Reactivity of Enyne-Allenes Generated via an Alder-Ene Reaction

Duy-Viet Vo, Siyuan Su, Rajdip Karmakar, and Daesung Lee*

Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, IL 60607 (USA)

ABSTRACT: Tandem transformations of 1,3-diynyl propiolate derivatives are described. The Alder-ene reaction generates an enyne-allene, which undergoes a formal 1,7-H shift or a Diels-Alder reaction depending on the substituent on the alkyne. Terminal or aryl-substituted alkyne promotes a 1,7-H shift to generate a new enyne-allene, which undergoes a Myers-Saito cycloaromatization followed by a 1,5-H transfer-mediated cyclization to form highly functionalized benzo-fused 6-membered cycles. The reactivity of the preformed enyne-allene show comparable reactivity profiles.

The Myers-Saito cycloaromatization refers to the cyclization of envine-allene to form an arene-based $1.4-\sigma\pi$ diradical.^{1,2} Certain anticancer natural products such as neocarzinostatin chromophore³ contain a masked warhead functionality for enyne-allene formation as functionality relies on this aromatization process for their biological mode of action. Enyne-allene-containing molecules' anticancer activity and unique structure spurred extensive mechanistic⁴ and synthetic^{5,6} studies. In our investigation of the thermal reaction of ester-tethered trivne A in the presence of a nucleophile, we obtained benzannulation product C (Scheme 1).7 We believe this novel benzannulation occurs via the Alder-ene reaction to form enyneallene⁸ **B** followed by a 1,4-addition of nucleophile. However, if the envne-allene **B** contains an arvl substituent (R =Ar), nucleophile trapping occurs in the opposite mode to generate an isomeric product D. The different modes of nucleophile trapping to form products C and D suggest that the envne-allene **B** with a silvl group undergoes preferential 1,4-addition with a nucleophile, whereas with an aryl substituent, a formal 1,7-H shift⁹ becomes favorable to form a different enyne-allene E. The Myers-Saito cycloaromatization of E forms F, which can reveal a zwitterionic¹⁰ reactivity to give **D**. A diradical reactivity of **F** gives aldehyde **G** after capturing O₂ or tricycle **I** via 1,5-hydrogen transfer to form H followed by a ring-closure.

The substituent-dependent change in product distribution prompted us to investigate the Myers-Saito cyclization reactions of enyne-allenes ${\bf E}$ with and without nucleophiles. The role of the substituent is crucial for the enyneallene ${\bf B}$ to undergo a formal 1,7-H shift to generate a new enyne-allene ${\bf F}$. Interestingly, products derived from the Myers-Saito cyclization of ${\bf B}$ have not been observed.

Scheme 1. Reactivity of in situ generated enyne-allenes

We commenced our exploration with 1,3-diynyl-2-heptynoate **1a** in toluene under reflux (Table 1), which mainly led to the cleavage of the ester providing 2-heptynoic acid as the major product along with uncharacterizable polymeric material (entry 1). A drastic change in the reaction profile was observed when the solvent was switched to CH₃CN. The reaction in undistilled CH₃CN generated product **2aa** (30%) was isolated along with **2ab** (10%) along with aldehyde **2ac** (32%) and unreacted enyne-allene **2ad** (10%) (entry 2). The formation of aldehyde **1bb** is the consequence of the trapping of the radical intermediate with molecular oxygen¹¹ and **2ad** is just a remaining intermediate. On the other hand, in freshly distilled CH₃CN, only two

Table 1. Solvent effect on the product distribution

entry	solvent	temp (°C)	products / yield
1	PhMe	110	O Bu 87%
2	MeCN (undistilled)	82	2aa, 30% 2ab, 10%
			CHO + CHO
			2ac , 32% 2ad , 10%
3	MeCN (distilled)	82	2aa , 52% + 2ab , 13%
4	DMF	110	O OH O NMe ₂
			2ae, 35% 2af, 20%
5	DMSO	90	2ae, 60%
6	CICH ₂ CH ₂ CI	83	complex mixture

^a Condition. ^b Isolated yields.

main products **2aa** (52%) and **2ab** (13%) were obtained (entry 3). Unexpectedly, in DMF at a higher temperature (110 °C), phenol derivative **2ae** (35%) and dimethylamine adduct **2af** (20%) were generated (entry 4). In DMSO, phenol derivative **2ae** (60%) was obtained as the sole product (entry 5), whereas a complex mixture was observed in dichloroethane (entry 6). Based on these results, we employed CH₃CN for the sequential reaction of the Alder-ene, 1,7-H shift (a deuterium-labeling pattern indicates that the 1,7-H shift occurs in a stepwise manner: see SI for details), Myers-Saito cycloaromatization, and 1,5-H transfer cyclization.¹²

With the optimized condition, we next explored the reaction with substrates containing additional substituents (Table 2). When heating **1b** containing a methoxy group at the carbon bearing the C-H bond undergoing 1,5-H transfer gave products **2b** with a 73% yield (entry 1). The reaction of **1c** and **1d** containing a methoxyethyl or benzyloxyethyl group generated the corresponding products 2c (81%) and 2d (51%), respectively (entries 2 and 3). Substrate 1e containing an allyloxyethyl group provided 2e (46%), whereas a similar substrate **1f** containing an extra cyclohexyl group in the tether gave a slightly increased yield of **2f** (53%, 2:1 dr) (entries 4 and 5). The introduction of a quaternary center on the ester tether in 1g decreased the yield of 2g to 36% (entry 6). The reaction of 1h containing a propargylic triethylsilyl group generated 2h, which did not undergo the Myers-Saito cyclization at 110 °C for an extended time (entry 7).13 Similar behavior was observed with 1i containing a CH2OTHP group, and 2i was isolated in 56% yield (entry 8).13 Substrate 1j, containing an aryl group on the terminal carbon of the diyne moiety, afforded 2ja and 2jb in a 60% yield with a 2.2:1 ratio (entry 9). Substrates **1k** and **1l** containing a benzyloxy or an allyloxy group provided improved yields

Table 2. Reaction scope with terminal and an aryl group containing 1,3-diynes

^a Condition. ^b Isolated yields.

of products 2k (84%, 1.7:1 dr) and 2l (72%, 2:1 dr) (entries 10 and 11). Unbstrate 1m decomposed, whereas 1m was recovered. Substrate 1o containing a reversed ester linkage was recovered after heating at 150 °C in xylene for 18 h.

Next, we examined the reactivity of preformed enyneallenes (Scheme 2). Treatment of terminal allene-containing enyne-allenes 1p provided a good yield of the expected product 2p, while a butyl-substituted allene-containing 1q decomposed under the same conditions and product 2q was not obtained. On the other hand, 1p and 1q lead to the formation of products 2p-1 and 2q-1, re-

spectively, upon heating in the presence of AcOH (3 equiv). These results suggest that the substituent on the allene does not affect the Myers-Saito cyclization to form intermediates **IN-1p** and

Scheme 2. The effect of the allene substituent on the reactivity of enyne-allenes for radical and ionic reaction

IN-1q, but their trapping behaviors manifested by radical and ionic characters are significantly different. The enyneallenes **1r** and **1s** provided products **2r** and **2s**, respectively, regardless of the presence or absence of AcOH. These reactions are assumed to proceed through the Schmittel cyclization^{2b-d}, ^{4h}, ^{12e} involving **In-1r** and **In-1s**, although **2s** can be derived from a Diels-Alder reaction.

IN-1s

2s, R = SiMe₃, 40%

2s'. R = H. 20%

Table 3. The favorable ionic trapping mode of reaction of enyne-allenes over a radical mode

aRatio of diastereomers.

We further explored the reactivity of enyne-allenes **1t-1v** that contain more active C-H bonds for 1,5-hydrogen transfer, which provided diradical-mediated ring-closure products **2t-2v** in 71–78% yields (Table 3). In the presence of AcOH (3 equiv), the reactions of **1t** and **1u** contain-

ing an allyl and benzyl ether, respectively, still favor acetoxy-trapping to generate products **2t-1** (52%) and **2u-1** (55%). In contrast, a benzene-tethered substrate **1v** prefers to undergo a radical-mediated cyclization to give **2v** in 61% yield. This indicates that the ionic versus radical reactivity of the intermediate generated from the Myers-Saito cyclization critically depends on the substituents of the σ , π -1,4-diradicals.

In summary, we explored the tandem transformation of 1,3-divnyl propiolate derivatives under thermal conditions. The overall process involves a sequence of Alder-ene reaction, formal 1,7-H shift, Myers-Saito cycloaromatization, 1,5-H translocation, and radical coupling to form a 6membered ring fused to the newly formed arene moiety. The 1,7-H shift to form more stable isomeric envne-allenes depends on the substituent of the alkyne moiety. If the alkyne moiety is terminal or contains an aryl substituent, the 1,7-H shift occurs, and the rearranged envine-allenes efficiently undergo the Myers-Saito cycloaromatization to generate a σ , π -1,4-diradicals. Among possible pathways, a 1,5-H translocation promoted by the aryl σ -radical from a benzylic C-H to form π,π -1,6-diradical followed by annulation to form 6-membered rings including functionalized isochromane skeletons.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

This material is available free of charge at

http://pubs.acs.org

General information, Experimental details, Characterization data of substrates and products, References, 1H&13C NMR spectra.

Accession codes

AUTHOR INFORMATION

Corresponding Author

*Daesung Lee - Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607 (USA); orcid.org/0000-0003-3958-5475; Email: dsunglee@uic.edu

Authors

Duy-Viet Vo – Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607 (USA); Email: dvo22@uic.edu

Siyuan Su – Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607 (USA): Email: ssu26@uic.edu

Rajdip Karmakar – Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607 (USA); Email: rajdip2008@gmail.com

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful to NSF (CHE-2055055) for financial support. The Mass Spectrometry Laboratory at UIUC is acknowledged.

REFERENCES

- (1) (a) A. G. Myers, P. J. Proteau, Evidence for Spontaneous, Low-Temperature Biradical Formation from a Highly Reactive Neocarzinostatin Chromophore-Thiol Conjugate. J. Am. Chem. Soc. 1989, 111, 1146-1147. (b) Myers, A. G.; Kuo, E. Y.; Finney, N. S. Thermal Generationofa,3-Dehydrotoluenefrom(Z)-1,2,4-Heptatrien-6-yne. J. Am. Chem. Soc. 1989, 111. 8057–8059. (c) Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, I. A novel cyclization pathway in activation of neocarzinostatin chromophore by thiol under physiological conditions. Tetrahedron Lett. 1992, 33, 515-515. (d) Sugiyama, H.; Yamashita, K.; Fujiwara, T.; Saito, I. Apoproteinassisted unusual cyclization of neocarzinostatin chromophore. Tetrahedron 1994, 50, 1311-1325. (e) Myers, A. G.; Arvedson, S. P.; Lee, R. W. A New and Unusual Pathway for the Reaction of Neocarzinostatin Chromophore with Thiols. Revised Structure of the Protein-Directed Thiol Adduct. J. Am. Chem. Soc. 1996, 118, 4725-4726. (f) Myers, A. G.; Kort, M. E.; Hammond, M. A Comparison of DNA Cleavage by Neocarzinostatin Chromophore and Its Aglycon: Evaluating the Role of the Carbohydrate Residue. J. Am. Chem. Soc. 1997, 119, 2965-2972.
- (2) Theoretical studies: (a) Koga, N.; Morokuma, K. Comparison of Biradical Formation between Enediyne and Enyne-Allene. Ab Initio CASSCF and MRSDCI Study. *J. Am. Chem. Soc.* **1991**, *113*, 1907–1911. (b) Schmittel cyclization can be also considered as a pseudo-Myers-Saito cyclization. Studies on the Schmittel cyclization, see: Schreiner, P. R.; Prall, M. Myers-Saito versus C2–C6 ("Schmittel") Cyclizations of Parent and Monocyclic Enyne–Allenes: Challenges to Chemistry and Computation. *J. Am. Chem. Soc.* **1999**, *121*, 8615. (c) Stahl, F.; Moran, D.; Schleyer, P. v. R.; Prall, M.; Schreiner, P. R. "Aromaticity of the Bergman, Myers-Saito, Schmittel, and Directly Related Cyclizations of Enediynes" *J. Org. Chem.* **2002**, *67*, 1453–1461.
- (3) (a) Napier, M. A.; Holmquist, B.; Strydom, D. J.; Goldberg, I. H. Neocarzinostatin: Spectral characterization and separation of a non-protein chromophore. *Biochem. Biophys. Res. Commun.* **1979**, *89*, 635–642. (b) Goldberg, I. H. Mechanism of Neocarzinostatin Action: Role of DNA Microsetructure in Determination of Chemistry of Bistranded Oxidative damage. *Acc. Chem. Res.* **1991**, *24*, 191–198. (c) Kim, K.-H.; Kwon, B.-M.; Myers, A. G.; Rees, D. C. Crystal Structure of Neocarzinostatin, an Antitumor Protein-Chromophore Complex. *Science* **1993**, *262*, 1042–1046. (d) Jones, G. B.; Fouad, F. S. Designed Enediyne Antitumor Agents. *Curr. Pharm. Des.* **2002**, *8*, 2415–2440. (e) Neocarzinostatin: The Past, Present, and Future of an Anticancer Drug; Maeda, H., Edo, K., Ishida, N., Eds.; Springer: New York, 1997.
- (4) (a) Myers, A. G.; Dragovich, P. S. Design and Dynamics of a Chemically Triggered Reaction Cascade Leading to Biradical Formation at Subambient Temperature. *J. Am. Chem. Soc.* **1989**, *111*, 9130–9132. (b) Tanaka, T.; Fujiwara,

- K.; Hirama, M. Oxidative triggering for aromatization of the neocarzinostatin chromophore Tetrahedron Lett. 1990, 31, 5947–5950. (c) Myers, A. G.; Harrington, P. M.; Kwon, B.-M. Evidence for Aminoglycoside Participation in Thiol Activation of Neocarzinostatin Chromophore. Synthesis and Reactivity of the Epoxy Dienediyne Core. J. Am. Chem. Soc. 1992, 114, 1086-1087. (d) Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, I. Novel cyclization pathway in activation of neocarzinostatin chromophore by thiol under physiological conditions. Tetrahedron Lett. 1992, 33, 515-518. (e) Sugiyama, H.; Fujiwara, T.; Kawabata, H.; Yoda, N.; Hirayama, N.; Saito, I. Chemistry of Neocarzinostatin-Mediated Cleavage of Oligonucleotides. Competitive Ribose C5' and C4' Hydroxylation J. Am. Chem. Soc. 1992, 114, 5573-5578. (f) Hensens, O. D.; Helms, G. L.; Zink, D. L.; Chin, D.-H.; Kappen, L. S.; Goldberg, I. H. Bifunctional Involvement of the Hydroxynaphthoate Ester Moiety in the Activation of Neocarzinostatin Chromophore in DNA-Mediated Site-Specific Cleavage. J. Am. Chem. Soc. 1993, 115, 11030-11031. (g) Murphy, P. W.: Remenyi, C.; Helten, H.; Engles, B. On the Regioselectivity of the Cyclization of Enyne-Ketenes: A Computational Investigation and Comparison with the Myers-Saito and Schmittel Reaction J. Am. Chem. Soc. 2002, 124, 1823-1828. (h) Feng, L.; Kumar, D.; Birney, D. M.; Kerwin, S. M. α,5-Didehydro-3picoline Diradicals from Skipped Azaenediynes: Computational and Trapping Studies of an Aza-Myers-Saito Cyclization. Org. Lett. 2004, 6, 2059–2062.
- (5) Reviews: (a) Nicolaou, K. C.; Dai, W.-M. "Chemistry and Biology of the Enediyne Anticancer Antibiotics" *Angew. Chem., Int. Ed.* **1991**, *30*, 1387–1416. (b) Hirama, M. J. *Synth. Org. Chem. Jpn.* Neocarzinostatin Complex: Chromophore Analogs, Binding Structure and Stabilization Mechanism. **1994**, *52*, 980–991. (c) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. "The Chemistry of Enediynes, Enyne Allenes and Related Compounds" *Tetrahedron* **1996**, *52*, 6453–6581. (d) Lhermitte, H.; Grierson, D. S. The enediyne and dienediyne based antiturnour antibiotics. Methodology and strategies for total synthesis and construction of bioactive analogues. Part 2. *Contemp. Org. Syn.* **1996**, *3*, 93–124.
- (6) For construction of the nine-membered diyne systems and total synthesis, see: (a) Wender, P. A.; Harmata, M.; Jeffrey, D.; Mukai, C.; Suffert, J. Studies on DNA-Active Agents: the Synthesis of the Parent Carbocyclic Subunit of Neocarzinostatin Chromophore-A. Tetrahedron Lett. 1988, 29, 909-912. (b) Wender, P. A.; McKinney, J. A.; Mukai, C. General methodology for the synthesis of neocarzinostatin chromophore analogs: intramolecular chromium-mediated closures for strained ring synthesis. J. Am. Chem. Soc. 1990, 112, 5369-5370. (c) Myers, A. G.; Harrington, P. M.; Kuo, E. Y. Enantioselective Synthesis of the Epoxy Diyne Core of Neocarzinostatin Chromophore. J. Am. Chem. Soc. 1991, 113, 694-695. (d) Iida, K.; Hirama, M. J. Efficient Route to the Nine-Membered Cyclic Diyne System: Tuning of the Extremely Facile Cope Rearrangement of 1,5-Diyne. J. Am. Chem. Soc. 1994, 116, 10310-10311. (e) Kobayashi, S.; Ashizawa, S.; Takahashi, Y.; Sugiura, Y.; Nagaoka, M.; Lear, M. J.; Hirama, M. The First Total Synthesis of N1999-A2: Abso-

- lute Stereochemistry and Stereochemical Implications into DNA Cleavage. *J. Am. Chem. Soc.* **2001**, *123*, 11294–11295. (f) Inoue, M.; Sasaki, T.; Hatano, S.; Hirama, M. Synthesis of the C-1027 Chromophore Framework through Atropselective Macrolactonization. *Angew. Chem., Int. Ed.* **2004**, *43*, 6500–6505. (g) Kobayashi, S.; Hori, M.; Wang, G. X.; Hirama, M. Formal Total Synthesis of Neocarzinostatin Chromophore. *J. Org. Chem.* **2006**, *71*, 636–644. (h) Ren, F.; Hogan, P. C.; Anderson, A. J.; Myers, A. G. Kedarcidin Chromophore: Synthesis of Its Proposed Structure and Evidence for a Stereochemical Revision. *J. Am. Chem. Soc.* **2007**, *129*, 5381–5383.
- (7) Rajdip, K.; Yun, S. Y.; Chen, J.; Xia, Y.; Lee, D. Benzannulation of Triynes to Generate Functionalized Arenes by Spontaneous Incorporation of Nucleophiles. *Angew. Chem., Int. Ed.* **2015**, *54*, 6582–2586.
- (8) Alder-ene reactions involving propargylic C-H: (a) Shea, K. J.; Burke, L. D.; England, W. P. Intramolecular ene reactions of 1,7-octenynes: The involvement of 1,2cyclooctadiene intermediates. Tetrahedron Lett. 1988, 29, 407-410. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. First Partially Intramolecular Palladium-Catalyzed [2 + 2 + 2] Cycloaddition of Benzyne: Application to the Synthesis of Benzo[b]fluorenones. Eur. J. Org. Chem. 2003, 1238. (c) Altable, M.; Filippone, S.; Martín-Domenech, A.; Güell, M.; Solà, M.; Martín, N. Intramolecular Ene Reaction of 1,6-Fullerenynes: A New Synthesis of Allenes. Org. Lett. 2006, 8, 5959–5962. (d) Jayanth, T. T.; Jeganmohan, M.; Cheng, M.-J.; Chu, S.-Y.; Cheng, C.-H. J. Ene Reaction of Arynes with Alkynes. J. Am. Chem. Soc. 2006, 128, 2232–2233. (e) Robinson, J. M.; Sakai, T.; Okano, K.; Kitawaki, T.; Danheiser, R. L. Formal [2 + 2 + 2] Cycloaddition Strategy Based on an Intramolecular Propargylic Ene Reaction/Diels-Alder Cycloaddition Cascade. J. Am. Chem. Soc. 2010, 132, 11039-11041. (f) Sakai, T.; Danheiser, R. L. Cyano Diels-Alder and Cyano Ene Reactions. Applications in a Formal [2 + 2 + 2] Cycloaddition Strategy for the Synthesis of Pyridines. J. Am. Chem. Soc. 2010, 132, 13203-13205. (g) Karmakar, R.; Mamidipalli, P.; Yun, S. Y.; Lee, D. Alder-ene Reactions of Arynes. Org. Lett. 2013, 15, 1938-1941.
- (9) A pair of enyne-allenes are proposed without any evidence for structural interconversion via a formal 1,7-H shift: Zhang, M.; Lu, H.; Li, B.; Ma, H.; Wang, W.; Cheng, X.; Ding, Y.; Hu, A. Experimental and Computational Study on the Intramolecular Hydrogen Atom Transfer Reactions of Maleimide-Based Enediynes After Cycloaromatization. *J. Org. Chem.* **2021**, *86*, 1549–1559.
- (10) (a) Li, H.; Yang, H.; Petersen, J. L.; Wang, K. K. Biradicals/Zwitterions from Thermolysis of Enyne-Isocyanates. Application to the Synthesis of 2(1*H*)-Pyridones, Benzofuro[3,2-c]pyridin-1(2*H*)-ones, 2,5-Dihydro-1*H*-pyrido[4,3-b] indol-1-ones, and Related Compounds. *J. Org. Chem.* 2004, 69, 4500–4508. Reviews: (b) Peterson, P. W.; Mohamed, R. K.; Alabugin, I. V. How to Lose a Bond in Two Ways–The Diradical/Zwitterion Dichotomy in Cycloaromatization Reactions. *Eur. J. Org. Chem.* 2013, 2505–2527. (c) Baroudi, A.; Mauldin, J.; Alabugin, I. V. Conformationally Gated Fragmentations and Rearrangements Promoted by Interception of the

- Bergman Cyclization through Intramolecular H-Abstraction: A Possible Mechanism of Auto-Resistance to Natural Enediyne Antibiotics?. *J. Am. Chem. Soc.* **2010**, *132*, 967-979. (d) Mohamed, R. K.; Peterson, P. W.; Igor V. Alabugin. Concerted Reactions That Produce Diradicals and Zwitterions: Electronic, Steric, Conformational, and Kinetic Control of Cycloaromatization Processes. *Chem. Rev.* **2013**, *113*, 7089–7129. (e) Leifert, D.; Studer, A. The Persistent Radical Effects in Organic Synthesis. *Angew. Chem. Int. Ed.* **2020**, *59*, 74–108.
- (11) Involvement of molecular oxygen in Myers-Saito cyclization: Tanaka, T.; Fujiwara, K.; Hirama, M. Oxidative triggering for aromatization of the neocarzinostatin chromophore. *Tetrahedron Lett.* **1990**, *41*, 5947–5950.
- (12) (a) Kung K. Wang, Hai-Ren Zhang, and Jeffrey L. Peterse Thermolysis of Benzoenyne-Allenes to Form Biradicals Intramolecular Trapping Subsequent Tetraarylallene to Generate Two Triarylmethyl Radical Centers. J. Org. Chem. 1999, 64, 1650-1656. (b) Suzuki, I.; Wakayama, M.; Shigenaga, A.; Nemoto, H.; Shibuya, M. Synthesis of enediyne model compounds producing toluene diradicals possessing a highly radical character via enyne-allene intermediates. Tetrahedron Lett. 2000, 41, 10019-10023. (c) Nechab, M.; Campolo, D.; Maury, J.; Perfetti, P.; Vanthuyne, N.; Siri, D.; Bertrand, M. P. Memory of Chirality in Cascade Rearrangements of Enediynes. J. Am. Chem. Soc. 2010, 132, 14742–14744. (d) Gaudel-Siri, A.; Campolo, D.; Mondal, S.; Nechab, M.; Siri, D. Bertrand, M. P. Theoretical Study to Explain How Chirality Is Stored and Evolves throughout the Radical Cascade Rearrangement of Enyne-allenes. J. Org. Chem. 2014, 79, 9086-9093. (e) Rana, A.; Cinar, E. M.; Samanta, D.; Schmittel, M. Solving the puzzling competition of the thermal C2-C6 vs Myers-Saito cyclization of enynecarbodiimides. Beilstein J. Org. Chem. 2016, 12, 43-49. A perspective on HAT processes: (f) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. C-H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. **2020**, 11, 12974–12993.
- (13) Based on the coupling constants of the two methine protons in **2h** and **2i**, the major diastereomer is identified as the *cis* isomer.
- (14) The diastereomer conformation of 2k&2l are assigned based on the J coupling constants between 2 methine units as described on the 1H NMR spectra of these 2 entries in the Supporting infomation.