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Identifying possible microscopic mechanisms underlying superfluidity has been the goal of various
studies since the introduction of the original BCS theory. Recently a series of papers have proposed
microscopic dynamics based on normal modes to describe superfluidity without the use of real-space
Cooper pairs. Multiple properties were determined with excellent agreement with experimental data. The
group theoretic basis of this general N-body approach has allowed the microscopic behavior underlying
these results to be analyzed in detail. This reimagination is now used to reinterpret several interrelated
phenomena including Cooper pairs, the Fermi sea, and Pauli blocking. This approach adheres closely to
the early tenets of superconductivity/superfluidity which assumed pairing only in momentum space, not
in real space. The Pauli principle is used, in its recently revealed role in collective motion, to select the
allowed normal modes. The expected properties of superfluidity including the rigidity of the wave
function, interactions between the fermions in different pairs, convergence of the momentum and the gap

in the excitation spectrum are discussed.

Introduction. - Multiple studies in the field of
condensed matter have sought to identify the microscopic
mechanisms responsible for
superconductivity /superfluidity in different systems.
Some studies have proposed alternative mechanisms to
the conventional understanding proposed in the original
BCS theory[1- 10]. In particular, recent investigations[1-
3] using an exact solution of the BCS Hamiltonian
demonstrated that the fermions that form composite
bosons, i.e. Cooper pairs, do not condense into a single
state as originally assumed[11]. These studies and others
suggest that nature may have more than one way to
achieve superconductivity/superfluidity and that
alternative microscopic descriptions could be of value.

In a series of recent papers, the superfluidity of
ultracold superfluid Fermi gases[12-15] has been studied
using a first-principles perturbation formalism called
symmetry-invariant perturbation theory, SPT. This
approach uses group theory and graphical techniques
rather than a basis set or numerical methods to solve each
perturbation order, in principle exactly. The first order
equation is harmonic and has been solved exactly by
determining the group theoretic N-body normal
modes[16- 18]. The Pauli principle is applied without
explicit antisymmetrization using an adiabatic transition
from an independent particle regime to an interacting
regime[19]. Despite the many-body approach with no two
body pairing, the first-order results yielded close
agreement with experiment without higher order
corrections both at unitarity and across the BCS to
unitarity transition[20-22]. This suggested the possibility
that normal modes might provide an alternative
microscopic basis for superfluid behavior that would
differ from the conventional view that some of the
fermions form loosely bound pairs that condense into a

macroscopic occupation of the lowest state[23-36]. In
addition to producing good agreement with multiple
experimental results, normal mode dynamics offer an
interesting microscopic explanation for universal
behavior at unitarity[37, 38].

The possibility that normal modes can provide an
alternative route to a macroscopic wave function with
phase coherence over the entire ensemble without
twobody pairs in real space, i.e. composite bosons,
necessarily refocuses attention on the importance of inter-
pair correlations which are due to the Pauli principle and
have always been recognized as crucial for an accurate
description of superconductivity/superfluidity. Based on
these findings and the analysis of the microscopic basis
underlying superfluidity using normal modes, the goal of
this Letter is to offer an alternative interpretation of some
of the seminal ideas behind conventional approaches to
superfluidity, to reimagine the microscopic basis
underlying superfluidity and to elucidate the role of the
Pauli principle in the emergence and stability of collective
behavior.

Background. - The Pauli principle dominates the
inter-pair interactions in the BCS ansatz[1-3], and is
critical to producing important properties of
superfluidity/superconductivity including an energy gap
in the excitation spectrum, the rigidity of the superfluid
wave function that yields the Meissner effect, and the
vanishing resistance to current flow. It is interesting that
early work did not assume two-body pairing in real space.
The highly successful BCS theory proposed in 1957[11]
assumes that the fermions are paired in momentum space
with +k and -k values, i.e. zero-momentum states. As
stated in the 1957 paper, the BCS wave function describes
the “coherence oflarge numbers of electrons,” but does not
propose that fermion pairs are localized into



pseudomolecules that transition as in Bose-Einstein
condensation[11]. As suggested by London in 1950, a
superconductor is a “quantum structure on a macroscopic
scale... a kind of solidification or condensation of the
average momentum distribution” of the electrons. “It
would not be due to distinct electrons at separate places
having the same momentum”, but “it would arise from
wave packets of wide extension in space assigning the
same local momentum to the entire superconductor”[39].
These early concepts of superfluidity/superconductivity
as well as the seminal properties: pairing in momentum
space, the long-range order over macroscopic distances, a
“rigidity” of the wave function, and the gap in the
excitation spectrum[40, 41] are naturally manifested in a
normal mode picture of superfluidity.

Symmetry-Invariant Perturbation Theory: a
group theoretic and graphical approach to
the general N-body problem. -

1) Overview. - Symmetry-invariant perturbation
theory is a first-principles general many-body method
with no adjustable parameters that employs group theory
and graphical techniques to avoid the intensive numerical
work typical in conventional many-body methods. If
higher-order terms are small, the first-order normal mode
solutions can offer physical insight into the underlying
dynamics. The perturbation parameter is the inverse
dimensionality of space. Using 1/D or 1/N expansions to
study physical systems was originally developed by
tHooft in quantum chromodynamics[42], and
subsequently used by Wilson[43] in condensed matter to
calculate critical exponents for D = 3 phase transitions
starting from the D = 4 exact values. These techniques
have now been used in multiple fields of physics from
atomic and molecular physics [44-62] and condensed
matter [43, 63-65], to quantum field theory[66-72].

The SPT formalism was developed to handle the large
ultracold  ensembles  of interest in  atomic
physics/condensed matter and was initially applied to
bosonic systems[16-18, 73-76]. Recently, this formalism
was extended to ultracold Fermi gases[20-22] which are
subject to Pauli constraints[19, 20, 22, 77]. Currently, this
method is formulated through first order for L = 0 systems
in three dimensions that are confined by spherically-
symmetric potentials with general interaction potentials.
The SPT approach uses symmetry to attack the N-scaling
problem[16-18, 78, 79], rearranging the work required
for an exact solution so the exponential scaling depends on
the order of the series, not the value of N which is a simple
parameter. To access maximal symmetry, a perturbation
series is formulated about a large-dimension structure
with a point group isomorphic to the symmetric group Sw,
then evaluated for D = 3. This strategy allows the work at
each order that scales exponentially to be extracted as a
pure math problem (cf. the Wigner-Eckart theorem)[80,
81]. In principle, this problem can be solved exactly using

group theoretic methods, and saved[82], with a significant
reduction in numerical cost.

Since the perturbation does not involve the interaction
strength, strongly interacting systems such as the unitary
regime can be studied. This manybody approach does not
provide a mechanism for the transition to diatomic
molecules in the BEC regime. The BEC regime could, in
principle, be described by including higher-order terms
although many terms would probably be required
undermining any physical insight.

Even the lowest order contains beyond-mean-field
effects that produce excellent first-order results[20, 22,
73] as seen in earlier dimensional approaches[49, 83-86].
The formalism was tested on a fully-interacting model
problem of harmonically-confined, harmonically-
interacting particles[19, 75-77]. The SPT and the exact
wave function agree to ten or more digits verifying this
many-body formalism[75] and the forms for the group-
theoretic, analytic N-body normal modes.

2) The SPT formalism. - Using D dimensional
Cartesian coordinates, the N-body Schr'odinger equation
is:
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with h;a single-particle Hamiltonian, Vint a general two-
body interaction potential, xi the vt" Cartesian component
of the ith particle, and Vcont a sphericallysymmetric
confining  potential[16-18]. The Hamiltonian is
transformed to internal coordinates, riand y;;, where
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are
the N D-dimensional scalar radii rsand the cosines y;jof the
N(N -1)/2 angles between the radial vectors. A similarity
transformation removes the first-order derivatives[87],
and a scale factor is employed to regularize the large-
dimension limit of the Schr’odinger equation. Substituting
the scaled variables and defining 6 = 1/D as the
perturbation parameter gives:
Hd = (r}QTqLUJrlcoanrlm)(I):FJ(I). (3)
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The Gramian determinant I' has elements y;; (see Appendix
D in Ref [16]), and the I'D determinant has the row and
column of the ith particle deleted.

Defining 0
i = 1% (:ﬁ (£ - d)) where
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R is the range of the square-well potential, and "« is a
constant which softens the potential as D — oo, the form of
Vint reduces to a square well at D = 3 and is differentiable
away from D = 3 to permit the dimensional analysis[16,
73]. The constant b’ is chosen to yield an infinite scattering
length at unitarity with Vo= 1.0. For weaker interactions
in the BCS regime, V'ois scaled to smaller values. R <<™ d"ro
and is systematically reduced to extrapolate to zero-range
interaction. When D — oo, the second derivatives drop out
producing a static problem at zeroth order with an
effective potential, Vese:
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Expanding about the minimum (rew,y«): i = rw + 612
and yij = y» + 61/2yif, sets up a power series in 62, The
first-order, 6 = 1/D, equation is harmonic and is solved
exactly using group theory to obtain the N-body normal
modes[16-18]. The first-order Hamiltonian, H 1, is defined
in terms of the constant matrices, G composed of kinetic

energy terms, and F composed of potential terms,

evaluated at the large dimension limit:
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with v, a constant[16]. The FG matrix method[88], which
has been used extensively in molecular physics, is used to
obtain the normal-mode frequencies[16] and
coordinates[17]. (See Appendix A in Ref. [16] for a brief
summary.) Only five distinct frequencies, “w, are obtained.
This large degeneracy is a manifestation of the very high
degree of symmetry in the F and G matrices which are
evaluated for the D — oo, maximallysymmetric structure
with a single value for all "r« and y«~. These matrices are
thus invariant under the N! particle interchanges of Svand
do not connect subspaces belonging to different
irreducible representations (irreps) of Sv[89, 90], thus the
normal coordinates transform under irreps of Sn.

Five irreps are involved: a 1-D radial and a 1-D angular
irrep both labelled by the partition [N], an (N - 1)-D radial
and an (N - 1)-D angular irrep both labelled by the
partition [N - 1, 1], and one angular N(N - 3)/2D irrep
labelled by [N - 2, 2]. These irreps are given shorthand
labels: 0-, 0+, 1-, 1+, and 2 respectively, (see Refs. [17, 18]),
where the single normal mode of type
0*is a center of mass/symmetric bend motion; the single
0-mode is a breathing motion/symmetric stretch; the N -
1 type 1*modes have particle-hole/single-particle angular
excitation behavior; the N - 1 type 1- modes exhibit
particle-hole i.e. single-particle radial excitation behavior;
and the N(N -3)/2 type 2 modes are phonon modes. Ref.
[37] analyzes these motions in detail.

A symmetry coordinate vector, S, is defined:
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determined using the theory of group characters to
decompose r” and y' into basis functions that transform
under the five irreps of Sv[17]. The FG method is applied
to determine the normal modes, The normal coordinates
in the [N] and [N-1,1] sectors have mixed radial and
angular behavior. The [N - 2,2] normal modes are purely
angular since this sector has no r” symmetry coordinates.



The extent of radial/angular mixing depends on the first-
order Hamiltonian terms.

The energy through first-order in § = 1/D [16, 49]:
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has the form of a harmonic energy in terms of the normal
mode frequencies, where c¢¢| , 4 labels the five types of
normal modesE « is the energy at the mini-
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(irrespective of the value of N, see Ref. [16] and Ref.[15] in
[17]), nuis the total normal mode quanta with frequency
“wy; and vo is a constant (defined in Ref. [16], Eq.(125)).
The five roots have multiplicities: do-= 1,do-= 1,d1-= N
-1,d1i-= N -1,d2 = N(N -3)/2. Eq. (6) defines the ground
state energy as well as the spectrum of excited states by
assigning normal mode quantum numbers consistent with
the Pauli principle. The allowed assignments are
determined by finding a correspondence between the
normal mode states |no:no-,ni,n1,nz > and the non-
interacting states of the three dimensional harmonic

oscillator (Vcons(ri) =
1 2
2 ) which have known restrictions due to

antisymmetry. These two spectrums are related in the
double limit D — o0, wno — o0 where both representations
are valid. At this double limit, the radial and angular
characters separatVe resulting in two conditions[l\f), 20]:
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momentum quantum numbers of the three dimensional

oscillator, and ni = 2vi + li is the ith particle energy level
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Z:\:l [(2:4- +1h)+ %} hho, This strategy is analogous
to Landau’s use of the non-interacting system to set up the
correct Fermi statistics as interactions adiabatically evolve
in Fermi liquid theory[91].

For ultracold systems, the lowest angular and radial
modes are occupied i.e. phonon, nz, and single-particle
radial excitation modes, n1-, yielding:

2ng = Z l;

N
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3) Application of SPT to ultracold fermions. - During the
last nine years, the SPT approach has been used to
investigate superfluidity for ultracold Fermi gases.
Properties at unitarity as well as from BCS to unitarity
were obtained in close agreement with experiment
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including  ground  state  energies[20], critical
temperatures[21], excitation frequencies[21, 38],
thermodynamic entropies and energies[21, 22] as well as
the lambda transition in the specific heat[22], a well
known signature of the onset of superfluidity. (For a brief
discussion of these calculations including graphs showing
the agreement with experiment and theory and an
explanation of the microscopic basis underlying these
results, see Supplemental Information Section I. A-D.)

The Fermi sea and Pauli blocking: a

collective viewpoint. - From an independent particle
view, degenerate Fermi systems have all the lowest energy
states filled, with a “Fermi surface” dividing the filled from
the unfilled levels. This “sea” of fermions exists in energy
space, with the scale of energies defined by the Fermi
energy which is the largest occupied energy in the system.
The role of the Fermi sea is to Pauli-block states below the
Fermi energy, thus the behavior of such systems is
dominated by the Pauli principle which determines their
general structure through the filling of the states.

Using the current approach and assuming superfluid

temperatures near T = 0, the concept of a Fermi sea is now
defined from a collective viewpoint, assuming that the
particles are in a collective mode allowed by the Pauli
principle. The Pauli restrictions originate in the
independent particle picture, but are transferred to the
collective picture through an adiabatic evolution of the
system to the collective mode as interparticle interactions
turn on. The occupations of the lowest states in the
independent particle picture are responsible for the
restrictions on the number of quanta permitted in the
collective motion of the ensemble. For ultracold systems at
T =0, only phonon modes are occupied so the Fermi sea of
occupied independent states becomes an energy
minimum of the phonon collective mode, with lower
energy phonon modes unoccupied, i.e. Pauli-blocked from
occupation.
The Fermi energy in the independent view is the energy of
the highest occupied independent state, while in the
collective view, the Fermi energy is the energy of the
lowest occupied phonon mode. The quantum numbers in
these two regimes are discussed in the Supplemental
Information, Section L.E.

Cooper pairs: a critical concept. - The concept of
Cooper pairs has been called one of the pillars of the
microscopic theory of superconductivity, a concept that
opened up the route to a successful theory that could
explain the physical effects of zero resistivity, the existence
of a gap in the excitation spectrum, and the Meissner effect
among others.

Since the original BCS theory was introduced, the
concept of Cooper pairs has evolved to include a more
nuanced understanding of the role played by this pairing.
Although it was recognized from the beginning that
Cooper pairs were not simple bosons, it was widely



assumed that these composite bosons condensed into a
single lowest state. Multiple studies have since argued that
the condensation involves multiple states[1-10]. By
restricting configurations in the original BCS calculations
to pairs of states with +k and -k, i.e. zero momentum
states, a “coherent lowering of the energy” was
obtained[41]. This was “consonant” with “London’s
concept of a condensation in momentum”[41].
Theoretically, the pairs are created by two fermion
creation operators which do not satisfy Bose statistics.
This is essential to the success of the theory which must
include many-body effects to yield an energy gap and long-
range order over macroscopic distances. As reviewed by
Bardeen in his Nobel address, “A theory involving a true
many-body interaction between the electrons seemed to
be required to account for superconductivity”[92].

These early concepts are consistent with a collective
picture, a rigid macroscopic wave function with long range
order extending over the entire ensemble. The
condensation of the frequency to a single value as the
particles adopt the collective motion of a normal mode
results in the expected convergence of the momentum to
two values, +k and -k, as the particles slosh back and forth
in lockstep. This normal mode picture retains Cooper
pairing, a concept critical to the development of BCS
theory, but redefines it, not as a two-body phenomenon in
real space, but rather as a many-body phenomenon that
consolidates the momentum of an ensemble to two equal
and opposite values. This is consistent with both the early
BCS concepts and the recognized need for a fully
interacting many-body wave function.

The seminal properties of superfluidity as
supported by the microscopic dynamics of
the normal mode picture. -

1) “Rigidity” of the wave function. - This property of
superconductivity has been called “a striking
manifestation of a subtle form of quantum rigidity on the
macroscopic scale”[93]. It prevents a moderate external
magnetic field from modifying the wave function and is
also responsible for the gap in the excitation spectrum.
Collective motions in the form of normal modes naturally
provide rigid harmonic motion with the particles moving
in lockstep with the same frequency and phase. In the SPT
formalism these synchronized, collisionless motions are
eigenfunctions of an approximate Hamiltonian and thus
possess some degree of stability. They provide simple,
quantum macroscopic wave functions with phase
coherence over the entire ensemble. The microscopic
behavior of the particles in a normal mode as they execute
rigid, harmonic motions is explored briefly in
Supplemental Information Section II and in detail in Ref.
[37].

2) Interactions between the fermions in different
pairs due to the Pauli principle. - The interactions between
the fermion constituents of different “bosonic” Cooper
pairs in BCS theory are due to the Pauli principle. Thus the

fermions in BCS theory play a dual role: creating
composite bosons that are assumed to condense to the
lowest state; and simultaneously retaining their fermionic
nature giving rise to inter-pair interactions from the Pauli
principle. These inter-pair interactions in conventional
BCS approaches are known to be crucial to producing
superfluidity/superconductivity. This dual role calls into
question the importance of two-body pairing as the
underlying microscopic dynamic compared to the many-
body correlations which are critical to the emergence of
superconductivity/superfluidity.

The collective picture reimagines this as simply the
motion of N interacting fermions in a macroscopic normal
mode wave function. This normal mode function at
ultracold temperatures is a very low energy phonon mode.
Thus it is not necessary to produce composite bosonic
entities that condense to the lowest state to produce a
macroscopic quantum wave function, as fermions can
occupy one or more of the closely spaced phonon modes
to form a quantum, macroscopic function with collective
behavior. The many-body synchronous motion is subject
to the Pauli principle which controls the dynamics at all
strengths from BCS to unitarity.

3) “Solidification or condensation of the average
momentum distribution”; arising “from wave packets of
wide extension in space assigning the same local
momentum to the entire superconductor”: the Uncertainty
Principle. - These quotes from London[39, 40] are
manifested in the BCS ansatz by assuming that the
particles pair into +k and -k pairs with a resulting
lowering of the energy. The collective picture assumes
many-body motion of the fermions in a
phonon/compressional normal mode. As the particles
begin to move in sync with a single frequency and phase,
the spatial extent of the normal mode expands, while the
single frequency of motion means that the average
momentum of the fermions is converging toward a single
absolute value as predicted by London and others. This
convergence in momentum space and the corresponding
expansion of the wave packet in position space is expected
from the uncertainty principle. The SPT normal mode
microscopic dynamics underlying this condensation are
analyzed briefly in Supplemental Information Section II.C.
and in detail in Ref. [38].

4) Gap in the excitation spectrum. - During the early
1950’s increasing evidence appeared for an energy gap at
the Fermi surface. This motivated the BCS ansatz of
assuming that only zero momentum pairs contributed
leading to a lowering of the energy of the lowest state[41].
In the normal mode picture, there is a natural gap between
the phonon mode and the next higher mode which is a
single particle excitation mode that increases from
extremely small in the weakly interacting BCS regime to a
maximum in the unitary regime. (See Fig. 2 in Ref. [38].)
Thus, the gap is reimagined, not as originating from the
excitation of a fermion out of a two-body bosonic entity,



but as the excitation of a single particle out of the synced
motion of the phonon mode as the ensemble adopts a new
collective motion. This gap provides stability for
superfluid behavior particularly as it widens as unitarity
is approached. It also leads to a value for the first excited
state of the ensemble as determined by the Pauli principle
and an estimate of the critical temperature that agrees
with both the BCS estimate in weaker interaction regimes
as well as more intensive T matrix calculations of Tcnear
the strongly interacting unitary regime[21]. Gaps also
exist between the other types of normal modes (See Fig. 2
in Ref. [38]) that could provide stability for collective
behavior if techniques to prevent the transfer to other
modes exist or could be engineered. Temperature is likely
to play a role in controlling the dynamics of such
structures, but other mechanisms may supercede the
effect of temperature to perhaps allow a high temperature
system to sustain stable collective behavior which could
be harnessed to bring the desired benefits of quantum
engineering on a macroscopic scale.

The role of the Pauli principle: the transition
from Fermi to Bose statistics at low

temperature. - The Pauli principle has always been
recognized as critical to an accurate description of
superconductivity /superfluidity. In the SPT approach, the
Pauli principle controls the dynamics of the collective
behavior of the ensemble. Multiple closely spaced phonon
modes may be occupied consistent with the results from
the exact solution of the BCS Hamiltonian. As N increases,
these low-energy phonon states become infinitesimally
closer and closer in energy merging toward the ground
state. This allows a natural transition from Fermi statistics
to Bose statistics as seen in the BCS-BEC crossover as true
bosonic entities, i.e. diatomic molecules, form and occupy
this ground state.

Conclusions. - In this paper, the Pauli principle’s role
in collective motion as documented in previous
investigations of ultracold Fermi gases has led to a
reimagination and reinterpretation of the seminal
concepts of superfluidity. The perturbation method used
to obtain these results, SPT, is solved exactly with no
adjustable parameters to yield normal modes at first
order. This method takes advantage of group theory to
obtain a detailed microscopic view of the underlying
dynamics.

Normal mode behavior is ubiquitous in our universe at
all energy and length scales manifesting the widespread
existence of vibrational forces that occur in different
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