

1
2
3 **An ecological-evolutionary perspective on the genomic diversity and**
4 **habitat preferences of the Acidobacteriota**
5

6 Ella McReynolds, Mostafa S. Elshahed, and Noha H. Youssef*
7 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater,
8 OK, USA
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

*Corresponding author: Address: 1110 S. Innovation Way, Stillwater, OK. Email:
noha@okstate.edu

26

Abstract

27 Members of the phylum Acidobacteriota inhabit a wide range of ecosystems including soils. We
28 analyzed the global patterns of distribution and habitat preferences of various Acidobacteriota
29 lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline
30 and alkaline, and terrestrial non-soil ecosystem) in 248,559 publicly available metagenomic
31 datasets. Classes Terriglobia, Vicinamibacteria, Blastocatellia, and Thermoanaerobaculia were
32 highly ubiquitous and showed clear preference to soil over non-soil habitats, class
33 Polarisedimenticola showed comparable ubiquity and preference between soil and non-soil
34 habitats, while classes Aminicenaria and Holophagae showed preferences to non-soil habitats.
35 However, while specific preferences were observed, most Acidobacteriota lineages were habitat
36 generalists rather than specialists, with genomic and/or metagenomic fragments recovered from
37 soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of
38 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than
39 the habitat from which the genome was recovered in shaping the genomic characteristics and
40 metabolic capacities of the *Acidobacteriota*. The observed lack of strong habitat specialization
41 and habitat transition driven lineage evolution in the Acidobacteriota suggest ready cross
42 colonization between soil and non-soil habitats. We posit that such capacity is key to the
43 successful establishment of Acidobacteriota as a major component in soil microbiomes post
44 ecosystem disturbance events or during pedogenesis.

45

Introduction

46 The phylum Acidobacteriota [1] (previously, the Acidobacteria) represents one of the most
47 prevalent phyla encountered in soils, as evident in 16S rRNA gene-based surveys, isolation
48 efforts, and metagenomic studies [2-15]. Additionally, members of the phylum Acidobacteriota
49 are also encountered in a wide range of habitats other than soil, e.g. hydrothermal vents [16],
50 anoxic freshwater mud [17], hydrocarbon-contaminated aquifer [18], marine chiton microbiome
51 [19], alkaline hot springs [20], termite nests [21], and marine sediments [22]. Several
52 classification schemes have been proposed for the Acidobacteriota [2, 23, 24]. The Genome
53 Taxonomy Database (GTDB, release 214) [25] classifies the phylum Acidobacteriota into 15
54 classes, 54 orders, and 102 families, many of which do not have a pure culture representative.

55 Based on isolation and culture-independent efforts, preference of specific Acidobacteriota
56 lineages to a certain habitat has been observed. For example Acidobacteriota groups 1, 3, 4, and
57 6 (Barns [2] classification scheme) are the most prevalent members of the Acidobacteriota in
58 diversity surveys [9] with several representative isolates described from soil [6, 7, 26-29], while
59 representatives of groups 8, 10, and 23 have been isolated from non-soil habitats (e.g.
60 hydrothermal vent, chiton microbiome, anoxic sediments, hot springs) [16-18, 30]. However, a
61 detailed global meta-analysis to elucidate patterns of distribution and habitat preference for
62 cultured and yet-uncultured lineages at various levels of phylogenetic resolution is currently
63 lacking. The current availability of hundreds of thousands of metagenomic datasets, as well as a
64 genome-based reference database and taxonomic outlines that encompass cultured as well as
65 uncultured taxa [25] allows for assessing global ecological distribution patterns of target
66 Acidobacteriota lineages at various levels of phylogenetic resolution using metagenomic read-
67 mapping approaches. Such approaches are superior to assessments that rely on documenting the

68 habitat origin of isolates, 16S rRNA sequences, or genomes deposited in databases, where issues
69 regarding differential amenability of lineages to culturing, sequence deposition procedures,
70 preferential amplification of lineages, and genome assembly problems could impact the accuracy
71 of the obtained outcome. As well, read mapping-based assessments would go beyond cursory
72 characterization of habitat preferences by providing quantitative metrics for ubiquity (occurrence
73 of a lineage in a specific ecosystem), preference (comparison of ubiquity levels of a specific
74 lineage across ecosystems), and relative abundance (percentage of reads belonging to a specific
75 lineage within a metagenomic dataset). Further, such assessment could also be used to identify
76 whether a specific lineage is a habitat specialist (i.e. restricted to a single habitat) or a generalist
77 (i.e. encountered in a wide range of habitats) at various taxonomic resolutions.

78 Progress in isolation, genome sequencing and -most importantly- generation of single cell
79 genomes (SAGs) and metagenome-assembled genomes (MAGs) from environmental samples
80 has greatly increased the number of publicly available Acidobacteriota genomes. Currently, the
81 genome taxonomy database (GTDB) contains 2028 Acidobacteriota genomes from a wide array
82 of habitats. As such, a phylum-wide comparative genomic analysis to elucidate and expand on
83 key genomic features, metabolic capacities, and physiological preferences within various
84 members in the Acidobacteriota is feasible. Such detailed analysis could also be used to
85 disentangle the relative importance of phylogeny (lineage to which a genome belongs) versus
86 habitat (origin from which the isolate, MAG, or SAG was recovered) in shaping genomic
87 features and metabolic capacities in the Acidobacteriota.

88 Here, we present a detailed analysis of the global distribution patterns of the
89 Acidobacteriota based on fragment recruitment from 248,559 metagenomic studies. We combine
90 this analysis with a detailed comparative genomic analysis based on thousands of genomes

91 available in GTDB to identify key differences across lineages and habitats. Based on our results,
92 we propose the occurrence of ready cross colonization of Acidobacteriota between soil and non-
93 soil habitats through a continuous niche-selection process. We posit that such capacity is key to
94 the rapid and successful establishment of Acidobacteriota as a major component of the soil
95 microbiome during pedogenesis or during recolonization post drastic disturbance events. The
96 implications of such findings on our understanding of how the evolution of soil as a distinct
97 habitat on earth impacted the evolutionary trajectory of the *Acidobacteriota* is further discussed.

98

Materials and Methods.

99 **Taxonomic framework for the Acidobacteriota.** Several classification schemes have been
100 proposed for the phylum Acidobacteriota. Barns et al [2] classified the phylum into 26 subgroups
101 based on amplicons identified in subsurface sediments. Dedysh and Yelmaz built on this scheme
102 and assigned the 26 subgroups into 15 class-level units [23]. The Genome Taxonomy Database
103 (GTDB) [25] incorporates genomes from isolates as well as single amplified genomes (SAGs)
104 and metagenome-assembled genomes (MAGs) into a global genome-based taxonomy, while
105 using validly described names for isolates. The GTDB (release 214) classifies the phylum
106 Acidobacteriota into 14 classes, 52 orders, 102 families, and 486 genera. Here, given the need for
107 genome-based analysis, and the fact that the GTDB incorporates genomes from both cultured
108 and uncultured lineages, we used the GTDB as our classification framework. Table S1 and [31]
109 provide a comprehensive view of the phylum classification based on the three schemes discussed
110 above [3, 23, 25], as well as the Silva classification database [24].

111 **Ecological distribution of the Acidobacteriota.** Identification of the taxonomy and relative
112 abundances of key taxa in metagenomic datasets is key to deciphering their ecological
113 distribution. We used Sandpiper, an interface that utilizes a recently developed tool (SingleM)
114 for accurate mapping of metagenomic reads to genomes, to determine the occurrence and relative
115 abundance of the phylum Acidobacteriota, its classes, orders, and families [32] in metagenomes.
116 Our search comprised 248,559 metagenomic datasets in 17,617 projects with 1.3 Pbp of
117 sequencing data. For each taxon searched, the output includes the number of datasets where the
118 taxon was identified, along with individual accession numbers and ecological classification of
119 each dataset, as well as relative abundance of the taxon in each dataset. We believe that this
120 approach is superior to other approaches for metagenomic profiling, since shotgun sequencing

121 directly from an environment provides an unbiased view of the available community that is not
122 prone to experimental issues, e.g. primer bias, that would be encountered with culture-
123 independent studies. Also, searching metagenomic reads obtained with shotgun sequencing to
124 identify taxa without assembling the reads into contigs and binning contigs into genomes
125 (MAGs) would provide access to the fraction of the community that would otherwise not be
126 binned into MAGs due to variability in coverage.

127 We used the output from Sandpiper searches to assess the distribution and prevalence
128 patterns of the phylum Acidobacteriota, as well as its classes, orders, and families recognized in
129 the GTDB taxonomy across six major habitats, as defined by [33]: soil (n=10,250 datasets),
130 engineered (n=16,320 datasets), host-associated (n=165,152 datasets), marine (n=13,880
131 datasets), non-marine saline and alkaline ecosystems (n=1306 datasets), and terrestrial non soil
132 ecosystems (n=5039 datasets). For each taxon (the phylum, as well as each class, order, family),
133 three criteria were assessed: (1) ubiquity: assessed as the percentage of the total datasets from
134 each habitat classification where a specific lineage was identified by read mapping, (2)
135 Preference of a specific lineage for soil: assessed as the ratio of soil/non-soil datasets where a
136 specific lineage was identified by read mapping, and (3) relative abundance of a specific lineage:
137 assessed as the percentage of reads in a specific dataset that mapped to a target lineage. Due to
138 the overrepresentation of host-associated (mostly human and murine) datasets in that database,
139 and the well-established scarcity of Acidobacteriota in this habitat, all comparative analysis
140 between soil and non-soil habitats, e.g. preference values, were conducted after exclusion of the
141 host-associated datasets.

142 **Habitat generalization versus specialization estimation.** Habitat specialization was assessed
143 by identifying the range of habitats where a specific lineage (class, order, family) was

144 encountered. The analysis was conducted for all taxa (classes, orders, and families) encountered
145 in the GTDB database. However, it is important to note that taxa rarely encountered could
146 erroneously be classified as specialists. Therefore, we also re-analyzed such patterns using
147 an empirical cutoff that excludes taxa encountered in less than 250 studies.

148 **Comparative genomic analysis.** We assessed different genomic features, secretory arsenals,
149 predicted physiological preferences, and lifestyle within Acidobacteriota genomes. We compared
150 these characteristics across various lineages, as well as across habitats in a lineage-agnostic
151 manner (i.e. comparing all genomes recovered from soil to those recovered from non-soil
152 habitats). In addition, we also assessed within lineage habitat effects, i.e. whether genomic
153 features differ between the same lineage genomes recovered from soil versus non-soil habitats.
154 Out of the 2028 Acidobacteriota genomes available in GTDB, we focused our comparative
155 genomic analysis on 1930 genomes belonging to classes with at least 100 genomes and for which
156 genomes were recovered from at least 5 of the 7 habitats (Figure S1). These classes are
157 Aminicenantia, Blastocatellia, Holophagae, Terriglobia, Thermoanaerobaculia, and
158 Vicinamibacteria.

159 General genomic features (including genome size, GC content, coding density, and
160 number of genes) were retrieved from the GTDB metadata file (available at
161 <https://data.gtdb.ecogenomic.org/releases/release214/214.1/>). Average gene length was
162 calculated using a perl script. CRISPRs were predicted using CCTyper [34]. Viral contigs were
163 predicted using Virsorter2 [35]. For secretory capacities: CAZymes were predicted using
164 dbCAN3 [36], while biosynthetic gene clusters (BGCs) were predicted using antiSMASH [37].
165 Proteases were identified via comparisons to the MEROPS database [38].

166 We used recently developed machine-learning (ML) based bioinformatic approaches to
167 predict physiological preferences from genomic data. To predict optimal growth temperatures,
168 we used the Tome suite [39]. pH preferences were assessed using a newly devised ML approach
169 [40]. To predict oxygen preference from genomic data, we used the recently developed
170 aerobicity ML predictor [41].

171 To predict life history strategy (Scarcity, Ruderal, or Competitor), we used the recently
172 developed machine-learning approach that measures the tradeoff between genomic investment in
173 resource acquisition and regulatory flexibility to predict the ecological strategy [42]. Genomic
174 investment in regulatory flexibility was calculated as the number of transcription factors relative
175 to total gene number. Transcription factors were predicted using two approaches: (1) Examining
176 the output of BlastKOALA [43] for the presence of transcription factor Kegg Orthologies (KOs)
177 (a list is available at <https://www.genome.jp/brite/ko03000>), and (2) additional transcription
178 factors were predicted using DeepTFactor [44]. Genomic investment in resource acquisition was
179 calculated as the number of genes encoding secreted enzymes (CAZymes, proteases, and
180 lipases/hydrolases) plus the number of BGCs divided by the total number of membrane
181 transporters. CAZymes and proteases were predicted as detailed above. Lipases/hydrolases were
182 identified through comparison to the ESTHER database [45]. All three groups of enzymes were
183 then subjected to SignalP [46] analysis to identify those with a secretion signal. Finally,
184 membrane transporters were predicted by examining the output of BlastKOALA [43] for the
185 presence of transporters Kegg Orthologies (KOs) (a list is available at
186 <https://www.genome.jp/brite/ko02000>). Both genomic investment in resource acquisition (the
187 number of genes encoding secreted CAZymes, proteases, and lipases/hydrolases plus the number
188 of BGCs divided by the total number of membrane transporters) and in regulatory flexibility (the

189 number of transcription factors divided by the total number of genes) were then used to predict
190 the life history strategy (one of Scarcity, Ruderal, or Competitor) of all Acidobacteriota genomes
191 via kmeans clustering using the R package flexclust [47] and the k-centroid cluster analysis. The
192 training dataset was comprised of the 27 ¹³C-labeled MAGs from [42].

193 Metabolic potential encoded in Acidobacteriota genomes was predicted using
194 METABOLIC [48].

195 **Statistical analysis.** Analysis of variance (ANOVA) (run through the aov command in R) was
196 used to test for the effect of phylogeny (Class), habitat (the environmental source from which the
197 genomes were obtained), and the interaction between the two on general genomic features
198 (genome size, GC content, coding density, number of genes, and average gene length), phage
199 infection/immunity features (number of viral contigs, number of CRISPR occurrence in a
200 genome), potential extracellular products arsenal (CAZymes, peptidases, BGCs), predicted
201 physiological optima (temperature, pH, and oxygen-preferences), and predicted life history
202 strategy (ruderal, competitor, scarcity). Factors with F-test p-value $<1\times10^{-5}$ were considered
203 significant. The % contribution of phylogeny (Class), and habitat (the environmental source from
204 which the genomes were obtained) was calculated based on the F-test sum of squares. For all
205 significant comparisons, the TukeyHSD command in R was used for multiple comparisons of
206 means.

207 To test for the effect of phylogeny and habitat on metabolic features predicted in the
208 genomes, we first converted the dichotomous output (Presence/absence) from METABOLIC into
209 1/0 numerical output (if a pathway was identified as present in a genome, a value of 1 was used,
210 while a value of 0 was used if the pathway was absent). Following, the effect of phylogeny and
211 habitat on the metabolic potential (either the pattern of occurrence of KEGG modules or

212 TIGRfam/Pfam/custom HMM functions as predicted by METABOLIC) was tested using
213 ANOVA as explained above for genomic features.

214

Results

215 **Global patterns of Acidobacteriota distribution across biomes.** At the phylum level,
216 Acidobacteriota showed the highest level of ubiquity in soil ecosystems, with fragments mapped
217 to 95.7% of soil-derived datasets (9814 out of 10,250 soil datasets) (Table S2, Figure 1A). In
218 comparison, Acidobacteriota-associated metagenomic fragments were mapped to only 37.6% of
219 non-soil-derived datasets (18,027 out of 47,953 datasets from engineered, freshwater, marine,
220 non-marine saline and alkaline, and terrestrial non-soil habitats) (Table S2, Figure 1A).
221 Similarly, Acidobacteriota exhibited higher mean relative abundance in soil-derived datasets,
222 where it was encountered on average in 15.79% of reads, compared to only 3.71% of reads in
223 non-soil-derived datasets (Table S2, Figure 1C).

224 Four out of the fourteen classes of Acidobacteriota were highly ubiquitous in soil
225 (identified in >75% of soil datasets). These were classes Terriglobia (92.61%), Vicinamibacteria
226 (85.61%), Thermoanaerobaculia (78.84%), and Blastocatellia (76.2%) (Figure 1A, Figure 2,
227 Table S2). In addition, these four classes also showed strong preference to soil (ratio of
228 occurrence in soil to non-soil datasets >4) (Figure 1B, Table S2). This pattern was mostly driven
229 by higher soil ubiquity and preference values for fourteen families belonging to ten orders within
230 these classes (highlighted in Figure 2). Interestingly, while many of these lineages have
231 representative isolates and are currently recognized as prevalent members of the microbial
232 communities in soil, e.g. families *Acidobacteriaceae*, *Koribacteriaceae*, *Bryobacteraceae*,
233 *Pyrinomonadaceae*, and *Vicinamibacteraceae* corresponding to subgroups 1, 3, 4, and 6 (Barns
234 classification system); others represent lineages mostly identified through metagenomic studies,
235 and have, so far, no cultured representatives or recognition in prior amplicon-based [2] and
236 amplicon- and isolates-based [23] taxonomic schemes. For example, within the Terriglobia, in

237 addition to families *Acidobacteriaceae* and *Koribactereaceae* (subgroup 1), and
238 *Bryobacteraceae* (subgroup 3), members of the yet uncultured families 20CM-2-55-15,
239 UBA7541, and SbA1 also showed high levels of ubiquity and preference to soil ecosystems
240 (Figure 2). Within the class Thermoanaerobaculia, named based on earliest isolates from high
241 temperature settings [30], multiple uncultured families showed high levels of ubiquity and
242 preference to soil, e.g. families Gp7-AA8, Gp7-AA6, and UBA5704. Similarly, within the class
243 Vicinamibacteria, in addition to the family *Vicinamibacteraceae* (subgroup 6) [7], the uncultured
244 families Fen-336, 2-12-FULL-66-21, SCN-69-37, and UBA2999 showed high levels of ubiquity
245 and preference to soil. Finally, within the Blastocatellia, while members of the family
246 *Pyrinomonadaceae* (subgroup 4) [6] were ubiquitous in soil, the uncultured family UBA7656
247 also showed high ubiquity and preference to soil.

248 Acidobacteriota classes that were less ubiquitous in soil included the Polarisedimenticola
249 (encountered in 33.47% of soil studies), UBA6911 (encountered in 29.48% of soil studies),
250 Holophagae (encountered in 24% of soil studies), HRBIN11 (encountered in 15.78% of soil
251 studies), and Aminicenantia (encountered in 11.5% of soil studies) (Figure 1A, Figure 2, Table
252 S2). Within these five classes, UBA6911, Polarisedimenticola, and HRBIN11 showed
253 preference to soil (soil: non-soil occurrence ratio >4, Figure 1B, Table S2), while classes
254 Holophagae and Aminicenantia showed lower ratios (<4). Finally, the remaining classes (B3-
255 B38, CAIWXX01, UBA4820, UBA890, and G020349885) were extremely rare (less than 4%) in
256 all habitats examined.

257 We also assessed relative abundance values (proportion of reads mapped to a specific
258 lineage within a metagenomic dataset) of various classes, orders, and families in the
259 Acidobacteriota, an indirect measure of their niche-colonization capacities and relative

260 contribution to ecosystem functions within a specific habitat (Figure 1C). Classes identified as
261 most ubiquitous in soil also showed the highest relative abundance in soil, with relative
262 abundance values of 9.76%, 3.87%, 1.9%, and 0.92% for *Terriglobia*, *Vicinamibacteria*,
263 *Blastocatellia*, and *Thermoanaerobaculia*, respectively (Figure 1C). Out of these four classes,
264 *Terriglobia* had the highest ratio of relative abundance between soil and non-soil datasets (5.2),
265 followed by *Vicinamibacteria*, *Blastocatellia*, and *Thermoanaerobaculia* with soil: non-soil
266 relative abundance ratios of 2.43, 1.42, and 1.12, respectively (Figure 1D). On the other hand,
267 classes with lower ubiquity in soil (*Polarisedimenticola*, *HRBIN11*, *Holophagae*,
268 *Aminicenantia*, and *UBA6911*) showed lower relative abundance in soil compared to non-soil
269 habitats with ratios consistently <1 (Figure 1D, Table S2).

270 Therefore, based on the above analysis of soil ubiquity, preference, and relative
271 abundance, we infer that members of the four classes *Terriglobia*, *Vicinamibacteria*,
272 *Blastocatellia*, and *Thermoanaerobaculia* show high level of ubiquity, preference, and relative
273 abundance in soil over other habitats. We refer to these lineages henceforth as “soil-preferring
274 lineages, SPL”. On the other hand, members of the two classes *Holophagae* and *Aminicenantia*
275 show lower soil ubiquity, lower preference to soil habitats, and lower relative abundance in soil
276 versus non soil datasets. We refer to these two lineages henceforth as “non-soil preferring
277 lineages, NSPL”. Finally, the three moderately soil-ubiquitous Acidobacteriota classes
278 *UBA6911*, *Polarisedimenticola*, and *HRBIN11* showed moderate relative abundance values that
279 were lower in soil, compared to non-soil habitats (values of soil: non-soil relative abundance
280 ratio <1).

281 **Habitat generalization versus specialization in the Acidobacteriota.** We examined patterns of
282 habitat generalization versus specialization in the Acidobacteriota at various levels of taxonomic

283 resolution. We found 78.6%, 61.5%, and 52.9% of classes, orders, and families, respectively,
284 within the Acidobacteriota to be habitat generalists (i.e. with reads belonging to these lineages
285 identified in each of the 7 habitat classifications) (Table S3). However, it is important to note that
286 such pattern could greatly be impacted by sampling depth, with taxa rarely encountered
287 erroneously classified as specialists. Exclusion of rare taxa from our datasets (empirically
288 defined as those encountered in less than 250 studies) results in even higher percentage of
289 generalist taxa (91.7%, 77.5%, and 66.7% of classes, orders, and families, respectively). Our
290 analysis indicate that preferences does not necessarily correspond to specialization, and lineages
291 identified as SPL or NSPL could still be habitat generalists and exhibit wide global multi-habitat
292 distribution patterns. For example, families *Acidobacteriaceae*, *Bryobacteraceae*,
293 *Pyrinomonadaceae*, and *Vicinamibacteraceae* while encountered in 24.76-97.32% of soil
294 datasets, were also present in 2.03-19.75% of engineered, 4-31% of freshwater, 0.61-4.93% of
295 marine, 0.53-10.8% of non-marine saline and alkaline, and 1.47-3.65% of terrestrial non-soil
296 datasets. On the other hand, NSPL families *Aminicenantaceae* and *Holophagaceae*, while
297 enriched in non-soil datasets were also present in 1.23, and 19.26%, respectively, of soil datasets.

298 To confirm the results obtained from the global metagenomic dataset utilized, we
299 examined the habitat generalization and specialization patterns in the collection of 2028
300 Acidobacterial genomes available in the GTDB database [25]. Our results (Figure S2, Table S3)
301 confirm habitat generalization of the Acidobacteriota at the class, order, and family levels, with
302 85.7%, 65.4%, and 54.91% of classes, orders, and families, respectively, within the
303 Acidobacteriota with genome representatives obtained from 2 or more habitat classifications
304 (Table S3). 24.69% of genera had genome representatives obtained from more than one habitat,
305 while 75.3% had genome representatives obtained from only one habitat. Further, when

306 removing lineages defined by less than 5 genomes (404 genera, 48 families, 15 orders, 3 classes),
307 91.67%, 84.49%, 87.04%, and 62.2% of classes, orders, families, and genera, respectively, were
308 not specialized to one type of habitat (Table S3).

309 **Comparative genomic features across lineages and habitats.** We assessed the general
310 genomic features (genome size, GC content, coding density, average gene length, and number of
311 protein-coding genes (Figure 3)), phage infection/immunity features (number of viral contigs,
312 number of CRISPR occurrence in a genome (Figure 4)), potential extracellular products arsenal
313 (CAZymes, peptidases, BGCs (Figure 5)), predicted physiological optima (temperature, pH, and
314 oxygen-preferences (Figures 6-7)), and predicted life history strategy (ruderal, competitor,
315 scarcity (Figure 8)) in the 1930 genomes belonging to six classes with at least 100 genomes and
316 for which genomes were recovered from at least 5 of the 7 habitats (Aminicenantia,
317 Blastocatellia, Holophagae, Terriglobia, Thermoanaerobaculia, and Vicanamibacteria (Table 1,
318 Figure S1, Table S4)). Comparative analysis was conducted to determine whether significant
319 differences could be identified at a phylogenetic level (i.e. between different lineages within the
320 Acidobacteriota), as well as at the habitat level (i.e. between genomes recovered from soil versus
321 genomes recovered from non-soil habitats, regardless of their phylogenetic affiliation), and the
322 relative contribution of phylogeny versus habitat in shaping Acidobacteriota genomes.

323 Our analysis demonstrated a significant role played by phylogenetic affiliation in shaping
324 all fourteen examined criteria in Acidobacteriota genomes (F test p-value <1.2 x 10⁻¹⁰,
325 percentage lineage contribution 3.6-45.3%, Figures 3-8, Table S5). Interestingly, a trend in some
326 of these criteria was observed where SPL lineages were more similar to each other, compared to
327 NSPL lineages. Specifically, SPL lineages possessed larger genomes (F test p-value = 2x10⁻¹⁶,
328 phylogeny percentage contribution=14.96%), higher GC content F test p-value = 2x10⁻¹⁶,

329 phylogeny percentage contribution=45.3%), lower gene density F test p-value = 2×10^{-16} ,
330 phylogeny percentage contribution= 26.31%), shorter average gene length F test p-value = 2×10^{-16} ,
331 phylogeny percentage contribution= 10.31%), and a higher number of protein-coding genes F
332 test p-value = 2×10^{-16} , phylogeny percentage contribution= 18.01%) (Figure 3); as well as a
333 significantly larger number of viral contigs (F test p-value = 4.3×10^{-13} , phylogeny percentage
334 contribution= 4.18%) (Figure 4) and a significantly expanded CAZymes (F test p-value = 2×10^{-16} , phylogeny
335 percentage contribution= 36.42%), peptidases (F test p-value = 2×10^{-16} , phylogeny
336 percentage contribution= 27.83%), and BGCs (F test p-value = 2.6×10^{-10} , phylogeny percentage
337 contribution= 3.53%) (Figure 5), and a higher proportion of genes with a predicted aerobic
338 oxygen preference (F test p-value = 2×10^{-16} , phylogeny percentage contribution= 41.26%)
339 (Figure 7). For the remaining criteria, while phylogeny played a significant role in shaping the
340 Acidobacteriota genome examined, the SPL lineage: NSPL lineage dichotomy across classes was
341 not observed. For example, while phylogeny had a significant effect on predicted optimal growth
342 temperature (OGT) (F test p-value = 2×10^{-16} , phylogeny percentage contribution=34.3%), and in
343 general SPL were predicted to have lower optimal pH (Figure 6), this pattern was mainly due to
344 the higher predicted OGT for the Aminicenania genomes, while Holophagae genomes were
345 predicted to have lower OGT than genomes from SPL lineages (Figure 6). Similarly, while
346 phylogeny had a significant effect on predicted optimal growth pH (F test p-value = 2×10^{-16} ,
347 phylogeny percentage contribution=43.2%), this pattern was mainly due to the lower predicted
348 pH for Terriglobia genomes, while Blastocatellia and Vicinamibacteria genomes were predicted
349 to have higher pH than genomes from NSPL lineages. Finally, for life history strategies (ruderal,
350 competitor, scarcity), phylogeny played a significant role in shaping the predicted life history
351 strategy (F test p-value = 2×10^{-16} , phylogeny percentage contribution=9.13%), and in general SPL

352 were predicted to have more competitor strategy. However, this pattern was mainly due to the
353 higher number of predicted competitors for *Terriglobia* genomes, while other SPL classes
354 showed no significant difference in terms of the distribution of predicted life history strategies
355 from the two NSPL classes (Figure 8).

356 On the other hand, habitat-specific, but lineage-agnostic, comparisons (i.e. comparing
357 genomes originating from soil to those originating from non-soil sources, regardless of their
358 phylogenetic affiliation) identified habitat-specific strong significant difference in 7/14 criteria (F
359 test p-value $<10^{-5}$), with genomes from soil predicted to produce more peptidases, and to have
360 lower coding density, higher number of protein-coding genes, shorter average gene length, lower
361 predicted OGT and lower predicted pH, and predicted to be more competitor. Weak but
362 significant differences were observed for GC percentage (lower in soil genomes), genome size
363 (larger in soil genomes), and number of viral contigs (lower in soil genomes), while the number
364 of predicted BGCs, and CAZymes did not significantly differ by habitat, nor did the total
365 predicted number of CRISPRs, or the preference for O₂ (Table S5).

366 While the habitat from which the genome was obtained played a role in shaping genomes
367 in 7/14 criteria; major contribution in these criteria was from the lineage (values of lineage
368 contribution ranging from 3.6-45.3%, as opposed to 0.3-12.3% for the habitat) (Table S5). To
369 further examine differences on a finer scale, we compared within lineages genomes originating
370 from soil versus non-soil habitats. The SPL classes *Terriglobia*, *Vicinamibacteria*, *Blastocatellia*,
371 and *Thermoanaerobaculia* showed more within-lineage significant differences between genomes
372 originating from soil versus non-soil habitats with 9, 4, 2, and 1, respectively, genomic features
373 identified as within-lineage habitat-specific. These included lower coding density, shorter genes,
374 lower GC percentage, higher number of protein-coding genes, more predicted peptidases, less

375 predicted viral contigs, lower predicted OGT, lower predicted pH, and more predicted
376 competitor lifestyle in *Terriglobia* soil genomes compared to non-soil genomes, larger genomes,
377 shorter genes, more predicted peptidases and CAZymes in *Vicinamibacteria* soil genomes
378 compared to non-soil genomes, shorter genes and lower coding density in *Blastocatellia* soil
379 genomes compared to non-soil genomes, and shorter genes in *Thermoanaerobaculia* soil
380 genomes compared to non-soil genomes. On the other hand, NSPL classes showed less within-
381 lineage significant differences between genomes originating from soil versus non-soil habitats
382 with only 1 genomic feature (GC percentage) identified as within-lineage habitat-specific for
383 class Aminicenantia (with soil Aminicenantia genomes having higher GC percentage than non-
384 soil genomes) (Table S5).

385 **Comparative genomic analysis identifies lineage-specific rather than habitat-specific**
386 **metabolic differences.** We conducted detailed comparative genomic analysis for the metabolic
387 capacities predicted for the 1930 genomes in the SPL classes *Blastocatellia*, *Terriglobia*,
388 *Thermoanaerobaculia*, and *Vicinamibacteria*, as well as the two NSPL classes Aminicenantia,
389 and Holophagae. We aimed to determine whether significant differences could be identified at a
390 phylogenetic level (i.e. between different lineages within the Acidobacteriota), as well as at the
391 habitat level (i.e. between genomes recovered from soil versus genomes recovered from non-soil
392 habitats, regardless of their phylogenetic affiliation), and the relative contribution of phylogeny
393 versus habitat in shaping Acidobacteriota metabolic capacities.

394 We identify 73 features where SPL classes differ significantly from NSPL classes (Table
395 S6). These features were mainly distributed among catabolic and anabolic pathways. On the
396 catabolic front, genomes from SPL classes encoded significantly higher O₂ respiration genes
397 (both low affinity and high affinity cytochrome oxidase), as well as dissimilatory sulfate

398 reduction genes (Table S6). On the other hand, genomes from NSPL classes encoded
399 significantly higher nitrate reduction to ammonium and dissimilatory nitrate reduction genes.
400 Genomes from SPL classes encoded significantly higher genes for ethanol fermentation from
401 acetyl-CoA, while those from NSPL genomes encoded significantly higher phosphate
402 acetyltransferase-acetate kinase pathway for acetate fermentation with concomitant substrate
403 level phosphorylation, and significantly more hydrogenases belonging to the fermentative
404 hydrogenogenic classes [FeFe] hydrogenase group b, [NiFe] hydrogenase group 3b-3d, and
405 [NiFe] hydrogenase group 4a-g, as well as the hydrogenotrophic hydrogenase classes in classes
406 [NiFe] group 1, and [NiFe] group 3c. However, the lack of clear autotrophic potential in these
407 NSPL genomes cast some doubt on these results. It has previously been suggested that
408 atmospheric H₂ can be scavenged by the thermophilic *Pyrinomonas methylaliphatogenes* K22 in
409 absence of organic carbon as a means of operating the respiratory chain when organic electron
410 donors are scarce [49]. Recently, more Acidobacteriota genomes were shown to encode such
411 hydrogenases [50]. A similar role for these hydrogenotrophic hydrogenases can be predicted for
412 these NSPL classes.

413 Further, SPL classes were enriched in some central metabolic pathways that are usually
414 associated with the higher O₂ tension conditions in soil (Table S6). These included the oxidative
415 branch of the PPP, the oxidative TCA cycle, and the semi-phosphorylative Entner-Doudoroff
416 pathway (which joins the oxidative branch of the PPP to glycolysis). SPL genomes are also
417 enriched in the degradation of the sugars/sugar acids galactose, glucuronate, and galacturonate,
418 amino acids Pro, Trp, Met, and hydroxyproline (an amino acid rich in plants cell wall proteins
419 and glycoproteins, and so would be abundant in soil constituting a rich source of C and N for soil

420 bacteria [51]), and in nucleotide degradation (uracil to β -alanine, thymine to 3-amino-
421 isobutanoate, and xanthine to urea) (Table S6).

422 On the anabolic side, SPL classes exhibited a higher biosynthetic capacity, where
423 biosynthesis of seven amino acids (Lys, Arg, Thr, Val, Ile, His, and Trp) and nine cofactors
424 (Menaquinone, heme, pyridoxal-P, NAD, pantothenate, THF, Lipoic acid, riboflavin, and
425 molybdenum cofactor) were significantly enriched in the four SPL classes (F-test p-value <1e-5).

426 On the other hand, the biosynthesis of only one amino acid (Pro), and two cofactors (thiamine,
427 and biotin) were enriched in the two NSPL classes. Interestingly, some of the cofactors with
428 enriched biosynthesis in the SPL classes are functional during the operation of the electron
429 transport chain for O_2 respiration (e.g. menaquinone and heme), a trait enriched in SPL lineages
430 (Figure 7). SPL classes were also more enriched in trehalose biosynthesis. The disaccharide
431 trehalose acts as an osmolyte whose biosynthesis was shown to be upregulated in dry soil mainly
432 contributing to tolerance to water deficits [52-55]. On the other hand, NSPL classes were
433 enriched in polyamine biosynthesis. Polyamines are aliphatic polycations with diverse function
434 related to cell growth, biofilm formation, as well as secondary metabolite production [56].

435 Recently, [57] demonstrated a link between increasing intracellular concentration of polyamines
436 and improved oxidative stress tolerance in *Pseudomonas*. A similar role for polyamine can be
437 speculated in the NSPL classes.

438 On the other hand, habitat-specific comparisons identified only 45 features where
439 genomes from soil differ significantly from genomes from non-soil sources (Table S6). The
440 majority of these features (42 out of 45) were identified as significantly affected by phylogeny,
441 with only three features (fatty acids beta oxidation pathway genes, N_2 fixation genes, and high
442 affinity O_2 respiration using cytochrome oxidase cbb3) identified as habitat-specific (but not

443 lineage-specific). Statistical analysis of features where both phylogeny and habitat were
444 significant (n=42) showed lineage to be more important (lineage percentage contribution: 2-
445 50.8%), with habitat contributing < 7.2%. Of the 42 features where both phylogeny and habitat
446 were significant, 39 followed the same trend (where the feature was higher/lower in SPL as well
447 as genomes sourced from soil regardless of their lineage), with only 3 features with a divergent
448 trend. These later features included phosphatidyl choline biosynthesis, tetrahydrofolate
449 biosynthesis, and nitrite oxidation (significantly higher in SPL genomes and in genomes from
450 non-soil sources).

451

Discussion

452 Here, we examined Acidobacteriota global distribution patterns using a metagenomic read
453 mapping approach, and identified salient differences in genomic characteristics and metabolic
454 capacities across lineages and habitats in the Acidobacteriota. Four classes (Blastocatellia,
455 Terriglobia, Thermoanaerobaculia, and Vicinamibacteria) were shown to have clear preference
456 to soil over non-soil habitats, based on their high soil ubiquity (encountered in >75% of soil
457 datasets), soil preference (ratio of occurrence in datasets from soil versus non soil datasets >4),
458 and higher relative abundance in soil datasets compared to non-soil datasets (Figure 2, Table S2).
459 These four classes encompass many Acidobacteriota taxa previously isolated from soil or shown
460 to occur in high abundance in soil in amplicon-based surveys. The class Terriglobia encompasses
461 subgroups 1 (Families *Acidobacteriaceae* and *Koribacteraceae*), and 3 (family
462 *Bryobacteraceae*). Class Vicinamibacteria encompasses subgroup 6 (family
463 *Vicinamibacteraceae*). Class Thermoanaerobaculia encompasses subgroups 10, and 23 (family
464 *Thermoanaerobaculaceae*). Class Blastocatellia encompasses subgroup 4 (Families
465 *Pyrinomonadaceae*, *Blastocellaceae*, and *Chloracidobacteriaceae*). More importantly, we
466 identify multiple additional poorly characterized yet uncultured lineages that are ubiquitous and
467 show high preference and high relative abundance in soil datasets (Figure 2, Table S2). These
468 include the uncultured families UBA7541 (subgroup 2), and SbA1 in Terriglobia, and UBA2999
469 in Vicinamibacteria. Most of these families are defined based on MAGs recovered from
470 metagenomic studies and are not currently recognized in amplicon- and isolation-based
471 classification. The recognition of the prevalence of such lineages should spur efforts towards
472 more detailed –omics-based characterization and assessment of their importance and potential

473 role in elemental cycling and contribution to ecosystem functioning in soil, as well as stimulate
474 endeavors towards obtaining them in pure cultures.

475 Organisms encountered in multiple niches are referred to as generalists, while those
476 restricted to a single habitat are specialists. Studies usually utilize occurrence patterns as an
477 empirical measurement of a generalist versus specialist pattern either within a target habitat [58],
478 through a habitat transition gradient, or on a global scale [59]. Assignment of microbial taxa as
479 generalists or specialists could be affected by the level of phylogenetic resolution employed,
480 number of datasets examined, sequencing depth of datasets, and detection threshold employed.
481 Prior research provided some insights on such patterns in the Acidobacteriota. For example, a
482 study examining a large collection of datasets from farmland soils suggested that Acidobacteriota
483 harbored a larger fraction of generalists than specialists at the species OTUs level [58]. On the
484 other hand, studies assessing Acidobacteriota generalist-specialist patterns on a global scale are
485 quite sparse. A recent analysis, defining specialists and generalists using the level of community
486 similarity between datasets where a specific lineage is encountered (with high community
487 similarity indicating a specialist pattern and low community similarity indicating a generalist
488 pattern) as a substitute for occurrence patterns, concluded that Acidobacteriota encompassed a
489 high proportion of specialized genera [59].

490 Our analysis of Acidobacteriota distribution patterns strongly suggests that a habitat-
491 generalist rather than a habitat-specialist pattern is more common in the Acidobacteriota (Table
492 S3). Using two datasets (publicly available metagenomes via Sandpiper, and publicly available
493 genomes in GTDB), criteria (with and without exclusion of rare taxa, with and without exclusion
494 of taxa with less than 5 genomes), and taxonomic thresholds (class, order, family), we estimate

495 that 73.3-91.7% of classes, 61.5-86.49% of orders, and 52.9-87.04% of families are habitat
496 generalists, with documented ability to inhabit multiple environments.

497 We attribute the prevalence of habitat-generalist over habitat-specialist pattern in the
498 Acidobacteriota to two possible reasons: the nature of its preferred habitat(s), and the genomic
499 features and metabolic capacities of its members. Broadly, habitats that are extreme, restricted,
500 and drastically different from their surroundings favor specialists, e.g. chemolithotrophic
501 hyperthermophiles in hydrothermal vents [60], strict halophilic Archaea in hypersaline
502 ecosystems [61], anaerobic gut fungi in the herbivorous alimentary tracts [62]. On the other
503 hand, generalists thrive across more temperate, less restricted, and more complex habitats.
504 Broadly, the habitats where Acidobacteriota appears to thrive, e.g. soil, and freshwater, are
505 temperate, with fluctuating temperature, pH, salinity, as well as a complex variable influx of
506 substrates. Such conditions allow for generalists, organisms usually exhibiting a wider arsenal of
507 substrate utilization capacities and response to environmental fluctuations, to thrive as integral
508 components of a complex habitat.

509 Regarding metabolic abilities, habitat-specialists' genomes are usually streamlined and
510 either mediate a specific function or encode exceptional capacity to survive and adapt to a unique
511 ecosystem [63]. Habitat-generalists' genomes, on the other hand, are more metabolically
512 versatile to enable adaptation, e.g. *Pseudomonas* [64], *Burkholderia* [65] thriving under so
513 many substrates, *Shewanella* thriving under many electron acceptors [66]. Within the
514 Acidobacteriota, genomic analysis identified moderate to large genomes and suggested a general
515 prevalence of heterotrophy, and lack of auxotrophies. Our machine-learning-based analysis
516 suggested prevalence of moderate predicted optimal growth temperature and pH, as well as

517 variable predicted oxygen preferences, all of which would explain the prevalence of habitat-
518 generalist patterns in the phylum.

519 Prior genomic analysis of members of the Acidobacteriota has been conducted on pure
520 culture isolates [14, 50, 67, 68] or assembled MAGs [4, 22, 31, 69, 70]. These efforts have
521 yielded valuable insights into the salient genomic features of various members of the phylum.
522 Our analysis aimed for a broader and more comprehensive view of Acidobacteriota genomes via
523 a global comparative analysis approach. In addition to expanding on known capacities within the
524 phylum, we aimed to identify variations in genomic features, physiological optima, and
525 metabolic capacities within members of the Acidobacteriota, and to determine whether the
526 observed differences are habitat-specific (e.g. present in all genomes of soil Acidobacteriota
527 regardless of the lineage they belong to), lineage-specific (e.g. present in all genomes of a
528 lineage regardless of the environmental source), or a combination of both. Our results suggest
529 that lineage is more important than habitat in describing the observed differences, with very few
530 exceptions. Within general genomics features and physiological optima prediction, lineage
531 significantly affected all 14 criteria compared (F test P-value $<2.6 \times 10^{-10}$), while habitat only
532 significantly affected 7 criteria, and the interaction between the two only significantly affected 4
533 criteria (GC percentage, number of predicted peptidases, predicted optimal growth temperature,
534 and predicted optimal growth pH) (Table S5, Figures 3, 5, 6). In all these comparisons, lineage
535 explained 3.5-45.3% of the variability, while habitat only explained 0.91-12.34%. Detailed
536 analysis of metabolic identified 73 functions that were significantly different between SPL and
537 NSPL classes, while habitat only significantly affected 45 functions (42 of which were also
538 significantly affected by lineage). In all these comparisons, lineage explained 2.02-50.8% of the
539 variability, while habitat % contribution never exceeded 7.2%. Indeed, many of the metabolic

540 features previously shown to underpin success of Acidobacteriota in soil, were found to be
541 lineage-specific (significantly encountered more in SPL genomes), rather than habitat-specific
542 (present in all soil Acidobacteriota regardless of their phylogeny). For examples genes encoding
543 CAZymes and BGCs were significantly higher in SPL genomes, but these numbers did not
544 significantly vary in genomes derived from soil versus genomes derived from non-soil
545 environments. However, while clearly lineage plays a more important role, some habitat-specific
546 features are of note. Soil as a habitat appears to select for genomes with lower coding density,
547 higher number of protein-coding genes, shorter average gene length, larger number of
548 peptidases, and for organisms with lower predicted OGT and lower predicted pH, and with a
549 predicted competitor lifestyle.

550 Finally, the observed prevalence of a generalist pattern and higher importance of lineage
551 compared to habitat in shaping Acidobacteriota genomes strongly suggest a ready cross-
552 colonization of Acidobacteriota across major habitats. Under this scenario, while differential
553 preference of certain Acidobacteriota lineages to specific habitat exists, the presence of a ready
554 reservoir, albeit in minor quantities, in other environments would allow ready cross-colonization
555 when needed, e.g. as a mechanism for repopulation post-disturbances (e.g. fire, extensive
556 pollution), or during the process of pedogenesis (soil formation). Nevertheless, our results also
557 advocate for a role played by the environment, specifically soil studied here, in shaping
558 Acidobacteriota genomes post-acquisition. Specifically, larger number of encoded peptidases,
559 lower predicted OGT and pH, and a predicted competitor lifestyle would allow organisms to
560 survive better in the soil ecosystem. Genomes from soil also encoded pathways beneficial to
561 surviving in such ecosystem, e.g. N₂ fixation, purine degradation to urea, and beta lactam
562 resistance.

563 In conclusion, our results identify clear soil preferences for four classes (Terriglobia,
564 Vicinamibacteria, Blastocatellia, and Thermoanaerobaculia) of Acidobacteriota. We also
565 demonstrate that such preferences are driven not only by taxa previously recognized as
566 prominent soil-dwellers in prior isolation and amplicon efforts, but also by multiple yet-
567 uncultured orders and families in these four classes that are ubiquitous and abundant yet poorly
568 characterized. Further, our analysis indicates that despite the observed preference patterns, most
569 Acidobacteriota classes, orders, families, and genera are habitat generalists rather than
570 specialists. As well, our global comparative genomic analysis provides new insights into the
571 genomic features, predicted physiological optima, and metabolic repertoires of members of the
572 Acidobacteriota, and disentangles the role played by phylogeny versus habitat in shaping
573 Acidobacteriota genomic and predicted metabolic features.

574

575 **Acknowledgments.** This work has been supported by the US National Science Foundation
576 (NSF) grant 2016423 to N.H.Y. and M.S.E., and the US National Institute of Health (NIH) grant
577 1P20GM152333 to MSE.

578 **Table 1.** Genomes compared in this study. Total number of genomes compared belonging to each of the 6 Acidobacterioat classes is
 579 shown. Number of genomes originating from soil, engineered, freshwater, host-associated, marine, non-marine saline and alkaline,
 580 and terrestrial non-soil are also shown for each class.

Class	Total number of genomes	Number of genomes from soil	Number of genomes from non-soil environments					
			Engineered	Freshwater	Host-associated	Marine	Non marine saline and alkaline	Terrestrial non-soil
Blastocatellia	215	64	103	35	8	1	0	4
Terriglobia	1006	537	179	197	50	16	0	27
Thermoanaerobaculia	153	25	49	22	37	17	0	3
Vicinamibacteria	231	44	35	59	47	46	0	0
Aminicenantia	119	7	27	49	0	35	1	0
Holophagae	206	16	30	151	4	5	0	0

581 **Figure legends**

582 **Figure 1.** Ecological distribution of the phylum Acidobacteriota and its 14 classes in 248,559
583 metagenomic datasets available through the web interface Sandpiper [32]. (A) Percentage
584 occurrence of members of the phylum Acidobacteriota and its 14 classes in datasets originating
585 from soil (■), and non-soil (■) ecosystems. Classes are shown on the X-axis. The dotted line
586 represents 75% occurrence, the cutoff used to define a lineage as ubiquitous in an ecosystem. (B)
587 The ratio of percentage occurrence of the phylum and each of its 14 classes in soil versus non-
588 soil ecosystems. The dotted line represents a ratio of 4, the cutoff used to define a lineage as soil-
589 preferring in an ecosystem. (C) Average percentage abundance of members of the phylum
590 Acidobacteriota and its 14 classes in datasets originating from soil (■), and non-soil (■)
591 ecosystems. Classes are shown on the X-axis. The dotted line represents 1% occurrence, the
592 cutoff used to define a lineage as abundant in an ecosystem. (D) The ratio of percentage
593 abundance of the phylum and each of its 14 classes in soil versus non-soil ecosystems. The
594 dotted line represents a ratio of 1, the cutoff used to define a lineage as relatively more abundant
595 in an ecosystem.

596 **Figure 2.** Phylogenomic tree constructed using the GTDB concatenated alignment of 120 single
597 copy marker gene. The tree was constructed in FastTree [71] and is wedged at the family level.
598 Family names are shown on the right. Wedges are color coded by order (shown to the left of the
599 tree). Class names are shown to the left. Families and orders with higher soil ubiquity and
600 preference values are highlighted by an asterisk (*). The values corresponding to the percentage
601 occurrence of each family in soil (■), and non-soil (■) ecosystems, as well as the ratio (■) of
602 percentage occurrence in soil versus non-soil ecosystems are shown as horizontal bars to the
603 direct right of the tree. Families with >25% occurrence in soil datasets were considered

604 ubiquitous in soil, while families with a ratio of percentage occurrence in soil versus non-soil
605 ecosystems >4 were considered soil-preferring. For ease of visualization, dashed vertical lines
606 are shown for the 20% and 50% occurrence in soil datasets, and for the soil: non-soil %
607 occurrence ratios 4, 20, 50, and 100. Horizontal bars to the right of the thick vertical line
608 represent the average percentage abundance of each family in soil (■), and non-soil (■)
609 ecosystems, as well as the ratio (□) of percentage abundance in soil versus non-soil ecosystems.
610 Families with a ratio of percentage abundance in soil versus non-soil ecosystems >1 were
611 considered more abundant in soil. For ease of visualization, dashed vertical lines are shown for
612 the 1% abundance in soil datasets, 1% and 20% abundance in non-soil datasets, and for the soil:
613 non-soil % abundance ratio of 1.

614 **Figure 3.** Box plots for the distribution of several general genomic features in the 1930 genomes
615 of the 6 Acidobacteriota classes compared in this study. Features shown are genome size (top
616 row), genome percentage GC (second row from top), genome coding density (third row from
617 top), average gene length (second to last row), and protein count (bottom row). Results for two-
618 tailed ANOVA followed by Tukey for pairwise comparisons are shown on top of the box plots
619 only for significant comparisons. *, $0.01 < p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p <$
620 0.0001 ; ****, $p < 0.00001$. The first two columns show results for lineage-specific comparisons
621 at the Acidobacteriota Class level, as well as when combining Acidobacteriota SPL (Terriglobia,
622 Vicinamibacteria, Thermoanaerobaculia, and Blastocatellia) versus NSPL (Holophagae and
623 Aminicenantia). The third column shows results for habitat-specific comparisons (genomes
624 originating from soil versus non-soil environments regardless of phylogeny). Results of within-
625 lineage habitat-specific comparisons are shown in the fourth column, where genomes from soil

626 origin are shown in cyan, while genomes from non-soil origin are shown in red. The exact p-
627 values for all comparisons are shown in Table S4 and S5.

628 **Figure 4.** Box plots for the distribution of phage infection/immunity features in the 1930
629 genomes of the 6 Acidobacteriota classes compared in this study. Features shown are number of
630 CRISPRs (top row), and number of viral contigs (bottom row). Results for two-tailed ANOVA
631 followed by Tukey for pairwise comparisons are shown on top of the box plots only for
632 significant comparisons. *, $0.01 < p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$;
633 ****, $p < 0.00001$. The first two columns show results for lineage-specific comparisons at the
634 Acidobacteriota Class level, as well as when combining Acidobacteriota SPL (Terriglobia,
635 Vicinamibacteria, Thermoanaerobaculia, and Blastocatellia) versus NSPL (Holophagae and
636 Aminicenania). The third column shows results for habitat-specific comparisons (genomes
637 originating from soil versus non-soil environments regardless of phylogeny). Results of within-
638 lineage habitat-specific comparisons are shown in the fourth column, where genomes from soil
639 origin are shown in cyan, while genomes from non-soil origin are shown in red. The exact p-
640 values for all comparisons are shown in Table S4 and S5.

641 **Figure 5.** Box plots for the distribution of potential extracellular products arsenal in the 1930
642 genomes of the 6 Acidobacteriota classes compared in this study. Features shown are number of
643 biosynthetic gene clusters (BGCs, top row), number of CAZymes (middle row), and number of
644 proteases (bottom row). Results for two-tailed ANOVA followed by Tukey for pairwise
645 comparisons are shown on top of the box plots only for significant comparisons. *, $0.01 < p <$
646 0.05 ; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$; ****, $p < 0.00001$. The first two columns
647 show results for lineage-specific comparisons at the Acidobacteriota Class level, as well as when
648 combining Acidobacteriota SPL (Terriglobia, Vicinamibacteria, Thermoanaerobaculia, and

649 Blastocatellia) versus NSPL (Holophagae and Aminicenantia). The third column shows results
650 for habitat-specific comparisons (genomes originating from soil versus non-soil environments
651 regardless of phylogeny). Results of within-lineage habitat-specific comparisons are shown in
652 the fourth column, where genomes from soil origin are shown in cyan, while genomes from non-
653 soil origin are shown in red. The exact p-values for all comparisons are shown in Table S4 and
654 S5.

655 **Figure 6.** Box plots for the distribution of predicted physiological optima in the 1930 genomes
656 of the 6 Acidobacteriota classes compared in this study. Features shown are predicted optimal
657 growth temperature (OGT, top row), and predicted optimal pH (bottom row). Results for two-
658 tailed ANOVA followed by Tukey for pairwise comparisons are shown on top of the box plots
659 only for significant comparisons. *, $0.01 < p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p <$
660 0.0001 ; *****, $p < 0.00001$. The first two columns show results for lineage-specific comparisons
661 at the Acidobacteriota Class level, as well as when combining Acidobacteriota SPL (Terriglobia,
662 Vicinamibacteria, Thermoanaerobaculia, and Blastocatellia) versus NSPL (Holophagae and
663 Aminicenantia). The third column shows results for habitat-specific comparisons (genomes
664 originating from soil versus non-soil environments regardless of phylogeny). Results of within-
665 lineage habitat-specific comparisons are shown in the fourth column, where genomes from soil
666 origin are shown in cyan, while genomes from non-soil origin are shown in red. The exact p-
667 values for all comparisons are shown in Table S4 and S5.

668 **Figure 7.** Bar plots for the distribution of the predicted aerobic (■) versus anaerobic (■) lifestyle
669 in the 1930 genomes of the 6 Acidobacteriota classes compared in this study. Results are shown
670 by class (A), Soil preference (SPL versus NSPL, B), habitat from which the genome originated

671 (C), and within lineage broken down by habitat (D). Number of genomes in each category is
672 shown on top of the bar.

673 **Figure 8.** Bar plots for the distribution of the predicted life history strategy (ruderal (■),
674 competitor (□), or scarcity (■)) in the 1930 genomes of the 6 Acidobacteriota classes compared
675 in this study. Results are shown by class (A), Soil preference (SPL versus NSPL, B), habitat
676 from which the genome originated (C), and within lineage broken down by habitat (D). Number
677 of genomes in each category is shown on top of the bar.

678

679

680

681 References

682 1. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes.
683 *Int J Syst Evol Microbiol* 2021;71:005056. <https://doi.org/10.1099/ijsem.0.005056>

684 2. Barns SM, Cain EC, Sommerville L *et al*. Acidobacteria phylum sequences in uranium-
685 contaminated subsurface sediments greatly expand the known diversity within the
686 phylum. *Appl Environ Microbiol* 2007;73:3113-6. <https://doi.org/10.1128/aem.02012-06>

687 3. Barns SM, Takala SL, Kuske CR. Wide distribution and diversity of members of the
688 bacterial kingdom Acidobacterium in the environment. *Appl Environ Microbiol*
689 1999;65:1731-7. <https://doi.org/10.1128/aem.65.4.1731-1737.1999>

690 4. Crits-Christoph A, Diamond S, Al-Shayeb B *et al*. A widely distributed genus of soil
691 Acidobacteria genomically enriched in biosynthetic gene clusters. *ISME Communications*
692 2022;2:70. <https://doi.org/10.1038/s43705-022-00140-5>

693 5. Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and
694 cultivation of bacteria in the phylum Acidobacteria. *Appl Environ Microbiol*
695 2011;77:586-96. <https://doi.org/10.1128/aem.01080-10>

696 6. Huber KJ, Geppert AM, Groß U *et al*. *Aridibacter nitratireducens* sp. nov., a member of
697 the family *Blastocatellaceae*, class *Blastocatellia*, isolated from an African soil. *Int J Syst
698 Evol Microbiol* 2017;67:4487-93. <https://doi.org/10.1099/ijsem.0.002318>

699 7. Huber KJ, Geppert AM, Wanner G *et al*. The first representative of the globally
700 widespread subdivision 6 Acidobacteria, *Vicinamibacter silvestris* gen. nov., sp. nov.,
701 isolated from subtropical savannah soil. *Int J Syst Evol Microbiol* 2016;66:2971-79.
702 <https://doi.org/10.1099/ijsem.0.001131>

703 8. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S
704 rRNA genes. *Appl Environ Microbiol* 2006;72:1719-28.
705 <https://doi.org/10.1128/aem.72.3.1719-1728.2006>

706 9. Jones RT, Robeson MS, Lauber CL *et al*. A comprehensive survey of soil acidobacterial
707 diversity using pyrosequencing and clone library analyses. *ISME J* 2009;3:442-53.
708 <https://doi.org/10.1038/ismej.2008.127>

709 10. Joseph SJ, Hugenholtz P, Sangwan P *et al*. Laboratory cultivation of widespread and
710 previously uncultured soil bacteria. *Appl Environ Microbiol* 2003;69:7210-5.
711 <https://doi.org/10.1128/aem.69.12.7210-7215.2003>

712 11. Kuske CR, Barns SM, Busch JD. Diverse uncultivated bacterial groups from soils of the
713 arid southwestern United States that are present in many geographic regions. *Appl
714 Environ Microbiol* 1997;63:3614-21. <https://doi.org/10.1128/aem.63.9.3614-3621.1997>

715 12. Lauber CL, Hamady M, Knight R *et al*. Pyrosequencing-based assessment of soil pH as a
716 predictor of soil bacterial community structure at the continental scale. *Appl Environ
717 Microbiol* 2009;75:5111-20. <https://doi.org/10.1128/aem.00335-09>

718 13. Ludwig W, Bauer SH, Bauer M *et al*. Detection and in situ identification of
719 representatives of a widely distributed new bacterial phylum. *FEMS Microbiol Lett*
720 1997;153:181-90. <https://doi.org/10.1111/j.1574-6968.1997.tb10480.x>

721 14. Rawat SR, Männistö MK, Bromberg Y *et al*. Comparative genomic and physiological
722 analysis provides insights into the role of Acidobacteria in organic carbon utilization in
723 Arctic tundra soils. *FEMS Microbiol Ecol* 2012;82:341-55.
724 <https://doi.org/10.1111/j.1574-6941.2012.01381.x>

725 15. Sait M, Hugenholtz P, Janssen PH. Cultivation of globally distributed soil bacteria from
726 phylogenetic lineages previously only detected in cultivation-independent surveys.
727 *Environ Microbiol* 2002;4:654-66. <https://doi.org/10.1046/j.1462-2920.2002.00352.x>

728 16. Izumi H, Nunoura T, Miyazaki M *et al.* *Thermotomaculum hydrothermale* gen. nov., sp.
729 nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea
730 hydrothermal vent chimney in the Southern Okinawa Trough. *Extremophiles*
731 2012;16:245-53. <https://doi.org/10.1007/s00792-011-0425-9>

732 17. Liesack W, Bak F, Kreft JU *et al.* *Holophaga foetida* gen. nov., sp. nov., a new,
733 homoacetogenic bacterium degrading methoxylated aromatic compounds. *Arch*
734 *Microbiol* 1994;162:85-90. <https://doi.org/10.1007/bf00264378>

735 18. Coates JD, Ellis DJ, Gaw CV *et al.* *Geothrix fermentans* gen. nov., sp. nov., a novel
736 Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. *Int J Syst Bacteriol*
737 1999;49 Pt 4:1615-22. <https://doi.org/10.1099/00207713-49-4-1615>

738 19. Fukunaga Y, Kurahashi M, Yanagi K *et al.* *Acanthopleuribacter pedis* gen. nov., sp. nov.,
739 a marine bacterium isolated from a chiton, and description of *Acanthopleuribacteraceae*
740 fam. nov., *Acanthopleuribacterales* ord. nov., *Holophagaceae* fam. nov., *Holophagales*
741 ord. nov. and *Holophagae* classis nov. in the phylum 'Acidobacteria'. *Int J Syst Evol*
742 *Microbiol* 2008;58:2597-601. <https://doi.org/10.1099/ij.s.0.65589-0>

743 20. Bryant DA, Costas AM, Maresca JA *et al.* *Candidatus Chloracidobacterium*
744 thermophilum: an aerobic phototrophic Acidobacterium. *Science* 2007;317:523-6.
745 <https://doi.org/10.1126/science.1143236>

746 21. Oberpaul M, Zumkeller CM, Culver T *et al.* High-throughput cultivation for the selective
747 isolation of Acidobacteria from termite nests. *Front Microbiol* 2020;11:597628.
748 <https://doi.org/10.3389/fmicb.2020.597628>

749 22. Flieder M, Buongiorno J, Herbold CW *et al.* Novel taxa of Acidobacteriota implicated in
750 seafloor sulfur cycling. *ISME J* 2021;15:3159-80. <https://doi.org/10.1038/s41396-021-00992-0>

752 23. Dedysh SN, Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria. *Int*
753 *J Syst Evol Microbiol* 2018;68:3796-806. <https://doi.org/10.1099/ijsem.0.003062>

754 24. Quast C, Pruesse E, Yilmaz P *et al.* The SILVA ribosomal RNA gene database project:
755 improved data processing and web-based tools. *Nucleic Acids Res* 2013;41:D590-6.
756 <https://doi.org/10.1093/nar/gks1219>

757 25. Parks DH, Chuvochina M, Rinke C *et al.* GTDB: an ongoing census of bacterial and
758 archaeal diversity through a phylogenetically consistent, rank normalized and complete
759 genome-based taxonomy. *Nucleic Acids Res* 2022;50:D785-d94.
760 <https://doi.org/10.1093/nar/gkab776>

761 26. Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that
762 define *Terriglobus* gen. nov., in the phylum Acidobacteria. *Appl Environ Microbiol*
763 2007;73:2708-17. <https://doi.org/10.1128/aem.02140-06>

764 27. Kishimoto N, Kosako Y, Tano T. *Acidobacterium capsulatum* gen. nov., sp. nov.: An
765 acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral
766 environment. *Curr Microbiol* 1991;22:1-7. <https://doi.org/10.1007/BF02106205>

767 28. Koch IH, Gich F, Dunfield PF *et al.* *Edaphobacter modestus* gen. nov., sp. nov., and
768 *Edaphobacter aggregans* sp. nov., acidobacteria isolated from alpine and forest soils. *Int*
769 *J Syst Evol Microbiol* 2008;58:1114-22. <https://doi.org/10.1099/ij.s.0.65303-0>

770 29. Kulichevskaya IS, Suzina NE, Liesack W *et al.* *Bryobacter aggregatus* gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. *Int J Syst Evol Microbiol* 2010;60:301-06. <https://doi.org/10.1099/ijss.0.013250-0>

771 30. Losey NA, Stevenson BS, Busse HJ *et al.* *Thermoanaerobaculum aquaticum* gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. *Int J Syst Evol Microbiol* 2013;63:4149-57. <https://doi.org/10.1099/ijss.0.051425-0>

772 31. Yadav A, Borrelli JC, Elshahed MS *et al.* Genomic analysis of family UBA6911 (group 18 acidobacteria) expands the metabolic capacities of the phylum and highlights adaptations to terrestrial habitats. *Appl Environ Microbiol* 2021;87:e0094721. <https://doi.org/10.1128/aem.00947-21>

773 32. Woodcroft BJ, Aroney STN, Zhao R *et al.* SingleM and Sandpiper: Robust microbial taxonomic profiles from metagenomic data. *bioRxiv* 2024:2024.01.30.578060. <https://doi.org/10.1101/2024.01.30.578060>

774 33. Ivanova N, Tringe SG, Liolios K *et al.* A call for standardized classification of metagenome projects. *Environ Microbiol* 2010;12:1803-5. <https://doi.org/10.1111/j.1462-2920.2010.02270.x>

775 34. Russel J, Pinilla-Redondo R, Mayo-Muñoz D *et al.* CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. *CRISPR J* 2020;3:462-69. <https://doi.org/10.1089/crispr.2020.0059>

776 35. Guo J, Bolduc B, Zayed AA *et al.* VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. *Microbiome* 2021;9:37. <https://doi.org/10.1186/s40168-020-00990-y>

777 36. Zheng J, Ge Q, Yan Y *et al.* dbCAN3: automated carbohydrate-active enzyme and substrate annotation. *Nucl Acids Res* 2023;51:W115-W21. <https://doi.org/10.1093/nar/gkad328>

778 37. Blin K, Shaw S, Augustijn HE *et al.* antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. *Nucl Acids Res* 2023;51:W46-W50. <https://doi.org/10.1093/nar/gkad344>

779 38. Rawlings ND, Barrett AJ, Thomas PD *et al.* The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. *Nucl Acids Res* 2017;46:D624-D32. <https://doi.org/10.1093/nar/gkx1134>

780 39. Li G, Rabe KS, Nielsen J *et al.* Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. *ACS Synth Biol* 2019;8:1411-20. <https://doi.org/10.1021/acssynbio.9b00099>

781 40. Ramoneda J, Stallard-Olivera E, Hoffert M *et al.* Building a genome-based understanding of bacterial pH preferences. *Sci Adv* 2023;9:eadf8998. <https://doi.org/10.1126/sciadv.adf8998>

782 41. Davín AA, Woodcroft BJ, Soo RM *et al.* An evolutionary timescale for Bacteria calibrated using the Great Oxidation Event. *bioRxiv* 2023:2023.08.08.552427. <https://doi.org/10.1101/2023.08.08.552427>

783 42. Barnett SE, Egan R, Foster B *et al.* Genomic features predict bacterial life history strategies in soil, as identified by metagenomic stable isotope probing. *mBio* 2023;14:e0358422. <https://doi.org/10.1128/mbio.03584-22>

815 43. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for
816 functional characterization of genome and metagenome sequences. *J Mol Biol*
817 2016;428:726-31. <https://doi.org/10.1016/j.jmb.2015.11.006>

818 44. Kim GB, Gao Y, Palsson BO *et al.* DeepTFactor: A deep learning-based tool for the
819 prediction of transcription factors. *Proc Natl Acad Sci USA* 2021;118:e2021171118.
820 <https://doi.org/10.1073/pnas.2021171118>

821 45. Lenfant N, Hotelier T, Velluet E *et al.* ESTHER, the database of the α/β -hydrolase fold
822 superfamily of proteins: tools to explore diversity of functions. *Nucl Acids Res*
823 2013;41:D423-9. <https://doi.org/10.1093/nar/gks1154>

824 46. Teufel F, Almagro Armenteros JJ, Johansen AR *et al.* SignalP 6.0 predicts all five types
825 of signal peptides using protein language models. *Nat Biotechnol* 2022;40:1023-25.
826 <https://doi.org/10.1038/s41587-021-01156-3>

827 47. Leisch F. A toolbox for K-centroids cluster analysis. *Comput Stat Data Anal*
828 2006;51:526-44. <https://doi.org/https://doi.org/10.1016/j.csda.2005.10.006>

829 48. Zhou Z, Tran PQ, Breister AM *et al.* METABOLIC: high-throughput profiling of
830 microbial genomes for functional traits, metabolism, biogeochemistry, and community-
831 scale functional networks. *Microbiome* 2022;10:33. <https://doi.org/10.1186/s40168-021-01213-8>

833 49. Greening C, Carere CR, Rushton-Green R *et al.* Persistence of the dominant soil phylum
834 Acidobacteria by trace gas scavenging. *Proc Natl Acad Sci USA* 2015;112:10497-502.
835 <https://doi.org/10.1073/pnas.1508385112>

836 50. Eichorst SA, Trojan D, Roux S *et al.* Genomic insights into the Acidobacteria reveal
837 strategies for their success in terrestrial environments. *Environ Microbiol* 2018;20:1041-
838 63. <https://doi.org/10.1111/1462-2920.14043>

839 51. Chen S, White CE, diCenzo GC *et al.* L-hydroxyproline and D-proline catabolism in
840 *Sinorhizobium meliloti*. *J Bacteriol* 2016;198:1171-81. <https://doi.org/10.1128/jb.00961-15>

842 52. Warren CR. Response of osmolytes in soil to drying and rewetting. *Soil Biol Biochem*
843 2014;70:22-32. <https://doi.org/https://doi.org/10.1016/j.soilbio.2013.12.008>

844 53. Warren CR. Do microbial osmolytes or extracellular depolymerisation products
845 accumulate as soil dries? *Soil Biol Biochem* 2016;98:54-63.
846 <https://doi.org/https://doi.org/10.1016/j.soilbio.2016.03.021>

847 54. Warren CR. Pools and fluxes of osmolytes in moist soil and dry soil that has been re-wet.
848 *Soil Biol Biochem* 2020;150:108012.
849 <https://doi.org/https://doi.org/10.1016/j.soilbio.2020.108012>

850 55. Warren CR, Manzoni S. When dry soil is re-wet, trehalose is respired instead of
851 supporting microbial growth. *Soil Biol Biochem* 2023;184:109121.
852 <https://doi.org/https://doi.org/10.1016/j.soilbio.2023.109121>

853 56. Michael AJ. Polyamine function in archaea and bacteria. *J Biol Chem* 2018;293:18693-
854 701. <https://doi.org/10.1074/jbc.TM118.005670>

855 57. Solmi L, Rossi FR, Romero FM *et al.* Polyamine-mediated mechanisms contribute to
856 oxidative stress tolerance in *Pseudomonas syringae*. *Sci Rep* 2023;13:4279.
857 <https://doi.org/10.1038/s41598-023-31239-x>

858 58. Xu Q, Vandenkoornhuyse P, Li L *et al.* Microbial generalists and specialists differently
859 contribute to the community diversity in farmland soils. *J Adv Res* 2022;40:17-27.
860 <https://doi.org/10.1016/j.jare.2021.12.003>

861 59. von Meijenfeldt FAB, Hogeweg P, Dutilh BE. A social niche breadth score reveals niche
862 range strategies of generalists and specialists. *Nat Ecol Evol* 2023;7:768-81.
863 <https://doi.org/10.1038/s41559-023-02027-7>

864 60. Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. *Mar Life
865 Sci Technol* 2021;3:204-30. <https://doi.org/10.1007/s42995-020-00086-4>

866 61. Oren A. Molecular ecology of extremely halophilic Archaea and Bacteria. *FEMS
867 Microbiol Ecol* 2002;39:1-7. <https://doi.org/10.1111/j.1574-6941.2002.tb00900.x>

868 62. Gruninger RJ, Puniya AK, Callaghan TM *et al.* Anaerobic fungi (phylum
869 Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology,
870 role and biotechnological potential. *FEMS Microbiol Ecol* 2014;90:1-17.
871 <https://doi.org/10.1111/1574-6941.12383>

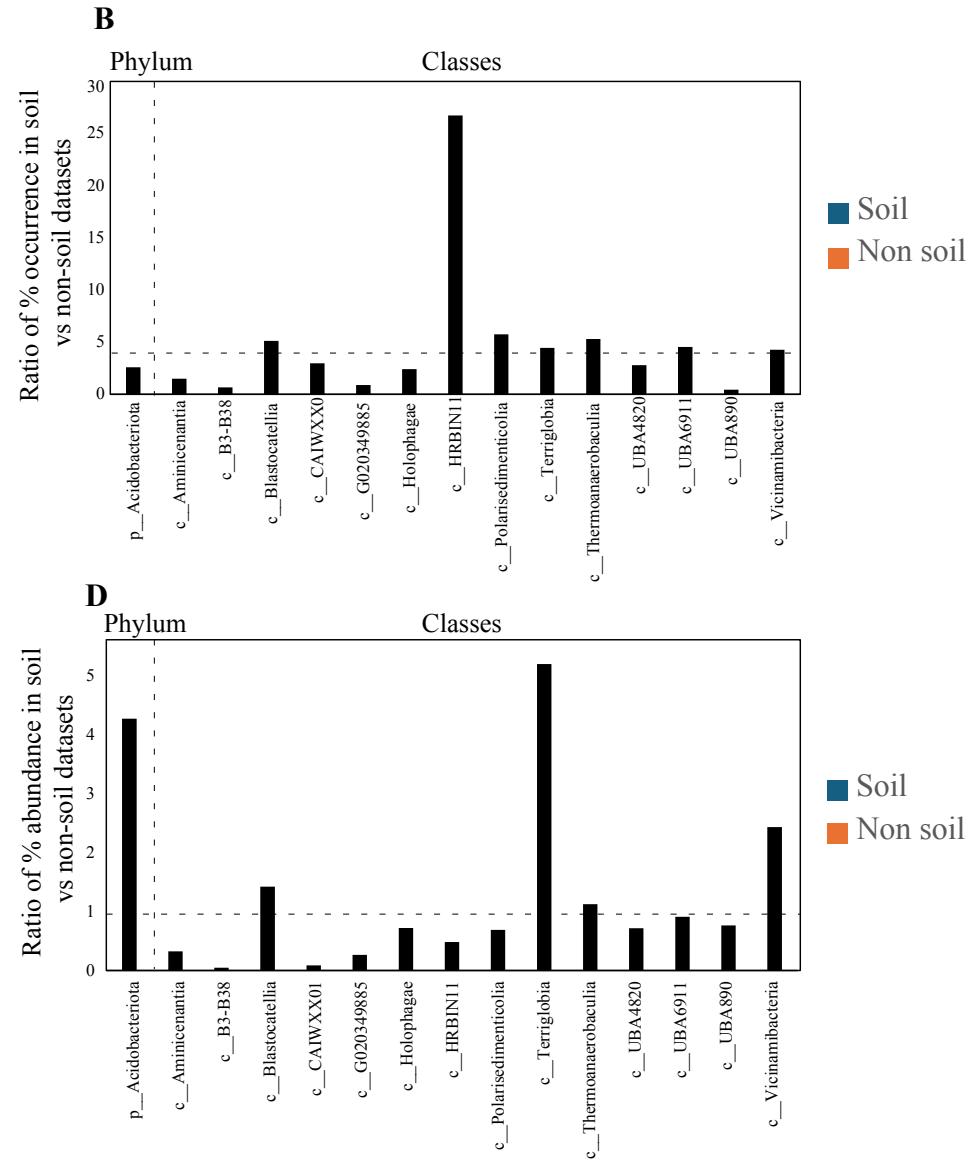
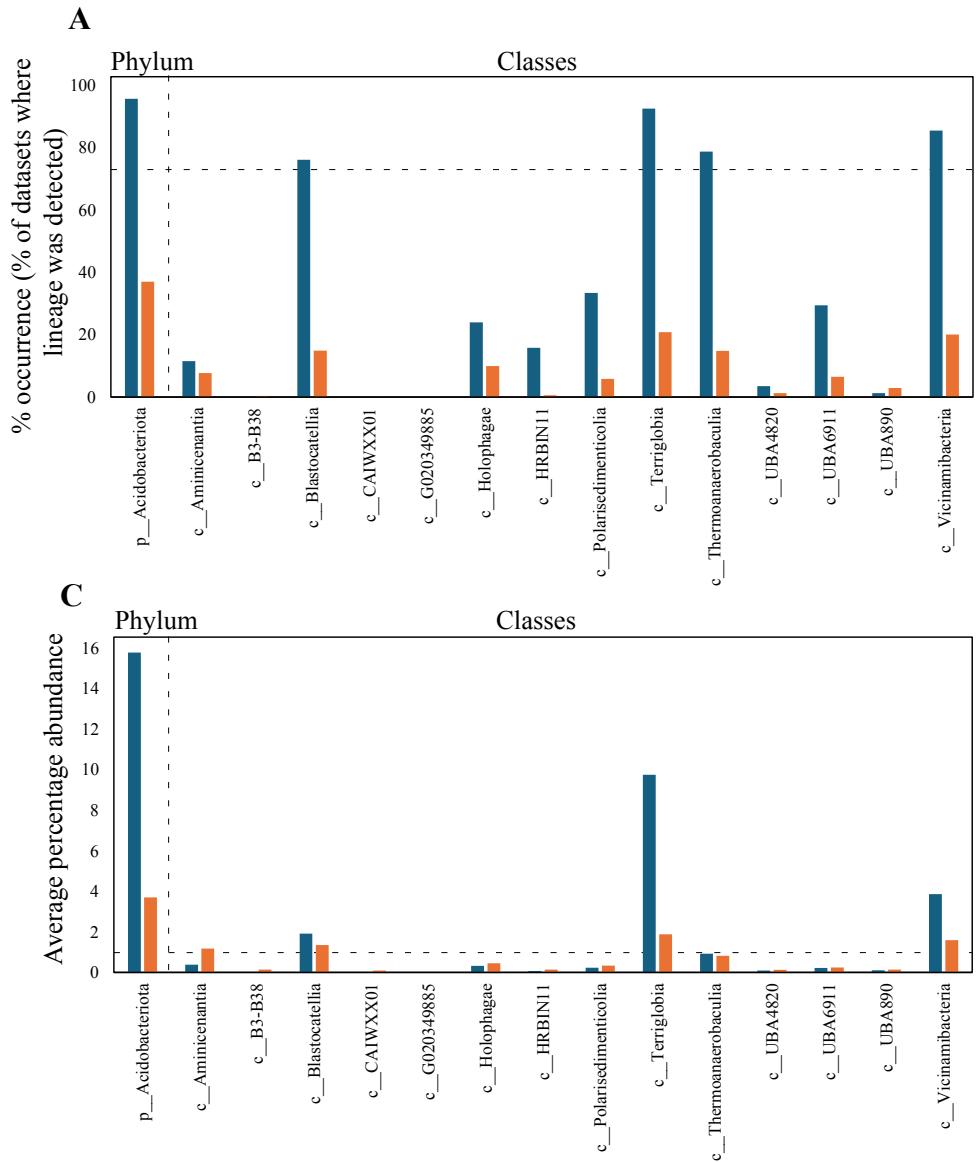
872 63. Bell TH, Bell T. Many roads to bacterial generalism. *FEMS Microbiol Ecol* 2020;97
873 <https://doi.org/10.1093/femsec/fiaa240>

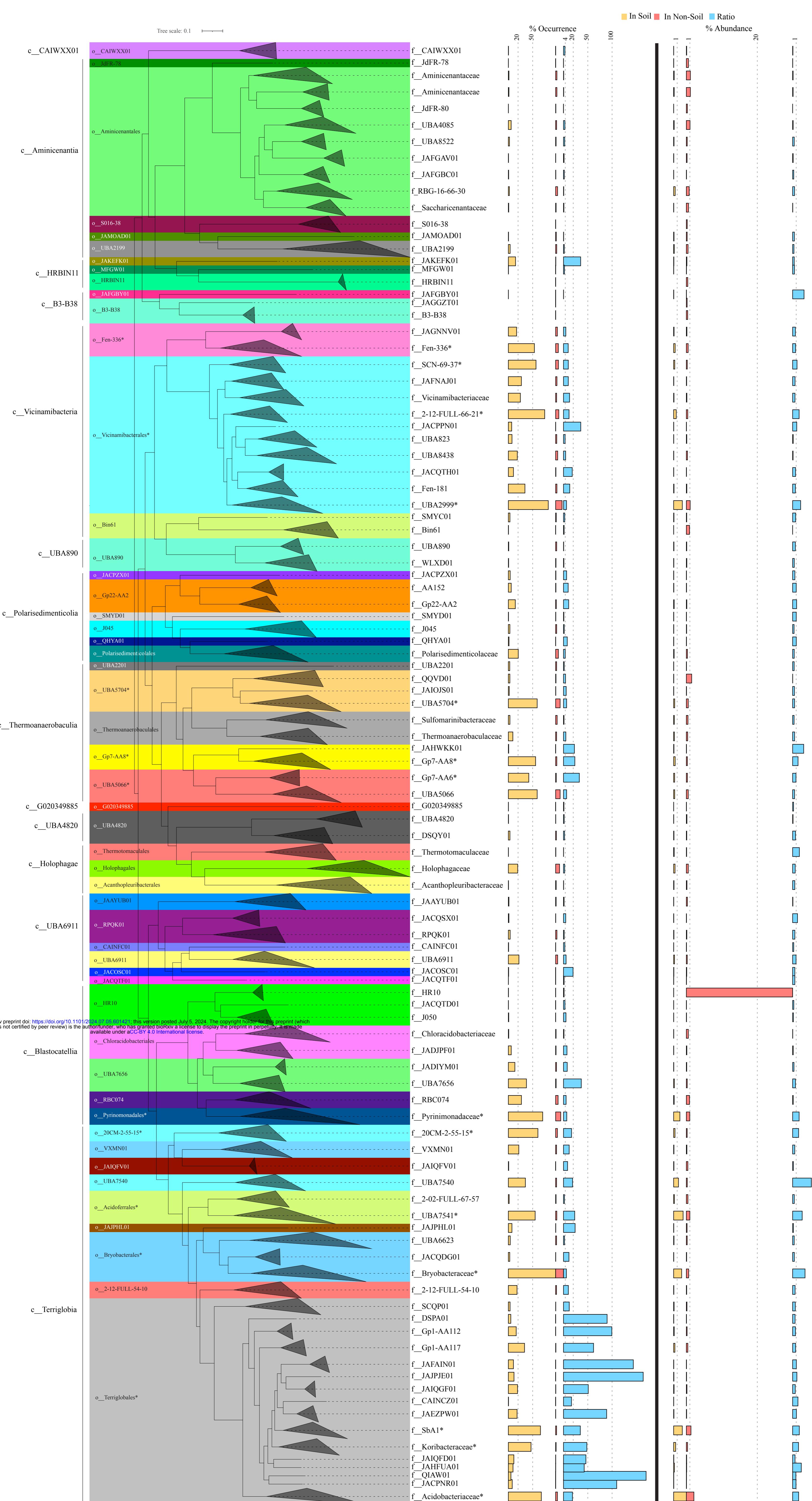
874 64. Koehorst JJ, van Dam JCJ, van Heck RGA *et al.* Comparison of 432 *Pseudomonas*
875 strains through integration of genomic, functional, metabolic and expression data. *Sci Rep*
876 2016;6:38699. <https://doi.org/10.1038/srep38699>

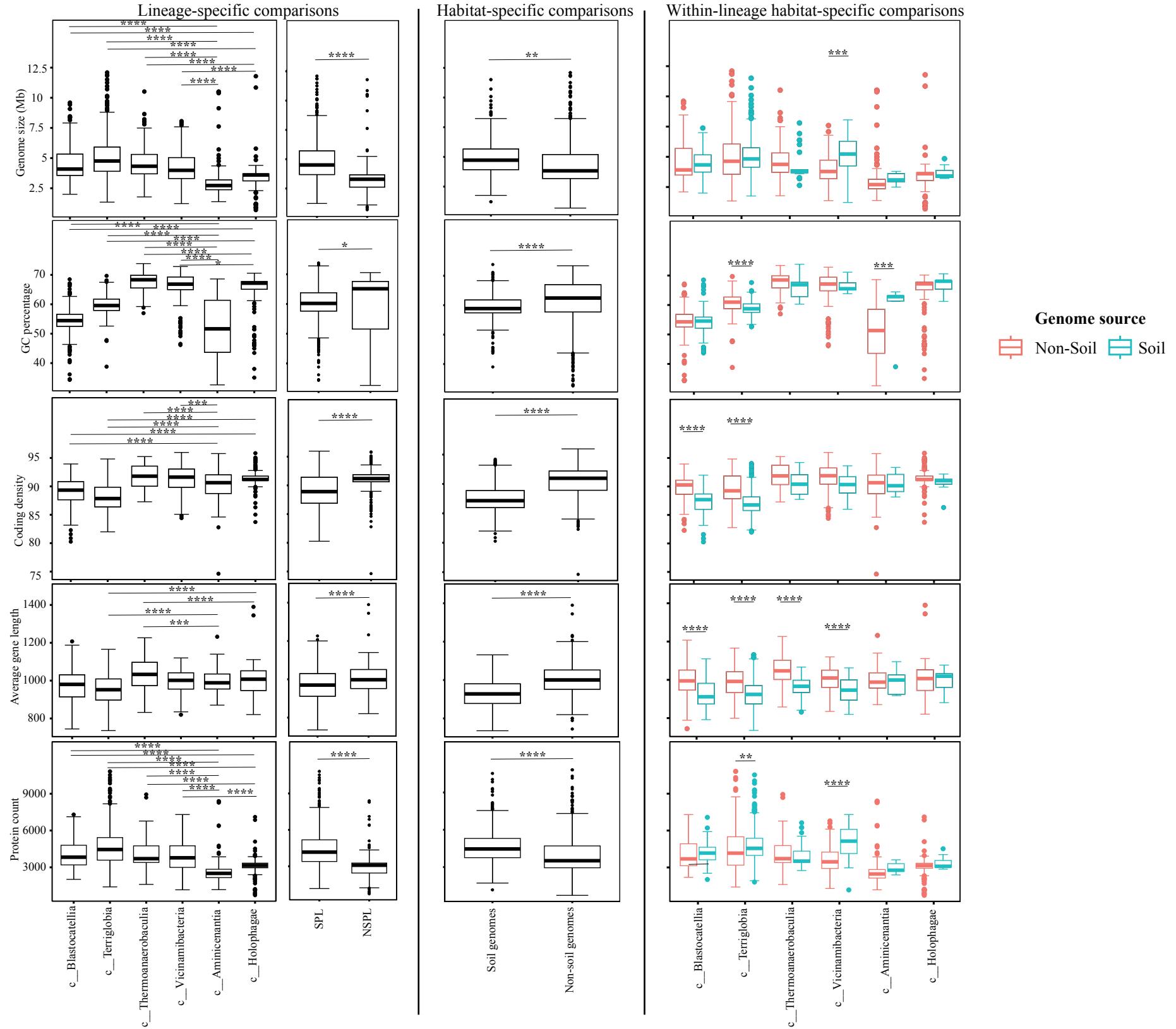
877 65. Compant S, Nowak J, Coenye T *et al.* Diversity and occurrence of *Burkholderia* spp. in
878 the natural environment. *FEMS Microbiol Rev* 2008;32:607-26.
879 <https://doi.org/10.1111/j.1574-6976.2008.00113.x>

880 66. Lian Y, Yang Y, Guo J *et al.* Electron acceptor redox potential globally regulates
881 transcriptomic profiling in *Shewanella decolorationis* S12. *Sci Rep* 2016;6:31143.
882 <https://doi.org/10.1038/srep31143>

883 67. Anderson I, Held B, Lapidus A *et al.* Genome sequence of the homoacetogenic bacterium
884 *Holophaga foetida* type strain (TMBS4(T)). *Stand Genomic Sci* 2012;6:174-84.
885 <https://doi.org/10.4056/sigs.2746047>

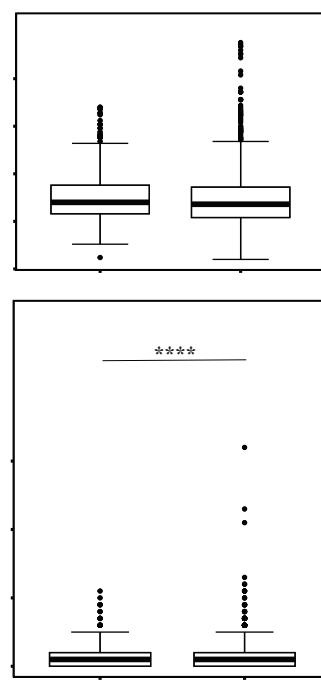


886 68. Ward NL, Challacombe JF, Janssen PH *et al.* Three genomes from the phylum
887 Acidobacteria provide insight into the lifestyles of these microorganisms in soils. *Appl
888 Environ Microbiol* 2009;75:2046-56. <https://doi.org/10.1128/aem.02294-08>

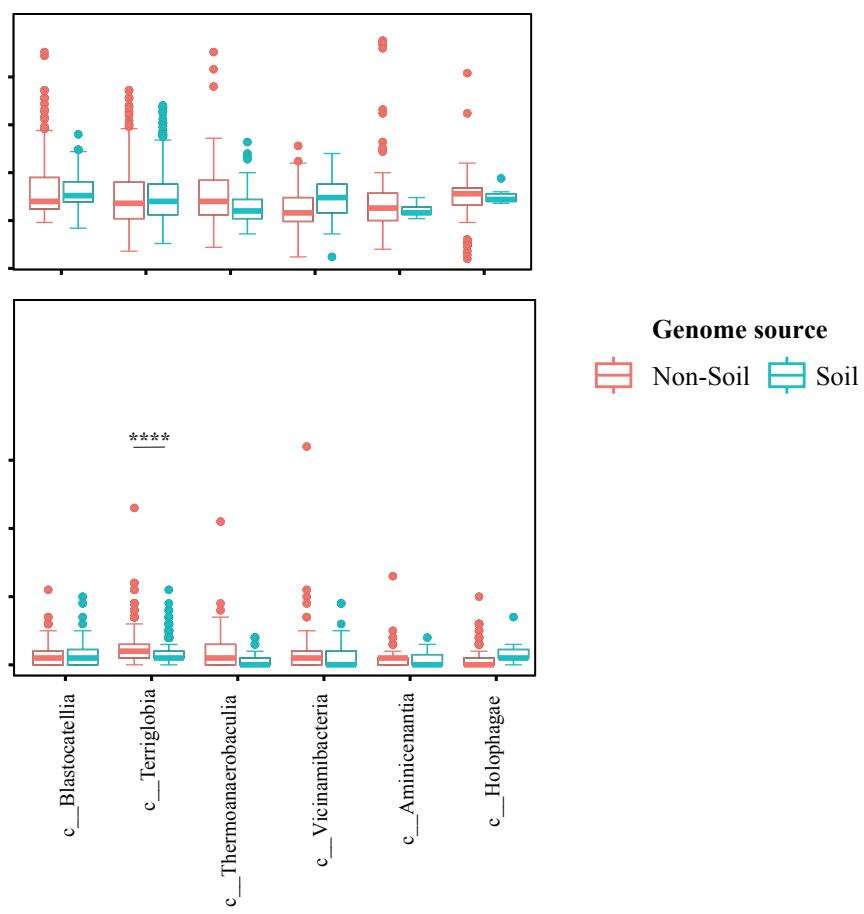

889 69. Reji L, Zhang X. Genome-resolved metagenomics informs the functional ecology of
890 uncultured Acidobacteria in redox oscillated sphagnum peat. *mSystems* 2022;7:e0005522.
891 <https://doi.org/10.1128/msystems.00055-22>


892 70. Xu R, Sun X, Hägglom MM *et al.* Metabolic potentials of members of the class
893 Acidobacteria in metal-contaminated soils revealed by metagenomic analysis. *Environ
894 Microbiol* 2022;24:803-18. <https://doi.org/10.1111/1462-2920.15612>

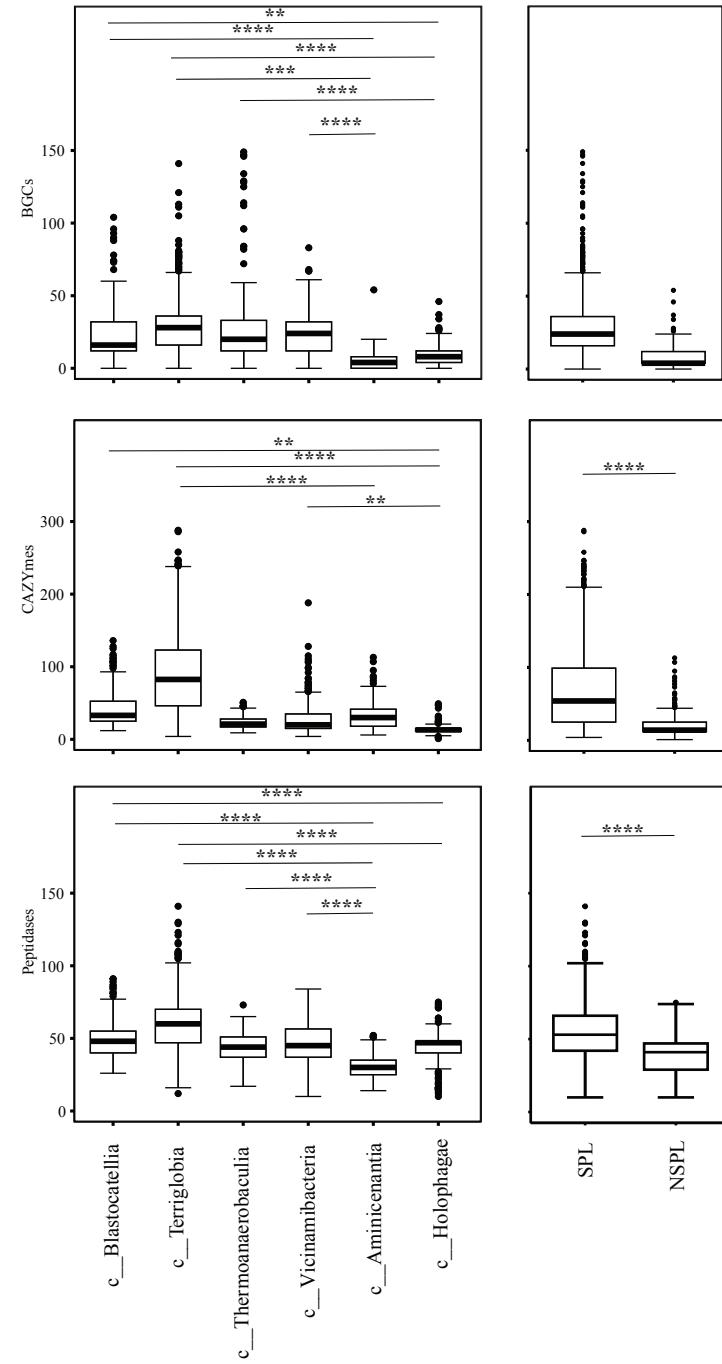
895 71. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood Trees
896 for Large Alignments. *PLOS ONE* 2010;5:e9490.
897 <https://doi.org/10.1371/journal.pone.0009490>

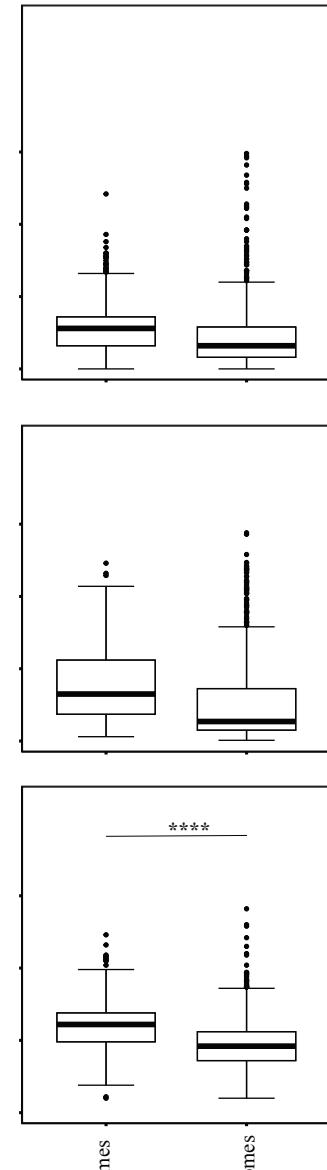

898



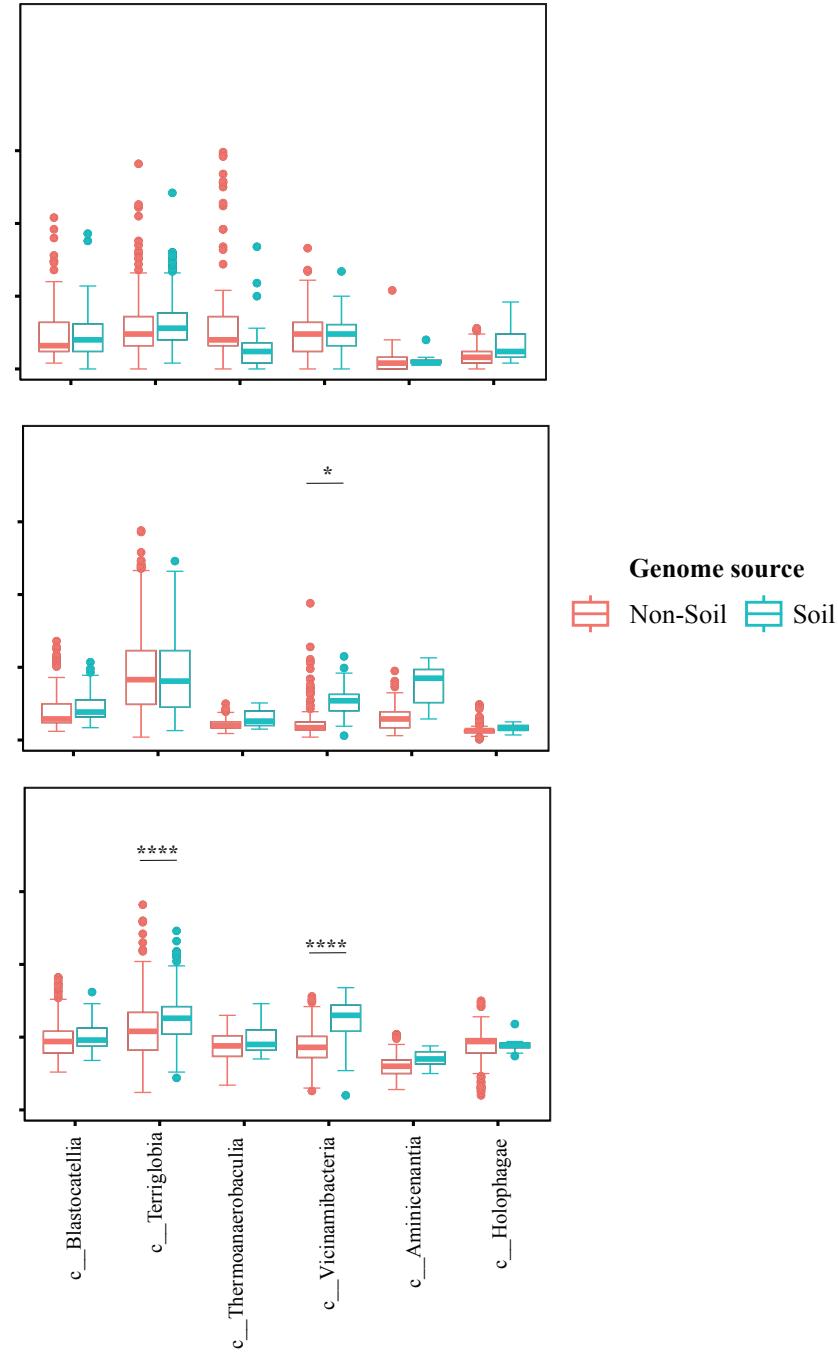

Lineage-specific comparisons

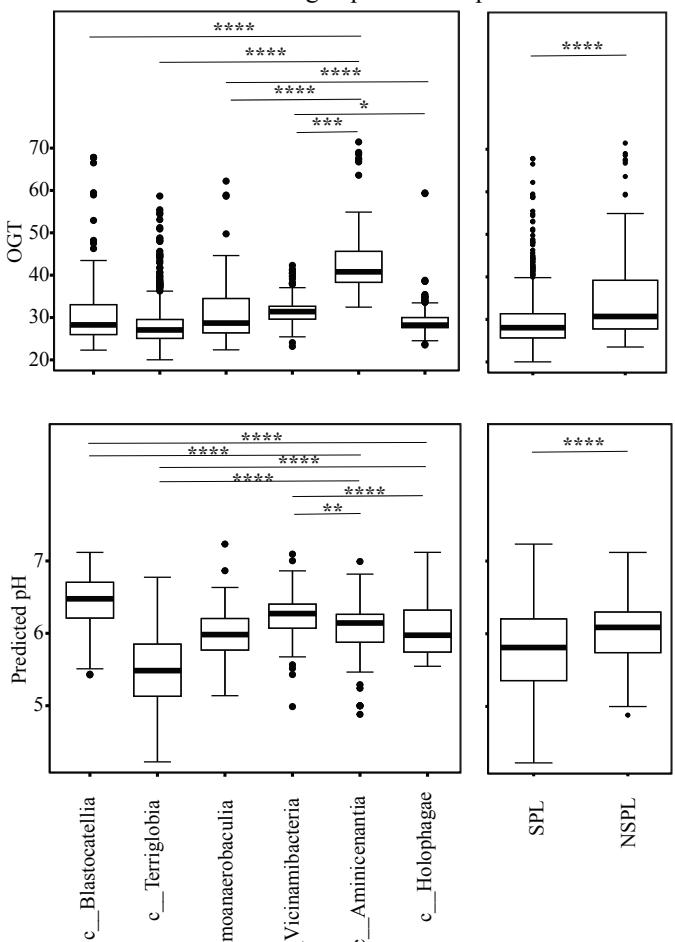
Habitat-specific comparisons

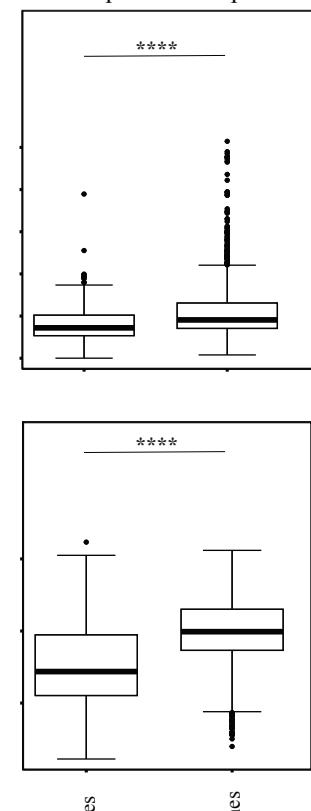

Within-lineage habitat-specific comparisons

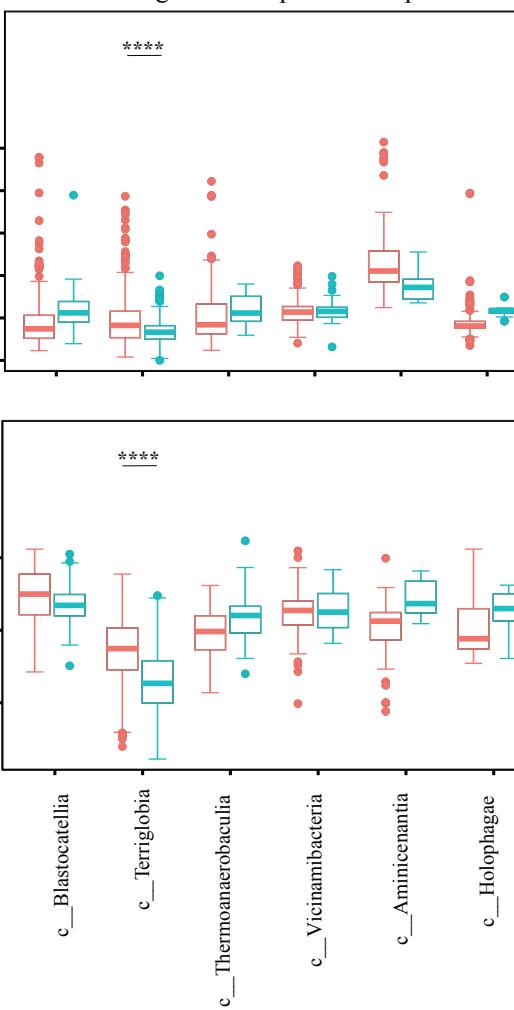

Genome source

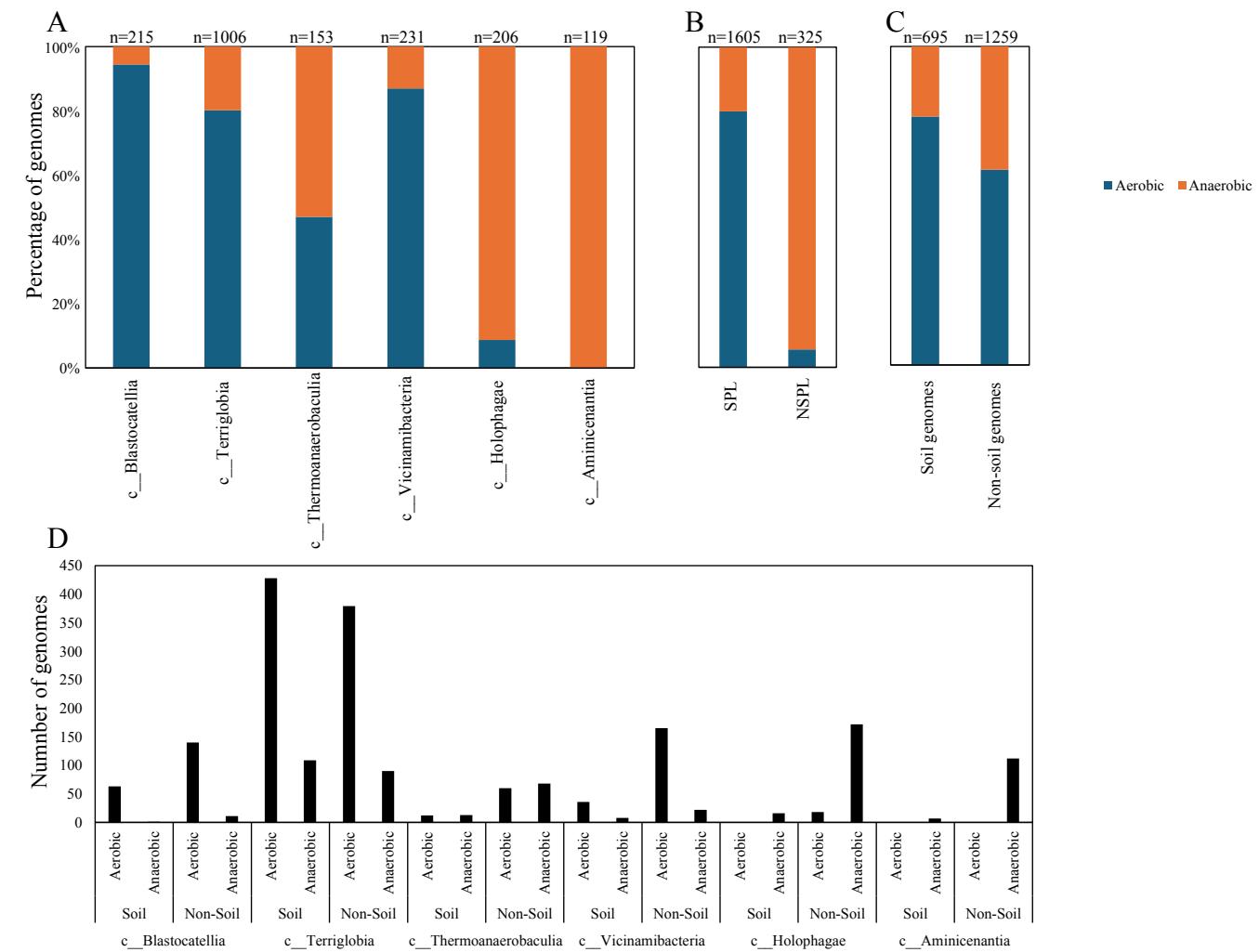
Non-Soil Soil

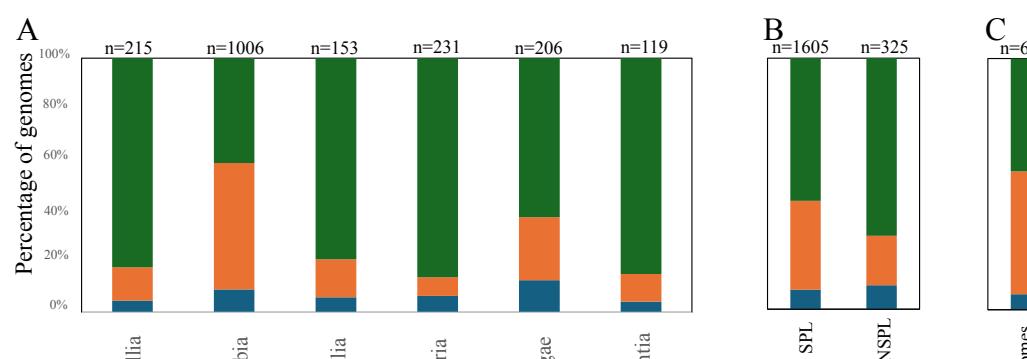

Lineage-specific comparisons


Habitat-specific comparisons

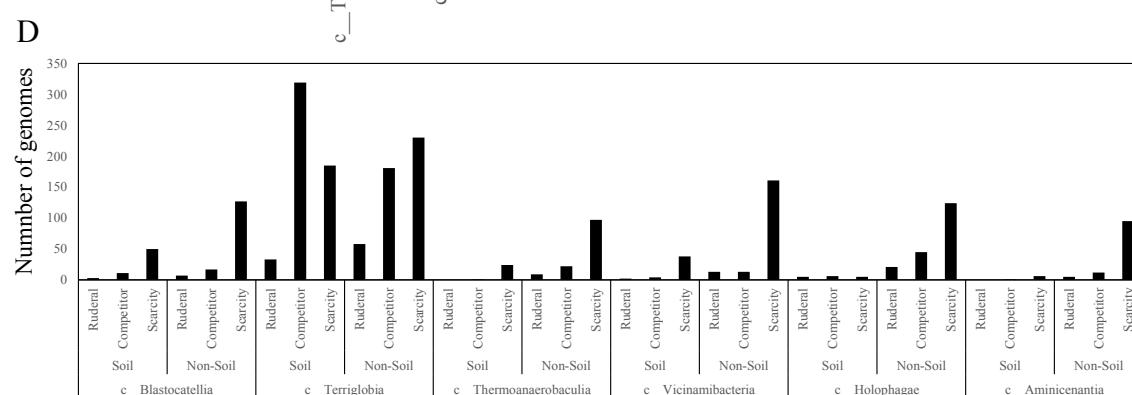
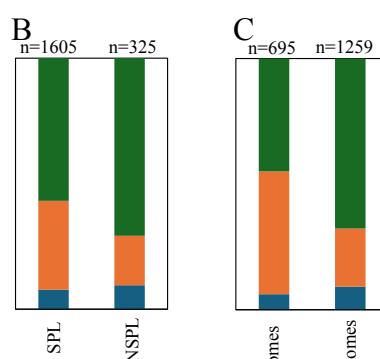

Within-lineage habitat-specific comparisons


Lineage-specific comparisons


Habitat-specific comparisons



Within-lineage habitat-specific comparisons

Genome source

■ Ruderal
■ Competitor
■ Scarcity

■ Ruderal ■ Competitor ■ Scarcity