
Can ZNS SSDs be Better Storage Devices for
Persistent Cache?

Chongzhuo Yang, Zhang Cao, Chang Guo, Ming Zhao, Zhichao Cao
School of Computing and Augmented Intelligence, Arizona State University

Tempe, Arizona

Abstract
Block-based regular SSDs have been widely used as storage
backends for persistent cache systems due to their explicitly
lower cost and persistence compared to DRAM. However,
the caching workloads are both write- and update-intensive.
It incurs a large amount of device-level write amplification
(WA) in the internal garbage collection (GC), which can lead
to SSD lifespan and potential performance issues. Zoned
Namespace SSDs (ZNS SSDs) offer a new interface for mod-
ern SSDs to overcome the limitations of regular SSDs in
some use cases. As ZNS SSDs need much lower internal
over-provisioning, they can offer a larger capacity compared
with regular SSDs. Considering these two advantages of ZNS
SSDs, we aim to explore three possible schemes to adapt the
existing persistent cache system on ZNS SSDs and analyze
their benefits and limitations. We conduct comprehensive
evaluations to further illustrate the tradeoffs of each scheme.
Based on our research and investigation, we conclude that
ZNS SSDs exhibit promising results as better storage back-
ends for persistent cache. Further, the co-design between
cache management and zone management can potentially
enhance the cache efficiency and performance.

CCS Concepts
• Information systems→ Storage management.

Keywords
ZNS SSDs, Caching System, Write Amplification

ACM Reference Format:
Chongzhuo Yang, Zhang Cao, Chang Guo, Ming Zhao, Zhichao Cao.
2024. Can ZNS SSDs be Better Storage Devices for Persistent Cache?.
In 16th ACM Workshop on Hot Topics in Storage and File Systems

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. Copyrights for components 
of this work owned by others than ACM must be honored. Abstracting with 
credit is permitted. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from permissions@acm.org.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright is held by the owner/author(s). Publication rights 
licensed to ACM.
ACM ISBN 979-8-4007-0630-1/24/07
https://doi.org/10.1145/3655038.3665946

(HOTSTORAGE ’24), July 8–9, 2024, Santa Clara, CA, USA. ACM,
New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/
3655038.3665946

1 Introduction
Flash-based SSDs have been widely used for cache systems
due to low cost and persistence compared with DRAM [2, 11].
Existing works mainly focus on caching data on regular
block-based SSDs (i.e., regular SSDs). Regular SSDs’ garbage
collection (GC) is managed by Flash Translation Layer (FTL)
and cannot be controlled by applications. With many ran-
dom and small writes to SSDs, the uncontrollable GC will
incur a high write amplification (WA), unstable through-
put, and high tail latency [11]. This issue becomes more
pronounced when the SSD capacity utilization is high [27].
Unfortunately, caching workloads consist of small, intensive,
random updates with high capacity utilization [11, 27, 30].
The additional in-device data movements will further de-
crease the lifespan of the SSDs [4]. The open-channel SSDs
[5, 14, 35] can separate different data streams into different
channels, relieving WA and GC penalties. However, open-
channel SSDs need extra work on the user client.

Zoned Namespace SSDs (ZNS SSDs) offer a new interface
for modern SSDs to overcome the aforementioned limita-
tions of regular SSDs [3]. Similar to other zone-based storage
devices [1, 9, 37–39], with sequential write and zone-based
cleaning constraints, ZNS SSDs can avoid internal GC. The
GC task can be managed by the applications, which provides
the potential to reduce WA. More importantly, ZNS SSDs
can offer explicitly larger storage capacities and more stable
performance compared to compatible regular SSDs due to
less over-provisioning (OP) space and simple internal opera-
tion logic [4]. Considering the potential of reducing the WA
and larger capacity with ZNS SSDs, in this paper, we want
to explore and answer the following question: can ZNS SSDs
be better storage devices for persistent cache? In particular, we
will explore the following detailed perspectives: 1) How to
adapt the existing flash-based persistent cache systems on
ZNS SSDs? 2) Can a ZNS SSD-based cache achieve better
performance in terms of throughput, latency, and hit ratio?
3) Additionally, what advantages or disadvantages does the
new zone-based interface bring to caching workloads? In this
paper, we utilize CacheLib [2], a general cache framework
developed by Meta, to demonstrate and analyze.

55

https://doi.org/10.1145/3655038.3665946
https://doi.org/10.1145/3655038.3665946
https://doi.org/10.1145/3655038.3665946
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665946&domain=pdf&date_stamp=2024-07-08


HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA C. Yang et al.

To answer these questions, we present the three possible
schemes that can adapt CacheLib to utilize ZNS SSDs as the
persistent back-end and analyze their tradeoffs. In the first
scheme, we run CacheLib on a ZNS-compatible file system
like F2FS [21] (called File-Cache). The file systemwill handle
all low-level operations management, so this approach can
provide convenience for CacheLib to use ZNS SSDs. However,
this design will lead to serious performance degradation
and substantial WA since the management of file system is
too heavy for cache access patterns. The internal indexing,
I/O, and management are not designed and optimized for
cache. The second scheme directly maps the cache on-disk
management unit (i.e., region) to the fixed-size zone (called
Zone-Cache). This method can achieve true zero WA and
be GC-free. However, it lacks flexibility due to the fixed zone
size and may use an extremely large region size. The large
region size may suffer from performance degradation and a
low cache hit ratio when the cache size is small. In the third
scheme, we propose to use a simple middle layer to translate
the zone interface to the region interface (called Region-
Cache). The middle layer can support flexible region sizes
on ZNS SSDs, which avoids overheads of the large region
size, but it needs GC to clean the zones. Moreover, it provides
opportunities for persistent cache to directly manage and
optimize the allocation and zone cleaning.
To further illustrate the tradeoffs of each solution, we

conduct comprehensive evaluations in Section 4. Specifically,
we utilize the CacheBench from CacheLib [12] and integrate
Cachelib into RocksDB as the end-to-end case to evaluate
the three proposed solutions compared with the compatible
regular SSDs. The analysis and evaluations lead us to the
following observations:

1. Using a file system on ZNS SSDs is a convenient solu-
tion but it can lead to high overheads and high costs.

2. The specific caching design on ZNS SSDs can achieve
a better hit ratio (from 94.29% to 95.08% in Section 4.1)
than regular SSDs due to their larger device capacity
and lower OP ratio (assuming hardware cost is same).

3. ZNS SSDs can reduce the tail latency and lower WA
compared with regular SSDs, which gives benefits for
caching workloads (up to 20% throughput improve-
ment and 42% tail latency reduction in RocksDB com-
pared to caching with regular SSDs in Section 4.2).

4. The persistent cache systems can potentially achieve
explicitly higher throughput and lower WA with re-
fined co-design between cache management and ZNS
SSD zone management.

We concluded ZNS SSDs can be better storage devices
for persistent cache. To help further investigations and
research, we open-sourced our code in Github 1.
1https://github.com/asu-idi/ZNS-Cache

2 Background and Motivations
In this section, we will present the background and related
work about flash cache and ZNS SSDs, motivating our work.

2.1 Flash Cache and CacheLib
Flash cache has been widely used in current data infrastruc-
ture due to its higher cost-effectiveness and significantly
larger capacity compared to the DRAM-based cache system.
Several studies have been conducted to design and optimize
flash-based cache systems [2, 11, 27–29], and they mainly
focus on caching data on regular SSDs (i.e., the SSDs with
the block interface). One notable example is CacheLib [2].
CacheLib is a pluggable caching engine developed by Meta,
aiming to build and scale high-performance cache services.
In log-structured cache of CacheLib, the flash space is par-
titioned into regions, and each region is used to package
cache objects with different sizes. To amortize the increasing
GC cost of frequent cache object evictions and insertions,
CacheLib evicts entire regions rather than individual cache
objects, and region size is configurable, e.g., 16 MiB.

2.2 Zoned Namespace SSDs
Zoned Namespace SSDs (ZNS SSDs) are a new type of SSDs
that divides flash into different zones [3]. In each zone, we
can read randomly like the regular block devices but data can
only be written sequentially and in a controlled manner (i.e.,
only write data at the write pointer’s position). The write
pointer can be moved sequentially bywrite or append, shifted
to the start by the reset, or jumped to the end of the zone by
finish. This design simplifies the internal GC in FTL (known
as the device-level GC), as the GC task is mainly instead
managed by applications. The user-level GC is like the open-
channel SSDs [3, 4, 35]. By better managing the data stored
in ZNS SSDs, GC andWA can be potentially reduced [17, 36].
Also, ZNS SSDs can have a larger capacity (e.g., 7-28%) than
the compatible regular SSD (i.e., the same hardware and cost)
since less internal OP space is needed [3, 4]. Existing studies
have demonstrated the benefits of deploying and optimizing
ZNS SSDs on specified applications, including LSM-based
key-value stores [6, 17, 23, 26], RAID systems [20, 24, 36],
and log-structured systems [16, 22, 32, 33].

2.3 Motivations
The current persistent cache system based on regular SSDs
is facing severe WA and high tail latency issues. Many works
have pointed out that the caching data on regular SSDs may
incur a large device-level WA factor if the write behavior
is not well-designed [11]. WA can be even higher when we
have a large number of random and small writes on SSDs.
Moreover, the internal GC of regular SSDs can lead to sig-
nificant performance regression and WA when the capacity
utilization is high [27]. Unfortunately, those are the main

56

https://github.com/asu-idi/ZNS-Cache


Can ZNS SSDs be Better Storage Devices for Persistent Cache? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

F2FS File

Region #1

Zone #3ZNS SSDs

Region #2 Region #3 Region #4

File Interface

CacheLib

Regular SSDs

16MiB 16MiB 16MiB 16MiB

Zone #1 Zone #2

4KiB I/O unit

Meta data Data
Reclaim

(a) File-Cache

Region #1

Zone #1 Zone #2 Zone #3

Region #2 Region #3

Zone Interface

CacheLib

reset

1077MiB I/O unit

reset

ZNS SSDs

(b) Zone-Cache

Middle Layer

Metadata

Zone #3

Region #1 Region #2 Region #3

Region Interface

CacheLib

Zone #1 Zone #2

Data Management Garbage Collection

16MiB I/O unit

ZNS SSDs

Reclaim

1 2 3mapping

(c) Region-Cache

Figure 1: Architecture of the three possible schemes to using ZNS SSDs in a cache system.

writing behaviors and utilization of caching workloads (i.e.,
small, intensive, and random updates as well as high capac-
ity utilization). Moreover, there exists uncontrollable GC in
regular SSDs because each writes to a regular SSD has the
potential to trigger GC, leading to a higher tail latency and
influencing the performance [4]. Those issues are mainly
caused by the internal FTL designs, characteristics of regular
SSDs, and the mismatch between legacy block interfaces and
cache management units.
Compared to regular SSDs, ZNS SSDs offer the potential

to reduce the WA and tail latency by avoiding internal GC.
Further, it can offer larger storage capacity for the same
device cost [3]. Less WA can increase the lifespan of the
SSDs, and avoid throughput reduction and unstable latency
caused by additional in-device data movements. Moreover,
when the total device cost is the same, a cache system with a
larger capacity can typically lead to a better overall cache hit
ratio [31] (the cache size is smaller than theworking set of the
current workload). Given these two advantages of ZNS SSDs,
we aim to explore the possibilities and tradeoffs of utilizing
ZNS SSDs as the backend of a persistent cache. First, we will
explore and analyze three solutions that can represent most
of the possible design spaces when utilizing ZNS SSDs as the
cache backend (i.e., fully transparent layer, directly managed,
and using a customized middle layer). Then, based on the
insights and observations, we will discuss more potentials
for ZNS SSDs to achieve lower WA and higher throughput
compared to the compatible regular SSDs.

3 Are The Three Solutions Good Enough?
In this section, we will explore the following solutions that
cover three possible design spaces: 1) File-Cache, using a
ZNS-compatible file system for full transparency; 2) Zone-
Cache, the cache system directly manages the ZNS SSDs by
matching the cache management unit with the zone; and
3) Region-Cache, using a simple middle layer to provide a
region interface for cache. The overall architectures of these
three schemes are shown in Figure 1. We will focus on the
following four measurement metrics (i.e., flexibility, space
efficiency, performance, and WA) and answer the follow-
ing questions: 1) Is this a feasible solution? 2) What are the
potential benefits? 3) What are the tradeoffs?

To verify our analysis, we also compare these three schemes
with CacheLib on regular SSDs (Block-Cache). The overall
evaluation is shown in Figure 2 (details can be found in Over-
all Comparison of Section 4.1). We will analyze the results
in the following sections.

3.1 Can We Use a ZNS Compatible File
System To Support Persistent Cache?

Answer: Absolutely yes! CacheLib and other persistent
cache are designed to use either a raw regular block device
(no file system) or one large file allocated in a file system.
Therefore, the ZNS SSD can be formatted with a compatible
file system so that the CacheLib can directly use its file-
base engine to read and write regions on a pre-allocated file.
The architecture is shown in Figure 1(a). All the low-level
operations including zone allocation, zone cleaning with GC,
and indexing are applied and managed by the file system,
which is fully transparent to CacheLib.

After configuring the file system, all I/O operations can
directly leverage the file interface to manage. Thus, the cache
can treat the ZNS SSD like a regular device. However, this
design pays a high price on both performance and WA. First,
current ZNS SSDs compatible file system (e.g., F2FS [21])
needs additional space provisioning (e.g., 20%) to conduct
garbage collection management, lowering the benefits of
large space of using ZNS SSDs. Second, the file system is
designed for general use cases. The frequent cache unit over-
write/update can lead to unexpected file system internal GC
and zone cleaning, which causes high overhead and WA.
Finally, the full transparency makes us lose the chance to
optimize GC and WA by using application-level hints.
In Figure 2, the throughput and hit ratio of File-Cache

are lower than those of Block-Cache due to its additional
mapping overhead, OP space requirement, and GC overhead
[33]. Therefore, using a ZNS-compatible file system like F2FS
to support persistent cache on ZNS SSD is feasible and con-
venient, but it will bring explicitly high overhead.

3.2 How About Matching the Cache
Management Unit with Zone?

Answer: It might be a better solution! Most of the per-
sistent cache designs, including CacheLib, group the newly

57



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA C. Yang et al.

Reg
ion
-Ca
che

Zon
e-C
ach
e

File
-Ca
che

Blo
ck-
Cac
he

0.0

0.2

0.4

T
hr
ou
gh
pu
t

Region-Cache

Zone-Cache

File-Cache

Block-Cache
0.90

0.92

0.94

0.96

H
it 

R
at

io

Figure 2: Performance of the four schemes.

inserted cache objects into a much larger management unit
(e.g., fixed-size regions) to reduce the WA and improve the
I/O efficiency by allocating and evicting large I/O units on
SSDs. If space is not enough, one region (e.g., at the LRU end)
will be evicted and overwritten by the upcoming new region.
If we enlarge the region size to match the zone size (i.e.,
one region per zone), CacheLib can directly use ZNS SSDs
to persist the regions by adding similar zone management
operations in region management as shown in Figure 1(b).

This design brings several benefits. First, since one region
fully utilizes one zone, when a region is evicted, the zone can
be directly reset without any datamigration. This scheme can
achieve real zero WA and be GC-free. Second, extra indexing
is not needed in this scheme as CacheLib can directly use
ZNS SSDs by adding one entry of zone number to the region
metadata for I/Os. Finally, this scheme can achieve the best
space utilization since no OP is needed for GC.
Zone-Cache seems to be the best design. However, if we

need to match the region to a large zone size (e.g., 1077 MiB
in Western Digital ZNS SSD [4]), a very large region size can
cause other issues. First, we have to evict the entire region
when performing a cache eviction. Evicting a large region
will cause many valid or hot cache objects to be evicted at
the same time, which will explicitly impact the hit ratio (vali-
dated in RocksDB evaluation at Section 4.2). Second, a larger
region size requires setting up a larger region buffer in mem-
ory to cache the newly inserted objects, which consumes
more DRAM space. Third, a large region will cause a long
allocation time in eviction and a long filling time in insertion,
reducing the parallelism effectiveness.
Moreover, we collected the insertion time to fill the re-

gion in-memory buffer using a large region (i.e., 1024MiB)
as shown in Figure 3(a). The insertion time refers to the du-
ration it takes for CacheLib to insert key-value pairs into the
DRAM buffer. When the buffer is full, CacheLib will flush its
contents to a flash device. The time significantly increases
when region eviction begins at sequence 76, which does not
occur in a small region design (i.e., 16 MiB) as shown in
Figure 3(b). We think the increased insertion time is caused
by eviction operations in other threads, which involve lock
controls for the shared index. Additionally, we found that

0 25 50 75 100
Region Sequence

2

4

6

R
eg

io
n 

In
se

rt
io

n 
Ti

m
e 

(1
e6

 µ
s) 1e6

(a) Large Region

0 2000 4000 6000
Region Sequence

20

40

60

R
eg

io
n 

In
se

rt
io

n 
Ti

m
e 

(1
e3

 µ
s) 1e3

(b) Small Region

Figure 3: Time to fill the region in-memory buffer.

the time to fill a 1024 GiB region is longer than the time
to fill 64 regions of 16 MiB each. Unlike the small region,
the coarse-grained parallelism of the large zone incurs more
overhead. If the ZNS SSD is produced with a small zone size
[15] (e.g., 16 or 64 MiB), Zone-Cache might be a good de-
sign to avoid the overhead of large region size. However, the
smaller zone may have lower per-zone throughput which
needs additional designs.

The evaluations in Figure 2 show that Zone-Cache can get
the highest hit ratio but can not do well in throughput.

3.3 Do We Need A Simpler Middle Layer?
Answer: It can be a better solution for some cases, but
not all! In this section, we will explore another way to make
the tradeoffs between four matrices. We add a simple middle
layer to translate regions to physical zone addresses as shown
in Figure 1(c), called Region-Cache. Compared to File-Cache,
it’s much simpler and introduces less overhead. Compared to
Zone-Cache, it provides better flexibility and performance.
Data Management In the middle layer, we also use re-

gions as I/O units. Unlike managements in Block-Cache and
File-Cache with 4KiB block indexing, it will incur less map-
ping overhead. The mapping between the region ID and the
in-zone address of ZNS SSDs is stored in a mapping (e.g., an
ordered map). When CacheLib flushes a region, the middle
layer will first write the data to ZNS SSDs and update the
mapping. If CacheLib rewrites a region, the mapping corre-
sponding to this region will be deleted, and the bitmap status
of the zone will be updated. The bitmap is a set of 0/1 bits,
and it will indicate whether the region is valid. For a zone
with 1024MiB and 16MiB region, the bitmap will only cost
64 bits of space. The proposed middle layer supports concur-
rent writing of multiple zones at the same time. The zone is
finished when there is no space to write a new region. When
one read operation is called, the middle layer will look up
the mapping by the region ID, and compute the real physical
address using the in-region offset and in-zone address.
Garbage Collection In this design, we will use a back-

ground thread to check the empty zone number and valid
data size of the finished zones. If the number of empty zones
is less than the number of minimal empty zones (e.g., 8 zones),

58



Can ZNS SSDs be Better Storage Devices for Persistent Cache? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

we will select one zone (e.g., less than 20% of the zone ca-
pacity is occupied by the valid regions) to apply GC (i.e.,
migrating the valid regions to other open zones and reset
this zone). Note that, the GC threshold and the zone selection
threshold are configurable and can be different in different
workloads, cache policies, and cache setups. Exploring the
thresholds can be the future work.
The evaluations in Figure 2 show that Region-Cache can

get a high throughput similar to Block-Cache, indicating the
design space in caching on ZNS SSDs.

3.4 Discussion
Based on the analysis and evaluation, we find the File-Cache
scheme is not a suitable scheme for caching on ZNS SSDs. It is
limited by its file interface and high OP space. For the Region-
Cache and Zone-Cache, they have different advantages. Com-
pared to Block-Cache, the Region-Cache can achieve similar
throughput and hit ratio, and achieve lower tail latency com-
pared to Block-Cache (shown in Section 4.2). Zone-Cache
can get a larger cache size and be GC-free, thus its hit ratio
is higher than Block-Cache. Also, zero WA can make Zone-
Cache achieve a much longer SSD lifespan. Zone-Cache is a
compelling design especially when the zone size is small.

The middle layer design (Region-Cache) makes the trade-
offs between File-Cache and Zone-Cache, which achieves
both high flexibility and high performance. More impor-
tantly, the middle layer scheme opens the design space to
further optimize the throughput and WA by conducting the
co-design between cache management and zone manage-
ment. For example, during the zone GC, not all the valid
regions are needed to be migrated. By using the cache or
upper application information or hints, the GC overhead can
be effectively minimized without explicitly sacrificing the
cache hit ratio [34].

In conclusion, the Zone-Cache can perform better in the
hit ratio. The Region-Cache can perform better in through-
put. And the File-Cache is not a suitable design.

4 Evaluations
In this section, we evaluated three schemes (i.e., File-Cache,
Zone-Cache, and Region-Cache) on a real ZNS SSD, and
compared with the CacheLib on regular SSDs (Block-Cache).
Our evaluations were conducted on the ASUSTeK ESC4000
server with Intel(R) Xeon(R) Silver 4210 CPUs and 187GiB
DRAM memory. The ZNS SSD is 1TB Western Digital Ultra-
star DC ZN540 with 904 zones and the zone size is 1077MiB.
The regular SSD is a hardware-compatible 1TB SN540 SSD.
The 6GiB regular block device for F2FS is created by nullblk.

4.1 Micro Benchmark Evaluations
In this section, we will evaluate different schemes using the
CacheBench [12] benchmarks from CacheLib. We use the

10% 15% 20% None 10% 15% 20%
Scheme

0.0

0.2

0.4

O
pe

ra
tio

ns
 p

er
 M

in
ut

e 
(M

) File-Cache Zone-Cache Region-Cache

(a) Throughput

10% 15% 20% None 10% 15% 20%
Scheme

0.80

0.85

0.90

0.95

H
it 

R
at

io

File-Cache Zone-Cache Region-Cache

(b) Hit Ratio

Figure 4: Performance of under different OP schemes.

workload at feature_stress/navy/bc which has 50% get, 30%
set, and 20% delete operations. We use LRU as the cache
eviction policy in CacheLib.

Overall Comparison. First, we evaluate the four schemes
and mainly focus on their throughput and hit ratio. In Zone-
Cache and Region-Cache, we all use 25 zones. As Zone-Cache
does not need OP space, we set the cache size to 25GiB. For
Block-Cache, File-Cache, and Region-Cache, we use 20GiB
cache size (assuming at least 5GiB OP space). For File-Cache,
F2FS needs at least 38 zones and a 6GiB regular block device
to build a 20GiB cache size. The result is shown in Figure 2.
Block-Cache, File-Cache, and Region-Cache have similar hit
ratios and they are lower than the Zone-Cache which has
the largest cache size. Block-Cache has a high throughput
compared to other ZNS-based schemes due to its large re-
served space and smaller minimal-erase block. Zone-Cache
can get higher throughput than File-Cache for its low over-
head mapping and GC-free design. Region-Cache gets the
best result by resolving the overhead of managing the large
region size of Zone-Cache. The Zone-Cache can achieve a
better hit ratio (from 94.29% to 95.08%) than the Block-Cache.

Table 1: WA Factor under different OP ratios.

Scheme 10% 15% 20%
Region-Cache 1.39 1.30 1.15
File-Cache 1.25 1.19 1.11

Evaluation under different OP ratios. To demonstrate
the tradeoffs of the three ZNS-based schemes, we also con-
duct experiments with different OP ratios as shown in Figure
4 and Table 1. In this evaluation, we both use device space
of 220 zones (about 230 GiB) and set different OP ratios 10%,
15%, and 20% (the Zone-Cache will always use 0% OP ratio).
For Region-Cache and File-Cache, a larger OP ratio will lead
to higher throughput and lower hit ratio, which indicates the
tradeoff between throughput and hit ratio. The results also
show higher WA can bring lower throughput. Zone-Cache is
GC-free, and the WA Factor is always 1. For the Zone-Cache,
it can get a higher hit ratio, but the throughput is limited by
the overhead of managing such large regions.

59



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA C. Yang et al.

15 25
ReadRandom Exp Range (ER) Value

0

1

2

3

O
pe

ra
tio

ns
 p

er
 S

ec
on

d 
(k

) Block-Cache
File-Cache

Zone-Cache
Region-Cache

(a) Operations per Second (k)

15 25
ReadRandom Exp Range (ER) Value

0.7

0.8

0.9

H
it 

R
at

io

Block-Cache
File-Cache

Zone-Cache
Region-Cache

(b) Hit Ratio

15 25
ReadRandom Exp Range (ER) Value

0

2

4

6

P5
0 

L
at

en
cy

 (m
s)

Block-Cache
File-Cache

Zone-Cache
Region-Cache

(c) P50 Latency (ms)

15 25
ReadRandom Exp Range (ER) Value

0

100

200

P9
9 

L
at

en
cy

 (m
s)

Block-Cache
File-Cache

Zone-Cache
Region-Cache

(d) P99 Latency (ms)

Figure 5: Performance of the four schemes serving as
the secondary cache of RocksDB.

4.2 End-to-End Evaluations with RocksDB
To conduct the comprehensive evaluation with real-world
applications, we integrate the four schemes into RocksDB, a
widely used LSM-based key-value stores [7, 18, 19, 25], as its
secondary cache [8, 10] and utilize the db_bench [13] to eval-
uate them. Without explicit explanation, the key and value
sizes are 16 bytes and 64 bytes respectively, with index block
caching and direct I/O enabled. For other configurations, we
keep the default settings. In the secondary cache (Cache-
Lib), the DRAM size is set to 32MiB (the minimal DRAM
size which allows the cache to work well). We use a 5GiB
flash cache size and reserve enough OP space to reduce GC
and focus on tail latency and throughput. We utilize Seagate
ST6000NM0115 HDD (6TiB) as the backend of RocksDB. For
the ReadRandom workload settings, we used ReadRandom
Exp Range (abbreviated as ER) to control the data skew-
ness (larger ER value means more skewed data). We selected
ER values of 15 and 25 to represent different degrees of data
skewness. Initially, we used the fillrandomworkload to insert
100 million key-value pairs, and subsequently, we employed
the readrandom workload to retrieve 1 million keys.
Throughput. As shown in Figure 5(a), the throughput

of Region-Cache is highest, with up to 21% throughput im-
provement compared to Block-Cache. File-Cache gets better
throughput than micro-benchmark due to enough OP space.
As shown in Figure 5(b), Zone-Cache has the lowest overall
throughput caused by its lowest cache hit ratio, which is
mainly caused by large region eviction (i.e., all cached ob-
jects of a 1077 MiB zone are cleaned). Moreover, since the
cache size is small (5 GiB), RocksDB is more sensitive to this
large region eviction.

Table 2: Performance of different sizes on Zone-Cache
for RocksDB.

Cache Size 4G 5G 6G 7G 8G
Throughput (k ops) 1.869 2.345 2.822 3.378 4.100
Hit Ratio (%) 86.95 89.80 91.54 93.03 94.40

Latency. In Figure 5(d), the tail latency of File-Cache is the
lowest, even lower than Region-Cache, this is because F2FS
is optimized for tail latency [21], and it achieves at most a
42% latency reduction compared to Block-Cache. We expect
a better performance when small zone sizes (e.g., Samsung
ZNS SSDs with 96 MiB zone size [15]) are provided. Since the
read performance of RocksDB is sensitive to the secondary
cache latency, the throughput of RocksDB with Block-Cache
is even lower than File-Cache, mainly due to the high tail
latency. As shown in Figures 5(c) and 5(d), the P50 latency
of Block-Cache is low, but its P99 latency is the highest. The
uncontrollable internal GC mainly causes this higher tail
latency in regular SSDs.

Evaluation under different cache sizes. The results in
Figure 5 show the limitations of Zone-Cache when the cache
size is small. To be noted, the Zone-Cache used in the above
experiments only uses the same cache size with other designs
(i.e., 5GiB). From our previous discussion, the Zone-Cache
can provide a larger cache size than other schemes. There-
fore, we also conducted experiments on RocksDB where the
ER value was 25 with different cache sizes, showing the im-
portance of cache size. The result is shown in Table 2. The
workload used in RocksDB is more sensitive to hit ratio as
the data is stored in HDDs. We can get higher hit ratios and
throughput when large cache sizes are provided to Zone-
Cache. It show that using ZNS SSDs for caching can give a
larger cache size than regular SSDs.

5 Conclusion
In this paper, we propose, analyze, and evaluate three possi-
ble schemes to use ZNS SSDs for persistent cache. Our find-
ings suggest that ZNS SSDs can be better storage devices for
persistent cache compared with regular SSDs, which is also
verified by using ZNS SSD as a secondary cache for RocksDB.
Our further work includes closing the semantic gap between
cache management and zone GC with co-designs.

Acknowledgements
We would like to thank our shepherd, Jooyoung Hwang, and
all the anonymous reviewers for their valuable feedback.
We thank all the members of ASU-IDI Lab for providing
useful comments. This work was partially funded by the
Arizona State University startup fund and National Science
Foundation awards 2311026, 2126291, and 1955593.

60



Can ZNS SSDs be Better Storage Devices for Persistent Cache? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

References
[1] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. 2015. Sky-

light—a window on shingled disk operation. ACM Transactions on
Storage (TOS) 11, 4 (2015), 1–28.

[2] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory R. Ganger. 2020. The CacheLib
Caching Engine: Design and Experiences at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 753–768. https://www.usenix.org/conference/
osdi20/presentation/berg

[3] Matias Bjørling. 2020. Zone append: A new way of writing to zoned
storage. Santa Clara, CA, February. USENIX Association.[Cited on page.]
(2020).

[4] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 689–703. https://www.usenix.org/conference/atc21/
presentation/bjorling

[5] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. 2017. Light-
NVM: The Linux Open-Channel SSD Subsystem. In 15th USENIX Con-
ference on File and Storage Technologies (FAST 17). 359–374.

[6] Sungjin Byeon, Joseph Ro, Safdar Jamil, Jeong-Uk Kang, and Youngjae
Kim. 2023. A free-space adaptive runtime zone-reset algorithm for
enhanced ZNS efficiency. In Proceedings of the 15th ACM Workshop on
Hot Topics in Storage and File Systems. 109–115.

[7] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). 209–223.

[8] Zhang Cao, Chang Guo, Ziyuan Lv, Anand Ananthabhotla, and
Zhichao Cao. 2024. SAS-Cache: A Semantic-Aware Secondary Cache
for LSM-based Key-Value Stores. In 38th Intl. Conf. on Massive Storage
Systems and Technology.

[9] Zhichao Cao, HaoWen, FenggangWu, and David HCDu. 2023. SMRTS:
A Performance and Cost-Effectiveness Optimized SSD-SMR Tiered
File System with Data Deduplication. In 2023 IEEE 41st International
Conference on Computer Design (ICCD). IEEE, 275–282.

[10] Siying Dong, Shiva Shankar P, Satadru Pan, Anand Ananthab-
hotla, Dhanabal Ekambaram, Abhinav Sharma, Shobhit Dayal, Nis-
hant Vinaybhai Parikh, Yanqin Jin, Albert Kim, et al. 2023. Disaggre-
gating RocksDB: A Production Experience. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–24.

[11] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan
Stutsman, Mohammad Alizadeh, and Sachin Katti. 2019. Flashield:
a Hybrid Key-value Cache that Controls Flash Write Amplification.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). USENIX Association, Boston, MA, 65–78.
https://www.usenix.org/conference/nsdi19/presentation/eisenman

[12] FaceBook. 2023. cachebench. https://github.com/facebook/CacheLib/
blob/main/BENCHMARKS.md. Accessed March 25, 2023.

[13] FaceBook. 2023. dbbench. https://github.com/facebook/rocksdb/wiki/
Benchmarking-tools/. Accessed March 25, 2023.

[14] Javier González and Matias Bjørling. 2017. Multi-tenant I/O isolation
with open-channel SSDs. In Nonvolatile Memory Workshop (NVMW),
Vol. 2017.

[15] Jin Yong Ha and Heon Young Yeom. 2023. zCeph: Achieving High
Performance On Storage System Using Small Zoned ZNS SSD. In
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing.
1342–1351.

[16] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang.
2021. ZNS+: Advanced zoned namespace interface for supporting in-
storage zone compaction. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21). 147–162.

[17] Jeeyoon Jung and Dongkun Shin. 2022. Lifetime-leveling LSM-tree
compaction for ZNS SSD. In Proceedings of the 14th ACM Workshop on
Hot Topics in Storage and File Systems. 100–105.

[18] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald Dreslinski. 2022. Power-optimized Deployment
of Key-value Stores Using Storage Class Memory. ACM Transactions
on Storage (TOS) 18, 2 (2022), 1–26.

[19] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald G Dreslinski. 2021. Improving Performance
of Flash Based Key-Value Stores Using Storage Class Memory as a
Volatile Memory Extension.. In USENIX Annual Technical Conference.
821–837.

[20] Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng Li, Michael
Kaminsky, David G Andersen, Gregory R Ganger, George Amvrosiadis,
and Matias Bjørling. 2023. RAIZN: Redundant array of independent
zoned namespaces. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, Volume 2. 660–673.

[21] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. F2FS: A new file system for flash storage. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15). 273–286.

[22] Euidong Lee, Ikjoon Son, and Jin-Soo Kim. 2023. An Efficient Order-
Preserving Recovery for F2FS with ZNS SSD. In Proceedings of the 15th
ACM Workshop on Hot Topics in Storage and File Systems. 116–122.

[23] Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim. 2022.
Compaction-aware zone allocation for LSM based key-value store on
ZNS SSDs. In Proceedings of the 14th ACM Workshop on Hot Topics in
Storage and File Systems. 93–99.

[24] Jinhong Li, Qiuping Wang, Shujie Han, and Patrick PC Lee. 2024. The
Design and Implementation of a High-Performance Log-Structured
RAID System for ZNS SSDs. arXiv preprint arXiv:2402.17963 (2024).

[25] Gaoji Liu, Chongzhuo Yang, Qiaolin Yu, Chang Guo, Wen Xia, and
Zhichao Cao. 2024. Prophet: Optimizing LSM-Based Key-Value Store
on ZNS SSDs with File Lifetime Prediction and Compaction Compen-
sation. In 38th Intl. Conf. on Massive Storage Systems and Technology.

[26] Linbo Long, Shuiyong He, Jingcheng Shen, Renping Liu, Zhenhua Tan,
Congming Gao, Duo Liu, Kan Zhong, and Yi Jiang. 2024. WA-Zone:
Wear-Aware Zone Management Optimization for LSM-Tree on ZNS
SSDs. ACM Transactions on Architecture and Code Optimization 21, 1
(2024), 1–23.

[27] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng
Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beck-
mann, and Gregory R. Ganger. 2021. Kangaroo: Caching Billions
of Tiny Objects on Flash. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
243–262. https://doi.org/10.1145/3477132.3483568

[28] Netflix. 2023. Netflix Technology Blog. Application data caching us-
ing ssds. https://netflixtechblog.com/application-data-caching-using-
ssds-5bf25df851ef. Accessed March 25, 2023.

[29] Netflix. 2023. Netflix Technology Blog. Evolution of application data
caching : From ram to ssd https://netflixtechblog.com/evolution-of-
application-data-caching-from-ram-to-ssd-a33d6fa7a690. Accessed
March 25, 2023.

[30] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2012.
Caching less for better performance: balancing cache size and update
cost of flashmemory cache in hybrid storage systems.. In FAST, Vol. 12.

61

https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/nsdi19/presentation/eisenman
 https://github.com/facebook/CacheLib/blob/main/BENCHMARKS.md
 https://github.com/facebook/CacheLib/blob/main/BENCHMARKS.md
 https://github.com/facebook/rocksdb/wiki/Benchmarking-tools/
 https://github.com/facebook/rocksdb/wiki/Benchmarking-tools/
https://doi.org/10.1145/3477132.3483568
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/evolution-of-application-data-caching-from-ram-to-ssd-a33d6fa7a690
https://netflixtechblog.com/evolution-of-application-data-caching-from-ram-to-ssd-a33d6fa7a690


HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA C. Yang et al.

[31] S Prybylski, Mark Horowitz, and John Hennessy. 1988. Performance
tradeoffs in cache design. ACM SIGARCH Computer Architecture News
16, 2 (1988), 290–298.

[32] Devashish Purandare, Pete Wilcox, Heiner Litz, and Shel Finkelstein.
2022. Append is near: Log-based data management on ZNS SSDs. In
12th Annual Conference on Innovative Data Systems Research (CIDR’22).

[33] Dongjoo Seo, Ping-Xiang Chen, Huaicheng Li, Matias Bjørling, and
Nikil Dutt. 2023. Is garbage collection overhead gone? case study of
F2FS on ZNS SSDs. In Proceedings of the 15th ACM Workshop on Hot
Topics in Storage and File Systems. 102–108.

[34] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2018. Didacache:
an integration of device and application for flash-based key-value
caching. ACM Transactions on Storage (TOS) 14, 3 (2018), 1–32.

[35] Haitao Wang, Zhanhuai Li, Xiao Zhang, Xiaonan Zhao, Xingsheng
Zhao, Weijun Li, and Song Jiang. 2018. Oc-cache: An open-channel ssd
based cache for multi-tenant systems. In 2018 IEEE 37th International
Performance Computing and Communications Conference (IPCCC). IEEE,

1–6.
[36] Qiuping Wang and Patrick PC Lee. 2023. ZapRAID: Toward High-

Performance RAID for ZNS SSDs via Zone Append. In Proceedings of
the 14th ACM SIGOPS Asia-Pacific Workshop on Systems. 24–29.

[37] Fenggang Wu, Bingzhe Li, Zhichao Cao, Baoquan Zhang, Ming-Hong
Yang, Hao Wen, and David HC Du. 2019. ZoneAlloy: Elastic Data and
Space Management for Hybrid SMR Drives. In 11th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 19).

[38] Fenggang Wu, Bingzhe Li, Baoquan Zhang, Zhichao Cao, Jim Diehl,
Hao Wen, and David HC Du. 2020. Tracklace: Data management
for interlaced magnetic recording. IEEE Trans. Comput. 70, 3 (2020),
347–358.

[39] Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen, Bingzhe Li,
Jim Diehl, Guohua Wang, and David HC Du. 2018. Data management
design for interlaced magnetic recording. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 18).

62


	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Flash Cache and CacheLib
	2.2 Zoned Namespace SSDs
	2.3 Motivations

	3 Are The Three Solutions Good Enough?
	3.1 Can We Use a ZNS Compatible File System To Support Persistent Cache?
	3.2 How About Matching the Cache Management Unit with Zone?
	3.3 Do We Need A Simpler Middle Layer?
	3.4 Discussion

	4 Evaluations
	4.1 Micro Benchmark Evaluations
	4.2 End-to-End Evaluations with RocksDB

	5 Conclusion
	References

