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ABSTRACT: Tandem transformations of 1,3-diynyl propiolate derivatives are described. The Alder-ene reaction generates 
an enyne-allene, which undergoes a formal 1,7-H shift or a Diels-Alder reaction depending on the substituent on the alkyne. 
Terminal or aryl-substituted alkyne promotes a 1,7-H shift to generate a new enyne-allene, which undergoes a Myers-Saito 
cycloaromatization followed by a 1,5-H transfer-mediated cyclization to form highly functionalized benzo-fused 6-
membered cycles.  The reactivity of the preformed enyne-allene show comparable reactivity profiles.

The Myers-Saito cycloaromatization refers to the cycliza-
tion of enyne-allene to form an arene-based 1,4--
diradical.1,2 Certain anticancer natural products such as 
neocarzinostatin chromophore3 contain a masked warhead 
functionality for enyne-allene formation as functionality 
relies on this aromatization process for their biological 
mode of action. Enyne-allene-containing molecules' anti-
cancer activity and unique structure spurred extensive 
mechanistic4  and synthetic5,6 studies. In our investigation 
of the thermal reaction of ester-tethered triyne A in the 
presence of a nucleophile, we obtained benzannulation 
product C (Scheme 1).7 We believe this novel benzannula-
tion occurs via the Alder-ene reaction to form enyne-
allene8 B followed by a 1,4-addition of nucleophile. How-
ever, if the enyne-allene B contains an aryl substituent (R = 
Ar), nucleophile trapping occurs in the opposite mode to 
generate an isomeric product D. The different modes of 
nucleophile trapping to form products C and D suggest 
that the enyne-allene B with a silyl group undergoes pref-
erential 1,4-addition with a nucleophile, whereas with an 
aryl substituent, a formal 1,7-H shift9 becomes favorable to 
form a different enyne-allene E. The Myers-Saito cy-
cloaromatization of E forms F, which can reveal a zwitteri-
onic10 reactivity to give D. A diradical reactivity of F gives 
aldehyde G after capturing O2 or tricycle I via 1,5-hydrogen 
transfer to form H followed by a ring-closure.  

The substituent-dependent change in product distribution 
prompted us to investigate the Myers-Saito cyclization 
reactions of enyne-allenes E with and without nucleo-
philes. The role of the substituent is crucial for the enyne-
allene B to undergo a formal 1,7-H shift to generate a new 
enyne-allene F.9 Interestingly, products derived from the 
Myers-Saito cyclization of B  have not been observed. 

Scheme 1. Reactivity of in situ generated enyne-allenes 

 

We commenced our exploration with 1,3-diynyl-2-
heptynoate 1a in toluene under reflux (Table 1), which 
mainly led to the cleavage of the ester providing 2-
heptynoic acid as the major product along with uncharac-
terizable polymeric material (entry 1). A drastic change in 
the reaction profile was observed when the solvent was 
switched to CH3CN. The reaction in undistilled CH3CN gen-
erated product 2aa (30%) was isolated along with 2ab 
(10%) along with aldehyde 2ac (32%) and unreacted 
enyne-allene 2ad (10%) (entry 2). The formation of alde-
hyde 1bb is the consequence of the trapping of the radical 
intermediate with molecular oxygen11 and 2ad is just a 
remaining intermediate. On the other hand, in freshly dis-
tilled CH3CN, only two 
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Table 1. Solvent effect on the product distribution 

 
a Condition. b Isolated yields.  

  

main products 2aa (52%) and 2ab (13%) were obtained 
(entry 3). Unexpectedly, in DMF at a higher temperature 
(110 °C), phenol derivative 2ae (35%) and dimethylamine 
adduct 2af (20%) were generated (entry 4). In DMSO, 
phenol derivative 2ae (60%) was obtained as the sole 
product (entry 5), whereas a complex mixture was ob-
served in dichloroethane (entry 6). Based on these results, 
we employed CH3CN for the sequential reaction of the Al-
der-ene, 1,7-H shift (a deuterium-labeling pattern indicates 
that the 1,7-H shift occurs in a stepwise manner: see SI for 
details), Myers-Saito cycloaromatization, and 1,5-H trans-
fer cyclization.12 

With the optimized condition, we next explored the reac-
tion with substrates containing additional substituents 
(Table 2). When heating 1b containing a methoxy group at 
the carbon bearing the C–H bond undergoing 1,5-H trans-
fer gave products 2b with a 73% yield (entry 1). The reac-
tion of 1c and 1d containing a methoxyethyl or benzyloxy-
ethyl group generated the corresponding products 2c 
(81%) and 2d (51%), respectively (entries 2 and 3). Sub-
strate 1e containing an allyloxyethyl group provided 2e 
(46%), whereas a similar substrate 1f containing an extra 
cyclohexyl group in the tether gave a slightly increased 
yield of 2f (53%, 2:1 dr) (entries 4 and 5). The introduction 
of a quaternary center on the ester tether in 1g decreased 
the yield of 2g to 36% (entry 6). The reaction of 1h con-
taining a propargylic triethylsilyl group generated 2h, 
which did not undergo the Myers-Saito cyclization at 110 
°C for an extended time (entry 7).13 Similar behavior was 
observed with 1i containing a CH2OTHP group, and 2i was 
isolated in 56% yield (entry 8).13 Substrate 1j, containing 
an aryl group on the terminal carbon of the diyne moiety, 
afforded 2ja and 2jb in a 60% yield with a 2.2:1 ratio (en-

try 9). Substrates 1k and 1l containing a benzyloxy or an 
allyloxy group provided improved yields  

Table 2. Reaction scope with terminal and an aryl group 
containing 1,3-diynes 

 

 

a Condition. b Isolated yields.  

 

of products 2k (84%, 1.7:1 dr) and 2l (72%, 2:1 dr) (en-
tries 10 and 11).14 Substrate 1m decomposed, whereas 1n 
was recovered. Substrate 1o containing a reversed ester 
linkage was recovered after heating at 150 °C in xylene for 
18 h. 

Next, we examined the reactivity of preformed enyne-
allenes (Scheme 2). Treatment of terminal allene-
containing enyne-allenes 1p provided a good yield of the 
expected product 2p, while a butyl-substituted allene-
containing 1q decomposed under the same conditions and 
product 2q was not obtained. On the other hand, 1p and 
1q lead to the formation of products 2p-1 and 2q-1, re-
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spectively, upon heating in the presence of AcOH (3 equiv). 
These results suggest that the substituent on the allene 
does not affect the Myers-Saito cyclization to form inter-
mediates IN-1p and  

Scheme 2. The effect of the allene substituent on the reac-
tivity of enyne-allenes for radical and ionic reaction 

 

IN-1q, but their trapping behaviors manifested by radical 
and ionic characters are significantly different. The enyne-
allenes 1r and 1s provided products 2r and 2s, respective-
ly, regardless of the presence or absence of AcOH. These 
reactions are assumed to proceed through the Schmittel 
cyclization2b-d, 4h, 12e involving In-1r and In-1s, although 2s 
can be derived from a Diels-Alder reaction. 

Table 3. The favorable ionic trapping mode of reaction of 
enyne-allenes over a radical mode 

 

 aRatio of diastereomers.  

We further explored the reactivity of enyne-allenes 1t–1v 
that contain more active C–H bonds for 1,5-hydrogen 
transfer, which provided diradical-mediated ring-closure 
products 2t–2v in 71–78% yields (Table 3). In the pres-
ence of AcOH (3 equiv), the reactions of 1t and 1u contain-

ing an allyl and benzyl ether, respectively, still favor ace-
toxy-trapping to generate products 2t-1 (52%) and  2u-1 
(55%). In contrast, a benzene-tethered substrate 1v pre-
fers to undergo a radical-mediated cyclization to give 2v in 
61% yield.  This indicates that the ionic versus radical re-
activity of the intermediate generated from the Myers-
Saito cyclization critically depends on the substituents of 
the -1,4-diradicals. 

In summary, we explored the tandem transformation of 
1,3-diynyl propiolate derivatives under thermal condi-
tions. The overall process involves a sequence of Alder-ene 
reaction, formal 1,7-H shift, Myers-Saito cycloaromatiza-
tion, 1,5-H translocation, and radical coupling to form a 6-
membered ring fused to the newly formed arene moiety. 
The 1,7-H shift to form more stable isomeric enyne-allenes 
depends on the substituent of the alkyne moiety. If the 
alkyne moiety is terminal or contains an aryl substituent, 
the 1,7-H shift occurs, and the rearranged enyne-allenes 
efficiently undergo the Myers-Saito cycloaromatization to 
generate a -1,4-diradicals. Among possible pathways, a 
1,5-H translocation promoted by the aryl -radical from a 
benzylic C–H to form -1,6-diradical followed by annula-
tion to form 6-membered rings including functionalized 
isochromane skeletons.   
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