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Sequential Point Clouds: A Survey
Haiyan Wang and Yingli Tian, Fellow, IEEE,

Abstract—Point clouds have garnered increasing research attention and found numerous practical applications. However, many of these
applications, such as autonomous driving and robotic manipulation, rely on sequential point clouds, essentially adding a temporal
dimension to the data (i.e., four dimensions) because the information of the static point cloud data could provide is still limited. Recent
research efforts have been directed towards enhancing the understanding and utilization of sequential point clouds. This paper offers a

comprehensive review of deep learning methods applied to sequential point cloud research, encompassing dynamic flow estimation,
object detection & tracking, point cloud segmentation, and point cloud forecasting. This paper further summarizes and compares the
quantitative results of the reviewed methods over the public benchmark datasets. Ultimately, the paper concludes by addressing the
challenges in current sequential point cloud research and pointing towards promising avenues for future research.

Index Terms—4D sequential point cloud; Deep learning; Flow estimation; Object detection & tracking; Point cloud segmentation; Point

cloud forecasting.

1 INTRODUCTION

‘ x J 1TH the development of recent deep learning and sensor

technologies, the expense of 3D point cloud acquisition
has significantly dropped. Point cloud data can be easily captured
through 3D scanners, Lidars, or RGBD cameras, which comprise a
set of unordered points represented by XYZ in world coordinates
with permutation invariant properties. Compared to other data
formats, like 2D image, even 3D voxel or mesh, the point cloud
is a more practical data representation for our real world. 2D
images lose the spatial geometric information of 3D space, while
other grid-based representations (e.g. voxel and mesh) suffer from
the redundancy of the inner space representation and massive
computation.

Recent research efforts have made great contributions to
the static point cloud learning process. The survey paper [32]
provided an elaborate summary of 3D point cloud learning methods
including various downstream tasks and applications. Basically,
some methods just pursued an easier deep learning way which
employs the convolution operation on the high dimension 3D
data [59], [113], [145]. These methods usually require transferring
point cloud to other regular data formats such as voxel or mesh
representations. The input of grid data representation makes it
possible to extend the idea of advanced 2D convolution network
design to the 3D domain for high-level feature extraction. Although
the convolution is attractive, these methods suffer a lot from
heavy computation costs and quantization errors due to the grid
representation. The seminal work PointNet [80] and PointNet++
[81] introduced a straightforward solution based on raw point
cloud input and extracted high-level feature representations through
novel sampling and grouping strategies. Inspired by these two
pioneer methods, tremendous studies developed more and more
advanced structures and achieved impressive performance on
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Fig. 1: Demonstration of sequential point cloud stacked by a
sequence of point cloud frames. The figure is from [119] with
author’s permission.

different computer vision applications. These direct point-based
methods usually maximally preserved the 3D geometry information
of the input data and well balanced the efficiency and efficacy.
However, static point cloud is limited to fully represent our real
world especially when there are motions. The dynamic real world
is actually with three spatial dimensions plus one time dimension
(i.e. 4D), which leads to a huge uncertainty compared to the single
static point cloud. The features of the scene or objects may change
along the time sequence causing the potential missing, occlusion,
or unseen information. Even these uncertainties are inevitable in
our dynamic world, it is critical to be aware of them and estimated
especially in real-world applications such as self-driving or AR/VR
techniques. Thus, many deep learning tasks (e.g. dynamic flow
estimation, object detection & tracking, point cloud segmentation,
and point cloud forecasting, etc.) are worth to explore for learning
the spatio-temporal information from 4D sequential point cloud
(SPL) data. In a short period, the motion information such as point
flow which is similar to 2D optical flow can be estimated based on
consecutive point cloud frames. Also, based on the previous several
frames, the point cloud of the future moment can be predicted
which is applied by vast kinds of forecasting tasks such motion
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Fig. 2: A taxonomy of deep learning methods for sequential point cloud.

and sequential forecasting. The point cloud generation falls in this
application as well. The recent thriving tasks such as object tracking,
action recognition, 4D point cloud reconstruction, and even the
4D segmentation can also benefit from the long-time temporal
information embedded in the point cloud sequence. Motivated by
the distinguished property of the sequential point cloud and these
popular applications, the research focuses are diverting from the
static point cloud to the dynamic sequential point cloud.

Sequential point cloud (SPL), as shown in Figure 1, is
defined as a sequence of static point cloud frames S =
S1,89,...5¢, ..., S, (t = 1,2, ..., T) where T is the time length.
Each point cloud frame S; consists of a set of unordered points
which are permutation invariant Sy = p1, P2, ..., Pny oy PN> IV
is the number of points for the point cloud frame S;. The point
py, inside S, is represented with both 3D location X,, € R? and
feature vector F,, € R°. Compared to static point cloud, SPL is
unique with the following properties:

o Large scale. A static scene point cloud normally contains
plenty of points and can easily reach a scale of millions. SPL
unites a sequence of static point clouds, the number of points
are extremely immense.

o Permutation invariant of single frame. Every single scan
in SPL is a set of unordered points which is invariant to any
permutation and geometric transformation such as translation
or rotation. These operations will not alter the point cloud
properties or classification results.

o Permutation variant for multiple frames. Among multiple
frames of point clouds, the order of these frames is the most
critical characteristic which makes it distinctive. It reflects the
temporal information along with the time series including the
dynamic motion and deformation of the object in the point
clouds.

¢ 4D Contextual Correlation / Continuum. The learning of
SPL ought not to separate the spatial and the temporal. Instead,
for the 4D continuum, a spatio-temporal correlation structure
contains extremely rich contextual information availing a
better scene understanding compared to the single static point
cloud.

Despite the superior properties and importance of SPL, it
is especially challenging to process 4D data in an effective
and efficient manner due to the large scale and sophistication
of the spatio-temporal relations between multiple frames. To
optimally represent 4D data, numerous embedding techniques
are developed for processing point cloud inputs. These methods

can be integrated with diverse network architectures or tailored to
specific computer vision tasks, ensuring a comprehensive and
effective data representation. The core idea of processing 4D
sequential point cloud data is to take benefit of both spatial
and temporal dimensions. Meanwhile, the way of extracting and
merging temporal information is essential during this process. Many
methods have been developed, showcasing remarkable performance
when applied to static 3D point clouds.

Some previous reviews have provided summaries of deep
learning methods for general 3D data [3], [40], [83], [128] or
especially to the static point cloud [32], [55]. However, none of
them focus on modeling SPL. This paper presents an extensive
review of the deep learning-based methods for 4D SPL research
and emphasizes the temporal encoding and modeling of the spatio-
temporal correlation structure. As shown in Figure 2, we provide
a thorough comparison of existing methods on public benchmark
datasets, covering a wide range of tasks and applications including
dynamic flow estimation, object detection & tracking, point cloud
segmentation, and point cloud forecasting. Additionally, we offer a
concise summary of the research challenges of SPL and highlight
several emerging trends that warrant attention in future research.

The rest of the paper is organized as follows. Sec. 2 introduces
the common point cloud embedding to represent SPL data. The
downstream tasks of different applications of SPL are summarized
in Sec. 3 for scene flow estimation, Sec. 4 for objection detection,
Sec. 5 for object tracking, Sec. 6 for object segmentation, and Sec.
7 for point cloud forecasting. Sec. 8 provides a few potential future
research directions on SPL and Sec. 9 concludes the whole survey.
The descriptions of the commonly used deep network architectures
and datasets for SPL can be found in the attached Supplementary.

The primary objective of this survey is to offer a comprehensive
overview of the predominant techniques employed in processing
sequential point clouds. Given the vast array of existing methods
in this field, it is impractical to cover each one exhaustively.
Therefore, a deliberate selection was made to identify and focus
on a representative subset of methods. This subset is chosen to
encompass a diverse range of approaches, ensuring that the survey
provides a broad perspective on the various types of methodologies
used in this area of study.

2 CoMMON POINT CLouD EMBEDDING

Various network architectures are intimately bound up with distinct
embeddings for point clouds. While these networks share the
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common objective of extracting meaningful information from 3D
point cloud data, their designs can vary significantly based on the
chosen data embedding. Current approaches can be categorized
into three classes: point-based, grid-based, and implicit neural
embeddings.

2.1 Point-based Embedding

In point-based representations, each point in the point cloud is
treated as an independent entity, and features are computed directly
from the coordinates and attributes of these points. The pioneering
work PointNet [80] proposed a general architecture directly taking
point cloud data as input and extracting global 3D features. Thus
the network is capable of digesting the unordered point sets while
being invariant to permutations of point order. The following
work PointNet++ [81] extended PointNet’s architecture to capture
hierarchical and multi-scale features, further advanced the concept
of point-based embeddings. Their architectures and concepts have
influenced subsequent research [13], [46], [51], [53], [58], [103],
[127], shaping the development of more advanced point-based
embedding methods and enabling a wide range of applications in
3D data processing.

Essentially, point-based embedding offers several distinct
advantages when processing 3D data. First and foremost, they
preserve the fine-grained details of the 3D data due to the point-
wise dense representation. Additionally, they are invariant to the
order of points, which makes them especially well-suited for
handling unstructured and irregularly sampled point clouds without
the need for any pre-processing. Notably, these methods can be
computationally efficient with sparse point clouds since they focus
solely on processing relevant points rather than entire volumetric
grids.

On the flip side, there are inherent challenges with point-
based embedding. Large point clouds or intricate architectures
can exert substantial computational demands on such methods,
requiring heavy computational resources for both the training
and inference phases. Another challenge is that variations in point
density can affect the performance of these embeddings, particularly
when handling irregularly sampled data. Unlike their grid-based
counterparts, point-based embedding lacks a natural structured grid,
which may impact certain tasks like convolutions.

2.2 Grid-based Embedding

Grid-based embedding is a powerful tool for 3D data analysis,
making it easier to handle and compute point cloud data. The
method breaks down the 3D space into regular grid cells or voxels,
treating each cell as a mini-region within the larger 3D space
[23], [45], [62], [106], [127]. Features from the points in each
cell are extracted using a mix of techniques like convolutions,
pooling, and other aggregation methods. These techniques help
capture fine-grained details about each point, making grid-based
methods effective for both local and global spatial analysis. Because
of these strengths, grid-based embedding is especially useful for
tasks that rely on understanding spatial relationships, such as 3D
object detection, segmentation, and occupancy mapping. These
approaches also bridge traditional image-based Convolutional
Neural Networks (CNNs) and point-based methods, widening the
toolkit for 3D data processing.

However, grid-based embedding is not a one-size-fits-all
solution. On the upside, it is computationally efficient, making
it suitable for real-time applications. It also meshes well with
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CNNs for feature extraction in machine learning. Transforming
point clouds into a grid also compresses the data, reducing both
storage and computational costs. Plus, the grid’s structure helps
average out any noise, making the data more reliable. But there are
trade-offs. The choice of grid resolution—fine or coarse—affects
both computational performance and detail capture. High-res grids
offer more detail but can be a drain on resources, while low-res
grids are faster but might miss important features. Also, converting
points to a grid format could mean losing some original point-based
details, which could be a problem for some applications such as
point cloud compression or fine-grained 3D reconstruction.

2.3 Implicit Neural Embedding

Implicit neural embedding [26], [42], [54], [68], [76], [89], [133]
represents an alternative category of machine learning techniques
designed to encode and manipulate 3D geometric structures within
3D point clouds. Instead of explicitly storing the coordinates of each
point, face, or voxel, it typically uses neural networks to implicitly
define the surface or volume of an object in 3D space. Specifically, a
common approach for implicit neural embedding uses a conditional
neural network that takes 3D coordinates (X, y, z) as input and
outputs a scalar value, usually interpreted as the “occupancy
probability” or ’signed distance function” at that coordinate. In this
way, the entire 3D object can be implicitly represented through this
neural network model, significantly reducing the costs of storage
and computation. Most importantly, this representation is robust
to the noise of point cloud origin location, orientation and the 3D
coordinate system. Potential application of sequential point cloud
implicit embedding can be found in Sec. 8.

Nevertheless, while having numerous advantages, one notable
drawback is the training complexity, which can be computationally
extensive and time-consuming, particularly for high-resolution 3D
models, potentially leading to scalability issues for larger or more
detailed models. The accuracy of these models can sometimes
be compromised, especially around the detailed regions, leading
to a potential loss of detail or inaccuracies in the reconstruction.
Additionally, there may be surface ambiguities that could cause
difficulties in precisely determining object boundaries.

3 ScENE FLow ESTIMATION

In dynamic SPL, scene flow estimation is one of the most crucial
and fundamental tasks. It is playing an important role in the
applications of robotics manipulation, autonomous driving etc.
Flow actually describes the motion status of objects. Specifically
in 4D point cloud, scene flow demonstrates 3D velocity of each
3D point in a scene. Assuming there are two consecutive point
clouds in a point cloud sequence S; = {p!,i = 1,2, ..., Ny}, and
Sip1 = {pt™i =1,2,..., Ny 1}, scene flow D; = {D}i =
1,2, ..., N¢} is defined as the translation motion vector between S;
and Sy 1. For each point p} in Sy, the translated point is defined
as qf +1 Df = qf — pg. It worth to note that qf and p§+1 are not
necessary to be the same location.

Here we categorize the existing point cloud scene flow esti-
mation methods into feature embedding-based, cost-volume-based,
and transformer-based methods. A list of scene flow estimation
methods can be found in Table 1.

3.1 Feature Embedding-based Methods

Feature embedding methods for scene flow estimation aim to
derive compact representations from sequential point cloud data,
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Fig. 3: The illustration of different representations for scene flow estimation methods. Red points show the first point cloud frame while

black arrows demonstrate related scene flow vectors.

capturing the essence of both spatial structures and temporal
dynamics. By transforming raw data points into higher-level
features, these methods can efficiently track and predict motion
patterns across consecutive frames, ensuring more accurate scene
flow predictions while minimizing computational overhead. Their
strength lies in discerning subtle changes over time, enabling a
deeper understanding of scene dynamics and motion trajectories in
3D environments.

3.1.1 Voxel-based Methods

These methods [5], [44], [74] convert SPL into a volumetric repre-
sentation for motion feature extraction using 3D CNNs. Scene flow
is calculated from voxel centroids, as depicted in Figure 3a. Initially,
the input point cloud is segmented into voxels, processed through
networks like VoxelNet [145]. PointFlowNet [5] predicts 3D object
boundaries and their motion, using multiple decoder branches for
scene flow, ego-motion, and object detection. It integrates scene
flow with object detection for pixel and object level motion analysis,
optimized through combined loss functions. VoxFlowNet [74],
similar to PointFlowNet, utilizes voxel representation for scene flow
estimation. It differs in its point selection, using the farthest point
sampling strategy, and integrates PointNet++ [81] and FlowNet3D
[56] concepts. VoxFlowNet aggregates local neighbor features in
each voxel, employs Set Conv layers for feature extraction, and Set
Upconv layers for upscaling voxels to original scale for scene flow
estimation.

However, existing methods struggle with large-scale point
clouds due to computational demands. Scalable [44] addresses this
by supporting point clouds up to O(100K) in real-time. It leverages
PointPillars [49] for feature extraction, dynamic voxelization, and
a U-Net autoencoder for processing, with shared MLP layers for
point-wise scene flow prediction. This approach reduces compu-
tation significantly compared to KNN-based neighbor searches.
Additionally, Scalable introduces a new benchmark for scene flow
estimation using the Waymo Open Dataset [99], addressing the
scarcity of real, annotated scene flow datasets.

3.1.2 Direct Point-based Methods

While voxel-based methods can suffer from redundancy and
incomplete information, point-based approaches [56], [108], [112]
address these issues by directly using raw point clouds to estimate
scene flow vectors. As illustrated in Figure 3b, these methods
compute a scene flow vector for each point, extracting features
spatially and temporally.

FlowNet3D [56], a notable example, utilizes PointNet++ [81]
for feature extraction from consecutive point cloud frames. It

employs farthest point sampling for neighbor points and hier-
archically aggregates local features. The flow embedding layer
concatenates features of two frames, and the flow is refined through
set upconv layers, leading to impressive performance on datasets
like Flythings3D and KITTI Scene Flow 2015. Shao et al. [92]
proposed a concurrent method that estimates scene flow alongside
segmentation and motion trajectories using RGBD images, differing
from FlowNet3D’s reliance solely on point clouds. However,
FlowNet3D’s primary limitation was its use of simple [2 loss for
comparing predicted and actual scene flows. FlowNet3D++ [112]
builds upon its predecessor with two innovative loss functions: the
point-to-plane loss, enhancing performance in dynamic scenes, and
the cosine distance loss, correcting direction discrepancies in flow
vectors. Furthermore, it introduces a 3D dynamic reconstruction
pipeline, significantly improving performance over the original
FlowNet3D with this new evaluation metric.

Almost all of the previous paper adopted PointNet++ [81]
as their feature extraction backbone. However, one major issue
related to PointNet++ is the irregular sampling which leads to
the randomness for feature extraction process. FESTA [108] used
a spatial-temporal attention mechanism and achieved prominent
benefits for scene flow estimation benchmarks. In the spatial
domain, FESTA exploited a novel SA? layer to extract those points
which were more stable and critical. The more representative points
tended to help the network find better correspondence between
the continuous frames. Likewise, in the temporal domain, FESTA
introduced a TA? layer to tackle the various motion scale problem.
A recurrent design was employed to first estimate an initial flow.
Afterward, in the second iteration, FESTA shifted the attended
region based on the initial flow which had more likelihood to
find the good matches. The extensive experiments exhibited the
significance of the proposed attention mechanism on scene flow
estimation task.

Pure point-based solution still concentrates on local correlations.
The absence of global information leads to the error accumulation
during previous coarse-to-fine strategies. Thus, the authors of [114]
proposed a method named PV-RAFT applying point and voxel
representations together to capture all-pairs correspondence. The
K-NN pairs were adopted to model the local correspondence while
pairs between volumes were utilized to involve global correlations.
This improved the scene flow estimation performance especially
for fast moving objects.

Just Go with the Flow [71] was another recent work that solely
focused on using a unsupervised method and solving the lack of
ground truth annotations in the real-world point cloud scene flow
datasets. The authors built the network upon the FlowNet3D [56]
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TABLE 1: The summary of scene flow estimation methods

Methods [[ Code | Attribute
PointFlowNet [5] X
VoxFlowNet [74] v
Scalable [44] v
Feature Embeddin }P?’]\(/)_\s{\?g;)[ [ ]] j Feature Embedding based methods usually learn a compact, discriminative representation
& FlowNet3D++ [117] % of the raw input data (like voxels or point clouds) via MLP or convolutional layers,

FESTA [105] v allowing for a better understanding and representation of the scene and its dynamics.
HPLFlowNet [31] v
Just Go [71] v

Cost-volume PointPWCNet [126] v Cost-volume based methods compute the similarity between corresponding voxels,
Res3DSF [107] v or points from two different frames or views in a coarse-to-fine manner.

Transformer gg%\? \EVN? (2] j Transformer based methods are built upon the transformer layers to capture
PointConvFormer [ 124] v precise correlation between frames through attention mechanism.

TABLE 2: Quantitative scene flow estimation results on FlyingThings3D [

] and KITTI [66] datasets. End-Point-Error (EPE) computes

the mean Euclidean distance between the ground-truth and the scene flow prediction. Acc Strict calculates the percentage of points with
EPE < 0.05m or relative error < 5%; while Acc Relax calculates the percentage of points with EPE < 0.1m or relative error < 10%. *

indicates methods tested on datasets pre-processed by [31].

Methods FlyingThings3D KITTI
EPE (m) AccS. (%) AccR. (%) | EPE(m) AccS. (%) AccR. (%)
VoxFlowNet [74] 0.2971 11.36 33.46 - - -
PV-RAFT* [114] 0.0461 81.68 95.74 0.056 82.26 93.72
FlowNet3D [50] 0.1694 25.37 57.85 0.122 18.53 57.03
Feature FlowNet3D++ [112] 0.1369 30.33 63.43 0.253 - -
Embedding MeteorNet [57] 0.2090 - 52.12 0.2510 - -
FESTA [108] 0.1113 43.12 74.42 0.0936 44.85 83.35
HPLFlowNet [31] 0.1318 32.78 63.22 0.119 30.83 64.76
Just Go [71] - - 0.122 25.37 57.85
Cost-volume PointPWCNet* [1206] 0.0588 73.79 92.76 0.0694 72.81 88.84
Res3DSF* [107] 0.0310 91.39 97.68 0.0351 89.32 96.20
PT-FlowNet* [25] 0.0304 91.42 98.14 0.0224 95.51 98.38
Transformer | SCTN [50] 0.038 84.7 96.8 0.2549 23.79 49.57
PointConvFormer [124] 0.0416 86.45 96.58 0.0479 86.59 93.32

and introduced two loss functions to train the network. One was
the nearest neighbor loss which was able to push the combination
of the first point cloud and the forward flow towards the next point
cloud. Another one was the cycle consistency loss which forced
the combination of the next point cloud and the reverse flow to
be close to the first point cloud. With these simple loss functions
design, they could finetune the network on other large SPL data no
matter whether they had the ground truth annotations and achieved
the state-of-the-art performance.

3.1.3 Lattice-based methods

Starting from PointNet [80] and PointNet++ [81], researchers
always pre-process point clouds and chunk them into small blocks
before sending the data into the network. In this way, the global in-
formation is inevitably damaged and leads to inaccurate boundaries
as well. Lattice-based methods splat point clouds into lattice space
which could further leverage the Bilateral Convolutional Layers
(BCL) [41] to conduct scene flow feature learning. A typical lattice-
based representation is shown in Figure 3c.

Inspired from the Bilateral Convolutional Layers (BCL) [41],
HPLFlowNet [31] proposed a novel network which used the
BCL and permutohedral lattice [2] to better estimate scene flow.
The authors proposed DownBCL and UpBCL modified from the
original BCL [41] to extract the lattice features and refine scene
flow from the coarse estimation respectively. Moreover, a CorrBCL

was introduced to better fuse the information from two separate
and consecutive point cloud frames. HPLFlowNet also presented a
new density normalization schema which made the network much
more efficient and was able to generalize to various point densities.

3.2 Cost-Volume-based Methods

Cost-volume based methods for 3D scene flow estimation create
a “cost” for potential motions of scene points. For each point, a
volume of possible movements is predicted, and each movement
has a cost based on how likely it fits observed changes across
frames. The best movement for each point is the one with the
lowest cost. This approach aims for smooth and consistent motion
across the scene but can be computationally demanding due to the
many potential motions considered.

PointPWC-Net [126] is the first work that exploring cost-
volume based method to estimate scene flow in a coarse-to-fine
manner inspired by FlowNet [39] and PWC-Net [98]. Specifically,
to avoid the information loss in previous single flow embedding
layer such as in FlowNet3D method [56], the authors built a
pyramid network for point cloud and hierarchically refine scene
flow. At each pyramid level, they warped the first point cloud
features with the up-sampled coarse flow from the last level, and
computed the cost volume with the second point cloud features.
Finally, the refined scene flow was acquired after the scene flow
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predictor. For supervised loss, they utilized the regular 12 loss
for each layer between the groundtruth and the prediction. For
the unsupervised loss, they introduced the Chamfer distance [21],
smoothness constraint, and Laplacian regularization to predict the
scene flow without any ground truth annotations.

Res3DSF [107] is developed, leveraging insights into human
capabilities to discern dynamic movements in their environment.
It integrates a context-aware module coupled with a residual
flow refinement layer, all designed to achieve precise scene
flow estimations. Several previous methodologies have often
missed distinguishing repetitive patterns in dynamic environments.
Res3DSF employs a distinct approach, incorporating contextual
structure learning into its 3D spatial feature extraction layer and
assimilating soft aggregation weights. A crucial aspect of this
model is its optimization of attentive cost volume, which is
pivotal for extracting flow embeddings from the context-enriched
feature pyramid module. These embeddings subsequently undergo
refinement via Three-NN interpolation and multiple MLP layers,
culminating in the final thorough scene flow.

3.3 Transformer-based Methods

Transformer-based methods for 3D scene flow estimation employ
the self-attention mechanism from transformers to capture intricate
point-to-point relationships across consecutive frames. By process-
ing both local and global context in point clouds, they ensure
a comprehensive motion estimation. Adapting the transformer
architecture, originally for text data, to the spatial nature of 3D
scenes has proven to enhance the accuracy and consistency of
motion predictions.

PT-FlowNet [25] is the first one introducing transformer
architecture into the scene flow estimation task. It propose a
novel approach employing point transformer (PT) extensively in
its structure for optimal scene flow estimation in 3D environments.
This unique integration of the transformer enables superior feature
extraction from complicated point clouds. Additionally, the network
utilizes a PT-based KNN branch within its iterative update
module, allowing for more effective aggregation of correlated
features compared to the conventional KNN with max-pooling.
PT-FlowNet has exhibited exemplary performance and adaptability,
especially on the FlyingThings3D and KITTI datasets, showcasing
its effectiveness in real-world conditions.

SCTN [50] embraces an innovative voxel-based convolutional
approach, ensuring coherent flows within three-dimensional spaces.
It merges a sparse convolutional technique, aimed at profound
feature extraction, with a transformer module to fortify the accuracy
of scene flow predictions. This represents a pioneering integration
of the transformer with sparse convolution, bestowing it with
the capability to discern relational contextual information within
point clouds. SCTN [50] calculates soft correspondences using a
correlation matrix, integrating features extracted from both sparse
convolution and the transformer module. To further amplify its
discrimination of various motion fields, SCTN [50] introduces a
feature-sensitive spatial consistency loss.

PointConvFormer [124] has re-engineered and refined the
feature extraction mechanism through the use of transformers.
This model has undertaken an in-depth exploration into the
methodologies of calculating convolutional weights. Furthermore,
PointConvFormer applies a Sigmoid activation function when
dealing with attention weights, proving significantly more effective
than the Softmax method. Owing to these insightful observations,

6

PointConvFormer has manifested elevated performance in a series
of trials compared to traditional Transformer models. Within the
FlyingThings3D dataset, the EPE3D of PointConvFormer surpasses
that of PointPWC-Net by 10%.

3.4 Discussion

The scene flow estimation results on both the synthetic dataset
FlyingThings3D and real-world dataset KITTI are reported in
Table 2. We have the following observations and discussions:

e Overall, the point-based and the lattice-based methods out-
perform the voxel-based methods by a large margin. This is
because scene flow estimation is essentially a point-wise pre-
diction task. The dense representation such as point and lattice
are naturally fit with the task, while the voxel representation
might suffer from losing the fine-grained information.

o Almost all types of methods demonstrate a well generalization
ability from the synthetic domain to the real world domain.
The models were trained on FlyingThings3D dataset and
directly tested on KITTI dataset with promising performance.
This reflects the potential of transfer learning and few-shot
learning prospects on more real applications.

e Incorporating transformer models in 3D scene flow estimation
can be highly beneficial. The Self-attention mechanism in
transformers captures long-range dependencies and global
interactions within scenes, enabling a more comprehensive
understanding of scene dynamics. Multi-head self-attention
provides multi-scale understanding, essential for capturing
diverse scene features. Unlike conventional feature embed-
ding or cost-volume, transformers allow efficient parallel
processing, crucial for handling extensive 3D point cloud
data, and accelerating training and inference. The flexibility
of transformers enables integration with various architectures,
enhancing feature capture. Their interpretability and repre-
sentation learning capability make them a powerful tool for
understanding intricate features and dynamic patterns within
3D scenes, offering a holistic and efficient approach to 3D
scene flow estimation.

4 POINT CLOUD DETECTION

Object detection has been a significant computer vision task for
a long time in both 2D and 3D domains which could bring
tremendous applications such as self-driving, AR/VR, etc. The
purpose is to recognize various objects and predict their precise
bounding boxes in nature scenes. Previously, object detection in
2D images has made prominent achievements for both efficiency
or accuracy. Meanwhile, motivated by the success of 2D object
detection, research about 3D object detection is driving more and
more attentions in the community. However, most of them still
concentrate on using single-frame data as input. Recently, some
researchers started to apply methods by taking multiple frames,
which is SPL data, as the input for networks. Temporal information
is investigated to obtain boosted detection results on 4D (3D
spatial and 1D temporal) sequential data such as point clouds.
Compared to object detection methods with only using single point
cloud as input, sequential 4D data is more appealing, since it
provides much richer context information and wide-range coverage
of temporal consistency. The real world scenes are often dynamic
and hard to predict. Objects might be missing or occluded between
continuous frames. Leveraging spatio-temporal information can
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TABLE 3: The summary of methods for multi-frame 3D object detection on sequential point cloud data.

Methods [[ Code | Attribute
FaF [61] v The C lution-based methods 1 1 information by slidi indow fusi
Second [130] v e Convolution-based methods learn temporal information by sliding window fusion
Convolution-based | IntentNet [1°] v schema which is convolution operation. This is more convenient but tends to lose
Wh details information or small objects.
at you see [34] v
Graph-based Yin et al. [135] X The Graph-based methods benefit from spatial features extracted from graph networks.
YOLO4D [19] v Compared to simple convolution operation, the RNN-based methods aggregate temporal
RNN-based McCrae et.al [64] X information better by exploring long-range temporal dependency. However,
Huang et.al [37] X they usually cost more computation resources.
LIFT [137] v Transformers are inherently suited to sequence-to-sequence tasks,
Transformer-based | BEVFusion4D [10] v allowing to effectively integrate temporal context, learning dependencies
FusionFormer [33] v across different time frames.

significantly diminish false positives and false negatives during the
object detection process. A list of multi-frame 3D object detection
methods on SPL data is summarized in Table 3.

4.1

Convolution-based Methods

Fig. 4: The illustration of a convolution-based network for SPL
object detection. The figure is from [01] with author’s permission.

The convolution-based methods project SPL data into regular
organization formats such as BEV (bird’s eye view) map or voxel
grid so that normal convolution operations could be leveraged to
estimate object locations. A typical convolution-based network is
shown in Figure 4. FaF [61] jointly conducted 4D object detection,
tracking, and motion forecasting together which took full advantage
of multiple point cloud frames as input. These sub-tasks were
shown to associate each other and boosted up the performance.
Each point cloud frame was represented by voxel. Nevertheless,
FaF did not perform 3D convolution on 3D voxel due to the large
computation cost. Instead, it operated 2D convolutions on the zy
plane and directly treated the z dimension as feature information
for 2D convolution. The same operation was applied for all of the
frames and the coordinate system was normalized to be aligned
across frames. The aggregated 4D tensor was sent to a single-stage
object detector to accomplish the detection process. Meanwhile,
to better utilize temporal information, FaF devised two schemes
for temporal fusion. The early fusion directly concatenated tensors
and used a 1D convolution to connect temporal features, while the
late fusion hierarchically merged temporal features allowing the
network to capture higher-level motion information. The object
detection pipeline was the affinity of SSD [132] mentioned above.
Tracking and motion forecasting will be introduced in Sec. 5 and
Sec. 7.1.

Yan et al. [130] introduced an improved sparse convolution
on voxelized point cloud leading to faster computation. Likewise,
an angle loss function was added to deal with the limited object
orientation prediction problem. The authors aggregated temporal
information by concatenating multiple point cloud frames and
considering time stamps information as additional features for
network’s input. IntentNet [12] proposed a fully convolutional
network to deal with object detection and intent prediction at
a single pass. It represented 3D point cloud from bird’s eye
view (BEV). The input data was modeled as 3D tensor and
the height information was included as one of feature channels.
Meanwhile, the temporal information from multiple Lidar sweeps
was integrated into the height channel benefiting dynamic map and
long trajectory predictions.

Hu et al. [34] argued that exploring free space for 2.5D data
(RGBD or range image) is better than directly representing Lidar
sweeps as 3D point clouds. The detection pipeline was built
upon PointPillar [49] architecture. The visibility map was derived
through raycasting algorithm from voxelized input data, which
can be further blended into the network gradient learning process.
During training, the visibility volume was treated as an additional
input to the network by two fusion methods, early fusion, and late
fusion. The difference between these two fusion methods is located
whether to compute input features separately using the backbone
network. The aggregation of temporal information was considered
to be an augmenting trick by taking the advantage of visibility prior.
The authors of [34] compensated motion by transferring SPL into a
single scene and encoding timestamps as an additional input along
with zyz geometry, which can be proven to improve detection
results by a large margin over PointPillar [49] baseline model.

The essence of 4D-Net [77] is its pioneering dynamic connec-
tion learning, rooted in a meticulous convolution process. This
method is designed to enable an advanced fusion of varied feature
representations from diverse modalities and abstraction levels, all
while rigorously preserving geometric fidelity. Through dedicated
convolutional architectures, each modality yields a plethora of rich
features that are strategically aligned and integrated, facilitating a
seamless interaction and synthesis of 4D information from assorted
sensors. Unlike preceding models, 4D-Net initiates the convolution
early in the workflow, mitigating the dilution of vital spatial
data and optimizing the use of motion cues and high-density
image information. This intricate convolution-driven approach
substantially augments the detection proficiency in multifaceted
spatial and temporal environments.
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TABLE 4: Quantitative results of 3D object detection on Waymo Open Dataset [

] val set (vehicles and pedestrians).

Vehicles Pedestrians
Method 3D AP BEV AP 3D AP BEV AP
10U=0.7 [ ToU=0.8 | 1oU=0.7 | ToU=0.8 [ ToU=0.5 | IoU=0.6 | IoU=0.5 | ToU=0.6
StarNet [72] 53.70 - - - 66.80 - - -
PointPillar [49] 60.25 27.67 78.14 63.79 60.11 40.35 65.42 51.71
MVF [144] 62.93 - 80.40 - 65.33 - 74.38 -
Single-frame | AFDET [27] 63.69 - - - - - - -
Methods RCD [8] 68.95 - 82.09 - - - - -
PillarNet [110] 69.80 - 87.11 - 72.51 - 78.53 -
PV-RCNN [94] 70.47 39.16 83.43 69.52 65.34 45.12 70.35 56.63
MVF++ [78] 74.64 43.30 87.59 75.30 78.01 56.02 83.31 68.04
Huang et al. [37] 63.60 - - - - - - -
Multi-frames MVF++ [78] 79.73 49.43 91.93 80.33 81.83 60.56 85.90 73.00
Methods LIFT [137] 69.0 64.2 - - 69.9 65.3 - -
FusionFormer [33] 79.73 49.43 91.93 80.33 81.83 60.56 85.90 73.00
Qietal. [78] 84.50 57.82 93.30 84.88 82.88 63.69 86.32 75.60

TABLE 5: Quantitative results of 3D object detection on nuScenes [9] dataset. ”T.C.” stands for traffic cone. "Moto.” and ”Cons.”

represent motorcycle and construction vehicle, respectively.

Method [[ Car Pedestrian ~ Bus  Barrier T.C. Truck Trailer Moto. Cons. Bicycle Mean
VIPL_ICT [73] 71.9 57.0 34.1 38.0 27.3 20.6 26.9 20.4 3.3 0.0 29.9
Single-frame MAIR.[ ] 47.8 37.0 18.8 51.1 48.7 22.0 17.6 29.0 74 24.5 30.4
Methods PointPillars [49] 68.4 59.7 28.2 38.9 30.8 23.0 234 274 4.1 1.1 30.5
) SARPNET [134] 59.9 69.4 19.4 38.3 44.6 18.7 18.0 29.8 11.6 {14.2} 324
Tolist [73] 79.4 71.2 42.0 51.2 478 345 34.8 36.8 9.8 12.3 42.0
FusionFormer [33] - - - - - - - - - - 72.6
What you see [34] 79.1 65.0 46.6 34.7 28.8 30.4 40.1 18.2 7.1 0.1 35.0
Multi-frames | McCrae et al. [64] 67.97 56.87 - - - - - - - - -
Methods Yin et al. [135] 79.7 76.5 47.1 48.8 58.8 33.6 43.0 40.7 18.1 7.9 454
LIFT [137] 87.7 86.1 62.4 69.3 832 551 59.3 70.8 29.4 47.7 65.1
BEVFusion4D [10] 89.7 90.9 72.9 81.0 87.7 65.6 66.0 79.5 41.1 58.6 73.3

4.2 RNN-based Methods

These methods [19], [37], [64] investigated recurrent neural net-
works to capture the temporal consistency of detection features and
improved object localization accuracy. Figure 5 depicts a general
idea of the RNN-based methods. The network extracts spatial
features by CNN for each point cloud frame. Then a recurrent
network dubbed ConvLSTM is integrated to learn temporal features
from previous state and current state, leading to generated features
for the next layer. The paper [37] proposed by Huang et al. was
the first one that modeled temporal relations among SPL with an
RNN-based (LSTM) schema to boost up the performance of 3D/4D
object detection results. The proposed network took SPL as input
and generated backbone features for each point cloud frame by a
3D Sparse Conv U-Net. A novel 3D sparse LSTM was used to fuse
backbone features across previous timestamp ¢ — 1 and current
timestamp ¢. After embedding temporal information into hidden
features, object proposals for each point were predicted by an object
detection head network. Moreover, the authors built a knowledge
graph among all of the point nodes to enhance spatial geometry
information and suppress false positives. The final object detection
results were refined by a traditional non-maximum suppression
algorithm.

Besides simple stacking LSTM layers which just concatenated
SPL frames as 4D tensor and used CNN to comprehend tempo-
ral information, another way is to adopt powerful ConvLSTM.
YOLOA4D [19] extended YOLO v2 [84] network to 3D space and
leveraged not only spatial but also temporal information from
SPL. It could capture temporal information better and exhibited
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Fig. 5: The illustration of an RNN-based method for SPL objection
detection. The figure is from [19] with author’s permission

superiority during the multiple frames object detection process.
McCrae et al. [64] employed PointPillar [49] as its baseline and
developed a recurrent designed network that specifically takes
three point cloud frames as input. Each point cloud frame was
processed by a PointPillar model to extract features and followed
a ConvLSTM to model temporal relation between the past and
current time stamps. These designs were shown to be effective in
pedestrian and vehicle classes.
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4.3 Graph-based Methods
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Fig. 6: The illustration of a graph-based method to conduct object
detection. The figure is from [135] with author’s permission.

The core idea of these methods is to explicitly capture point
spatio-temporal strictures with graph networks modeling. Figure 6
demonstrates a graph-based network to generate detection results.
The network took SPL as input and all of the frames were aligned to
the same coordinate system to eliminate ego-motion effects. After
spatial features were extracted from point cloud frames, they were
sent to Attentive Spatiotemporal Transformer Gated Recurrent Unit
(AST-GRU) network to perform temporal information accumulation
which can aid dynamic object detection results. Yin et al. [135]
explicitly proposed an object detection method from sequential
point clouds and explored the superiority over single-frame 3D
object detection which has limitations of sparse, occlusion and bias
sampling, etc. A delicate PMPNet was developed to manipulate the
spatial relation from the encoded pillar grids graph in an iterative
message-passing manner.

4.4 Transformer-based Methods

Transformer-based methods for 4D object detection merge the
strengths of transformers in handling long-range dependencies
with the challenges of detecting objects in 3D space over time,
offering promise for more robust detection and tracking of objects
in dynamic scenes.

The LIFT [137] (LiDAR Image Fusion Transformer) method
employs 4D sequential cross-sensor data alignment to assimilate
temporal interactions between LiDAR and camera sensors over
successive time frames. Specifically, LIFT uses transformer ar-
chitectures, enabling the model to aggregate multi-frame, multi-
modal information over time, accentuating temporal variations. By
utilizing bird-eye-view projections and computing sparse grid-wise
self-attention, LIFT maintains temporal coherence with reduced
computational load, delivering enhanced 3D object detection
in dynamic autonomous driving scenarios, as validated on the
nuScenes and Waymo datasets.

BEVFusion4D [10] stands as an advanced fusion framework for
3D object detection in autonomous driving, integrating LiDAR and
camera information into a Bird’s-Eye-View (BEV) using a transfor-
mative approach. A pivotal component is the LiIDAR-Guided View
Transformer (LGVT), which acts as a sophisticated transformer
model, utilizing LiDAR-derived spatial priors to optimize the ex-
traction of relevant semantic information from camera views in the
BEV space effectively. Furthermore, the framework incorporates
a Temporal Deformable Alignment (TDA) module, employing
transformer methodologies to aggregate historical frame features,
thereby providing a comprehensive spatiotemporal representation.
This transformative approach significantly elevates BEVFusion4D’s
performance, rendering it superior on the nuScenes datasets with a
leading edge in spatial and spatiotemporal detection scenarios.
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FusionFormer [33] is a pioneering end-to-end framework
devised for refined 3D object detection, leveraging transformers
to facilitate precise multi-modal fusion, addressing the Z-axis
information loss seen in conventional methods. This framework
permits features to be inputted in their original forms and utilizes
deformable attention to integrate LiDAR and image features
effectively. FusionFormer introduces a specialized depth prediction
branch, optimizing camera-based detection tasks, and a novel plug-
and-play temporal fusion module, utilizing deformable attention
for the assimilation of historical BEV features, yielding enhanced
detection stability and reliability.

4.5 Discussion

4D SPL object detection results on benchmarks of Waymo
Open and nuScenes Datasets are summarized in Tables 4 and
5, respectively. Here are the observations and discussions:

¢ On both benchmarks of Waymo Open and nuScenes Datasets,
the multi-frame methods demonstrate a clear superior per-
formance compared to the single-frame methods. Although
more information is involved, this does reflect the essence
of additional temporal information. By using SPL data and
devising spatio-temporal feature extracting techniques to
conduct object detection, those false bounding box results
are largely suppressed to ensure temporal consistency and
thus improve overall detection accuracy.

o Compared to the RNN-based methods, the convolution-based
and the graph-based methods accomplish better performance
on nuScenes benchmark. As we also discussed in Supple-
mentary, the RNN-based networks exploit more on temporal
relations among long-range time series, while high-level
semantic understanding tasks like detection prefer temporal
consistency in both spatial and temporal domains.

o Almost all of the multi-frame detection methods are restricted
to less than 10 frames. Thus long-range SPL object detection
still remains as a challenging problem.

« Besides the above mentioned methods, Qi et al. [78] explored
an offboard application yielding groundtruth 3D labels by
utilizing SPL detection results which have sufficient context
information. The authors followed the similar method of [34]
which aggregated temporal information by transforming other
point cloud frames to the current one to get rid of ego-motion
and encoded time offsets as an additional feature. Meanwhile,
it reached the state-of-the-art 3D object detection performance
on challenging Waymo Open Dataset.

5 POINT CLOUD TRACKING

4D multi-object tracking (MOT) is another essential application
of SPL, which is also a vital component for autonomous driving
task cooperated with 4D object detection prior. Being aware of
object locations in each point cloud frame, 4D MOT takes the
responsibility of associating them together in a whole sequence. The
temporal consistency plays a crucial role to cope with the tracking
problem in this process. Normally, 4D MOT system follows 2D
MOT schema while the difference is the detection process happens
in 3D space. In recent years researchers start to directly utilize
3D point cloud data to perform MOT even without any additional
features such as RGB information.
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TABLE 6: The summary of the Multiple Object Tracking methods.

Methods [[ Code | Attribute
AB3DMOT [117] v
Complexer-YOLO [95] v The 3D based methods are more easy to implement and get rid of relying on other
Filter-based Chiu et al. [15] v data modalities. However, this usually are less sensitive to
Giancola et al. [28] v the extreme motion.
DSM [24] v
P2B [82] v
FaF [61] v The joint 2D&3D-based methods could be associative with the detection
Temporal Convolution | PointTrackNet [109] v pipeline and are usually more accurate due to additional semantic signals from the 2D RGB
GNN3DMOT [120] v modality. However, the large computation cost is also inevitable.
mmMOT [139] v

TABLE 7: Quantitative 3D MOT Results of on KITTI Test Dataset.

Method H MOTAtT MOTPT MTY ML| ID_sw] FRAG|

Complexer-YOLO [95] 75.70 78.46 58.00 5.08 1186 2092

AB3DMOT [117] 83.84 85.24 66.92 11.38 9 224
Filter-based Chiu et al. [15] - - - - -
Giancola et al. [28] - - - - - -

DSM [24] 76.15 83.42 60.00 8.31 296 868
FaF [61] 80.9 85.3 55.4 20.8 - -

Temporal Convolution PointTrackNet [109] 68.23 76.57 60.62 1231 111 725

GNN3DMOT [120] 80.40 85.05 70.77  11.08 113 265

mmMOT [139] 84.77 85.21 73.23 2.77 284 753
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Fig. 7: A baseline for 3D-based MOT methods. The figure is from
[117] with author’s permission.

5.1 Filter-based Methods

Recent methods [15], [28], [61], [109], [117] operate only raw
SPL data for 3D MOT task. Usually these methods rely on
object detectors to provide object locations and various filter-based
algorithms to predict object trajectories, as shown in Figure 7.
AB3DMOT [117] provided a compact baseline for multi-object
tracking task while maintaining high-efficiency meeting the real-
time estimation requirement. In this work, the authors derived
detection results for the current Lidar frame through a pre-trained
3D object detector. The 3D Kalman Filter with constant velocity
model predicted the state of object trajectory from previous frame.
The predicted trajectory and detected objects were associated with
Hungarian algorithm in current frame, which can further update
trajectory state in 3D Kalman Filter. The authors also regularized
the evaluation of 4D MOT system directly in 3D space instead
of projecting into 2D plane as the previous work did. A new
evaluation tool and three evaluation metrics were proposed to
evaluate tracking performance on self-driving benchmarks in a
more reasonable manner. Similar to the paper proposed by Weng et
al. [117], Chiu et al. [15] dealt with the tracking problem using 3D
Kalman Filter with a constant linear and angular velocity model.
Besides the traditional approach, the authors exploited Mahalanobis
distance for data association process and co-variance matrices for
the state prediction process.

In addition to SPL input, there are methods involving another
modality RGB image to the network as well. The features from
different domains could complement each other and lean-to more

representatives. DSM [24] was an earlier work leveraging the deep
structured model to create multiple neural networks together to
solve the 4D MOT task. It predicted object proposals using a
Detection Network from the input point cloud and RGB sequence.
After formulating discrete trajectories, a liner optimization process
was utilized to generate final tracking results. To utilize high-level
semantic features for 3D MOT task, the authors of [95] generated
semantic segmentation maps from input images. The semantic
information was further back-projected to 3D space to obtain class-
aware point clouds and provide extra semantic guidance to the
tracking process. They predicted 3D bounding boxes from the
voxelized semantic point cloud. The Scale-Rotation-Translation
score (SRTs) was devised to reasonably evaluate performance and
accelerate the speed to real-time.

5.2 Temporal Convolution Methods

However, previous filter-based methods were not sensitive to the
extreme motion condition which may harm tracking performance.
PointTrackNet [109] designed PointTrackNet to conduct object
detection first from two continuous point cloud frames. The
locations were further refined by an association model to merge
detection results and ameliorate the impact of the false positive. The
final tracklets can be provoked by linking matched objects. P2B
[82] coped with the tracking problem with a point-wise schema
and without using a traditional Kalman filter which has a relatively
large computation cost. It proposed an end-to-end network and
treated the tracking task as the detection task inspired by VoteNet
[79]. The sampled seeds and target centers embedded with local
geometry information were first extracted from sequential point
clouds. This strengthened the object representation instead of using
single bounding box such as [28]. Then each target center was
clustered with its neighbors to form the target proposal. Finally,
object proposals were further verified over the whole sequence to
ensure 3D appearance consistency and acquire tracking results.
Inspired by paper [!], to promote tracking performance with
both richer feature representations and the regularization of the
shape completion, Giancola et al. [28] proposed the first 4D MOT
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Siamese network structure. Specifically, first, the features extracted
by an encoder network served as compact latent representations
for Siamese tracker. Then the cosine similarity metric was used to
match candidate shapes with model shapes. Finally, the decoder part
of the shape-completion network was added to regularize Siamese
tracker which could ensure the meaningful latent representation.

Different from the normal trajectory optimization solution,
FaF [61] solved the tracking problem in an associative manner,
incorporating with the object detection, motion forecasting and
tracking tasks into a single pipeline. Firstly, as mentioned in Sec. 4,
FaF adopted multi-frame object detection methods to derive object
bounding boxes locations for the whole sequential frames. A motion
forecasting algorithm was applied to predict object locations in
further time stamps. In conjunction with past and current locations,
tracklets could be obtained through average fusion.

Unlike previous work such as [117] extracting object fea-
tures independently to perform the Hungarian data association,
GNN3DMQOT [120] offered a novel multi-modality feature extractor
to learn motion and appearance features from both 2D and
3D spaces. Furthermore, they firstly introduced a graph-based
pipeline exploring the feature interaction among various objects
to derive a more discriminate affinity matrix. Consequently, the
data association process could benefit a lot from valuable object
features which could also lead to a boosted tracking performance.

5.3 Discussion

Table 7 summarizes 4D multi-object tracking (MOT) results on the
KITTI benchmark. Several observations and discussions are listed
below:

o Compared to pure 3D-based methods, joint 2D&3D-based
methods are more frequently used by the recent research
community with a relatively higher performance, which shows
the superiority of more modalities.

Most high-performance methods still require an additional 2D
input to ensure tracking accuracy. This is a limitation with
extra data. In the real self-driving scenario, usually, it costs
much more to process multi-modalities at the same time.
For almost all of 3D MOT methods, tracking performance is
based on detection performance. Only PointTrackNet [109]
and P2B [82] belong to a full end-to-end pipeline breaking the
limit of the off-shell detector. However, their performance is
not satisfied which leaves a potential improvement for future
research on this track.

Compared to MOT, 4D Single Object Tracking (SOT) aimed
to estimate the object state in further frames based on the
previous state. Pang et al. [75] recently investigated 4D
Single Object Tracking (SOT) and obtained tracklets through
estimated object bounding boxes at various time stamps. The
tracking process can be treated as a multi-frames registration
method.

6 4D POINT CLOUD SEGMENTATION

Segmentation has always been another prevalent and crucial topic
for high-level scene understanding including semantic segmenta-
tion, instance segmentation, and the combined version, panoptic
segmentation. Distinct from detection and tracking, segmentation
tasks demand a more fine-grained understanding of the surrounding
scene. They require a pixel or point level classification for diverse
scene object categories which could also provide a more holistic
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perception. Based upon previously developed 2D or single frame
3D segmentation methods, 4D segmentation over SPL recently
gains amounts of popularity due to real applications in our dynamic
world such as AR/VR, self-driving, etc. The path of handling
the extra temporal dimension and keeping consistency in the 4D
spatio-temporal space is paved by community.

A list of SPL segmentation methods is summarized in Table 8.
In the following sections, we will cover 4D point cloud semantic
and panoptic segmentation in Sec. 6.1 and Sec. 6.2 respectively.

6.1

The purpose of semantic segmentation is to apprehend semantic
information from surrounding scenes and forecast the class label
for each point in the point cloud. However, information provided by
a single frame is usually limited. To get a relatively comprehensive
perception of the real world, it is indispensable to explore
approaches of fusing temporal information across multiple frames.

4D Semantic Segmentation

6.1.1 Simple Gathering

Some methods claim that the 4D semantic segmentation task can be
simplified into the related 3D one. Given SPL which have multiple
frames, a network gathers point clouds into a single frame by
transferring other frames’ data into the coordinate system of the
current frame. Then 3D semantic segmentation methods can be
applied to solve the problem.

Projection-based One large category of 3D semantic segmentation
methods is the project-based methods. The input point clouds are
primarily projected to the BEV (Bird’s Eye View) or the spherical
space and then 2D segmentation pipelines can be easily applied
to 2D projected data. Taking the advantage of advanced 2D CNN
networks, the 3D segmentation process can be significantly sped
up. Zhang et al. [138] and PolarNet [140] followed the BEV
(Bird’s Eye View) projection track which format scene with a
top-down snapshot. The network output segmentation results on
the 2D spatial location including the semantic class prediction
of the voxel along the Z-axis. Although these BEV project
methods accomplished promising performance on segmentation
benchmarks, scene information loss was inevitable. Spherical
projection aimed to project point cloud data into the 360° spherical
space and then flatten it to the 2D image which can maintain
maximum information. The resulted spherical projection image
indicated structural information from the camera viewpoint. Studies
[701, [121], [122], [129] followed the spherical projection track
which treated the range image as the input data representation
and predicted segmentation results with 2D CNN networks. In
conjunction with some post-filtering technologies, 3D point cloud
could be reconstructed from the range image.
Convolution-based Researchers also represented 3D point cloud
data with regular grids so that 3D convolution operations could
be applied to learn semantic features. Some studies [36], [60],
[65], [85], [102] transferred point cloud to voxel representation
and adopted 3D convolutions over 3D volume data to estimate
segmentation results for each occupancy grid. Although it was
more straightforward to perform 3D semantic segmentation, 3D
voxel convolution still suffered from the heavy computation cost
and representation redundancy, leading to the inevitable accuracy
and efficiency loss. Papers [88], [97] splatted point cloud into
the permutohedral lattice space to perform sparse convolutions.
The lattice representation enables convolution operations to learn
the semantic segmentation prediction while preserving maximum
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information at the same time. Octree [90] was another approach to
formatting point cloud data. Octnet [86] was devised to conduct
convolution operations on the octree structure for point cloud.
PointConv [125] extended the convolution on the 2D image to
the 3D domain with the dynamic filter which supported both the
convolution and deconvolution. KPConv [103] proposed Kernel
Point deformable Convolution to cope with more flexible point
cloud.

Point-based Likewise, there is still another popular category
directly processing 3D point clouds to estimate semantic segmen-
tation results. Pioneered by PointNet [80], the authors proposed a
shared-MLP based network and output point-wise labels for each
point. Due to the lack of enough local geometry information,
PointNet++ [81] attempted to add the grouping operation at
multiple scales and resolutions to grab both local and global
semantic features. Inspired by PointNet and PointNet++, a tremen-
dous of point-based methods such as [20], [35], [43], [141],
[143] have been investigated to estimate semantic scene labels
for point clouds. They exploited all kinds of different ways to
aggregate representative features from local neighbors and promote
segmentation performance. Some other methods such as [14],
[104], [131], [142] introduced the attention mechanism to point-
based networks to help extract more critical points and benefit
segmentation results.

6.1.2 Temporal Convolution

Simply gathering multiple frames into a single channel inevitably
losses much spatial and temporal information especially when
there are large motions or deformations between frames. Instead of
simply gathering, studies explored more advanced approaches [16],
[18], [22], [57], [93] to learn the temporal information for the 4D
semantic segmentation on sequential point clouds.

Grid-based Convolution These methods [16], [93] transferred
point clouds to the regular data representation such as voxel
occupancy and convolution operations could be applied along
both spatial and temporal dimensions. Thus, the high-level context
information could be fused across multiple frames and better
inferring semantic perception in each frame. To achieve the point-
wise semantic label prediction purpose, 4D MinkNet [16] was
the first method that applied the deep convolution network on
high dimensional data such as SPL. It adopted the idea from
Sparse Tensor [29] and proposed the generalized sparse convolution
to operate high dimensional data. The proposed convolution
layer can be integrated with various deep networks and well
generalized to different tasks. To deal with the computational
problem when generalizing convolution to high dimensional spaces,
the authors designed a novel kernel that is not hyper cubic and thus
reduces the memory cost. The 4D segmentation network inherited
the traditional 2D segmentation design U-Net [87] including
sparse convolutions and sparse transpose convolutions. The skip
connection was also adopted to link low-level and high-level layers.

Although U-Net is a conventional method for semantic segmen-
tation problem, its basic structure could still fail in some complex
and dynamic scenarios. To better fuse global and local features,
SpSequenceNet [93] leveraged two novel models upon U-Net
baseline to improve the segmentation performance, the Cross-frame
Global Attention (CGA) and cross-frame local interpolation (CLI).
The entire network structure took two consecutive frames as input
and followed the U-net design in paper SSCN [30] which contained
3D residual blocks in the encoder part. The Cross-frame Global
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Attention (CGA) model was utilized to import global attention
information. It generated a mask from the previous frame which
contained crucial semantic features such as appearance information.
The mask could further guided the current frame feature extraction.
Another model cross-frame local interpolation (CLI) was inspired
by the scene flow embedding layer and fused both spatial and
temporal feature information.

Point-based Convolution While grid-based methods are relatively
consistent with 2D segmentation pipeline, they still suffer from
quantization errors which lose information ineluctably. Compared
to them, point-based convolution networks [22], [57] are usually
more compact. They capture features from raw SPL data which
preserve most object details information. MeteorNet [57] directly
processed raw SPL data and performed spatio-temporal feature
learning using a similar structure as PointNet++ [81] which
has been introduced in Supplementary. As for 4D semantic
segmentation networks, MeteorNet built MeteorNet-Seg to conduct
point-wise semantic label prediction process. The MeteorNet-
Seg harnessed the Meteor-ind [57] module and the early-fusion
strategy to construct the network. The Meteor-ind [57] module
only contained neighbor points for each local patch due to point
correspondence was not important for the segmentation task. The
early-fusion strategy combined input point clouds early before the
network to fuse temporal information.

PSTNet [22] was another concurrent work designed for process-
ing SPL with spatial-temporal convolution. The authors devised
a Point tube structure to organize input data more efficiently and
conduct proposed PST convolution. The point tube incorporated
spatial and temporal kernels separately to capture spatio-temporal
local structure information. To perform the point-level prediction
task such as 4D semantic segmentation, the PST transposed
convolution was developed to recover spatial and temporal scales
which had been down-sampled by the PST convolution. Overall
a hierarchical structure was built to process spatial and temporal
features at different levels for 4D semantic segmentation task.
Compared to grid-based methods such as [16], PSTNet was more
compact yet effective while 4D MinkNet [16] has a relatively large
representation redundancy, especially with an increasing scale of
data.

t+1

€go Single Frame
motion Feature Extractor
aggregates l ¥ Applied frame
“features of | Temporal Temporal | by frame
past frames | Alignment Memory
t+1

Fig. 8: The illustration of a RNN-based method for 4D semantic
segmentation. The figure is from [18] with author’s permission.
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TABLE 8: The summary of the sequential point cloud segmentation methods.

Methods [[ Code [ Attribute
. . MinkNet [16] v The grid-based convolution methods are more convenient to implement due to the regular
Grid-based Convolution . . BN . ) o ) P
Semantic SpSequenceNet [93] v gird representation of the point clouds, while inevitably suffer from the quantization error.
. . . MeteorNet [57] Ve . . . .. R
Segmentation | Point-based Convolution PSTNet [22] v Point-based convolution preserve more information from the raw point clouds.
RNN-based Convolution | Duerr et al. [15] X Explicitly learn the temporal information but with higher computation cost.
Panoptic . Aygiin et al. [4] v Jointly learning mutually boost each other and get a more
Segmentation Point-based PanopticTrackNet [38] v holistic scene understanding.

TABLE 9: Quantitative semantic segmentation results on SemanticKITTI multiple scans dataset (IoU (%)). The x shows moving classes.

bicycle
motorcycle
truck
other-vehicle
bicyclist
motorcyclist
road

parking
sidewalk

other-ground
building
vegetation
trunk
terrain

ole
traffic sign
other-vehiclex
truckx

fence
cark

personx
o~ .
i i || motorcyclistx

x
Methods mloU S & )
TangentConv [ 1 34.1 84.9 2.0 18.2 21.1 18.5 1.6 0.0 0.0 83.9 38.3 64.0 15.3 85.8 49.1 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 30.1 42.2
DarkNet53Seg [0] 41.6 84.1 30.4 32.9 20.2 20.7 7.5 0.0 0.0 916 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 28.9 37.8
SpSequenceNet [93] 43.1 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1
Duerr et al. [15] 47.0 92.1 47.7 409 39.2 350 144 00 00 91.8 596 75.8 23.2 89.8 63.8 82.3 62.5 64.7 52.6 60.4 68.2 42.8 404 12.9 12.4 2.1
TABLE 10: ntitati manti mentation results on th : : : :
0: Quantitative semantic segmentation results on the ot introduced in [4%] in the image space and further extended

Synthia 4D dataset.

Methods [[ Input | #Params M) [ mloU (%)
Single 3D MinkNet14 [16] voxel 19.31 76.24
Frame PointNet++ [81] point 0.88 79.35
4D MinkNetl4 [16] voxel 23.72 77.46
Multiple | MeteorNet [57] point 1.78 81.8
Frames PSTNet (1=1) [22] point 1.42 80.79
PSTNet (1 =3) [22] point 1.67 82.24

TABLE 11: Quantitative 4D panoptic segmentation on Se-
manticKITTI validation set. MOT (Multiple Object Tracking)

method by [115]; SFP (Scene Flow Propagation) Method by [71].

Method [ LSTQ  Susoc _ Sas | IoUS'  ToU™

RangeNet++ [/0] 2406 5243 6452 | 3582 42.17

MOT | KPConv [103] 25.86  55.86 6690 | 47.66 54.13
Aygiin et al. [4] 40.18  28.07 57.51 | 6695 51.50
RangeNet++ [/0] 3491 2325 5243 | 6452 35.82

spp | KPConv [103] 3853 2658 55.86 | 66.90  47.66
Aygiin et al. [4] (I scan) 4388 3348 5751 | 66.95 51.50

Aygiin et al. [4] (4 scans) 56.89 5636 5743 | 66.86 51.64

RNN-based Convolution The RNN-based Convolution methods
choose to aggregate temporal information recurrently as shown in
Figure 8. Specifically, for each time stamp ¢, the network fused
information from the previous frame at time ¢ — 1 and strengthened
the segmentation of the current frame. The feature of the current
frame would be continued to enhance future frames. Duerr et al.
[18] projected each point cloud in a sequence to the image plane
dubbed as range image mentioned in Sec. 6.1.1 and input to the
network. For the entire sequence, the semantic feature would be
perpetually reused instead of used just once in the previous paper
such as SpSequenceNet [93]. During temporal memory update
process, the authors utilized two recurrent strategies to perform
the feature fusion. One was adopting Residual Network which
concatenates the past frame feature information with the current
one and used MLP layers to conduct the spatial fusion. Another was
ConvGRU dubbed as Gated Recurrent Unit which introduced gating
mechanisms and replaced the MLP layer with the convolution layer.
The latter one was a better choice which was able to achieve
trade-off between efficiency and efficacy.

6.2 4D Panoptic Segmentation

Panoptic segmentation is a merged joint segmentation task includ-
ing semantic segmentation and instance segmentation, which was

from image to video by [47]. Behley et al. [7] presented a large-
scale Lidar benchmark for point cloud panoptic segmentation, in
conjunction with baseline results for single-scan segmentation
performance. Inspired from image to video upgrading in the
2D space and also the existing single-scan point cloud panoptic
segmentation baseline, Aygiin et al. [4] firstly proposed a 4D
Panoptic Segmentation pipeline demonstrated in Figure 9. The
authors took a sequence of point clouds as input and inferred
semantic classes for each point along with identifying the instance
ID, completing both semantic and instance segmentation jointly for
SPL. They first clustered points anchored on object center seeds
and then assigned semantic information for each point. One major
contribution in the paper was standardizing the evaluation protocol
for the sequentially panoptic segmentation problem by devising a
new point-centric evaluation method. Compared to existing metrics
PQ [48] and MOTA [105] which had problems of over-estimating
small segments and under-estimating frame association separately,
the proposed LSTQ (LiDAR Segmentation and Tracking Quality)
unified the evaluation in space and time domains and measured
point-to-instance association quality.

To explore a holistic scene understanding problem, Panoptic-
TrackNet [38] blended panoptic segmentation and multi-object
tracking tasks. It proposed a novel architecture PanopticTrackNet
with post-processing which unified semantic segmentation, instance
segmentation, and multi-object tracking. The PanopticTrackNet
was a multi-head end-to-end network containing a semantic
segmentation head, instance segmentation head, and instance
tracking head which simply concatenated frame vectors to merge
temporal information. It took continuous RGB frames or point
clouds as input and generated segmentation results. Then the
MOPT fusion model was applied to predict the pixel-wise panoptic
tracking output.
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Fig. 9: The illustration of a typical 4D panoptic segmentation
method. The figure is from [4] with author’s permission.
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6.3 Discussion

We summarize semantic segmentation results on the Se-
manticKITTI multiple scans benchmark and Synthia 4D dataset
in Tables 9 and 10, respectively. The results of 4D Panoptic
Segmentation on SemanticKITTI [6] dataset are reported in Table
11. Based on these tables, we have the following observations and
discussions:

¢ Additional temporal data improves the overall segmentation
accuracy by a large margin compared to static point cloud
methods as shown in Table 9, especially for those moving
object classes. The motion information is well-captured by
4D semantic segmentation methods which further enhance the
temporal consistency and remove false segmentation results.

e From Table 10, point-based convolution outperforms grid-
based convolution in terms of both efficacy and efficiency.
Especially for efficiency, the number of parameters of point-
based is much less than the grid-based methods, which avoids
large computation cost of the quantization process.

o Overall segmentation performance is still limited on moving
object classes which shows the large impact of motion
information.

o The panoptic segmentation methods significantly outperform
other basic segmentation methods by exploring a holistic
semantic scene understanding. The increase of scan numbers
brings consistent performance gain.

7 POINT CLOUD FORECASTING

Besides getting the perception of the surrounding world such as
detection and segmentation, future forecasting is another critical
component for a more holistic scene understanding. The reasonable
and precise future prediction would largely decrease the uncertainty
during motion planning or self-driving process, especially in 3D
space. Point cloud forecasting takes previous history information
into the system and generates future object positions or entire scene
point clouds, which would classify the task as motion forecasting
or sequential forecasting. A list of point cloud forecasting methods
is summarized in Table 12.

In the following sections, the motion forecasting will be
presented in Sec. 7.1 and the sequential forecasting will be
summarized in Sec. 7.2.

7.1 Point Cloud Motion Forecasting

Backbone Network

1 Perception 1

Cost Volume .

Trajectory Sampler

xxxx

Trajectory Samples

Fig. 10: The illustration of a voxel representation method for motion
forecasting. The figure is from [136] with author’s permission.

Motion forecasting, also called motion prediction, aims to
predict future object positions and trajectories by accumulating
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history spatial-temporal information. The conventional solution
to this problem is usually associated with object detection and
tracking, since knowing past object locations would provide strong
prior knowledge to the future prediction. Usually, these methods
are applied to image sequences or video signals by availing of
powerful CNN networks. While high demands arise for predicting
the future from raw sensor data, the community starts to explore
motion forecasting from point clouds [11], [12], [61], [69], [91],

[123], [136].
7.1.1 BEV Representation

Since point cloud data are usually sparse and irregular, one
convenient and efficient way is adopting the Bird’s Eye View (BEV)
representation, which converts point clouds to 3D tensors [1 1], [12],
[61], [136]. Besides the XY location, height is treated as another
feature to form one channel. In this way, clear separations between
target objects could still be preserved while largely reducing
computation cost for high-dimensional data. Figure 10 shows a
typical BEV representation method for motion prediction.

As introduced in Sec. 4 and Sec. 5, FaF [61] was also the
first one proposing a holistic network that jointly conducted object
detection, tracking and motion forecasting from SPL input. Due
to the association among multiple tasks, FaF had attained good
fidelity for the motion prediction by adopting BEV representation.
The IntentNet [12] (introduced in Sec. 4.1) extended FaF [61]
by predicting the intent which was defined as the combination of
the target high-level behavior (e.g. moving directions) and motion
trajectory. Besides SPL input, the authors took an extra rasterized
map as network’s input. The rasterized map consisted of the binary
mask and poly lines which encoded static scene information includ-
ing roads, traffic lights, traffic signs, etc. These signals provided a
strong motion prior and contributed a lot to the intent prediction.
The study [136] further extended IntentNet [ 2] to integrate motion
planning into the end-to-end motion forecasting system. Instead
of just predicting the moving angle as IntentNet [12], the purpose
of motion planning was to generate one optimistic trajectory with
minimum cost. Note that due to the novel joint design, multi-
modality models were trained together in an end-to-end manner.
The proposed motion planning was interpretable and generalized
well to the uncertain situation. The [1 1] was also developed based
on IntentNet [12] by adding the interaction model at the end for
motion predictions. It exploited a graph-based convolution neural
network to model the relation between various actors and further
decide the trajectory according to probabilistic inference.

Nevertheless, these methods are all developed following the
object detection-tracking-forecasting schema. The performance
of the motion forecasting inevitably depend on the accuracy of
bounding box positions derived from the first detection stage. If
there are some unexpected objects failed to be detected or some
unseen objects which are pretty normal in the real traffic situation,
final forecasting results will be affected.

7.1.2 OGM Representation

Occupancy grid map (OGM) was another popular representation
for point cloud data. It partitioned the space into 2D grid cells with
each cell indicating the occupancy and the point velocity of the
space. The occupancy representation helped to predict the existence
confidence of objects and thus did not need bounding boxes as the
detection results. Schreiber et al. [91] was the one that adopted
the occupancy grid map to forecast future motion for sequential
raw sensor data. It converted point cloud frames to a sequence of
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TABLE 12: The summary of the sequential point cloud forecasting methods.

Methods [[ Code | Attribute
FaF [61] v
) IntentNet [12] v The BEV Representation is more convenient to implement due to the
. BEV Representation Spagnn [11] v regular projection which also makes the network more efficient
Motion
Forecastin; NMP [176] x
sting ] Schreiber et al. [91] X The OGM Representation release the dependence on the
OGM Representation MotionNet [123] v object detection results and improve the generalization ability.
Range View Representation | LaserFlow [69] v Preserves more information from the raw point clouds.
. L Sun et al. [100] X These two methods are limited to the single
Sequential Single-frame prediction Dengetal. [17] v frame future prediction instead of sequential forecasting
Fofecastin Weng et al. [118] v The methods are adopting the range-view representation. Sun et
8 Multi-frames prediction Mersch et al. [67] v al. [ ( ] and Mersch et al. [67] are limitedvto the deterministic pr.ediction
S2net [116] X while S2net [116] explore to extend the future uncertainty prediction.

TABLE 13: Quantitative detection and motion forecasting results on the NuScenes dataset.

Method Average Precision (%) Lo Error (cm) Classification Accuracy (%)
0.7 IoU 00s 1.0s 3.0s | MCA (Mean Category Accuracy) OA (Overall Accuracy )
Schreiber et al. [91] - - - - 69.6 92.8
MotionNet [123] - - - - 70.3 95.8
SpAGNN [11] - 22 58 145 - -
LaserFlow [69] 56.1 25 52 143 - -

TABLE 14: Quantitative detection and motion forecasting results
on the ATG4D dataset.

Average Precision (%) L2 Error (cm)
Method 0.7 ToU 00s 10s 305
FaF [61] 64.1 30 54 180
IntentNet [12] 73.9 26 45 146
NMP [136] 80.5 23 36 114
SpAGNN [11] 83.9 22 33 96
LaserFlow [69] 84.5 19 31 99

dynamic occupancy grid maps and input them to a ConvLSTM
encoder-decoder network to capture temporal dependencies. The
ConvLSTM could predict future dynamic objects separating with
the static scene. The authors added skip connections to the RNN
network capturing multi-resolution features which could enhance
the performance of the small object prediction.

However, one major problem of the occupancy grid represen-
tation is hard to find the temporal correspondence between cells,
which could further prevent better modeling behavior relations.
Besides this, it also excludes object class information and sets
the barrier for deeper analysis of the forecasted motion. Thus,
MotionNet [123] combined BEV and occupancy map represen-
tations and devised a novel representation named BEV map. It
extended from the OGM and enriched the representation including
the occupancy, motion, and object category information. After
converting point cloud frames to a sequence of BEV maps, they
were sent into MotionNet to obtain the scene perception and
predict motion information. Specifically, MotionNet exploited a
novel spatio-temporal pyramid network named STPN to extract
hierarchical features and jointly modeled the space-time relations.
Meanwhile, light block spatio-temporal convolution (STC) was
developed to reduce computation cost of high dimension data and
achieve real-time running.

7.1.3 Range View Representation

Though two representations mentioned above could achieve
promising performance for motion forecasting, they still suffer
from quantization error and lose the information during the
compression process. LaserFlow [69] proposed to use the range

view representation which provided more information than the
BEV representation. As we also introduced in previous sections,
the range map comes from spherical projection of point clouds.
LaserFlow [69] treated multiple frames of range maps produced
from point clouds as the input of the network. To aggregated
multiple range maps, the multi-sweep fusion architecture was
proposed to solve the coordinate system dis-alignment problem. In
addition to extracting range map features, the authors exploited a
transformer sub-network to unify the coordinate system and align
all of the sweeps’ features to the current one. The follow-by object
detection and motion prediction network was applied to complete
the motion forecasting by utilizing uncertainty curriculum learning.

7.2 Sequential Pointcloud Forecasting

The SPF (Sequential Pointcloud Forecasting) task is defined to
predict future M point cloud frames given previous N frames.
Instead of forecasting future point cloud information on the
object level, SPF predicts the whole scene point clouds including
foreground objects and background static scene. Also different from
other generation tasks such as [21], [52] mostly inferring the single
point cloud frame [100], SPF forecasts a sequence of future point
cloud frames which requires longer temporal range information
and more holistic scene understanding. Figure 11 demonstrates
the difference between the motion forecasting and the sequential
forecasting pipelines.

Paper [100] aimed to resolve the point cloud compression and
remove the redundancy part of spatial and temporal domains. It
devised a ConvLSTM structure to predict future point cloud frames
instead of using the 1D LSTM in [118]. Deng et al. [17] proposed
a learning schema which adopted the scene flow embedding [56]
to model the temporal relation among four input point cloud
frames. PointNet++ [81] and Edge Conv [!11] were introduced
to extract 3D spatial features. Combining spatial and temporal
features, the network output the next future frame. However, the
methods proposed by Sun et al. [100] and Deng et al. [17] were
limited to single future frame prediction setting while SPF requires
a sequence of frames as inference results.

Weng et al. [118] firstly investigated the SPF (Sequential
Pointcloud Forecasting) task and proposed a delicate method
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Fig. 11: Comparison of motion forecasting and sequential forecasting pipeline. The figure is from [

SPFNet which was able to predict the entire future 3D scene
regardless of the human annotated ground-truth trajectories. The
way it achieved this goal was through devising a novel forecast-then-
detect schema to replace the conventional detect-then-forecast idea.
In this way, all of the signals for the network training were future
point cloud frames in a self-supervised manner. The proposed
SPENet employed the range map-based encoder and decoder
structure to generate future point clouds. Meanwhile, a sequence
of LSTMs was adopted to model the temporal relation among
point cloud frames. The authors also exploited a new evaluation
protocol that connected the detection and forecasting performance
together to better assess the model. The SPFNet achieved the
state-of-the-art performance on benchmark datasets compared to
previous detect-then-forecast pipelines.

Instead of leveraging the LSTM structure, Mersch et al. [67]
proposed to utilize the 3D convolution to jointly learn spatial-
temporal features of input point cloud sequences. It converted point
clouds to range images which were then sent to an encoder-decoder
network structure to extract features. Meanwhile, Skip Connections
and Horizontal Circular Padding was introduced to capture detailed
spatial-temporal information. Finally, the predicted future range
images were converted back to sequential point clouds as output.

7.3 Discussion

Tables 13 and 14 summarize results of motion forecasting on
ATG4D and NuScenes datasets respectively. The observations and
discussed can be found as follows:

e Though BEV representation is more frequently used, the
methods adopting range view representation achieve better
performance due to more complete information embedded.

o Though existing motion forecasting methods have achieved
remarkable performance on benchmarks, the errors sharply
increase when the time range is extended. This shows the
limitation for handling longer-range SPL data.

8 FUTURE DIRECTIONS

Sequential point clouds have been attracting great attention due
to the need for a better and holistic scene understanding. Many
methods have demonstrated the efficacy for processing high
dimension data but with challenges and limitations. This section
discusses some potential future research directions on the sequential
point clouds.

Longer-range temporal dependency Spatial feature learning
has made great progress. The way how to capture and address
temporal information is crucial for spatio-temporal learning. The
existing research of sequential point clouds has attempted to model
the temporal relation and leverage the long-range dependency to
various applications such as tracking and forecasting. However, it
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is usually difficult to be accurate when the time range increases no
matter for the input sequence or the output sequence. Another issue
for a longer time range is the expensive computation cost due to a
large amount of data. One possible solution is to exploit point cloud
compression techniques such as utilizing flow information to fill
the temporal gaps. Meanwhile, transformers have been approved
to be quite good at modeling temporal attention and capturing
long-range dependencies. Therefore, the combination of the two
ideas could be an exciting future direction to model longer-range
temporal dependencies.

Multitask Learning Holistic perception of a scene is the foun-
dation for applications of the sequential point clouds. Various tasks
such as scene flow estimation, object detection and tracking, as well
as segmentation, play an important role. For instance, scene flow
estimation could provide the motion status of surrounding objects,
while segmentation could deliver the object category information.
However, by simply conducting these tasks separately, none of
them could provide holistic guidance, while the results between
tasks might even be inconsistent. Thus one possible solution is to
jointly learn those essential features (e.g. semantic flow) across
multitasks. For example, unified architectures could be designed
to simultaneously learn scene flow and segmentation. The learned
scene flow features and semantic features could associatively boost
each other while keeping the temporal consistency along the time
sequence. Other multitask learning schemas are also worth devising
especially for complex high dimensional data.

Generative Models Recent advances in sequential point cloud
learning have been significantly driven by generative models,
especially with the integration of point cloud implicit representa-
tions. Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) designed for point cloud data are now being
merged with temporal architectures such as Long Short-Term
Memory (LSTM) networks. This integration facilitates the capture
of dynamic behaviors within sequences of point clouds.

In the realm of generative models like GANs and VAEs,
implicit neural embeddings enable these networks to generate
highly detailed and complex 3D shapes with greater precision.
The neural network can implicitly model the intricate geometrical
relationships within the 3D space, allowing for the creation of
shapes that are challenging to achieve with explicit representations.
This capability is particularly beneficial in fields like biomedical
imaging, architectural design, and 3D animation, where accuracy
and detail are paramount. Incorporating these embeddings into
temporal architectures like LSTM networks leads to more advanced
applications in dynamic 3D data processing. For example, in
sequential point cloud data, such as those captured by LiDAR
sensors in autonomous vehicles or 3D motion capture systems,
implicit neural embeddings can track and predict complex changes
in the 3D shapes over time, facilitating advanced motion prediction
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and temporal scene understanding.

Furthermore, transformer-based architectures, renowned for
their sequence modeling capabilities in natural language processing,
are being adapted to process temporal point cloud sequences. By
incorporating implicit representation techniques, these architectures
can provide enhanced attention mechanisms and context-aware
representations. This adaptation is pivotal for tasks like anomaly
detection and event segmentation in dynamic 3D environments, as
it allows for a more nuanced understanding of the spatial-temporal
interplay within point cloud data.

Large Language Models Drawing from the strengths of
LLVMs in bridging text and visuals, we could devise algorithms
that combine sequential point cloud data with added elements like
annotations or descriptions. Leveraging the attention mechanisms
inherent in transformer models, this approach provides a richer
insight into the evolving dynamics of point cloud sequences. This
advancement not only elevates tasks like motion tracking and scene
interpretation but also paves the way for generating descriptions of
changing 3D visuals. Furthermore, by employing transfer learning
strategies commonly associated with LLVMs, these algorithms
benefit from vast pretrained datasets, refining their capability to
understand sequential point cloud patterns.

9 CONCLUSION

Deep learning for sequential Deep learning applied to sequential
point clouds has achieved significant success in enhancing our
understanding of the dynamic world from a spatio-temporal
perspective. It has demonstrated remarkable performance across
various applications. In this survey, we have offered a comprehen-
sive overview of recent deep learning techniques tailored to the
processing of sequential point clouds, along with insights into their
application in downstream tasks. We anticipate that this survey will
serve as valuable guidance for researchers within the computer
vision and multimedia communities, aiding them in their endeavors.
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