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Identifying possible microscopic mechanisms underlying superfluidity has been the goal of various 
studies since the introduction of the original BCS theory. Recently a series of papers have proposed 
microscopic dynamics based on normal modes to describe superfluidity without the use of real-space 
Cooper pairs. Multiple properties were determined with excellent agreement with experimental data. The 
group theoretic basis of this general N-body approach has allowed the microscopic behavior underlying 
these results to be analyzed in detail. This reimagination is now used to reinterpret several interrelated 
phenomena including Cooper pairs, the Fermi sea, and Pauli blocking. This approach adheres closely to 
the early tenets of superconductivity/superfluidity which assumed pairing only in momentum space, not 
in real space. The Pauli principle is used, in its recently revealed role in collective motion, to select the 
allowed normal modes. The expected properties of superfluidity including the rigidity of the wave 
function, interactions between the fermions in different pairs, convergence of the momentum and the gap 
in the excitation spectrum are discussed. 

Introduction. - Multiple studies in the field of 
condensed matter have sought to identify the microscopic 
mechanisms responsible for 
superconductivity/superfluidity in different systems. 
Some studies have proposed alternative mechanisms to 
the conventional understanding proposed in the original 
BCS theory[1– 10]. In particular, recent investigations[1–
3] using an exact solution of the BCS Hamiltonian 
demonstrated that the fermions that form composite 
bosons, i.e. Cooper pairs, do not condense into a single 
state as originally assumed[11]. These studies and others 
suggest that nature may have more than one way to 
achieve superconductivity/superfluidity and that 
alternative microscopic descriptions could be of value. 

In a series of recent papers, the superfluidity of 
ultracold superfluid Fermi gases[12–15] has been studied 
using a first-principles perturbation formalism called 
symmetry-invariant perturbation theory, SPT. This 
approach uses group theory and graphical techniques 
rather than a basis set or numerical methods to solve each 
perturbation order, in principle exactly. The first order 
equation is harmonic and has been solved exactly by 
determining the group theoretic N-body normal 
modes[16– 18]. The Pauli principle is applied without 
explicit antisymmetrization using an adiabatic transition 
from an independent particle regime to an interacting 
regime[19]. Despite the many-body approach with no two 
body pairing, the first-order results yielded close 
agreement with experiment without higher order 
corrections both at unitarity and across the BCS to 
unitarity transition[20–22]. This suggested the possibility 
that normal modes might provide an alternative 
microscopic basis for superfluid behavior that would 
differ from the conventional view that some of the 
fermions form loosely bound pairs that condense into a 

macroscopic occupation of the lowest state[23–36]. In 
addition to producing good agreement with multiple 
experimental results, normal mode dynamics offer an 
interesting microscopic explanation for universal 
behavior at unitarity[37, 38]. 

The possibility that normal modes can provide an 
alternative route to a macroscopic wave function with 
phase coherence over the entire ensemble without 
twobody pairs in real space, i.e. composite bosons, 
necessarily refocuses attention on the importance of inter-
pair correlations which are due to the Pauli principle and 
have always been recognized as crucial for an accurate 
description of superconductivity/superfluidity. Based on 
these findings and the analysis of the microscopic basis 
underlying superfluidity using normal modes, the goal of 
this Letter is to offer an alternative interpretation of some 
of the seminal ideas behind conventional approaches to 
superfluidity, to reimagine the microscopic basis 
underlying superfluidity and to elucidate the role of the 
Pauli principle in the emergence and stability of collective 
behavior. 

Background. - The Pauli principle dominates the 
inter-pair interactions in the BCS ansatz[1–3], and is 
critical to producing important properties of 
superfluidity/superconductivity including an energy gap 
in the excitation spectrum, the rigidity of the superfluid 
wave function that yields the Meissner effect, and the 
vanishing resistance to current flow. It is interesting that 
early work did not assume two-body pairing in real space. 
The highly successful BCS theory proposed in 1957[11] 
assumes that the fermions are paired in momentum space 
with +k and −k values, i.e. zero-momentum states. As 
stated in the 1957 paper, the BCS wave function describes 
the “coherence of large numbers of electrons,” but does not 
propose that fermion pairs are localized into 
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pseudomolecules that transition as in Bose-Einstein 
condensation[11]. As suggested by London in 1950, a 
superconductor is a “quantum structure on a macroscopic 
scale... a kind of solidification or condensation of the 
average momentum distribution” of the electrons. “It 
would not be due to distinct electrons at separate places 
having the same momentum”, but “it would arise from 
wave packets of wide extension in space assigning the 
same local momentum to the entire superconductor”[39]. 
These early concepts of superfluidity/superconductivity 
as well as the seminal properties: pairing in momentum 
space, the long-range order over macroscopic distances, a 
“rigidity” of the wave function, and the gap in the 
excitation spectrum[40, 41] are naturally manifested in a 
normal mode picture of superfluidity. 

Symmetry-Invariant Perturbation Theory: a 
group theoretic and graphical approach to 
the general N-body problem. - 

1) Overview. - Symmetry-invariant perturbation 
theory is a first-principles general many-body method 
with no adjustable parameters that employs group theory 
and graphical techniques to avoid the intensive numerical 
work typical in conventional many-body methods. If 
higher-order terms are small, the first-order normal mode 
solutions can offer physical insight into the underlying 
dynamics. The perturbation parameter is the inverse 
dimensionality of space. Using 1/D or 1/N expansions to 
study physical systems was originally developed by 
t’Hooft in quantum chromodynamics[42], and 
subsequently used by Wilson[43] in condensed matter to 
calculate critical exponents for D = 3 phase transitions 
starting from the D = 4 exact values. These techniques 
have now been used in multiple fields of physics from 
atomic and molecular physics [44–62] and condensed 
matter [43, 63–65], to quantum field theory[66–72]. 

The SPT formalism was developed to handle the large 
ultracold ensembles of interest in atomic 
physics/condensed matter and was initially applied to 
bosonic systems[16–18, 73–76]. Recently, this formalism 
was extended to ultracold Fermi gases[20–22] which are 
subject to Pauli constraints[19, 20, 22, 77]. Currently, this 
method is formulated through first order for L = 0 systems 
in three dimensions that are confined by spherically-
symmetric potentials with general interaction potentials. 
The SPT approach uses symmetry to attack the N-scaling 
problem[16–18, 78, 79], rearranging the work required 
for an exact solution so the exponential scaling depends on 
the order of the series, not the value of N which is a simple 
parameter. To access maximal symmetry, a perturbation 
series is formulated about a large-dimension structure 
with a point group isomorphic to the symmetric group SN , 
then evaluated for D = 3. This strategy allows the work at 
each order that scales exponentially to be extracted as a 
pure math problem (cf. the Wigner-Eckart theorem)[80, 
81]. In principle, this problem can be solved exactly using 

group theoretic methods, and saved[82], with a significant 
reduction in numerical cost. 

Since the perturbation does not involve the interaction 
strength, strongly interacting systems such as the unitary 
regime can be studied. This manybody approach does not 
provide a mechanism for the transition to diatomic 
molecules in the BEC regime. The BEC regime could, in 
principle, be described by including higher-order terms 
although many terms would probably be required 
undermining any physical insight. 

Even the lowest order contains beyond-mean-field 
effects that produce excellent first-order results[20, 22, 
73] as seen in earlier dimensional approaches[49, 83–86]. 
The formalism was tested on a fully-interacting model 
problem of harmonically-confined, harmonically-
interacting particles[19, 75–77]. The SPT and the exact 
wave function agree to ten or more digits verifying this 
many-body formalism[75] and the forms for the group-
theoretic, analytic N-body normal modes. 

2) The SPT formalism. - Using D dimensional 
Cartesian coordinates, the N-body Schr¨odinger equation 
is: 

 , (1) 

 

with hi a single-particle Hamiltonian, Vint a general two-
body interaction potential, xiν the νth Cartesian component 
of the ith particle, and Vconf a sphericallysymmetric 
confining potential[16–18]. The Hamiltonian is 
transformed to internal coordinates, ri and γij, where 

), 

 are 
the N D-dimensional scalar radii ri and the cosines γij of the 
N(N −1)/2 angles between the radial vectors. A similarity 
transformation removes the first-order derivatives[87], 
and a scale factor is employed to regularize the large-
dimension limit of the Schr¨odinger equation. Substituting 
the scaled variables and defining δ = 1/D as the 
perturbation parameter gives: 
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The Gramian determinant Γ has elements γij (see Appendix 
D in Ref [16]), and the Γ(i) determinant has the row and 
column of the ith particle deleted. 

 Defining Θ

, where 

r¯ij = qr¯i2 + ¯rj2 − 2¯rir¯jγij is the interatomic separation, 

R¯ is the range of the square-well potential, and ¯α is a 

constant which softens the potential as D → ∞, the form of 

V¯int reduces to a square well at D = 3 and is differentiable 

away from D = 3 to permit the dimensional analysis[16, 

73]. The constant b′ is chosen to yield an infinite scattering 

length at unitarity with V¯0 = 1.0. For weaker interactions 

in the BCS regime, V¯0 is scaled to smaller values. R <<¯ a¯ho 

and is systematically reduced to extrapolate to zero-range 

interaction. When D → ∞, the second derivatives drop out 

producing a static problem at zeroth order with an 

effective potential, V¯eff: 

 N N−1 N 

V¯eff = XU¯(¯ri;δ)+V¯conf(¯ri;δ)+X X V¯int(¯ri,γij;δ), 

 i=1 i=1 j=i+1 

whose minimum is an infinite-dimensional 

maximallysymmetric structure with all ¯ri and γij equal: for 

D → ∞, ¯ri = ¯r∞(1 ≤ i ≤ N) and γij = γ∞(1 ≤ i < j ≤ N). 

 Two minimum conditions: 

 yield two equations in ¯r∞ 

and  
and. 

 −

 − 

Expanding about the minimum (r∞,γ∞): ¯ri = ¯r∞ + δ1/2r¯i′ 

and γij = γ∞ + δ1/2γij′ , sets up a power series in δ1/2. The 

first-order, δ = 1/D, equation is harmonic and is solved 

exactly using group theory to obtain the N-body normal 

modes[16–18]. The first-order Hamiltonian, H¯1, is defined 

in terms of the constant matrices, G composed of kinetic 

energy terms, and F composed of potential terms, 

evaluated at the large dimension limit: 

 , (4) 

with vo a constant[16]. The FG matrix method[88], which 
has been used extensively in molecular physics, is used to 
obtain the normal-mode frequencies[16] and 
coordinates[17]. (See Appendix A in Ref. [16] for a brief 
summary.) Only five distinct frequencies, ¯ω, are obtained. 
This large degeneracy is a manifestation of the very high 
degree of symmetry in the F and G matrices which are 
evaluated for the D → ∞, maximallysymmetric structure 
with a single value for all ¯r∞ and γ∞. These matrices are 
thus invariant under the N! particle interchanges of SN and 
do not connect subspaces belonging to different 
irreducible representations (irreps) of SN[89, 90], thus the 
normal coordinates transform under irreps of SN. 

Five irreps are involved: a 1-D radial and a 1-D angular 

irrep both labelled by the partition [N], an (N − 1)-D radial 

and an (N − 1)-D angular irrep both labelled by the 

partition [N − 1, 1], and one angular N(N − 3)/2D irrep 

labelled by [N − 2, 2]. These irreps are given shorthand 

labels: 0−, 0+, 1−, 1+, and 2 respectively, (see Refs. [17, 18]), 

where the single normal mode of type 

0+ is a center of mass/symmetric bend motion; the single 

0− mode is a breathing motion/symmetric stretch; the N − 

1 type 1+ modes have particle-hole/single-particle angular 

excitation behavior; the N − 1 type 1− modes exhibit 

particle-hole i.e. single-particle radial excitation behavior; 

and the N(N −3)/2 type 2 modes are phonon modes. Ref. 

[37] analyzes these motions in detail. 

A symmetry coordinate vector, S, is defined: 

S  

 where the transformation matrices   and   are 
determined using the theory of group characters to 
decompose r¯′ and γ′ into basis functions that transform 
under the five irreps of SN[17]. The FG method is applied 
to determine the normal modes, The normal coordinates 
in the [N] and [N−1,1] sectors have mixed radial and 
angular behavior. The [N − 2,2] normal modes are purely 
angular since this sector has no r¯′ symmetry coordinates. 
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The extent of radial/angular mixing depends on the first-
order Hamiltonian terms. 

The energy through first-order in δ = 1/D [16, 49]: 

 

has the form of a harmonic energy in terms of the normal 

mode frequencies, where¯eff| , µ labels the five types of 

normal modesE¯∞ is the energy at the mini- 

mum of V ∞ 

(irrespective of the value of N, see Ref. [16] and Ref.[15] in 
[17]), nµ is the total normal mode quanta with frequency 
¯ωµ; and vo is a constant (defined in Ref. [16], Eq.(125)). 
The five roots have multiplicities: d0+ = 1,d0− = 1,d1+ = N 
−1,d1− = N −1,d2 = N(N −3)/2. Eq. (6) defines the ground 
state energy as well as the spectrum of excited states by 
assigning normal mode quantum numbers consistent with 
the Pauli principle. The allowed assignments are 
determined by finding a correspondence between the 
normal mode states |n0+,n0−,n1+,n1−,n2 > and the non-
interacting states of the three dimensional harmonic 
oscillator (Vconf(ri) = 

 ) which have known restrictions due to 
antisymmetry. These two spectrums are related in the 
double limit D → ∞, ωho → ∞ where both representations 
are valid. At this double limit, the radial and angular 
characters separate resulting in two conditions[19, 20]: 

 
where νi and li are the radial and orbital angular 
momentum quantum numbers of the three dimensional 
oscillator, and ni = 2νi + li is the ith particle energy level 

quanta defined by:  

. This strategy is analogous 

to Landau’s use of the non-interacting system to set up the 
correct Fermi statistics as interactions adiabatically evolve 
in Fermi liquid theory[91]. 

For ultracold systems, the lowest angular and radial 
modes are occupied i.e. phonon, n2, and single-particle 
radial excitation modes, n1−, yielding: 

 . (8) 

3) Application of SPT to ultracold fermions. - During the 
last nine years, the SPT approach has been used to 
investigate superfluidity for ultracold Fermi gases. 
Properties at unitarity as well as from BCS to unitarity 
were obtained in close agreement with experiment 

including ground state energies[20], critical 
temperatures[21], excitation frequencies[21, 38], 
thermodynamic entropies and energies[21, 22] as well as 
the lambda transition in the specific heat[22], a well 
known signature of the onset of superfluidity. (For a brief 
discussion of these calculations including graphs showing 
the agreement with experiment and theory and an 
explanation of the microscopic basis underlying these 
results, see Supplemental Information Section I. A-D.) 

The Fermi sea and Pauli blocking: a 
collective viewpoint. - From an independent particle 
view, degenerate Fermi systems have all the lowest energy 
states filled, with a “Fermi surface” dividing the filled from 
the unfilled levels. This “sea” of fermions exists in energy 
space, with the scale of energies defined by the Fermi 
energy which is the largest occupied energy in the system. 
The role of the Fermi sea is to Pauli-block states below the 
Fermi energy, thus the behavior of such systems is 
dominated by the Pauli principle which determines their 
general structure through the filling of the states. 

Using the current approach and assuming superfluid 
temperatures near T = 0, the concept of a Fermi sea is now 
defined from a collective viewpoint, assuming that the 
particles are in a collective mode allowed by the Pauli 
principle. The Pauli restrictions originate in the 
independent particle picture, but are transferred to the 
collective picture through an adiabatic evolution of the 
system to the collective mode as interparticle interactions 
turn on. The occupations of the lowest states in the 
independent particle picture are responsible for the 
restrictions on the number of quanta permitted in the 
collective motion of the ensemble. For ultracold systems at 
T = 0, only phonon modes are occupied so the Fermi sea of 
occupied independent states becomes an energy 
minimum of the phonon collective mode, with lower 
energy phonon modes unoccupied, i.e. Pauli-blocked from 
occupation. 
The Fermi energy in the independent view is the energy of 
the highest occupied independent state, while in the 
collective view, the Fermi energy is the energy of the 
lowest occupied phonon mode. The quantum numbers in 
these two regimes are discussed in the Supplemental 
Information, Section I.E. 

Cooper pairs: a critical concept. - The concept of 
Cooper pairs has been called one of the pillars of the 
microscopic theory of superconductivity, a concept that 
opened up the route to a successful theory that could 
explain the physical effects of zero resistivity, the existence 
of a gap in the excitation spectrum, and the Meissner effect 
among others. 

Since the original BCS theory was introduced, the 
concept of Cooper pairs has evolved to include a more 
nuanced understanding of the role played by this pairing. 
Although it was recognized from the beginning that 
Cooper pairs were not simple bosons, it was widely 
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assumed that these composite bosons condensed into a 
single lowest state. Multiple studies have since argued that 
the condensation involves multiple states[1–10]. By 
restricting configurations in the original BCS calculations 
to pairs of states with +k and −k, i.e. zero momentum 
states, a “coherent lowering of the energy” was 
obtained[41]. This was “consonant” with “London’s 
concept of a condensation in momentum”[41]. 
Theoretically, the pairs are created by two fermion 
creation operators which do not satisfy Bose statistics. 
This is essential to the success of the theory which must 
include many-body effects to yield an energy gap and long-
range order over macroscopic distances. As reviewed by 
Bardeen in his Nobel address, “A theory involving a true 
many-body interaction between the electrons seemed to 
be required to account for superconductivity”[92]. 

These early concepts are consistent with a collective 
picture, a rigid macroscopic wave function with long range 
order extending over the entire ensemble. The 
condensation of the frequency to a single value as the 
particles adopt the collective motion of a normal mode 
results in the expected convergence of the momentum to 
two values, +k and −k, as the particles slosh back and forth 
in lockstep. This normal mode picture retains Cooper 
pairing, a concept critical to the development of BCS 
theory, but redefines it, not as a two-body phenomenon in 
real space, but rather as a many-body phenomenon that 
consolidates the momentum of an ensemble to two equal 
and opposite values. This is consistent with both the early 
BCS concepts and the recognized need for a fully 
interacting many-body wave function. 

The seminal properties of superfluidity as 
supported by the microscopic dynamics of 
the normal mode picture. - 
1) “Rigidity” of the wave function. - This property of 

superconductivity has been called “a striking 
manifestation of a subtle form of quantum rigidity on the 
macroscopic scale”[93]. It prevents a moderate external 
magnetic field from modifying the wave function and is 
also responsible for the gap in the excitation spectrum. 
Collective motions in the form of normal modes naturally 
provide rigid harmonic motion with the particles moving 
in lockstep with the same frequency and phase. In the SPT 
formalism these synchronized, collisionless motions are 
eigenfunctions of an approximate Hamiltonian and thus 
possess some degree of stability. They provide simple, 
quantum macroscopic wave functions with phase 
coherence over the entire ensemble. The microscopic 
behavior of the particles in a normal mode as they execute 
rigid, harmonic motions is explored briefly in 
Supplemental Information Section II and in detail in Ref. 
[37]. 
2) Interactions between the fermions in different 

pairs due to the Pauli principle. - The interactions between 
the fermion constituents of different “bosonic” Cooper 
pairs in BCS theory are due to the Pauli principle. Thus the 

fermions in BCS theory play a dual role: creating 
composite bosons that are assumed to condense to the 
lowest state; and simultaneously retaining their fermionic 
nature giving rise to inter-pair interactions from the Pauli 
principle. These inter-pair interactions in conventional 
BCS approaches are known to be crucial to producing 
superfluidity/superconductivity. This dual role calls into 
question the importance of two-body pairing as the 
underlying microscopic dynamic compared to the many-
body correlations which are critical to the emergence of 
superconductivity/superfluidity. 

The collective picture reimagines this as simply the 
motion of N interacting fermions in a macroscopic normal 
mode wave function. This normal mode function at 
ultracold temperatures is a very low energy phonon mode. 
Thus it is not necessary to produce composite bosonic 
entities that condense to the lowest state to produce a 
macroscopic quantum wave function, as fermions can 
occupy one or more of the closely spaced phonon modes 
to form a quantum, macroscopic function with collective 
behavior. The many-body synchronous motion is subject 
to the Pauli principle which controls the dynamics at all 
strengths from BCS to unitarity. 

3) “Solidification or condensation of the average 
momentum distribution”; arising “from wave packets of 
wide extension in space assigning the same local 
momentum to the entire superconductor”: the Uncertainty 

Principle. - These quotes from London[39, 40] are 
manifested in the BCS ansatz by assuming that the 
particles pair into +k and −k pairs with a resulting 
lowering of the energy. The collective picture assumes 
many-body motion of the fermions in a 
phonon/compressional normal mode. As the particles 
begin to move in sync with a single frequency and phase, 
the spatial extent of the normal mode expands, while the 
single frequency of motion means that the average 
momentum of the fermions is converging toward a single 
absolute value as predicted by London and others. This 
convergence in momentum space and the corresponding 
expansion of the wave packet in position space is expected 
from the uncertainty principle. The SPT normal mode 
microscopic dynamics underlying this condensation are 
analyzed briefly in Supplemental Information Section II.C. 
and in detail in Ref. [38]. 

4) Gap in the excitation spectrum. - During the early 
1950’s increasing evidence appeared for an energy gap at 
the Fermi surface. This motivated the BCS ansatz of 
assuming that only zero momentum pairs contributed 
leading to a lowering of the energy of the lowest state[41]. 
In the normal mode picture, there is a natural gap between 
the phonon mode and the next higher mode which is a 
single particle excitation mode that increases from 
extremely small in the weakly interacting BCS regime to a 
maximum in the unitary regime. (See Fig. 2 in Ref. [38].) 
Thus, the gap is reimagined, not as originating from the 
excitation of a fermion out of a two-body bosonic entity, 
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but as the excitation of a single particle out of the synced 
motion of the phonon mode as the ensemble adopts a new 
collective motion. This gap provides stability for 
superfluid behavior particularly as it widens as unitarity 
is approached. It also leads to a value for the first excited 
state of the ensemble as determined by the Pauli principle 
and an estimate of the critical temperature that agrees 
with both the BCS estimate in weaker interaction regimes 
as well as more intensive T matrix calculations of TC near 
the strongly interacting unitary regime[21]. Gaps also 
exist between the other types of normal modes (See Fig. 2 
in Ref. [38]) that could provide stability for collective 
behavior if techniques to prevent the transfer to other 
modes exist or could be engineered. Temperature is likely 
to play a role in controlling the dynamics of such 
structures, but other mechanisms may supercede the 
effect of temperature to perhaps allow a high temperature 
system to sustain stable collective behavior which could 
be harnessed to bring the desired benefits of quantum 
engineering on a macroscopic scale. 

The role of the Pauli principle: the transition 
from Fermi to Bose statistics at low 
temperature. - The Pauli principle has always been 
recognized as critical to an accurate description of 
superconductivity/superfluidity. In the SPT approach, the 
Pauli principle controls the dynamics of the collective 
behavior of the ensemble. Multiple closely spaced phonon 
modes may be occupied consistent with the results from 
the exact solution of the BCS Hamiltonian. As N increases, 
these low-energy phonon states become infinitesimally 
closer and closer in energy merging toward the ground 
state. This allows a natural transition from Fermi statistics 
to Bose statistics as seen in the BCS-BEC crossover as true 
bosonic entities, i.e. diatomic molecules, form and occupy 
this ground state. 

Conclusions. - In this paper, the Pauli principle’s role 
in collective motion as documented in previous 
investigations of ultracold Fermi gases has led to a 
reimagination and reinterpretation of the seminal 
concepts of superfluidity. The perturbation method used 
to obtain these results, SPT, is solved exactly with no 
adjustable parameters to yield normal modes at first 
order. This method takes advantage of group theory to 
obtain a detailed microscopic view of the underlying 
dynamics. 

Normal mode behavior is ubiquitous in our universe at 
all energy and length scales manifesting the widespread 
existence of vibrational forces that occur in different 

media and across many orders of magnitude. The 
successful use of normal modes to determine multiple 
properties of ultracold Fermi gases in excellent agreement 
with both experimental data and theoretical results has 
demonstrated that two-body pairing assumptions in real 
space are not necessary to describe superfluidity in theory. 
This suggests that reimagining the underlying microscopic 
basis for superfluid behavior in different regimes could be 
worthwhile. Correlations between the pairs have always 
been known to be critical to describing superfluid 
behavior. These correlations refocus the physics away 
from the importance of two-body pairing to a many-body 
picture. 

The collective perspective also offers an explanation for 
universal behavior in the unitary regime. The absence of 
interparticle interactions typically defines a regime of 
independent particles, but can also be the defining 
characteristic of a strongly correlated ensemble that has 
particles moving in lockstep with fixed interparticle 
distances, i.e. angular normal modes. Both types of 
ensembles are independent of microscopic details despite 
the very different dynamics underlying their properties. 

This Letter is an attempt to investigate and perhaps 
enlarge the role of the Pauli principle in achieving 
superfluidity. It is perhaps not surprising that there could 
be multiple routes to achieve superfluidity. Whether the 
model of superfluidity described in this Letter could be 
realized in nature or in the lab is an open and certainly 
interesting question. 

Particle statistics are known to be powerful 
organizational, driving forces in the emergence of 
collective states of matter for both bosons and fermions 
with simple behavior emerging from the complexity of the 
microscopic world. The Pauli principle plays a 
fundamental role in organizing fermion matter in our 
universe, providing stability as it intervenes in a wide 
range of phenomena from the structure of atoms to the 
physics of neutron stars[94]. Restricting the permutation 
symmetry of indistinguishable particles and controlling 
the occupation of identical fermions, it is responsible for 
the prevalence of degenerate Fermi systems at all scales, 
forms the foundation of the periodic table and exists at the 
core of quantum field theory. Understanding the role of the 
Pauli principle in collective behavior could offer insight 
into dynamics that could support the emergence and 
stability of organized behavior in our universe. 
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