/4) iterations to achieve
2 nearly independent samples in comparison to 𝑂(𝑑) time
for RW-MH. Thus, HMC is considered to be the gold stan-
dard for unimodal high-dimensional regimes, if compu-
tationally feasible. [WJGC19] contains a comparison of
FAVI and HMC on 13 Bayesian linear regression models.
Their results indicate that FAVI is competitive with HMC,
having a lower MSE in 5 of 13 models. [MPS18] show
that for highly multimodal distributions the above scaling
regime need not hold. Specifically, HMC and the RW-MH
algorithm behave the same way, with their spectral gaps
decaying at the same rate. Thus, FAVI has the potential

to compete with HMC for multimodal densities. A more
rigorous, wide scale exploration of how FAVI compares to
gradient based MCMC methods is essential.

Normalizing flows can also be used to aid MCMC sam-
pling. We expand on some existing ideas to do this. For
multimodal target distributions, the MCMC chains may
converge slowly, and samples are highly correlated.6 The
MH algorithm, uses a “proposal density” 𝑝(𝒛) from which
we generate candidates for posterior samples. The pro-
posal density is often selected to be easy to sample from,
for example, the Gaussian distribution. Unfortunately,
when the target density has a complicated geometry, this
results in slow exploration of the sample space. To address
this, we can use normalizing flows to shift the proposal
density space to a “distorted” space. This is possible be-
cause normalizing flows are nothing but a reshaping of
one density into another. The MH algorithm is then able
to move faster through this “distorted” space. Recently, in-
verse autoregressive flows have been used to aid HMC sam-
pling [HSD+19].

Until now, we have discussed how normalizing flows
can be used for learning densities on continuous support.
What happens for discrete probability distributions? There
is an equivalent change of variable formula for flows on
discrete distributions:

𝑝𝑍(𝒛) = 𝑝𝑈(𝑇−1(𝒛)).

𝑇 ∶ 𝒰 → 𝒵 is a bijection between two discrete spaces 𝒰,𝒵.
However, some issues exist with using the above for learn-
ing discrete distributions. For one, we rely heavily on the
base distribution for expressivity in discrete flow models.
We need to incorporate dependencies across variables into
the base distribution itself. Further, there is no research
on modeling joint discrete-continuous distributions. We
expect this to be a popular avenue of research in the near
future.

Normalizing flows are a significant advancement for
probabilistic modeling, particularly for VI. This area is in
the nascent stages, and many issues need to be tackled. We
hope to see future collaborations between computer scien-
tists and statisticians to address some of these issues, thus
enabling wider adoption of normalizing flows, especially
for Bayesian inference.

ACKNOWLEDGMENTS. The authors thank the edi-
tors and anonymous referees for their insightful com-
ments and suggestions that improved the presenta-
tion of the work. This work is partially supported
by the grants NSF-1924724, NSF-1952856, and NSF-
2124605.

6We see this occur for the mixture Gaussian density 𝑈4 in section 3.2

AUGUST 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1069



References
[BKM17] David M. Blei, Alp Kucukelbir, and Jon D.

McAuliffe, Variational inference: a review for statisticians, J.
Amer. Statist. Assoc. 112 (2017), no. 518, 859–877, DOI
10.1080/01621459.2017.1285773. MR3671776

[Bot98] Léon Bottou, Online algorithms and stochastic approxi-
mations, Online Learning and Neural Networks, 1998. Re-
vised, 2012.

[CG95] Siddhartha Chib and Edward Greenberg,Understand-
ing the Metropolis-Hastings algorithm, The American Statisti-
cian 49 (1995), no. 4, 327–335.

[HLCK18] Chin-Wei Huang, Alexandre Lacoste, Aaron
Courville, and David Krueger, Neural autoregressive flows,
Proceedings of the 35th International Conference on Ma-
chine Learning (ICML-2018), 2018.

[GR92] Andrew Gelman and Donald B. Rubin, Inference from
iterative simulation using multiple sequences, Statistical Sci-
ence 7 (1992), no. 4, 457–472.

[CG92] George Casella and Edward I. George, Explaining the
Gibbs sampler, Amer. Statist. 46 (1992), no. 3, 167–174,
DOI 10.2307/2685208. MR1183069

[GGML15] Mathieu Germain, Karol Gregor, Iain Murray,
and Hugo Larochelle,Made: Masked autoencoder for distribu-
tion estimation, Proceedings of the 32nd International Con-
ference on Machine Learning, 2015, pp. 881–889.

[HG14] Matthew D. Hoffman and Andrew Gelman, The no-
U-turn sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo, J. Mach. Learn. Res. 15 (2014), 1593–1623.
MR3214779

[HSD+19] Matthew D. Hoffman, Pavel Sountsov, Joshua V.
Dillon, Ian Langmore, Dustin Tran, and Srinivas Vasude-
van, Neutra-lizing bad geometry in Hamiltonian Monte Carlo
using neural transport, arXiv: Computation abs/1903.03704
(2019).

[KB14] Diederik P. Kingma and Jimmy Ba, Adam: A method
for stochastic optimization, CoRR abs/1412.6980 (2014).

[KPB2005] Ivan Kobyzev, Simon Prince, and Marcus
Brubaker, Normalizing flows: An introduction and review of
current methods, IEEE Transactions on Pattern Analysis and
Machine Intelligence PP (202005), 1–1.

[LT16] Yingzhen Li and Richard E. Turner, Rényi divergence
variational inference, Nips, 2016.

[MPS18] Oren Mangoubi, Natesh S. Pillai, and Aaron Smith,
Does Hamiltonian Monte Carlo mix faster than a random walk
on multimodal densities?, arXiv (2018).

[Nea11] Radford M. Neal, MCMC using Hamiltonian dynam-
ics, Handbook of Markov chain Monte Carlo, Chapman
& Hall/CRC Handb. Mod. Stat. Methods, CRC Press, Boca
Raton, FL, 2011, pp. 113–162. MR2858447

[PNR+21] George Papamakarios, Eric Nalisnick, Danilo
Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan, Normalizing flows for probabilistic modeling and
inference, J. Mach. Learn. Res. 22 (2021), Paper No. 57, 64.
MR4253750

[RM15] Danilo Jimenez Rezende and Shakir Mohamed, Vari-
ational inference with normalizing flows, International Con-
ference on Machine Learning, 2015.

[RM51] Herbert Robbins and Sutton Monro, A stochastic ap-
proximation method, Ann. Math. Statistics 22 (1951), 400–
407, DOI 10.1214/aoms/1177729586. MR42668

[WJGC19] Stefan Webb, Martin Jankowiak, Noah Good-
man, and Jonathan P. Chen, Improving automated varia-
tional inference with normalizing flows, ICML workshop on
automated machine learning, 2019.

[WLS22] Yu Wang, Fang Liu, and Daniele E. Schiavazzi,
Variational inference with NoFAS: normalizing flow with
adaptive surrogate for computationally expensive models, J.
Comput. Phys. 467 (2022), Paper No. 111454, 21, DOI
10.1016/j.jcp.2022.111454. MR4454270

Sumegha
Premchandar

Bhattacharya
Shrijita

Maiti Tapabrata

Credits

Opening image is courtesy of NicoElNino via Getty.
Figures 1–11 are courtesy of the authors.
Photo of Sumegha Premchandar is courtesy of Michigan State

University/Harley Seeley.
Photo of Bhattacharya Shrijita is courtesy of Bhattacharya

Shrijita.
Photo of Maiti Tapabrata is courtesy of Michigan State Uni-

versity/Harley Seeley.

1070 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 7

http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1016/j.jcp.2022.111454
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.2307/2685208
http://www.arxiv.org/abs/1412.6980
http://www.arxiv.org/abs/1903.03704
http://www.ams.org/mathscinet-getitem?mr=3671776
http://www.ams.org/mathscinet-getitem?mr=1183069
http://www.ams.org/mathscinet-getitem?mr=3214779
http://www.ams.org/mathscinet-getitem?mr=2858447
http://www.ams.org/mathscinet-getitem?mr=4253750
http://www.ams.org/mathscinet-getitem?mr=4454270
http://www.ams.org/mathscinet-getitem?mr=42668



