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ABSTRACT

Ising models originated in statistical physics and are widely used in modeling spatial data and computer
vision problems. However, statistical inference of this model remains challenging due to intractable nature

ARTICLE HISTORY
Received May 2022
Accepted May 2023

of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead, to study the Bayesian

estimation of two-parameter, inverse temperature and magnetization, Ising model with a fully specified
coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation.
Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational
posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational
posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the
efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational
family for inference of Ising model parameters. Supplementary materials for this article are available online.

1. Introduction

A popular way of modeling a dependent binary vector x =
(X1,...,%,) 7 is to take advantage of Ising model named after
the physicist Ernst Ising (Ising 1924) which has been used in a
wide range of applications. For examples, Ising models have been
used for voter models in social science (Lipowski, Lipowska, and
Ferreira 2017), interactions between genetic markers (Majewski,
Li, and Ott 2001), describing complexity class of topological
quantum computer (Lahtinen and Pachos 2017), and describing
the pairing of electrons (Li et al. 2021). In Statistics, many
researchers have considered Ising models for a variety of statisti-
cal problems including variable selection and clustering (Smith
and Fahrmeir 2007; Li and Zhang 2010; Lee et al. 2014; Li et al.
2015; Fang and Kim 2016; Park, Jin, and Schweinberger 2022).
Many different versions of Ising model have emerged in
the literature. In this article, among them, we focus on two-
parameter Ising model, which has an inverse temperature (inter-
action) parameter § > 0 and a magnetization (threshold)
parameter B # 0, with a symmetric coupling matrix A, <
R">®, An Ising model is often represented by an undirected
graph in which each vertex (node) is a binary variable x; <
{—1, 1} and the connections between x;’s are determined by A,,.
Here, B characterizes the strength of interactions among x;s
and B represents external influence on x. In the first place, Ising
model has been introduced for the relations between atom spins
Brush (1967) with the domain {—1, 1}". While we work with
the domain {—1, 1}", in many current applications, Ising model
has been defined with a different domain {0, 1}". One can read
Haslbeck et al. (2021) for more details on two different domains.
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Black box variational
inference; Coupling matrix;
ELBO; Kullback-Leibler
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Estimation of Ising model parameters has received consider-
able attention in statistics and computer science literature. The
existing literature can be broadly divided into two groups. Some
literature assume that iid copies of data (x vector) are available
for inference, Anandkumar et al. (2012), Bresler (2015), Lokhov
et al. (2018), Ravikumar, Wainwright, and Lafferty (2010), and
Xue, Zou, and Cai (2012). Another category of literature assumes
that only one sample is observable, Bhattacharya and Mukherjee
(2018), Chatterjee (2007), Comets (1992), Comets and Gidas
(1991), Ghosal and Mukherjee (2020), Gidas (1988), and Guyon
and Kiinsch (1992). Under the assumption of only one observa-
tion, Comets and Gidas (1991) showed that the MLE of 8 > 0
for Curie-Weiss model is consistent if B # 0 is known, and vice
versa. They also proved that the joint MLE does not exist when
neither B nor B is given. In this regard, Ghosal and Mukher-
jee (2020) addressed joint estimation of (8, B) using pseudo-
likelihood and showed that the pseudo-likelihood estimator is
consistent under some conditions on coupling matrix A,. We
also assume only one observation of x and provide a variational
Bayes algorithm for model parameter estimation with its poste-
rior consistency.

Methodological Contribution: One of the main challenges in
the Bayesian estimation of Ising models lies in the intractable
nature of the normalizing constant in the likelihood. Following
the works of Ghosal and Mukherjee (2020), Bhattacharya
and Mukherjee (2018), and Okabayashi, Johnson, and Geyer
(2011), we replace the true likelihood of the Ising model by
a pseudo-likelihood. As a first contribution, we establish that
the posterior based on the pseudo-likelihood is consistent for
a suitable choice of the prior distribution. Further, we use
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variational Bayes (VB) approach which has recently become
a popular and computationally powerful alternative to MCMC.
In order to approximate the unknown posterior distribution
using VB, we propose a Gaussian mean field family and general
bivariate normal family with transformation of the parameters
to (log B, B). For implementation of VB, we consider a black
box variational inference (BBVI), Ranganath, Gerrish, and
Blei (2014). In BBVI, we need to evaluate the likelihood to
compute the gradient estimates, but the existence of an unknown
normalizing constant in likelihood of Ising model prevents us
using BBVI directly. So, as mentioned above, we use pseudo-
likelihood instead of directly using the true likelihood as
in Ghosal and Mukherjee (2020). Our VB algorithm based
on optimization is computationally more powerful than the
sampling based MCMC methods (Mpller et al. 2006). Also,
by the virtue of PyTorch’s automatic differentiation, we do not
need to manually compute necessary gradients (See the tutorial:
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.
html). Python codes using PyTorch’s automatic differentiation
and data are available at Github https://github.com/stat-kim/vb-
Ising.

Theoretical Contribution: The main theoretical contribution
of this work lies in establishing the consistency of the varia-
tional posterior for the Ising model with the true likelihood
replaced by the pseudo-likelihood. In this direction, we first
establish the rates at which the true posterior based on the
pseudo-likelihood concentrates around the g, - shrinking neigh-
borhoods of the true parameters. With a suitable bound on the
Kulback-Leibler distance between the true and the variational
posterior, we next establish the rate of contraction for the varia-
tional posterior and demonstrate that the variational posterior
also concentrates around g,-shrinking neighborhoods of the
true parameter. These results have been derived under three
set of assumptions on the coupling matrix A, (see Section 3
for more details). Indeed, we demonstrate that the variational
posterior consistency holds for the same set of assumptions on
A, as those needed for the convergence of the maximum likeli-
hood estimates based on the pseudo-likelihood. One of the main
caveats in establishing the posterior contraction rates under the
pseudo-likelihood structure is in ensuring that the concentra-

tion of the variational posterior occurs in ]Pg’) probability where
]Pg’) isthe distribution induced by the truelikelihood and not the

pseudo-likelihood. Indeed, we could show that in ]P((]") probabil-
ity, the contraction of variational posterior happens at the rate
1 — 1/M,, in contrast to the faster rate 1 — exp(—Cne2),C > 0
for the true posterior. As a final theoretical contribution, we
establish that the variational Bayes estimator converges to the
true parameters at the rate 1/¢, where g, can be chosen n =8
0 < § < 1/2 provided the A, matrix satisfies certain regulanty
assumptions.

The rest of the article is organized as follows: Section 2
defines the likelihood and pseudo-likelihood of Ising model with
two parameters (8, B) and provides the details of our Bayesian
estimation using variational approach. In Section 3 we discuss
our main theoretical developments and sketch of the proof.
The numerical studies are provided in Section 4. We give a
comparison of our variational Bayes estimates to existing maxi-
mum likelihood estimators based on pseudo-likelihood Ghosal

and Mukherjee (2020) and MCMC based method Meller et al.
(2006). Section 5 shows a real-world application using Facebook
network data. Technical details of theoretical results are deferred
to the supplementary document.

2. Model and Methods
2.1. Ising Model

For a representation of an Ising model with two parameters
B = 0and B # 0, we consider an undirected graph which
has n vertices x;, i = 1,...,n. Each vertex of the graph takes
a value either —1 or 1, that is, x; € {—1,1}. Then, we define a
likelihood of Ising model as the probability of the vector x =
(s i)’ E1=1, 1%

. Bt e
Zn(,B,B)EXp(2x A,,x—i—BZx,), (1)

i=1

PO =ik] =

where Z,,(8, B) is a normalizing constant which makes the sum
of (1) over the support {—1, 1}" equal to 1 and A, is a coupling
matrix of size n x n which determines the connections between
the coordinates of x. More precisely,let £ = {(i,j) [ i ~j, 1 <
i,j < n} be the set of edges in the graph where i ~ j denote
that the vertices 7 and j are connected. Then, we define A, as
a symmetric matrix with A,(i,j) = 0 for all (i,j) ¢ £ and
An(i,j) > 0forall (i,j) € £.

In our study, with the regard to only one observation of x
{—1,1}", estimating all the elements of A, is impossible because
A, has n(n — 1)/2 distinct values. In this work, we primarily
focus on the problem of estimation of the parameters (8, B)
under the assumption of a fully known coupling matrix A,. The
same set up was considered by Bhattacharya and Mukherjee
(2018), Ghosal and Mukherjee (2020), and Okabayashi, John-
son, and Geyer (2011).

2.2. Pseudo-Likelihood

It is challenging to use the likelihood (1) directly because of the
unknown normalizing constant Z, (8, B). Due to the intractable
nature of the likelihood, the standard Bayesian implementation
is computationally intractable. We thereby propose the use of the
conditional probability of x; given others. It is easily calculated
because x; is binary:

eﬁm,—(x)+B
ebmi(x)+B | o—Ppmi(x)—B’

PLH(G =11%.) # 1) =
where m;(x) = 1 An (D ). The pseudo-likelihood of Ising
model correspondfmg to the likelihood in (1) is defined as

the product of one dimensional conditional distributions (see
Ghosal and Mukherjee 2020, for further details):

1_[ P(”}

=2""exp (Z (Bximi(x) + Bx; — log cosh(Bm;(x) + B))) .

i=1
(2)

X; = x; | Xj,j # i)



Our subsequent Bayesian development will make use of the
pseudo-likelihood (2) instead of the true likelihood (1). We shall
establish that the variational posterior (7) obtained by the use
of the pseudo-likelihood allows for consistent estimation of the
model parameters.

2.3. Bayesian Formulation

Let & = (B, B) be the parameter set of interest. We consider the
following independent prior distribution p(#) = pg(B)ps(B),
with pg(B) as a log-normal prior for 8 and pg(B) as a normal
prior for B as follows:

i I (lggzﬂ)z ®) L =
& 5 B(B) = B
BA/2m £ 27
The assumption of log-normal prior on B is to ensure the pos-

itivity of B. Based on the prior p(6) and the pseudo-likelihood
L(#) as in (2), we have the following posterior distribution:

[4m@0,X"™)do [, L@)p®)de
m(X™)  [LO)p©)de

for any set A € © where © denotes the parameter space of 6.
Note, (6, X™) is the joint density of 6 and the data X and
m (X™) = [ L(0)p(9)d is the marginal density of X which
is free from the parameter set 6.

pp(B) = (3)

(A | X®) = (4)

2.4. Variational Inference

Next, we provide a variational approximation to the posterior
distribution (4) considering two choices of the variational family
in order to obtain approximated posterior distribution (varia-
tional posterior). One candidate of our variational family, for
the virtue of simplicity, is a mean-field (MF) Gaussian family as
follows:

@ = [q(ﬁ') | 90) = qp(B)qB(B),log B ~ N(u1,07),

B~ Nmz,af)]. (5)

The above variational family is the same as a lognormal distribu-
tion on B and normal distribution on B. Also, we point out that 8
and Bare independent in OMF and each q0) QME jg governed
by its own parameter set YMF = (w1, p2,02,62) 7. vMF denotes
the set of variational parameters which will be updated to find
the optimal variational distribution closest to the true posterior.

Beyond the mean field family, we suggest a bivariate normal
(BN) family to exploit the interdependence among the parame-
ters (8, B) as follows:

gl = [q(ﬁ) | 4(6) = q(B, B), (log B, B) ~ MVN (i, E)],
(6)

where u = H1)and = = (1 912) Here, vk ¢~ piy
7% 012 022

since QMF can be obtained from QBN by restricting 0y, = 0.
Thus, one may expect the QBN to provide a better approximation
to the true posterior over QMF. The variational parameters of
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BN family are vBN = (uy, u2,011,022,012) 7. Once a varia-
tional family is selected, the variational posterior is obtained
by minimizing the Kullback-Leibler (KL) divergence between a
variational distribution g € @ and the true posterior (4). The
variational posterior is thus given by

Q* = argmin KL(Q, I1(| X)), 7)
QeQ

where KL(Q, TT(] X)) is the KL divergence given by

q(6)

KL(Q,H(lX("))):flog (W

) q(0)do,

where g and 7 (] X™) are the densities corresponding to Q and
I1(] X™), respectively.
Based on (4), we rewrite the KL divergence as

KL(Q.T(| X)) = f (105 4(6) — logx(6, X)) q&)ds
+ logm (X("))
— —ELBO(Q,TI(,X™)) + logm (x(”)) .

The first term is the negative Evidence Lower Bound (ELBO)
and observe that the second term does not depend on g. There-
fore, minimizing KL divergence is equivalent to maximizing the
ELBO. So, we search for an optimal q by maximizing the ELBO:

Q* = arg max ELBO (Q, H(,X("))) .
Qe@

To optimize the ELBO, we consider the ELBO as a function of
variational parameters v:

Lw):=Eq (log (0, XMy — log q(6; v)).
Ranganath, Gerrish, and Blei (2014) suggested black box varia-

tional inference (BBVI) for optimizing the ELBO using gradient
descent method. The gradient of £(v) with respecttov € v is

Vol =V, Eg (log (8, X™) — log q(6; v))
_ f 465 v)V, log 4(8; v) (log:rr(G,X(")) —logq(6; v)) d9
% f q(6; 1)V, (logrr(é‘,X(”}) — log q(; v)) do

= Eq (vv log 4(0; v) (log:rr(G,X(")) —logq(8; v))) .
(8)
The last equality holds because Eq(V, logg(f;v)) = 0 and

vy logn(S,X{”}) = 0. Since the expectation in (8) cannot be
computed exactly, we use the Monte Carlo estimate:

ol —

[0

S
Z V. logq(6"“; v)
s=1

x (log:r ©9, XMy —logq(®"; v)) , (9)
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where 8, .. .,0©® are samples generated from q(6”; v) and
log (8, X(M) = log L(W) + log p(8). The explicit expres-
sions for log L, log p and log g are given by

log L(B(S)) = —nlog2+ Z (ﬁ(‘)x;m,v(x) + BWy;
i=1

—log cosh(ﬁ(s)m.-(x) + B(‘})) ;

logp(8®)) = —log(27) — log B — %(log B2 — %(B(‘))z,

1
log g(8®); v) = —log(2r) —log B — Elog |Z]
1 T
- (s)_gle)y —
> (0g 9, B9) — u)

3t ((log 8O, BO)) — ,u) .

Although we do not need to manually compute the gradients
using PyTorch’s automatic differentiation, we provide explicit
expressions in Supplement Section A.2. Using the estimate (9),
we iteratively update v in the direction of increasing the objective
function £(v). The summary of BBVI algorithm is shown in
Algorithm 1.

In Algorithm 1, p;, t = 1, 2,... isa sequence of learning rates
which satisfy the Robbin-Monro conditions Robbins and Monro
(1951), thatis, } 0, pr = coand > 20, p2 < 00.Leto € v
be a variational parameter which must be positive. However,
during the updating procedure, one may obtain a negative value
of 0. To preclude this issue, we consider a reparameterization
o = log(1 + €") and update the quantity 5, as a free parameter
instead. We address more details of BBVI algorithm implemen-
tation in Supplement Section A.2.

Algorithm 1 Black box variational inference (BBVI)
Initialize: p(#), q(8;v!) and learning rate sequence p;.
1: while ELBO increases do
2: Dra\.iﬁl(s} ~q@;v'),s=1,...,5;
3: Get V,, L based on the § sample points;
4 Update vi*! <« vf + oV, £;
5: end while
Output: Optimal variational parameters v*

3. Main Theoretical Results

In this section, we establish the posterior consistency of the vari-
ational posterior (7) under the mean-field family, Q@ = QMF. In
this direction, we establish the variational posterior contraction
rates to evaluate how well the variational posterior of g and B
concentrates around the true values Sy and By. Toward the proof,
we make the following assumptions:

Assumption 1 (Bounded row sums of A,). The row sums of A,
are bounded above

n
max y A,(iLj) <y,
iE[n]z n(f) <y
=1

for a constant y independent of n.

Consider the simple situation where A,, is a 0-1 matrix indi-
cating whether two nodes are connected or not. Then, Assump-
tion 1 implies that even with growing number of edges in a
graph, the number of neighbors of each node still remains
finite. In the more general case, by Assumption 1, it can be
shown that |m;(x)| < y,i = 1...,n. Due to Assumption 1,
SUP 11y it | 271 An(h)x;] = O(n). If this does not
hold, the log-normalization constant log Z,,(8, B) grows super
linearly which implies lim,_, o (1/n)log Z,(B8, B) = +oc. Also,
by 1, ||An||2 < y which is a regularity condition to guarantee
that no eigen value of A, has an unduly large effect on the
corresponding Ising model (see the eq. (1.2) and the discus-
sion following it in Ghosal and Mukherjee (2020) for further
details).

Assumption 2 (Mean field assumption on A,). Lete, — 0 and

ne? — oo such that

n

¥ Z“:A,,(i, 7)? = o(ne?).

i=1 j=1

If A, is a 0-1 matrix, Assumption 2 implies that even with
growing number of edges in a graph, the total number of edges
of the graph grow at a rate smaller than the sample size n.
More generally, €, of Assumption 2 controls the contraction
rate of the variational posterior (see Theorem 1). Indeed
Assumption 2 is used to control the expected L, loss between
the true likelihood and pseudo likelihood and to bound the
normalization constants of the true and pseudo likelihood (see
the Supplement Section B.4). Assumption 2 for ¢, = 1 was
introduced in Definition 1.3 in Basak and Mukherjee (2017)
to study the limiting behavior of Ising and Potts models. We
direct the reader to Section 1.2 in Ghosal and Mukherjee
(2020) for a discussion on matrices which satisfy the mean field
assumption.

Assumption 3 (Nonzero limiting variance of row sums). Let
An = (l}'ﬂ) Z?zl ;:1 Aﬂ(f)j))

2

i zﬂ:A,,(f,ﬁ—A,, > 0.

i=1 \j=1

1
lim inf —

n—o0 B

If A, is 0-1 adjacency matrix, then Assumption 3 implies
that as the graph grows, all nodes do not have the same number
of neighbors in the limit. This is same as assuming that A,, is
asymptotically irregular (a graph in which each node has the
same degree is said to be regular and irregular otherwise). In
the more general case, Assumption 3 ensures that T,(x) =
1/m) 31 (mi(x) — m(x))? is bounded below and above in
probability, an essential requirement toward the proof of The-
orem 1 (see the Supplement Section B.1). We direct the reader
to eq. (1.7) in Ghosal and Mukherjee (2020) for further details.

Although the theoretical results presented in this section are
applicable to any class of adjacency matrices with nonnegative
entries, the more interesting examples occur when A, is a scaled
adjacency matrix (see also sec. 1.2 in Ghosal and Mukherjee
2020).



Definition 1. A scaled adjacency matrix for a graph G, with n
vertices is defined as

A, = {EI'G:[ if (i,j) € £

otherwise. ’
where |G,| denotes the number of edges.

The numerical results in Sections 4 and 5 are based on scaled
adjacency matrices. We next provide a simple example of a
scaled adjacency matrix used in Section 4 satisfying Assump-
tions 1, 2, and 3. We use the notation d,, to denote the degree of
a regular graph.

Example 1. Consider a graph G, with |G,| = (nH,)/ (263)
for some sequence H, — oo. Then, the number of nonzero
entriesin A, is2|G,|and Y"1, % | A,(6,j)* = (n*/(4|G,[%))-
2|G,| = (ne?)/H, = o(ne?). This satisfies Assumption 2.
For Assumptions 1 and 3, consider the matrix A, € R” with
a submatrix of size (n — k,) x (n — k,) which is d,-regular
and the other k, rows only have zero entries. Let us assume
k., = n/2 such that only the first n/2 rows of A, have nonzero
entries. Then, nd, /2 = 2|G,| = (nH,) ;’eﬁ, which implies d,, =
(2H,)/€?. Also, fori = 1,...,n/2, we getz;;l AnGhj) = dy -
(n/2|Gn)) = (dﬂeg);’Hﬂ = 2asaresult of which Assumption 1
holds. Finally, Assumption 3 holds since A, = (d€2)/(2H,)
and (I/m YL (T, Anlh) — Aw)* = (duey)/(2Hy)
=1.5='0.

We next present the main theorem on the contraction rate for
the variational posterior. We also establish the contraction rate
of the variational Bayes estimator as a corollary. Let 8 = (8, B)
be the model parameter and 6y = (8, Bp) be the true parameter
from which the data are generated. Let L(#) and L(6) denote
the pseudo-likelihood as in (2) under the model parameters and
true parameters, respectively. Let Ly denote the true probability
mass function of the data. Thus, Ly is as in (1) with 8 = 6.
We use the notations ]E{(]") and IP{(]") to denote expectation and
probability mass function with respect to Ly.

Theorem 1 (Posterior Contraction). Letl,, = {6 : ||§ — 6|2 <
£,} be neighborhood of the true parameters. Suppose ¢, satisfies

Assumption 2, then in P{" probability

Q*U;) —> 0, n— oo,

where ¢, = €,,/M,logn for any slowly increasing sequence
M, — oo satisfying &, — 0.

The above result establishes that the posterior distribution
of B and B concentrates around the true value 8y and By at
a rate slightly larger than ¢,. The proof of the above theorem
rests on following lemmas, whose proofs have been deferred to
Supplement.

Lemma 1. There exists a constant Cp > 0, such that for any

€n — 0, ne2 — oo,

]ng) (logj;(g" % 8)do < —aneﬁ) — 1, n— oo.
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Lemma 2. Let e, be the sequence satisfying the Assumption 2,
then for any C > 0,

]P((]n) (Ilog[ %p(g)de?l < Cnellog n) — 1.

Lemma 3. Let €, be the sequence satisfying Assumption 2, then
for some Q € QMF and any C > 0,

P (f log L(eﬂ)q(ﬁl)dﬁ' < Cne? logn) A1

L(®)

Lemma 1 and 2 taken together suffice to establish the pos-
terior consistency of the true posterior based on the pseudo-
likelihood L(#) as in (4). Lemma 3 on the other hand is the
additional condition which needs to ensure the consistency
of the variational posterior. We next state an important result
which relates the variational posterior to the true posterior.

Formula for KL divergence: By Corollary 4.15 in Boucheron,
Lugosi, and Massart (2013),

KL(Py, P;) = sup [ f fdpP, —log f efdpg:l.
f

Using the above formula in the context of variational distribu-
tions, we get

f fdQ* < KL(Q*, T1(| X)) + log f ddr( x™). (10)

The above relation serves as an important tool for the proof of
Theorem 1. Next, we give a brief sketch of the proof. Further
details have been deferred to the supplement.

We use the term with dominating probability to imply that

under IP((]"), the probability of the event goes 1 as n — oo.

Sketch of proof of Theorem 1: Let f = (Co/2)ne21[0 Uz, 1, then

(Co/2)ne2Q*UL,) < KL(Q*, TI(| X™))

+1og(e @/ AR TIAUL, | X™) + MU, | X))

2

= Q'U;,) < & —KLQ,TI(| X))

Co

2
log(1 + e@/Pmim@se | x™y).

2
Cone;;

+

By Lemmas 2 and 3, it can be established with dominating
probability for any C > 0,

KL(Q*, T1(] X™)) < Cne2logn, n — oo.

By Lemmas 1 and 2, it can be established with dominating
probability, as n — oo

M, | X™) < eCmen, (11)

for any C, > Cy/2. Therefore, with dominating probability

i (1 e—(cl—ca/z)nsa)
Cot, | Conzz B\ T

2C¢ e (C—Co/2ne
~ + — 0.
C(]M n C() n Sg

Q' WU,) < +

(12)

This completes the proof.
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Note that (11) gives the statement for the contraction of the
true posterior. Similarly the contraction rate for the variational
posterior follows as a consequence of (12). It is important to note
that for both the true posterior and the variational posterior,
the size of the Hellinger neighborhood which gets close to 1
probability, is the same as ¢,. Thus, both variational and true
posterior have the same contraction rates. However, for the
variational posterior, the probability of ¢,-Hellinger neighbor-
hood (Q*(U;,)) of the true density function approaches 1 at the
rate 1 — 1/M, for M,, — oo and for the true posterior, the
probability of ¢,-Hellinger neighborhood (I1(U, |X{”))) of the
true density function approaches 1 at the rate 1 — exp(—Cns2).
This difference in rate is expected and has also been discussed
in the seminal works of Zhang and Gao (2020), Yang, Pati, and
Bhattacharya (2020), etc.

Note, Theorem 1 gives the contraction rate of the variational
posterior. However, the convergence of the of variational Bayes
estimator to the true values of 8y and By is not immediate. The
following corollary gives the convergence rate for the variational
Bayes estimate as long as the Assumptions 1, 2, and 3 hold.

Corollary 1 (Variational Bayes Estimator Convergence). Let g,
be as in Theorem 1, then in IP{(]") probability,

1
—Eqg«(]6 —ll2) — 0, asn — oo.
En

Next, we provide a brief sketch of the proof. Further details
of the proof have been deferred to supplement.

Sketch of proof of Corollary 1: Let f = (Cy/2)ne,||6 — 6|2, then

(C2/2)1en f 16 — Bol12dQ*©®) < KL(Q*, T1(| X))

+log (f eCznsf:IIB—Bollzﬂdn(g |X(ﬁ))) :

By Lemmas 2 and 3, it can be established with dominating
probability, for any C > 0,

KL(Q* T1(| X)) < Cne2logn.
By Lemmas 1, and 2, it can be established with dominating
probability, for some C; > 0

f o Ca/Dmenl~b0l gry (g | XM <
(C2/2)ne;,
Therefore, with dominating probability

2Csn  2l0g(C2/2)  26n log(ne2)

CneZlogn (13)

f 16 — G 112dQ* (@) <

CM, Caney, C;;_ﬂsg
2Ce,
< gpo(1).
+ oM, =6 (1)

This completes the proof. Note, (13) follows as a consequence of
convergence of the true posterior. If &, = n~?, then the rate
of convergence of the variational Bayes estimator is n’. Since
ne: = nel/(Mylogn) — oo, 8 can be chosen anywhere
between 0 < & < 1/2.If § can be chosen very close to 1/2,
the rate of convergence will be close to /n. However, how close
8 can be to 1/2 depends on the extent to which Assumption 2
is satisfied by the adjacency matrix A,. For example, smaller
the Frobenius norm of the adjacency matrix (alternatively the

number of total edges for 0-1 adjacency matrix), the closer to
/1 consistency.

4, Simulation Results

In this section, we compare our VB algorithm with two other
methods, PMLE (Ghosal and Mukherjee 2020) and MCMC
based method (Moller et al. 2006). We briefly describe the two
methods before providing performance comparison.

PMLE: Let h(B, B) denote the pseudo-likelihood in (2). Ghosal
and Mukherjee (2020) used grid search to find PMLE for
Ising parameters which satisfies g%logh(ﬁ,B) = 0 and

% logh(B8,B) = 0. We create a grid search space so that g
contains all values from 0.01 to 2 in increments of 0.01 and the
search space for B increases from —1 to 1 by 0.01.

MCMC: Moller et al. (2006) suggested efficient MCMC method
employing an auxiliary variable z to deal with an unknown
normalizing constant in Ising model. For & = (8, B), let gy (x) =
exp ((B/2)x" A,x + BY [, x;) denote unnormalized density of
Ising model in (1). With the initial guess of # denoted by 4 , the
Metropolis-Hastings ratio is

85 (280" (Xobserved)g8 (2)

MH(@', 2 | 6,2) = —,
&5 (Z)gg (xubserved)gﬂ’ (z")

(14)

where (8, z) is the current state and Xgbserved is the observed data.
The PMLE is used as 6 and we accept (6',2’) as the next state
with probability max {1, MH(¢', 2’ | 6, 2)}.

4.1. Performance Comparison

We generate irregular graphs and coupling matrices A, as in
Example 1 with n € {100, 500}, H, = n%3,¢, = n~%!,and k, =
1n/2. We compare the performance of the parameter estimation
methods for the Ising model in (1) under various combinations
of (Bo, Bp). For a given A, under each scenario, we repeat the
estimation procedures R = 50 times. We use S = 20 or § = 200

Table 1. Mean squared errors and computation times for each pair of ( S, By) when
(n,dp) = (100, 20) (left numbers) and (n, d,) = (500,44) (right numbers).

Method Monte Carlo (0.2,0.2) (0.2,—-0.2) Convergence
samples (5) time (sec)
PMLE! i 0.061/0.023 0.100/0.016 3.2/35
Mcmc2 — 0.021/0.010 0.027/0.006 157.0/575.1
MF famil}.cr3 20 0.051/0.016 0.056/0.011 64/9.8
200 0.046/0.009 0.052/0.008 10.2/179
BN family4 20 0.052/0.019 0.062/0.014 79/11.7
200 0.049/0.011 0.056/0.009 121/19.0

1PMLE, pseudo maximum likelihood estimate (Ghosal and Mukherjee 2020);
2MCMC, Markov chain Monte Carlo (Meller et al. 2006); 3I’L'1F, mean-field; 4BN,
bivariate normal.

Table 2. Mean squared errors and computation times for each pair of ( S, Bg) when
(n,dn) = (100, 20) (left numbers) and (n, dn) = (500,44) (right numbers).

Method Monte Carlo (0.2,0.5) (0.2,—0.5) Convergence
samples (5) time (sec)
PMLE = 0.060/0.011 0.046/0.011 3.2/35
MCMC e 0.045/0.008 0.035/0.008 157.3/576.1
MF family 20 0.057 /0.009 0.049/0.008 6.5/9.9
200 0.055/0.005 0.046/ 0.006 10.0/17.3
BN family 20 0.061/0.010 0.054/0.009 8.0/11.5
200 0.057 /0.006 0.049/0.006 12.3/19.0
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Figure 1. The first two images from left are original (first) and estimated (second), respectively for (8p, Byg) = (1.2,0.2). The third and fourth images are for (8p, By) =

(1.2,—02).

Table 3. Mean squared errors and computation times for each pair of ( fp, Bg) when
(n,dn) = (100, 20) (left numbers) and (n, dn) = (500, 44) (right numbers).

Table 4. Mean squared errors and computation times for each pair of ( fg, Bg) when
(n,dn) = (100, 20) (left numbers) and (n, dn) = (500,44) (right numbers).

Method Monte Carlo (0.7,0.2) (0.7,—0.2) Convergence Method Monte Carlo (0.7,0.5) (0.7,—0.5) Convergence
samples (5) time (sec) samples (5) time (sec)
PMLE - 0.117/0.010 0.217/0.012 3.1/35 PMLE - 0.706/ 0.020 0.709/0.016 32/34
MCMC a 1.555/0.010 13.120/0.014 158.0/575.9 MCMC = 31.089/0.035 25.403/0.019 157.8/580.1
MF family 20 0.065/0.018 0.066/0.018 6.6/9.8 MF family 20 0.067 /0.028 0.055/0.029 6.8/9.7
200 0.066/0.017 0.067/0.017 10.2/17.1 200 0.074/0.024 0.061/0.026 10.1/16.9
BN family 20 0.064/0.019 0.062/0.019 8.1/113 BN family 20 0.067 / 0.026 0.055/0.028 8.0/11.2
200 0.063/0.017 0.063/0.018 12.1/189 200 0.071/0.024 0.058/0.028 12.3/19.0

as the Monte Carlo sample size in (9). For fair comparison, we
set a fixed learning rate p; = 0.00002 and number of itera-
tions (5000) for each scenario although the optimal choice may
vary depending on the variational family and (n, S). We report
ELBO convergences in Figure 1 of supplement Section A.3. We
compute mean squared errors (MSE), (1/R) Zi 1 ( (ﬁ, — B+
(ﬁ, — Bp)?), for assessing the performances based on R pairs
of estimates, (ﬁr,B,),zl,_“ R. The two numbers in each cell of
Tables 1-4, represent MSE and convergence times for n = 100
and n = 500, respectively.

First, we consider a small value of 8, = 0.2 with By = 4-0.2,
40.5. In these cases PMLE is the fastest but less accurate (see
Tables 1 and 2). MCMC achieves smaller MSEs but it has the
highest runtimes. Our VB methods notably reduce the runtimes
without compromising accuracy. Second, the results for higher
interaction parameter Sy = 0.7 with By = 3-0.2, £0.5 are shown
in Tables 3 and 4. The numerical studies validate the superiority
of our VB algorithm. For our VB approach, the sensitivity to
number of Monte Carlo samples S is not too high. However,
smaller values of S can reduce the computation time.

In all the experiments, QBN does not always outperform
QMF This may primarily happen because QBN which has more
parameters to be estimated does not perform exceedingly well
unless the posterior samples of g and B have high covariance.
Since across almost all parameter combinations, we observe
small covariance values (see Table 1 of Supplement Section A.3),
onlwaould only expect minor differences between QMF and
0

In addition to the numerical experiments in this section,
we also performed extra experiments with d,-regular graphs,
although regular graphs do not satisfy the assumptions. The
results are provided in Supplement Section A.4. For additional
experiments, we used our algorithm to regenerate an image in
the next section.

Table 5. Means and standard deviations of Fy scores for reconstructing the original
image 50 times using variational Bayes (VB) algorithm and independent Bernoulli
(IB) method.

(1.2,0.2) (1.2,-0.2) (1.2,0.5) (1.2,-0.5)
VB 0.864 - 0.007 0.877 £ 0.009 0.938 £ 0.004 0.943 £ 0.010
IB 0.854 £ 0.009 0.866 £ 0.008 0.941 £ 0.005 0.937 £ 0.005

(0.7,0.2) (0.7,-0.2) (0.7,0.5) (0.7,-0.5)
VB 0.754 £ 0.011 0.737 £ 0.015 0.882 £ 0.008 0.898 £ 0.006
IB 0.762 & 0.010 0.721 £ 0.012 0.881 £ 0.008 0.898 + 0.007

(0.2,0.2) (0.2,-0.2) (0.2,0.5) (0.2,-0.5)
VB 0.601 £ 0.021 0.643 £ 0.015 0.777 £0.010 0.783 & 0.009
IB 0.618 &= 0.015 0.635+0.014 0.786 £ 0.009 0.772 £ 0.010

Larger mean Fq value is highlighted in bold and it indicates better performance.

4.2. Image Reconstruction

Ising model can be used for constructing an image in computer
vision field. In particular, the Bayesian procedure facilitate
the reconstruction easily by using the posterior predictive
distribution Halim (2007). Consider an image in which each
pixel represents either —1(white) or 1(black). For choice of
the underlying graph, we generated a two-dimensional grid
graph of size 30 x 30 and added diagonal edges between
400 nodes at the center to make the graph more irregular.
Using the scaling of Definition 1 for the coupling matrix A,
and ¢, = n "%, we get maxy Z;=1 AnGhj) = 1462,
(1/(ne)) Y, Y, An(hj)> = 0209 and (1/m) Y7,
Qe An(iaf) — A,)? = 0.136. Here, €, = 0.01 just presents
one choice of the sequence ¢, which allows Assumption 2 to
hold. Nonetheless, one could also choose €, = n™? such that
0 < § < 1/2 and Assumption 2 holds.

We generate the images using Supplement Section A.1 for a
true (Bo, Bp) and use it as our given data Xopserved. With Xopserved
and coupling matrix A,,, we obtain (5, B) after implementing the
parameter estimation procedure based on the BN family. The
estimates (B, B) are used for data regeneration using Supplement
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Section A.1 again. In Figure 1, we plot two original images and
corresponding estimated images for (8p,By) = (1.2,0.2) and
(Bo» By) = (1.2, —0.2) as examples. To quantify the performance
of the VB in image reconstruction, we computed F;-scores
(Baddeley 1992). As a baseline, we consider a naive Bernoulli
method for regenerating images where pixels are independently
black and white with same probability as in the original image.
Table 5 shows the means and standard deviations of F;-scores
for variational Bayes (labeled as VB) and independent Bernoulli
(labeled as IB) based on 50 replications. As is evident from the
table, VB is at par if not better than IB for majority of the cases.
Although for this simple experiment of image reconstruction,
the improvement provided by VB over IB is only marginal, VB
allows for inference on the interaction parameter g and the
threshold parameter B. The estimates of g and B allow one
to interpret the nature and strength of connectivity among the
pixels of the images, something which cannot be obtained by
applying a naive technique like IB.

5. Real Data Analysis

In two-parameter Ising model, higher value of B implies
stronger interactions between connected nodes and the thresh-
old parameter B controls the model size (number of 1s), where
the model size is greater for B > 0, smaller for B < 0. Here, we
apply our methods to a real dataset related to network analysis.

5.1. Data Description

Stanford Network Analysis Project (SNAP) provides a Face-
book network dataset (Leskovec and Krevl 2014) available at
http://snap.stanford.edu/data/ego-Facebook.html.The Facebook
network consists of 4039 nodes and 88,234 edges. Each node
represents a Facebook user and there is an edge between two
nodes if corresponding users are friends. The dataset also con-
tains user features such as birthday, school, gender, and loca-
tion. The features are fully anonymized. For instance, while the
original data may include a feature “location = Michigan,” the
anonymized data would simply contain “location = anonymized
location A” Thus, using the anonymized data, we can determine
whether two users stay in the same location, but we do not know
where.

Among the 4039 users, we select only users who disclose
gender information to create a sub-graph such that there are
3948 nodes and 84,716 edges in the sub-graph. Later we use the
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gender information for a binary vector observation. Figure 2
shows all the nodes and edges in the Facebook network we
used. Each node has different number of neighbors, indicating
an irregular graph. The maximum degree of the sub-graph is
1024, and the minimum is 1, with an average degree 42.92. For
the matrix A,, we use scaling of Definition 1 and compute the
values with n = 3948 and €, = n~%! to check the assumptions
in Section 3. We did not find any strong evidence of violation of
any of the assumptions.

5.2. Parameter Estimation

We use the selected users (n = 3948) as a real dataset with
the gender feature as an observed binary vector but the original
dataset is anonymized. Specifically, the gender information of
each user is “Gender A” or “Gender B” in the original dataset.
We encode “Gender A” by 1 and “Gender B” by —1. We do not
know which group represents male (or female) but we note that
the resulting model size (number of 1s) is 2417.

Since the model size is large, one can expect that B will be
positive. The estimates from all the four methods are positive
indicating that the estimation is in right direction. All four
estimates of the interaction parameter g are less than or equal
to 0.25 which suggests that the gender effect of being Facebook
friends is not so strong. To analyze features with more than
two categories, one could use a Potts model (see Supplement
Section C.2).

Figure 2. Visualization of Facebook network data (circle sizes denote degrees of the
nodes).
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Figure 3. Density plots for the estimated parameters (left: 8, right: B) from VB with BN family (red), VB with MF family (green), and MCMC (blue) for the gender feature.



Table 6. The estimated parameters with standard errors and time costs for gender
feature.

Method Monte Carlo B B Convergence
samples (5) (SE) (SE) time (sec)
PMLE & 0.250(—) 0.180(—) 59
MCMC — 0.171(0.097) 0.198(0.102) 27109.2
MF family 200 0.169(0.133) 0.189(0.162) 505.1
BN family 200 0.135(0.068) 0.168(0.040) 5153

Table 6 summarizes the estimated parameters with standard
errors (SE) (for VB and MCMC) and runtimes. SEs of MCMC
in Table 6 are calculated based on 10,000 draws after the burn-
in period of 10,000 iterations. For our VB methods, to calculate
SEs, we draw 10,000 samples of 8 and B from the optimal
variational distributions and calculate sample standard devia-
tions (see the density plots in Figure 3). Table 6 suggests that
while estimated parameters are comparable for all the methods,
the MCMC implementation takes about 50 times more com-
pared to VB to achieve similar level of accuracy. The PMLE
approach does not produce SE and thus limited for statistical
inference.

6. Discussion and Conclusion

In this article, we propose a variational Bayes estimation
technique for a two-parameter Ising model. The use of pseudo-
likelihood avoids the computation of normalizing constants
and VB facilitates computation speed. We have mainly worked
with mean-field assumption on the adjacency matrix. We
concentrated only on irregular graphs to establish theoretical
consistency of VB. The promising empirical performance of
regular graphs under mean field assumption motivates us
to explore them in the future. Finally, exploring the case
where mean field assumption breaks is a compelling direction
for future research. In Supplement Section C, we discuss
possible extensions to multiparameter Ising models and Potts
models.

Supplementary Materials

The supplementary file contains implementation details and theoretical

details.
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