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Abstract

In this paper, we propose a machine learning-based multi-stream framework to recognize
American Sign Language (ASL) manual signs and non-manual gestures (face and head move-
ments) in real-time from RGB-D videos. Our approach is based on 3D Convolutional Neural
Networks (3DCNN) by fusing multimodal features including hand gestures, facial expres-
sions, and body poses from multiple channels (RGB, depth, motion, and skeleton joints).
To learn the overall temporal dynamics in a video, a proxy video is generated by selecting
a subset of frames for each video which are then used to train the proposed 3DCNN model.
We collected a new ASL dataset, ASL-100-RGBD, which contains 42 RGB-D videos cap-
tured by a Microsoft Kinect V2 camera. Each video consists of 100 ASL manual signs, along
with RGB channel, depth maps, skeleton joints, face features, and HD face. The dataset
is fully annotated for each semantic region (i.e. the time duration of each sign that the
human signer performs). Our proposed method achieves 92.88% accuracy for recognizing
100 ASL sign glosses in our newly collected ASL-100-RGBD dataset. The effectiveness of
our framework for recognizing hand gestures from RGB-D videos is further demonstrated
on a large-scale dataset, Chalearn IsoGD, achieving the state-of-the-art results.

Keywords: American Sign Language Recognition, Hand Gesture Recognition, RGB-D
Video Analysis, Multimodality, 3D Convolutional Neural Networks, Proxy Video

1. Introduction

American Sign Language (ASL) is a natural language conveyed through movements and
poses of the hands, body, head, eyes, and face [1]. There are more than one hundred sign
languages worldwide, and ASL is used throughout the U.S. and Canada, as well as other
regions of the world, including West Africa and Southeast Asia. Within the U.S.A., about
28 million people today are Deaf or Hard-of-Hearing (DHH) [2]. There are approximately
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500, 000 people who use ASL as a primary language [3], and since there are significant lin-
guistic differences between English and ASL, it is possible to be fluent in one language but
not in the other. Most ASL signs consist of the hands moving, pausing, and changing orien-
tation in space. Facial expressions in ASL are most commonly utilized to convey information
about entire sentences or phrases, and are referred to as “syntactic facial expressions”, as
discussed in [4]. Individual ASL signs consist of a sequence of several phonological segments,
which include:

e An essential parameter of a sign is the configuration of the hand, i.e., the degree to
which each of the finger joints is bent, commonly referred to as the “handshape.” In
ASL, there are approximately 86 handshapes, which are widely used [5], and the hand
may transit between handshapes during the production of a single sign.

e During an ASL sign, the signer’s hands will occupy specific locations and perform
movements through space. Some signs are performed by a single hand, but most are
performed using both of the signer’s hands, which move through the area in front of
their head and torso. During two-handed signs, the two hands may have symmetrical
movements, or the signer’s dominant hand (e.g., the right hand of a right-handed
person) will have more significant changes than the non-dominant hand.

e The orientation of the palm of the hand in 3D space is also a meaningful aspect of an
ASL sign, and this parameter may differentiate pairs of otherwise identical signs.

e Some signs co-occur with specific “non-manual signals,” which are generally facial ex-
pressions characterized by specific mouth gestures, eyebrow movement, head tilt /turn,
or head movements (e.g., forward-backward relative to the torso).

Sign language recognition can be categorized to isolated or continuous recognition. Iso-
lated sign language recognition focuses on recognizing isolated signs through movements of
the hands and quick facial expression changes. In continuous sign language recognition,
the temporal boundaries of individual signs are not provided and the transition movements
between two consecutive signs is hard to detect. While some researchers, e.g., [6], have inves-
tigated the identification of facial expressions that extend across multiple signs to indicate
grammatical information, in this paper, we describe our work on recognizing isolated signs.
The category of facial expressions, which is specifically relevant to the task of recognizing
individual signs, is referred to as “lexical facial expressions,” which are considered as a part
of the production of an isolated ASL sign (see examples in Fig. 1). Such facial expressions
are, therefore, essential for the task of sign recognition. For instance, signs with negative
semantic polarity, e.g., NONE or NEVER, tend to occur with a negative facial expression
consisting of a slight head shake and nose wrinkle. Besides, specific ASL signs almost al-
ways happen in a context in which a particular ASL syntactic facial expression occurs. For
instance, some question signs, e.g., WHO or WHAT, tend to co-occur with a syntactic facial
expression (brows furrowed, head tilted forward), which indicates that an entire sentence is
a WH Question. Thus, such a facial expression may be useful evidence to consider when
building a recognition system for such signs.
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Figure 1: Example images of lexical facial expressions along with hand gestures for signs: NEVER, WHO,
and WHAT. For NEVER, the signer shakes her head side-to-side slightly, which is a Negative facial expression
in ASL. For WHO and WHAT, the signer is furrowing the brows and slightly tilting moving the head forward,
which is a WH Question facial expression in ASL.

1.1. Motwations

In addition to the many members of the Deaf community who may prefer to communicate
in ASL, many individuals seek to learn the language. Due to a variety of educational factors
and childhood language exposure, researchers have measured lower levels of English literacy
among many deaf adults in the U.S. [7]. Studies have shown that deaf children raised in
homes with exposure to ASL have better literacy as adults, but it can be challenging for
parents, teachers, and other adults in the life of a deaf child to rapidly gain fluency in ASL.
The study of ASL as a foreign language in universities has significantly increased by 16.4%
from 2006 to 2009, which ranked ASL as the 4th most studied language at colleges [8]. Thus,
many individuals would benefit from a flexible way to practice their ASL signing skills.

Our research investigates technologies for recognizing signs performed in color and depth
videos, as discussed in [9]. The focus of our research is to develop a real-time system that can
automatically identify ASL signs, comprising manual and non-manual gestures, from RGB-
D videos. This is aligned with our broader goal to design assistive technologies to support
ASL education by providing ASL students immediate feedback about the fluency of their
signing performances. While the development of user-interfaces for educational software
was described in our prior work [9], this article instead focuses on the development and
evaluation of our ASL recognition technologies, which underlie our educational tool. Beyond
this specific application, automatic recognition of ASL signs from videos could enable new
communication and accessibility technologies for people who are DHH. These tools may allow
users to input information into computing systems by performing sign language or serve as
a foundation for future research on machine translation technologies for sign languages.

1.2. Challenges

Sign language recognition shares properties with video action recognition but it has spe-
cific challenges caused by its unique characteristics. One challenge is visual complexity; for
instance, slight difference in one hand’s phonemes can generate another sign or be undefined.
Also, for some pair of signs, hand gestures look identical, and we can only discriminate them
by paying attention to the difference in facial expressions. In some cases, a hand gesture can
impose multiple meanings depending on the number of repetitions. The other challenge is
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occlusion, i.e., hand-hand occlusion or hand-face occlusion where hands or face are partially
visible in some moments of signing. To address these challenges, we design a multi-modal
network to combine features from multiple modalities such as hand gestures, facial expres-
sions, and body poses to better distinguish signs as some of the signs are only identifiable by
simultaneous articulations of manual and non-manual sources. Furthermore, our network
leverages information from multiple channels including RGB, depth, motion, and skeleton
joints to better capture subtle movements of hands and facial expression for fine-grain analy-
sis. Another challenge is the variation of signs performed by different signers such as pose or
duration variations, pausing between signs or letters, wearing colored gloves or long sleeves
shirts. Also, variation in the environment setup such as illumination, background, or dis-
tance from the camera can make the problem harder. To tackle this challenge, we have
collected a new ASL dataset, ASL-100-RGBD, where 100 ASL signs have been collected
and performed by 15 individual signers. To ensure a subject-independent evaluation, no
same signer appears in both training and testing sets.

1.3. Scope of Contributions

As discussed in Section 2.1, most prior ASL recognition studies typically focus on iso-
lated hand gestures without considering facial expressions and body poses or they only
use RGB videos. In this paper, we propose a 3D multi-stream framework to recognize a
set of grammatically important ASL signs from RGB-D videos in real-time. The proposed
method operates by fusing multimodal features, including hand gestures, facial expressions,
and body poses from multi-channel (RGB, depth, motion, and skeleton joints). To the best
of our knowledge, we believe this is the first work that combines multi-channel videos (RGB
and depth) with the fusion of multi-modal features for ASL recognition. Furthermore, most
datasets are either do not have “depth” data or they are in other sign languages (not Amer-
ican) or they are designed for continuous sign language recognition (not isolated). To the
best of our knowledge, ASL-100-RGBD is the only American sign language dataset collected
for isolated signs that includes RGB and depth data (RGBD). The main contributions of
the proposed framework can be summarized as follows:

e We propose a 3D multi-stream framework using 3D convolutional neural networks for
ASL recognition in RGB-D videos by fusing multi-modal features such as hand ges-
tures, facial expressions, and body poses in multiple-channels including RGB, depth,
motion, and skeleton joints.

e We propose a temporal augmentation strategy to help the proposed 3D multi-stream
network capture the long-term spatiotemporal information within video clips and aug-
ment the training data to handle the videos of relatively small datasets.

e We have created a new ASL dataset, ASL-100-RGBD, including multiple modalities
(facial movements, hand gestures, and body pose) and multiple channels (RGB, depth,
skeleton joints, and HD face) by collaborating with ASL linguistic researchers [10].
This dataset contains annotations of the time duration when the human in the video
performs each ASL sign. The dataset is available to the research community.
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e We further evaluate the proposed framework to recognize hand gestures on the Chalearn
LAP IsoGD dataset [11], which consists of 249 gesture classes in 47,933 RGB-D videos.
Our framework achieves the state-of-the-art results using fewer channels (5 channels
instead of 12 in previous work).

2. Related Work
2.1. RGB-D based ASL Recognition

Sign language (SL) recognition has been studied for three decades since the first attempt
to recognize Japanese SL by Tamura and Kawasaki in 1988 [12]. The existing SL recognition
research can be classified as sensor-based methods, including data gloves and body trackers
to capture and track the hand and body motions [13, 14, 15, 16], and non-intrusive camera-
based methods by applying computer vision technologies [17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. While most studies analyze
the manual gestures, some methods exploit the linguistic information conveyed by the face
and head of the signers, such as [42, 6, 43, 44]. More details about SL recognition can be
found in these survey papers [45, 46, 47, 48, 49, 50, 51, 52, 53]. The availability of cost-
effective RGB-D cameras in recent years, such as Microsoft Kinect V2 [54], Intel Realsense
[55], Orbbec Astra [56], has facilitated capturing high-resolution RGB videos, depth maps,
and tracking skeleton joints in real-time. Compared to traditional 2D RGB images, RGB-
D images provide photometric and geometric information, motivating the research on ASL
recognition using RGB and depth information [57, 58, 59, 60, 17, 36, 61, 62, 63, 64, 65, 66]. In
this article, we briefly summarize ASL recognition methods using RGB-D images or videos.

Some early work of SL recognition based on RGB-D cameras only focused on a small
number of signs from static images [57, 60, 67]. Pugeault and Bowden proposed a multi-class
random forest classification method to recognize 24 static ASL fingerspelling alphabet letters
by ignoring the letters j and z (as they involve motion) and combining appearance and depth
information of handshapes captured by a Kinect camera [57]. Keskin et al. [67] recognized
24 static handshapes of the ASL alphabet, based on scale-invariant features extracted from
depth images, fed to a Randomized Decision Forest for classification at the pixel level, where
the final recognition label was voted based on a majority. Ren et al. proposed a modified
Finger-Earth Mover’s Distance metric to recognize static handshapes for 10 digits captured
using a Kinect camera [60].

While these systems only used static RGB and depth images, some studies employed
the RGB-D videos for ASL recognition. Zafrulla et al. developed a hidden Markov model
(HMM) to recognize 19 ASL signs collected by Kinect camera and compared the perfor-
mance with that from colored-glove and accelerometer sensors [58]. For the Kinect data,
they compared the system performance between the signer seated and standing and found
that higher accuracy resulted when the users were standing. Yang developed a hierarchical
conditional random field method to recognize 24 manual ASL signs (seven one-handed and
17 two-handed) from the handshape and motion in RGB-D videos [63]. Lang et al. [68]
presented a HMM framework to recognize 25 signs of German Sign Language using depth-
camera specific features. Mehrotra et al. [69] employed a support vector machine (SVM)
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classifier to recognize 37 signs of Indian Sign Language based on 3D skeleton points captured
using a Kinect camera. Almeida et al. [62] also employed an SVM classifier to recognize 34
signs of Brazilian Sign Language using handshape, movement, and the position captured by
a Kinect. Jiang et al. proposed recognizing 34 signs of Chinese Sign Language based on the
color images and the skeleton joints captured by a Kinect camera [61]. Recently, Kumar et
al. [70] combined a Kinect camera with a Leap Motion sensor to recognize 50 signs of India
Sign Language.

As discussed above, SL consists of hand gestures, facial expressions, and body poses.
However, most existing methods have only focused on hand gestures without considering
facial expressions and body poses. A few attempted to analyze hands and face [44, 19, 6,
71, 27, 43|, but they only use RGB videos. To the best of our knowledge, we believe this is
the first work that combines multi-channel RGB-D videos (RGB and depth) with the fusion
of multi-modal features (hand, face, and body) for ASL recognition.

2.2. Machine Learning-based Action and Hand Gesture Recognition

In addition to prior research on sign-recognition technologies, there has been significant
research in action and hand gesture recognition, which is relevant to consider [72, 73, 74,
75, 76, 77, 78, 79, 80, 81]. Since the work of AlexNet [82] which makes use of the powerful
computation ability of GPUs, deep neural networks (DNNs) have enjoyed a renaissance
in various areas of computer vision, such as image classification [83, 84], object detection
(85, 86|, image description [87, 88|, and others. Many efforts have been made to extend
CNNs from image to video domain [89], which is more challenging because of the large
volume of video data; therefore, processing video data in the limited GPU memory is not
tractable. An intuitive way to extend image-based CNN structures to the video domain is
to perform the fine-tuning and classification process on each frame independently. Then,
conduct a later fusion, such as average scoring, to predict the action class of the video [90].
To incorporate temporal information in the video, [91] introduced a two-stream framework.
One stream was based on RGB images, and the other, on stacked optical flows. Although
it proposed an innovative way to learn temporal information using a CNN structure, in
essence, it was still image-based, since the third dimension of stacked optical flows collapsed
immediately after the first convolutional layer.

To model the sequential information of extracted features from different segments of
a video, [87] and [92] proposed to input features into Recurrent Neural Network (RNN)
structures, and they achieved good results for action recognition. The former emphasized
pooling strategies and how to fuse different features, while the latter focused on how to train
an end-to-end DNN structure that integrates CNNs with RNNs. These networks mainly use
CNN to extract spatial features, then RNN is applied to extract the temporal information
of the spatial features. 3DCNN was recently proposed to learn the Spatio-temporal features
with 3D convolution operations [93],[94],[95],[96], and [97] has been widely used in video
analysis tasks such as video caption and action detection. 3DCNN is usually trained with
fixed-length clips (usually 16 frames [94],]97],) and later fusion is performed to obtain the
final category of the entire video. The R(2+41)D network [98] separates spatial and temporal
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learning by using a 2D convolution for spatial features and a 1D convolution for temporal
features. This separation allows the model to learn spatial and temporal features effectively
and is computationally more efficient than 3D convolutions. Hara et al. [94] proposed the
3D-ResNet by replacing all the 2D kernels in 2D-ResNet with 3D convolution operations.
With its advantage of avoiding gradient vanishing and explosion, the 3D-ResNet outperforms
many complex networks.

ASL recognition shares properties with video action recognition; therefore, many net-
works for video action recognition have been applied to this task. Pigou et al. proposed
temporal residual networks for gesture and sign language recognition [27] and temporal con-
volutions on top of the features extracted by 2DCNN for gesture recognition [22]. Huang et
al. proposed a Hierarchical Attention Network with Latent Space (LS-HAN), which elimi-
nates the pre-processing of the temporal segmentation [24]. Pu et al. proposed to employ
a 3D residual convolutional network (3D-ResNet) to extract then visual features. The fea-
tures are then fed to a stacked dilated convolution network with connectionist temporal
classification to map the visual features into text sentence [25]. Camgoz et al. attempted
to generate spoken language translations from sign language video [26]. Camgoz et al.
proposed SubUNets for simultaneous hand shape and continuous sign language recognition
[29]. Cui et al. proposed a weakly-supervised framework to train the network for continuous
sign language recognition with videos only having the ordered gloss labels [28]. Zhou et
al. proposed STMC network [99] to represent spatial cues with a 2DCNN (VGG [100]) and
temporal cues with the bidirectional Long-Short Term Memory (BLSTM) [101]. Jiang et
al. proposed SAM-SLR [102] to exploit whole body skeleton features for sign language in
both RGB and RGB-D channels. Moryossef et al. also evaluated representations based on
skeleton poses for sign language recognition [103]. Hu et al. designed a hand-model-aware
framework for sign language with hand meshes and poses as the intermediate representa-
tion [104]. Zhang et al. proposed a global feature descriptor for time series modeling and
a local feature extractor to model hands for sign language recognition [37]. Bohavcek et
al. proposed a transformer model for word-level sign language recognition and introduced
a robust pose normalization scheme to model hand poses [105]. Han et al. adopted a deep
R(2+41)D network and argued that decomposing 3D convolution filters into separate spatial
and temporal convolutions is beneficial for sign language recognition [106]. Bilge et al. pro-
posed a zero-shot sign language recognition to train the models with the seen sign classes
and recognize the instances of unseen sign classes [107]. In prior work, our research team
proposed a 3D-FCRNN for ASL recognition by combining the 3DCNN and a fully connected
RNN [36].

2.3. Public Camera-based ASL Datasets

As discussed in Section 2.1, technology to recognize ASL signs from videos could enable
new educational tools or assistive technologies for people who are DHH, and there has been
significant prior research on sign language recognition. However, a limiting factor for much
of this research is the scarcity of video recordings of sign language that have been annotated
with time interval labels of the sign glosses. For ASL, there have been some annotated
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(b) Randomly sampled eight frames from the video clip of the same ASL sign

Figure 2: Generating representative proxy video by our proposed random temporal augmentation. (a) Eight
consecutive frames from a video clip of an ASL sign. (b) Randomly sampled eight frames from the video clip
of the same ASL sign. With the same number of frames, the proxy video captures more temporal dynamics
of the ASL sign.

video-based datasets [108] or collections of motion capture recordings of humans wearing
special sensors [109]. Most publicly available datasets, e.g. [110, 71], contain general ASL
vocabularies from RGB videos and a few with RGB-D channels. Table 1 demonstrates the
properties of some well-known sign language datasets.

2D Camera-based ASL databases: The American Sign Language Linguistic Re-
search Project (ASLLRP) dataset contains video clips of signing from the front and side
and includes a close-up view of the face [108]|, with annotations for 19 short narratives
(1,002 utterances) and 885 additional elicited utterances from four Deaf native ASL signers.
It includes annotations such as the start and endpoints of each sign and a unique gloss
label for each sign. The start and endpoints of a range of non-manual behaviors are also
labeled with respect to the linguistic information that they convey (serving to mark, e.g.,
different sentence types, topics, negation, etc.). Instances of non-manual behaviors include
raised /lowered eyebrows, head position and periodic head movements, mouth gestures, and
other expressions of the face. Dreuw et al. [111] produced several subsets from the ASLLRP
dataset as benchmark databases for automatic recognition of isolated and continuous sign
language. The American Sign Language Lexicon Video Dataset (ASLLVD) [112] is a large
dataset of videos of isolated signs. It contains video sequences of about 3,000 distinct signs,
each produced by 1 to 6 native ASL signers recorded by four cameras under three views
(front, side, and face region). The annotations are provided, including start/end frames
and class labels of every sign (i.e., gloss-based identification) plus locations of hands and
face at every frame. The RVL-SLLL ASL Database [113] consists of three sets of ASL
videos with distinct motion patterns, distinct handshapes, and structured sentences, respec-
tively. These videos were captured from 14 native ASL signers (184 videos per signer) under
different lighting conditions. For annotation, the videos with distinct motion patterns or
distinct handshapes are saved as separate clips. However, there are no detailed annotations
for the videos of structured sentences which limits the usefulness of the database. There
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Table 1: The summary of sign language datasets of isolated signing.

Dataset Sign Language Signers Vocabulary Clips  Modalities
BosphorusSign22k [122] Turkish 6 744 22,542  RGB+D
AUTSL [123] Turkish 43 226 38,336 RGB+D
CSL (SLR500) [124] Chinese 50 500 125,000 RGB+D
Polytropon [125] Greek 1 2,703 3,517 RGB+D
ITI-GSL [126] Greek 7 310 40,785  RGB+D
Signum [127] German 25 455 11,375 RGB
BOBSL [128] British 39 2,281 1,940 RGB
ASLLVD [112] American 6 2,742 9,000 RGB
MS-ASL [117] American 222 1,000 25,513 RGB
ASL-LEX [115] American 69 1,000 - RGB
ASL-LEX 2.0 [114] American - 2723 - RGB
WLASL [116] American 119 2,000 21,000 RGB
ASL-100-RGBD (ours) American 22 100 4,150  RGB+D

are some other ASL datasets with only RGB channels such as ASL-LEX 2.0 [114], ASL-
LEX [115], WLASL [116], and MS-ASL [117] for isolated sign language recognition and
RWTH-BOSTON-104 [118], [119], RWTH-BOSTON-400 [120] and CopyCat [121] datasets

for continuous sign language recognition.

RGB-D Camera-based ASL and Gesture Databases: Recently, several RGB-D
databases have been collected for hand gesture and SL recognition [59, 23, 110]. Here we
only briefly summarize RGB-D databases for ASL. The “Spelling-It-Out” dataset consists
of 24 static handshapes of ASL fingerspelling alphabet, ignoring the letters “j” and “z” as
they involve motion. Four signers repeat 500 samples for each letter in front of a Kinect
camera [57]. The NTU dataset consists of 10 static hand gestures for digits 1 to 10 and was
collected from 10 subjects by a Kinect camera. Each subject performs 10 different poses with
variations in hand orientation, scale, articulation for the same gesture, and there is a color
image and the corresponding depth map for each one [60]. The Chalearn LAP IsoGD dataset
[11] is a large-scale hand gesture RGB-D dataset, which is derived from Chalearn Gesture
dataset (CGD 2011) [129]. This dataset consists of 47,933 RGB-D video clips fallen into
249 classes of hand gestures including mudras (Hindu/ Buddhist hand gestures), Chinese
numbers, and diving signals. Although it is not about ASL recognition, it can be used to
learn RGB-D features from different environment settings. Using the learned features as a
pretrained model, the fine-tuned ASL recognition models are more robust to handle different
backgrounds and scales (e.g. distance variations between Kinect camera and the signer).
There are other sign language datasets with RGBD channels for isolated signs in Greek
(ITI-GSL isol. [126], Polytropon [125]), Turkish (BosphorusSign [130], BosphorusSign22k
[122], AUTSL [123]), and Chinese (SLR500 [124]) languages. How2Sign [131] and ASL-
Homework-RGBD [132] are new ASL datasets with RGBD channels for continuous sign
language recognition.

To support our research, we have collected and annotated a new RGB-D ASL dataset,
ASL-100-RGBD, described in Section 4, with the following properties:
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e 100 ASL signs have been collected and performed by 15 individual signers (often with
multiple recordings from each signer).

e The ASL-100-RGBD dataset has been captured by a Kinect V2 camera and contains
multiple channels including RGB, depth, skeleton joints, and HD face.

e Fach video consists of 100 ASL signs shown in Fig. 4. The temporal boundary of each
sign is annotated by ASL linguists, who labeled each span with one of 100 text labels.

e The 100 ASL signs have been strategically selected to support sign recognition educa-
tional tools with the detailed vocabulary composition described in Section 4. Many of
these signs are characterized by both hand gestures and changes in facial expressions.

3. The Proposed Method for ASL Recognition

The pipeline of our proposed method is illustrated in Fig. 3. There are two main
components in the framework: random temporal augmentation to generate proxy videos
(which represent the overall temporal dynamics of the video clip of an ASL sign) and 3DCNN
to recognize the class label of the sign.

3.1. Random Temporal Augmentation for Proxy Video Generation

The performance of the deep neural network greatly depends on the amount of the train-
ing data. Large-scale training data and different data augmentation techniques usually are
needed for deep networks to avoid over-fitting. During training, different kinds of data aug-
mentation techniques, such as random resizing and random cropping of images, are already
widely applied in 3DCNN training. In order to capture the overall temporal dynamics,
we apply a random temporal augmentation, to generate a proxy video for each sign video
clip channel, by selecting a subset of frames, which has proved to be very effective for our
proposed framework.

Videos are often redundant in the temporal dimension, and some consecutive frames
are very similar without observable difference, as shown in Fig. 2 (a) which displays 8
consecutive frames in a video clip of an ASL sign while the proxy video in 2 (b) displays the 8
frames selected from the same video clip by random temporal augmentation. With the same
number of frames, the proxy video provides more temporal dynamics. Thus, proxy videos
are generated to represent the overall temporal dynamics for each ASL sign. To generate
proxy videos, we uniformly divide the span of frames into 7" intervals and randomly sample
one frame from every interval. If the total number of frames is less than T, it is padded
with the last frame to the length of T". These proxy videos make it feasible to train a deep
neural network on the dataset. The process of proxy video generation by random sampling
is formulated in Eq. (1) below:

S; = random(|N/T]) + |N/T| %1, (1)

where N is the total number of frames in a signing video, T is the number of sampled
frames, S; is the i-th sampled frame, and random(N/T') generates one random number in
range |0, N/T| for every i € [0,T — 1].
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Figure 3: The pipeline of the proposed multi-channel multi-modal 3DCNN framework for ASL recognition.
There are multiple channels such as RGB, Depth, and Optical flow, and multiple modalities including hand
gestures, facial expressions and body poses. Hands and face regions are cropped to better model hand
gestures and the facial expression changes. The whole framework consists of two main components: proxy
video generation and 3SDCNN modeling. First, proxy videos are generated for each ASL sign by selecting a
subset of frames spanning the whole video clip of each ASL sign, to represent the overall temporal dynamics.
Then the generated proxy videos of RGB, Depth, Optical flow, RGB of hands, and RGB of the face are fed
into the multi-stream 3DCNN component. The predictions of these networks are weighted to obtain the
final results of ASL recognition. The detailed architecture of our network is shown in Table 2.

3.2. 8D Conwvolutional Neural Network

3DCNN was first proposed for video action recognition [95] and was improved in C3D [97]
by using a similar architecture to VGG [100]. Tt obtained state-of-the-art performance for
several video recognition tasks. The difference between the 2DCNN and 3DCNN operation
is that 3DCNN has an extra-temporal dimension, capturing the spatial and temporal infor-
mation between video frames more effectively. After the emergence of C3D, many 3DCNN
models were proposed for video action recognition [133],[93],[96]. The 3D-ResNet is the
3D version of ResNet, which introduced identical mapping to avoid gradient vanishing and
explosion, making the training of very deep convolutional neural networks feasible. The size
of the convolution kernel in 3D-ResNet is w x h x ¢ (w is the width of the kernel, A is the
height of the kernel, and ¢ is the temporal dimension of the kernel), while it is w x h in
2D-ResNet. In this paper, 3D-ResNet is chosen as the base network for ASL recognition.

The detailed architecture of our network is shown in Table 2. In the 3DResNet, there
are five convolution blocks, where the first one consists of one convolution layer, one batch
normalization layer, one ReLU layer, followed by one max-pooling layer. The next four
convolution blocks are 3D residual blocks with skip connections. The number of kernels in
the five convolution blocks are {64, 64,128,256, 512}. The Global Average Pooling (GAP) is
followed after the fifth convolution block to produce a 512-dimensional feature vector. Then
one fully connected layer and Softmax function are applied to produce the final prediction.
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Table 2: The detailed architecture of our network. C is the number of classes which is 100 for ASL-100-
RGBD dataset. GAP is Global Average Pooling.

Layer Channels Height Width Temporal
Input 3 112 112 64
Conv3d 64 56 56 64
BatchNorm3d 64 56 56 64
ReLU 64 56 56 64
Max-pool 64 28 28 32
3D-Res block 64 28 28 32
3D-Res block 128 14 14 16
3D-Res block 256 7 7 8
3D-Res block 512 4 4 4
GAP 512 1 1 1
FC C - - -

All the networks are optimized with cross-entropy loss with Stochastic Gradient Descent
(SGD) optimizer. The cross-entropy loss function is formulated below. N is the number of
samples in each mini-batch and C'is the number of classes; C' = 100 for ASL-100-RGBD. y;
is the ground-truth label for sample ¢ and g; is the prediction (output of the network). y;
and y; are both C-dimensional vectors. y is 1 if video 7 belongs to class ¢, for 1 < ¢ < |
otherwise, it equals to 0. y; is a probability vector where gjf is the predicted probability that
video 7 belongs to class c.

Te
L= —ﬁ(; > v log(y¢))- (2)

A hybrid framework comprising two 3SDCNN networks is designed to recognize three main
components of signing videos, such as hand gesture, facial expression, and body pose. The
first SDCNN (Body Network) captures the full-body movements by receiving multi-channel
proxy videos generated from RGB, depth, and optical flow. The second 3DCNN (Hand-
Face network) is designed to capture the coordinates of hands and face with the inputs of
multi-channel proxy videos generated from the cropped regions of the left hand, right hand,
and face. Only RGB and depth channels of hand regions are used in the Hand-Face network
because optical flow cannot accurately track the quick and large motions of hands. Also,
only the RGB channel of face region is employed since facial expressions generally change
much less in-depth. The prediction results of the networks are weighted to obtain the final
prediction of each ASL sign.

The optical flow images are calculated by stacking the x-component, the y-component,
and the magnitude of the flow. Each value in the image is then rescaled to 0 and 255.
This practice has yielded good performance in other studies [87, 92]. As observed in the
experimental results, the performance can be improved by fusing all the features generated
by RGB, optical flow, and depth images. This indicates that different channels provide
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complementary information for ASL recognition through training deep neural networks.

4. ASL Dataset: “ASL-100-RGBD”

As mentioned in Section 2.3, we collected a new dataset from native ASL signers (indi-
viduals who have been using the language since very early childhood) in collaboration with
ASL computational linguistic researchers. Each signer performed a list of 100 ASL signs
(See the full list of ASL signs in Fig. 4) by using a Kinect V2 camera. Participants responded
affirmatively to the following screening question: Did you use ASL at home growing up or
attending a school as a very young child where you used ASL? Participants were provided
with a slide-show presentation that asked them to perform a sequence of 100 individual
ASL signs, without lowering their hands between signs. Since this new dataset includes 100
signs with RGB and depth data, we refer to it as the “ASL-100-RGBD” dataset.

During the recording session, a native ASL signer met the participant and conducted the
session. Prior research in ASL computational linguistics has emphasized the importance of
having only native signers present when recording ASL videos so that the signer does not
produce English-influenced signing [109]. The dataset comprises 100 ASL signs, produced
by 22 fluent signers, each often contributing multiple recordings. The participants, 15
men and 7 women, ranged in age from 20 to 51, with a median age of 23. Each recorded
video consists of the 100 ASL signs, and the start-time and end-time of each of the signs
have been annotated. Several signers missed few ASL signs in some videos during the
recording. Typically two to three videos were recorded from each signer, which produced a
total collection of 42 videos (each video contains about 100 signs) and 4, 150 samples of ASL
signs. To facilitate this collection process, we have developed a recording system based on
Kinect 2.0 RGB-D camera to capture multiple modalities (facial expressions, hand gestures,
and body poses) from multiple channels (RGB video and depth video) for ASL recognition.
The recordings also include skeleton (25 joints for every video frame) and HD face (1,347
points) channels. The video resolution is 1920 x 1080 pixels for the RGB channel and 512
x 424 pixels for the depth channel, respectively.

The 100 ASL signs in this collection were selected strategically to support the research
on sign recognition for ASL educational applications. The signs were chosen based on
the vocabulary that is traditionally included in introductory ASL courses. Specifically, as
discussed in [9], our recognition system must identify a subset of ASL signs that relate to a
list of errors often made by students who are learning ASL. Our proposed educational tool
[9] would receive as input a video of a student who is performing ASL sentences, and the
system would automatically identify whether the student’s performance may include one
of several dozen errors, which are common among students learning ASL. As part of this
system’s operation, we require a sign-recognition component that can identify if a video of
a person includes any of these 100 signs and the period in which the sign occurs. When one
of these 100 key signs are identified, the system will consider other properties of the signer’s
movements, including hand shapes, timing, and repetitions [9], to determine whether the
signer may have made a mistake in their signing.
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Category Manual Signs

NEVER, NO, NO_ONE, NONE, NOT, WAVE_NO, CAN'T_CANNOT, DON'T_MIND, DON'T_CARE,
DON'T_KNOW, DON'T_LIKE, DON'T_WANT

DODO1, DODO2, HOW1, HOW2, WHAT1, WHAT2, WHEN1, WHEN2, WHERE, WHICH, WHO1, WHO2,
WHO3, WHY1, WHY2, FOR_FOR

Negative

Question (WH)

Question

(Yes/No) QMWG, QUESTION

NOW, TODAY, TOMORROW, YESTERDAY, MORNING, NOON1, NIGHT, TONIGHT, MIDNIGHT1
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, THURSDAY2, FRIDAY, SATURDAY, SUNDAY
EVERY_DAY, EVERY_MORNING, EVERY_AFTERNOON, EVERY_NIGHT, EVERY_SUNDAY,
EVERY_MONDAY, EVERY_TUESDAY, EVERY_WEDNESDAY, EVERY_THURSDAY,
EVERY_FRIDAY, EVERY_SATURDAY
ONE_O_CLOCK1, TWO_O_CLOCK1, THREE_O_CLOCK1, FOUR_O_CLOCK1, FIVE_O_CLOCK{,
Time SIX_O_CLOCK1, SEVEN_O_CLOCK1, EIGHT_O_CLOCK1 , NINE_O_CLOCK1, TEN_O_CLOCK,
ELEVEN_O_CLOCK, TWELVE_O_CLOCK

ONE_O_CLOCK2, TWO_O_CLOCK2, THREE_O_CLOCK2, FOUR_O_CLOCK2, FIVE_O_CLOCK?2,
SIX_O_CLOCK2, SEVEN_O_CLOCK2, EIGHT_O_CLOCK2, NINE_O_CLOCK2

WEEK, LAST_WEEK, NEXT_WEEK1, NEXT_WEEK2, MONTH, LAST_YEAR, NEXT_YEAR,

TIME, ALWAYS, SOMETIMES, PAST_PREVIOUS, SINCE_UP_TO_NOW, RECENT, SOON1, SOON2,
WILL_FUTURE

Pointing |_ME, IX_HE_SHE_IT, IX_THEY_THEM, YOU

Conditional | sUPPOSE

Figure 4: The full list of the 100 ASL signs in our “ASL-100-RGBD” dataset under 6 semantic categories.
These ASL signs are strategically selected to support the technology and educational tools for sign language
recognition. Many of these signs are characterized by both hand gestures and facial expression changes.

For instance, the 100 signs include words related to questions (e.g., WHO, WHAT),
time-phrases (e.g., TODAY, YESTERDAY), negation (e.g., NOT, NEVER), and other cat-
egories that relate to key grammar rules of ASL. A full listing of the words included in this
dataset is shown in Fig. 4. Note that there is no one-to-one mapping between English words
and ASL signs, and some ASL signs have variations in their appearance, e.g., due to geo-
graphic/regional differences or other factors. For this reason, some words in Fig. 4 appear
with integers after their name, e.g., THURSDAY and THURSDAY?2, to reflect more than
one variation in how the ASL sign may be produced. For instance, THURSDAY indicates
a sign produced by the signer’s dominant hand in the "H” alphabet-letter handshape, with
gentle circling in space. On the other hand, THURSDAY?2 indicates a sign produced with
the signer’s dominant hand quickly switching from the alphabet-letter handshape of " T” to
"H” while held in space in front of the torso. Both are commonly used ASL signs for the
concept of "Thursday” with two different representations.

As shown in Fig. 4, the words are grouped into 6 semantic categories (Negative, WH
Questions, Yes/No Questions, Time, Pointing, and Conditional), suggesting that particular
facial expressions are likely to co-occur with these words when used in ASL sentences. For
instance, time-related phrases that appear at the beginning of ASL sentences tend to co-
occur with a specific facial expression (head tilted back slightly and to the side, with eyebrows
raised). Additional details about how detecting words in these various categories would be
useful in the context of educational software appear in [9].

After the videos were collected from participants, the videos were analyzed by a team
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of ASL linguists, who produced time-coded annotations for each video. The linguists used
a coding scheme in which an English identifier label was used to correspond to each of the
ASL signs used in the videos, in a consistent manner across the videos. For example, all of
the time spans in the videos when the human performed the ASL sign “NOT” were labeled
with the English string "NOT” in our linguistic annotation.

The ASL-100-RGBD dataset is available via the Databrary platform (Huenerfauth,
2020). A sample video ! that visualizes the face and body-tracking information in this
dataset is available. Fig. 5 demonstrates several frames of each channel of an ASL sign from
our dataset including RGB, skeleton joints (25 joints for every frame), depth map, basic face
features (5 main face components), and HD Face (1,347 points). The dataset
is available to the research community.

5. Experiments and Discussions

In this section, extensive experiments are conducted to evaluate the proposed approach
on the newly collected “ASL-100-RGBD” dataset and Chalearn LAP IsoGD dataset [11].

5.1. Implementation Details

Same 3D-ResNet architecture is employed for all experiments. Different channels and
modalities are fed to the network as input. The input channels are RGB, Depth, RGBflow
(i.e. Optical flow of RGB images), and Depthflow (i.e. Optical flow of depth images) and
the modalities are hands, face, and full body. The fusion of different channels and modalities
are studied and compared.

Our proposed models are trained in PyTorch on four Titan X GPUs. To avoid over-
fitting, the pretrained models from Kinetics or Chalearn datasets are used and then random
cropping and random rotation are applied to augment the data. The original resolution of
RGB videos is 1920 x 1080 pixels. In order to meet the limitation of the computer memory,
in our experiment, the center area of 800 x 800 pixels (where the signer is located) is resized
to 134 x 134 as the input. In every iteration of the training, 112 x 112 image patches are
randomly cropped from the 134 x 134 input images for data augmentation. During the
testing, only the center patch of size 112 x 112 (from the 134 x 134 input image) is used for
the prediction (no data augmentation is needed during testing). Random rotation (with a
degree randomly selected in a range of [—10, 10]) is applied on the cropped patch to further
augment the dataset. The models are then fine-tuned for 50 epochs with an initial learning
rate of A\ = 3 x 1073, reduced by a factor of 10 after every 25 epochs.

To apply the pretrained 3D-ResNet models on 3 bands in RGB image format to one
channel depth images or optical flow images, the depth images are simply converted to 3
bands as RGB image format. For the optical flow images, the pretrained 3D-ResNet models
take the x-component, the y-component, and the magnitude of flow as the R, G, and B
bands in the RGB format.

LA sample video is available http://media-lab.ccny.cuny.edu/wordpress/datecode/.
2The ASL-100-RGBD dataset is available via the Databrary platform http://doi.org/10.17910/b7.1062
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Figure 5: Four sample frames of an ASL sign from our dataset, in different channels including RGB, skeleton
joints (25 joints for every frame), depth map, basic face features (5 main face components), and HD Face
(1,347 points.)
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5.2. Experiments on ASL-100-RGBD

To prepare the training and testing for evaluation of the proposed method on “ASL-
100-RGBD” dataset, we first extracted the video clips for each ASL sign. We use 3,250
ASL clips for training ( 75% of the data) and the remaining 25% ASL clips for testing.
To ensure a subject-independent evaluation, no same signer appears in both training and
testing datasets. To augment the data, a new 16-frame proxy video is generated from each
video by selecting different subset of frames for each epoch during the training phase. In
testing, 16 frames are randomly sampled from the uniformly divided intervals of the entire
video and fed to network to obtain the final prediction.

5.2.1. Effects of Data Augmentations

The training dataset which contains 3,250 ASL video clips of 100 ASL manual signs
is relatively small for SDCNN training and could easily cause an over-fitting problem. To
extract more representative temporal dynamics and avoid over-fitting, we applied a random
temporal augmentation technique to generate proxy videos for each ASL clip (a new proxy
video for each epoch). The ASL recognition results of using the proposed proxy video
(16 frames per video) are compared with the traditional method (using the same number
of consecutive frames). The network, 3DResNet-34, dose not converge when trained with
16 consecutive frames, while the network trained with proxy video obtained 68.4% on the
testing dataset. This is likely due to the majority of movements being from hands in these
videos and the consecutive frames could not effectively represent the temporal and spatial
information. Therefore, the network could not classify the clips based on only 16 consecutive
frames. We also evaluate the effect of random cropping (using a batch size of 112 x 112)
and random rotation (with a random number of degrees in a range of [—10, 10]).

Table 3 lists the effects of different data augmentation techniques for recognizing 100
ASL signs on only RGB channel. With proxy videos, the 3DCNN model obtains 68.4%
accuracy on the testing data for recognizing 100 ASL signs. By adding random cropping,
the performance is improved by 4.4% and adding the random rotation further improved the
performance to 75.9%. In the following experiments, proxy videos together with random
cropping and random rotation are employed to augment the data.

Table 3: The comparison of the performance of different data augmentation methods on only RGB channel
with 16 frames for recognizing 100 ASL signs. All the models are pretrained on Kinetics and finetuned on
ASL-100-RGBD dataset. The best performance is achieved with random proxy videos, random cropping,
and random rotation.

Augmentations Fusions

Random Proxy Video X v Vv v/
Random Crop X Vv Vv
Random Rotation X v/
Performance Not converging 68.4% ' 72.8% 75.9%
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5.2.2. Effects of Network Architectures

In this experiment, the ASL recognition results of different number of layers at 18, 34,
50, and 101 for 3DResNet are compared on full RGB, optical flow, and depth images.
As shown in Table 4, the performance of 3DResNet-18, 3DResNet-50, and 3DResNet-101
achieve comparable results on RGB channel. However, the performance on optical flow and
depth channels are much lower than that of RGB channel because the network has been
pretrained on from Kinetics dataset which contains only RGB images. As shown in Table 4,
3DResNet-34 obtained the best performance for all RGB, optical flow, and depth channels.
Hence, 3DResNet-34 is chosen for all the subsequent experiments.

Table 4: The effects of number of layers for 3DResNet with 16 frames on RGB, optical flow, and depth
channels. All the models are pretrained on Kinetics and finetuned on ASL-100-RGBD dataset.

Network RGB (%) Optical Flow (%) Depth (%)
3DResNet-18 73.2 61.9 65.0
3DResNet-34 75.9 62.8 66.5
3DResNet-50 72.3 55.4 62.0
3DResNet-101 72.5 55.0 61.5

5.2.3. Effects of Pretrained Models

To evaluate the effects of pretrained models, we fine-tune 3DResNet-34 with pretrained
models from the Kinectics [134] and the Chalearn LAP IsoGD datasets [11], respectively.
Kinetics dataset consists of RGB videos of diverse human actions which involve different
parts of body while the Chalearn LAP IsoGD dataset contains both RGB and depth videos of
various hand gestures including mudras (Hindu/ Buddhist hand gestures), Chinese numbers
and diving signals, as shown in Fig. 6.

The results are shown in Table 5. The temporal duration is fixed to 16 and the channels
are RGB, Depth, and RGBflow. The pretrained models from large datasets such as Kinet-
ics or Chalearn can significantly boost the classification performance for all the modalities
because the pretrained models provide prior knowledge as a good starting point for net-
work optimization. In all channels, the performance using the pretrained models from the
Chalearn dataset is better than pretrained models from Kinetics dataset. This is probably
because all the videos in Chalearn dataset are focused on hand gestures and the network
trained on this dataset can learn prior knowledge of hand gestures. The Kinetics dataset
consists of general videos from YouTube and the network focuses on the prior knowledge of
motions. Therefore, for each channel the pretrained model on the same channel of Chalearn
dataset is used in the subsequent experiments.

5.2.4. Effects of Temporal Duration of Proxy Videos

We study the effects of temporal duration (i.e. number of frames used in proxy videos)
by finetuning 3DResNet-34 on ASL-100-RGBD dataset with 16, 32, and 64 frames. Note
that the same temporal duration is also used to train the corresponding pretrained model
on the Chalearn dataset. Results are shown in Table 6. The performance of the network
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Figure 6: Example images of three datasets. ASL-100-RGBD: various ASL signs. Kinetics dataset: con-
sisting of diverse human actions, involving different parts of body. Chalearn IsoGD: various hands gestures
including mudras (Hindu/ Buddhist hand gestures) and diving signals.

Table 5: The comparison of the performance of recognizing 100 ASL signs on 3DResNet-34 trained from
scratch and with different pretrained models.

Channels  Scratch (%) Kinetics (%) Chalearn (%)

RGB 75.9
Depth 66.5
RGB Flow 62.8

with 64 frames achieves the best performance. Therefore, 3D-ResNet-34 with 64 frames is
used in all the following experiments.

Table 6: The comparison of the performance of networks with different temporal duration (i.e. number of
frames used in proxy videos). All the models are pretrained on Chalearn dataset and finetuned on ASL-
100-RGBD dataset by using the same temporal duration.

Channel 16 frames (%) 32 frames (%) 64 frames (%)

RGB 80.73
Depth 74.21
RGB Flow 71.74

5.2.5. FEffects of Different Input Channels

In this section, we examine the fusion results of different input channels. The RGB
channel provides global spatial and temporal appearance information. The depth channel
provides the distance information, and the optical flow channel captures the motion infor-
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mation. The network is finetuned on the three input channels respectively. The geometric
mean fusion is used to obtain the final predictions.

Table 7 shows the performance of ASL recognition on ASL-100-RGBD dataset for each
input channel and different fusions. While RGB channel alone achieves 87.83%, by fusing
with optical flow, the performance is boosted up to 89.02%. With the fusion of all the three
channels (RGB, Optical flow, and Depth), the performance is further improved to 89.91%.
This indicates that depth and optical flow channels contain complementary information to
RGB channel for ASL recognition.

Table 7: The performance comparison of networks with different input channels and their fusions. All the
models are pretrained on Chalearn dataset and finetuned on ASL-100-RGBD dataset with 64 frames.

Channels Fusions

RGB o v v

Depth V4 v
Optical Flow vV vV

Performance 87.83% | 81.93% 80.51%  89.91% 89.02% = 8

L

Ne)

71

5.2.6. Effects of Different Modalities

We attain further insight into the learned features of the model for RGB channel. In
Fig 7 we visualize some examples of the attention maps of the fifth convolution layer on
our test dataset generated by the trained RGB 3DCNN model for ASL recognition. These
attention maps are computed by averaging the magnitude of activations of convolution layer
which reflect the attention of the network. The attention maps show that the model mostly
focused on hands and face of the signer during the ASL recognition process.

AN

™ }‘ N

FIFIEYEN

Figure 7: The example RGB images and their corresponding attention maps from the fifth convolution layer
of the 3DResNet-34 on the test dataset of ASL-100-RGBD, showing that the hands and face have most of
the attention.

Hence, we conduct experiments to analyze the effect of each modality (hand gestures,
facial expression, and body poses) with the RGB channel. As shown in Fig. 3, the hand
regions and the face regions are obtained from the RGB image based on the location guided
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Table 8: The performance comparison of different modalities and their fusions. All the models are pretrained
on Chalearn dataset and finetuned on ASL-100-RGBD dataset with 64 frames.

Channels Fusions

Body V Vi v/

Hand v/ v/ v/
Face v

Performance 87.83% ' 80.9% 89.81% ' 91.5%

by skeleton joints. The performance of each modality and their fusions are summarized in
Table 8.

In addition to the accuracy of ASL sign recognition, we further analyzed the accuracy of
the six categories (see Fig. 4 for details) for each modality and their combinations in Table
9. For the categories that involve many facial expressions, such as Question(Yes/No) and
Negative, the accuracy of hand modality is improved by more than 15% after fusion with
face modality. For the Conditional category which utilizes more subtle facial expressions,
the accuracy of hand modality is not improved after fusion with face modality.

Table 9: The performance (%) of different modalities and their fusions on six categories listed in Fig. 4:
Conditional (Cond), Negative (Neg), Pointing (Point), Question (WH), Yes/No Question (Y/N) and Time.
The last column is the accuracy (%) for ASL signs.

Modalities Cond Neg Point WH Y/N Time Acc
Hand 90.0 781 @ 684 843 684 81.4 = 80.9
Body 100.0 874 842 83.0 89.5 87.6 87.83
Body+Hand 90.9 86.6 | 89.5 88.7 1 94.7 90.2  89.81

Body+Hand+Face | 90.9 93.3 | 842 90.6 84.2 91.8 91.5

5.2.7. Comparison of Different Fusion Methods

Various fusion methods have been used for video understanding tasks including average
fusion, geometric mean fusion, jointly end-to-end training, and sparse fusion method. The
average fusion method calculates the average of predictions as final prediction from predic-
tions of multiple channels, and the weights for each channel can be adjusted based on the
importance of each channel. The geometric mean fusion method calculates the geometric
mean of predictions of all channels. These two fusion methods are widely used for video
action recognition task due to their simplicity and effectiveness. The sparse fusion method
is proposed to use a small neural network to learn how much each channel contributes to
each class and the weighted score is used as the final prediction, and the jointly training
fusion method trains all the networks together to jointly optimize them.

In this section, we study the effects of different fusion methods and report the perfor-
mance of all the four fusion methods in Table 10. Among all these fusion methods, the
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geometric mean fusion method outperforms the other three fusion methods. Therefore, the
geometric mean fusion method is employed for all the experiments in the paper.

Table 10: Results of different fusion methods on ASL-100-RGBD dataset by using five channels including
RGB, RGB Flow, Depth, Cropped Hands, and Cropped Face.

Fusion Method Accuracy (%)

Jointly Training 89.51%
Sparse Fusion 90.29%
Average Fusion 91.29%

Geometric Mean Fusion 92.58%

5.2.8. Fusions of Different Channels and Modalities

The fusion results of different input channels and modalities on ASL-100-RGBD dataset
are shown in Table 11. The experiments are based on 3DResNet-34 with 64 frames, pre-
trained on Chalearn dataset. Among all the models, fusion of RGB+Depth+Hands
RGB+ Face RGB achieves the best performance with 92.88% accuracy. Adding RGBflow
to this combination results in 92.48% accuracy which is comparable but not improved since
the channels have redundant information.

Table 11: Performance of 3DResNet-34 with 64 frames with fusion of different channels and modalities.

Channels Fusions

RGB v v v
Depth Vv v v Vv
RGBflow vV Vv vV

RGB of Hands vV Vv vV vV
RGB of Face Vv vV v

Performance 91.19% = 92.48% 92.48% ' 92.88%

N

5.3. Experiments on Chalearn LAP IsoGD dataset

5.8.1. Effects of Network Architectures

The 3D-ResNet is pretrained on Kinetics [134] for all the experiments in this section. To
find the best network architecture for Chalearn dataset, the parameters of 3D-ResNet are
studied on RGB videos. The results are shown in Table 12. By changing the number of
layers to 18, 34, 50 while fixing the temporal duration to 32, ResNet-34 achieved the best
accuracy.

We also evaluated the performance of ResNet-34 with different temporal duration of the
proxy videos by using 16, 32, and 64 frames. Our results indicate that ResNet-34 with 64
frames has the best performance for Chalearn dataset, as shown in Table 13.
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Table 12: Ablation study of number of layers of the network on RGB videos of Chalearn Dataset.

Network Temporal Duration Accuracy

ResNet-18 52.69%
ResNet-34 56.28%
ResNet-50 54.57%

Table 13: Ablation study of temporal duration of proxy videos on RGB channel of Chalearn Dataset.

Network Temporal Duration Accuracy
ResNet-34 45.00%
ResNet-34 56.28%
ResNet-34 58.32%

5.3.2. Effects of Different Channels and Modalities

We evaluate the effects of different channels including RGB, RGB flow, Depth, and
Depth flow. Because the Chalearn dataset is designed for hand gesture recognition, we
further analyze the effects of different hands (left and right), as well as the whole body. We
develop a method to distinguish left and right hands in Chalearn Isolated Gesture dataset,
and will release the coordinates of hands (distinguished between right and left hands) with
the publication of this article. Since the Chalearn dataset is collected for recognizing hand
gestures, here, the face channel is not employed.

We train 12 3D-ResNet-34 networks with 64 frames by using different combinations of
channels and modalities respectively and show the results in Table 14. The accuracy of right
hand is significantly higher than the left hand. The reason is that for most of the gestures
in Chalearn dataset, the right hand is dominant and the left hand does not move much for
many hand gestures.

Table 14: Performance of 3D-ResNet-34 with 64 frames on Chalearn Dataset for different channels and
modalities.

Channel Global Channel (%) Left Hand (%) Right Hand (%)

RGB 18.01
Depth 19.43
RGB Flow 21.97
Depth Flow 20.28

5.8.3. Effects of Fusions on Channels and Modalities

Here we analyze the effects of fusing different channels and modalities. The results are
shown in Table 15. Using only RGB and depth channels, the accuracy is 67.58% which is
improved to 69.97% by adding RGB flow. We observe that among all different triplets of
channels, Right Hand RGB + Depth + RGBflow has the highest accuracy at 73.32%. By
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applying the geometric mean fusion on four channels RGB+ RGBflow+ Right Hand RGB
+ Right Hand Depth, our model achieves the accuracy about 75.88% which outperforms all
previous work on Chalearn dataset. In the-state-of-the-art work of [135], the accuracy of
average fusion is 71.93% for 7 channels and 70.37% for 12 channels, respectively.

Finally, the geometric mean fusion of all global channels (RGB, RGB flow, Depth, Depth
flow) and Right Hand channels (Right Hand RGB, Right Hand RGB flow, Right Hand
Depth, Right Hand Depth flow) resulted in 76.04% accuracy and the accuracy of 12 channels
together resulted in 75.68%. This means that the 12 channels contain redundant information,
and adding more channels does not necessarily improve the results.

Table 15: Performance of 3DResNet-34 with 64 frames for fusion of different channels and modalities on

Chalearn dataset.

Channels Fusions

RGB v v v v
Depth v v v v
RGBflow V vV vV V
RGB of Right Hand v V V
Depth of Right Hand Vv v/
Performance 67.58% | 69.97% 73.32% | 75.53% 75.88%

Table 16: Comparison with the State-of-the-art Results on Chalearn IsoGD Dataset.

Framework

| Accuracy on Test Set (%)

Our Results 76.04
MEMP (3DCNN + LSTM) [136] 78.85
MultiD-CNN [137] 72.53
MEMP (3DCNN) [136] 71.24
FOANet (Average Fusion) [135] 70.37
Lin et al. [138] 68.42
Chen et al. [139] 68.15
Duan et al. [140] 67.26
Miao et al. [141] 67.71
CAPF [142] 66.79
Zhou et al [143] 66.62
Wang et al. [144] 65.59
Zhang et al. [145] 60.47
Wang et al. [146] 59.21
Santos et al. [147] 52.18

5.8.4. Comparison with the-state-of-the-arts
Our framework achieves accuracy of 75.88% and 76.04% from the fusion of 5 and 8
s12 channels, respectively, on Chalearn IsoGD dataset. Table 16 lists the state-of-the-art results
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from Chalearn IsoGD competition 2017. As shown in the table, our framework achieves
comparable results to the-state-of-the-art methods.

MEMP [136] achieves a slightly higher results, 78.85%, by combining 3DCNNs with
LSTMs. However, the performance of MEMP [136] drops 5% below our results when LSTMs
are not employed. Rastgoo et al. in [148] improved the performance to 86.1% by exploiting
additional information such as 3D hand keypoints. It is worth noting that FOANet [135]
reported the accuracy of 82.07% by applying Sparse Fusion on the softmax scores of 12
channels (combinations of right hand, left hand, and whole body while each has 4 channels
of RGB, Depth, RGBflow and Depthflow). The purpose of using sparse fusion is to learn
which channels are important for each gesture. The accuracy of FOANet framework using
average fusion is 70.37% which is around 6% lower than our results and nearly 12% lower
than the accuracy of sparse fusion. While the authors of FOANet [135] had reported a 12%
boost from using sparse fusion in their original experiments, our experiments do not reveal
such a boost when implementing a system following the technical details provided in [135].

Table 17 lists the accuracy on individual channels of our network and FOANet [135]. In
this table, the values inside the parenthesis represent the accuracy of FOANet. As shown
in the table, in the Global channel, our framework outperforms FOANet in all the four
channels by 10% to 25%. Also, for the RGB of Right Hand, we obtain a comparable accuracy
( 48%) as FOANet. However, FOANet is outperforming our results in the Right Hand for
Depth, RGBflow, and Depthflow by nearly 10%. From our experiments, the performance
of ”Global” channels (whole body) in general is superior to the Local channels (Right/
Left Hand) because the Global channels include more information. By using the similar
architecture, FOANet reported 64% accuracy from Depth of Right Hand and 38% from
Depth of the entire frame. Instead, our framework achieves more consistent results. For
example, in our framework the accuracy of Depth channel is higher than RGB and RGBflow
for both Global and Right Hand, while the accuracy in FOANet for Depth and RGB are
almost the same in the Global channel (around 40%) but very different in the Right Hand
channel (17% difference.)

Table 17: The accuracy (%) of 12 channels on the test set of Chalearn IsoGD Dataset. Comparison between
our framework and FOANet [135]. The bold numbers show the best results.

Channel Global Channel (%) | Left Hand (%) | Right Hand (%)

Method Ours FOANet Ours FOANet | Ours FOANet
RGB 58.32 41.27 18.01 16.63 48.58 47.41
Depth 63.16 38.50 19.43 24.06 54.15 64.44

RGB Flow | 60.26 20.96 21.97  24.02 | 48.79  59.69
Depth Flow | 55.37 42.02 20.28  22.71 47.07  58.79

5.4. Efficiency Analysis

One major advantage of our proposed method is that it is efficient and runs in real-time.
During the training phase, a small proxy clip sampled for each gesture clip is used to train
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the network. During testing, the prediction of each gesture clip is obtained by feeding its
proxy video to the network in one pass. The performance and computation time of our
proposed framework with 3DResNet-34 on different input channels on the Chalearn IsoGD
testing set using a single NVIIDA PASCAL GPU are reported in Table 18. Our proposed
framework runs 432 frames per second by using 6 channels input channels including RGB,
RGB Flow, Depth, Cropped Left Hand, Cropped Right Hand, and Cropped Face which
demonstrate the potential for real-time ASL recognition application. Table 19 reports the
computational complexity of our model, 3D-ResNet34, with varying temporal durations, in
terms of floating-point operations (FLOPs) on the RGB channel and whole-body modality of
the ChaLearn IsoGD Dataset. As the table demonstrates, increasing the temporal duration
improves accuracy but also leads to higher computational complexity.

Table 18: The speed analysis of the proposed network on the Chalearn IsoGD dataset. The channels are
RGB, Depth, RGB Flow of whole body and the right hand.

| # Channels | Accuracy (%) | FPS |

4 75.53 650
5 75.88 537
6 76.04 432

Table 19: The computational complexity of 3D-ResNet34, with varying temporal durations, in terms of
floating-point operations (FLOPs) on the RGB channel of the ChaLearn IsoGD Dataset.

| Temporal Duration | Accuracy (%) | FLOPs(1 x 10°) |

16 45.0% 69.7
32 56.3% 133.8
64 58.3% 260.9

6. Conclusions

In this paper, we have proposed a 3DCNN-based multi-channel and multi-modal frame-
work, which learns complementary information and embeds the temporal dynamics in videos
to recognize ASL signs from RGB-D videos. To validate our proposed method, we collabo-
rate with ASL experts to collect an ASL dataset of 100 manual signs including both hand
gestures and facial expressions with full annotation on the sign labels and temporal bound-
aries (starting and ending points.) A Proxy video generation method is integrated with our
framework to capture both spatial and temporal information of the entire gesture. The ex-
perimental results on our ASL-100-RGBD and Chalearn IsoGD datasets have demonstrated
the effectiveness and efficiency of the proposed framework.
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This technology for identifying the appearance of specific ASL signs has valuable appli-
cations for technologies that can benefit people who are DHH [29, 31, 30, 27, 43, 149, 150).

Our

“ASL-100-RGBD” dataset together with the annotation is available to the research

community to use this resource for training or evaluation of models for ASL recognition.
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