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Abstract

This paper tackles the challenge of point-supervised temporal action detec-
tion, wherein only a single frame is annotated for each action instance in the
training set. Most of the current methods, hindered by the sparse nature
of annotated points, struggle to eectively represent the continuous struc-
ture of actions or the inherent temporal and semantic dependencies within
action instances. Consequently, these methods frequently learn merely the
most distinctive segments of actions, leading to the creation of incomplete
action proposals. This paper proposes POTLoc, a Pseudo-label Oriented
Transformer for weakly-supervised Action Localization utilizing only point-
level annotation. POTLoc is designed to identify and track continuous action
structures via a self-training strategy. The base model begins by generating
action proposals solely with point-level supervision. These proposals undergo
renement and regression to enhance the precision of the estimated action
boundaries, which subsequently results in the production of pseudo-labels
to serve as supplementary supervisory signals. The architecture of the model
integrates a transformer with a temporal feature pyramid to capture video
snippet dependencies and model actions of varying duration. The pseudo-
labels, providing information about the coarse locations and boundaries of
actions, assist in guiding the transformer for enhanced learning of action dy-
namics. POTLoc outperforms the state-of-the-art point-supervised methods
on THUMOS14 and ActivityNet-v1.2 datasets.
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Self-training

Preprint submitted to Computer Vision and Image Understanding April 13, 2024



1. Introduction

Automated video analysis is attracting substantial attention in the realm
of computer vision and multimedia applications, largely due to its potential
utility across various elds [1, 2, 3, 4, 5, 6]. A central task in this arena is Tem-
poral Action Localization (TAL) in untrimmed videos, which aims to detect
the temporal boundaries of actions and identify their categories [7]. Although
recent fully-supervised TAL methods [8, 9, 10] have demonstrated signicant
progress, they necessitate time-consuming and expensive annotation of tem-
poral boundaries and action labels for each action instance in training videos.
To circumvent the requirement for exhaustive annotations, many researchers
are gravitating towards the development of weakly-supervised models, which
only mandate a minimal set of ground-truth annotations, such as video-
level labels. Nonetheless, weakly-supervised models typically lag behind their
fully-supervised counterparts in terms of performance, primarily due to lim-
ited annotations and the models constrained capacity to comprehend and
learn the structure of actions. To mitigate this performance disparity, the
notion of point-level supervision has been introduced [11, 12, 13, 14]. This
approach entails annotating a single frame within the temporal window of
each action instance in the input video. Even though point-level supervision
demands slightly more annotations than weak supervision, it substantially
reduces the labeling costs compared to full supervision. Additionally, it im-
parts vital information about the coarse locations and the overall count of
action instances, thereby enriching the models grasp of action structures.

Due to the sparse nature of annotations in point-level supervision, exist-
ing methods frequently fail to eectively model the continuous structure of
actions. Prior eorts to augment annotations have involved the generation
of pseudo action and background frames, as highlighted in several studies
[12, 15, 13, 14]. These pseudo-labeled frames contribute additional supervi-
sory signals to the model, thereby improving its capacity to discern actions
from the background. However, in the majority of these approaches, the
pseudo-labeled frames are either discontinuous or they cover only fragments
of the action intervals. Consequently, they often learn just the most dis-
tinctive portions of actions, which ultimately results in the production of
incomplete action proposals. To counteract this issue, Lee et al., in [13], de-
veloped a framework that employs an action-background contrast method to
better understand action completeness, thereby fostering a more comprehen-
sive understanding of action sequences. However, this model still falls short

2



in adequately representing temporal dependencies within actions.
In this paper, we introduce a point-supervised framework that is designed

to capture the continuous structures of actions, even in the face of extremely
sparse point-level annotations. Training with only point-level supervision,
the base model initially generates noisy action proposals for the training
set. These action proposals are subsequently rened and adjusted to gener-
ate pseudo-labels on the training set using our proposed algorithm. The
pseudo-labels represent estimated temporal intervals surrounding the anno-
tated points and are likely to align with action instances. Our pseudo-label
generation algorithm is designed to discard the proposals that are potentially
redundant, and to adjust those that are either excessively long or overly short.
For each annotated point within the training set, we retain only the highest-
scoring proposal and adjust its boundaries based on the statistics of the
proposals. Importantly, our pseudo-label generation algorithm relies solely
on the point-level labels and statistics of the generated proposals. Apart
from the given annotated points, no ground-truth labels are used in this
step. The generated pseudo-labels act as additional supervisory signals to
guide our POTLoc model.

To fully leverage the rich information provided by the pseudo-labels,
POTLoc integrates a transformer with a temporal feature pyramid, eec-
tively employing a multi-scale temporal transformer. Training multi-scale
transformers for action detection under weak supervision is underexplored
due to the scarcity of annotated frames. Our framework shows that we can
prociently train a transformer backbone with sparse point-level annotations.
Our transformer utilizes local self-attention, aiding in the modeling of tempo-
ral dependencies within video snippets and learning the structure of actions.
The temporal feature pyramid facilitates modeling actions of varying dura-
tion. The pyramids lower levels are optimal for detecting shorter actions,
while the higher levels, with their larger receptive elds, are suited for mod-
eling longer actions. The pseudo-labels provide information about the coarse
location and boundaries of actions, which aids in better guiding our multi-
scale temporal transformer to learn action dynamics. Three loss functions
are employed to optimize the model to eectively distinguish actions from
background and accurately classify dierent action classes.

We incorporate a sampling strategy during training to select the frames
around the annotated points within a radius parameter and inside the bound-
aries of pseudo-labels, driven by two primary motivations. First, this sam-
pling method selects snippets that are closer to the annotated points (more
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indicative of the action) while avoiding farther snippets (action boundaries)
that can be ambiguous or contain transitional movements not representative
of the action. Our experiments show that the pseudo-labels sampling im-
proves the performance. Second, the sampling helps mitigate the issue of
training the model with false positives (background frames incorrectly pre-
dicted as actions), which are more likely to exist within the boundaries of
pseudo-labels. The main contributions of our work are outlined below.

• We propose an innovative point-supervised framework (POTLoc) to
capture the continuous structures of actions, despite relying solely on
sparse point-labels.

• We design a novel self-training strategy to generate supplementary su-
pervisory signals (i.e. pseudo-labels) for point-supervised action local-
ization. This is accomplished by rening and adjusting the noisy action
proposals, which are predicted by a base point-supervised model on the
training set. This procedure is based on analyzing the statistics of the
action proposals and their locations in relation to the annotated points.

• Our self-training approach enables the training of a multi-scale trans-
former backbone with limited supervision. The task of training trans-
formers for action detection under weak supervision was previously
underexplored, due to the large number of parameters and the scarcity
of annotated frames. The multi-scale temporal transformer, guided by
the generated pseudo-labels, learns to model the dependencies of video
snippets and actions of varying duration.

• We incorporate a pseudo-labels sampling strategy to mitigate the issue
of training the model with false positives and to train the model with
more representative snippets.

• POTLoc surpasses the state-of-the-art point-supervised methods on
THUMOS14 and ActivityNet-v1.2 datasets.

2. Related Work

Fully-supervised TAL. Fully-supervised methods are categorized into
anchor-based and anchor-free. Anchor-based methods generate dense pro-
posals, distributed across temporal locations [16, 17, 18]. Anchor-free meth-
ods employ a bottom-up grouping strategy to generate proposals with pre-
cise boundaries and exible duration [19, 20, 21, 22, 23]. To model actions
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with diering duration, temporal feature pyramid was introduced to generate
multi-scale temporal features [24, 25, 26, 27]. To model dependencies between
video segments, dierent structures have been utilized, including recurrent
neural networks [28, 29], graph convolution networks [30, 31, 23, 32, 33], and
transformers [8, 34, 35]. Distinct from these methods that need exhaustive
frame-level annotations, our framework utilizes only point-level annotations.
Yet, it eectively captures snippet dependencies and models actions of vary-
ing duration.

Weakly-supervised TAL. These methods rely on imprecise or coarse
labels during the training stage. They often predict attention scores to pin-
point discriminative action regions and eliminate background frames. At-
tention scores are typically learned through the Multi-Instance Learning
(MIL) scheme [36, 37] or via a class-agnostic approach to learn actionness
[38, 39, 40, 41]. To model the completeness of actions, several methods have
proposed complementary learning approaches aimed at discovering dierent
aspects or parts of actions [42, 43, 44, 45, 46]. Another category of methods
relies on an iterative training strategy, which involves generating pseudo-
labels from an initial base model to enhance the models learning capacities
[47, 48, 49, 50, 51]. However, these techniques are not capable of generat-
ing precise pseudo-labels. Our model generates high-quality pseudo-labels,
providing additional guidance to learn the structure of action using slightly
more annotations.

Point-supervised TAL. Point-level supervision signicantly reduces
the cost of annotating action boundaries. Various methods have been pro-
posed to augment annotations: these include the generation of pseudo-actions
by expanding annotated frames to their nearby frames [12], or boundary re-
gression based on keyframe prediction [15]. Other strategies include mining
pseudo-background frames from unannotated frames [12, 13] or annotating a
random frame from a series of consecutive background frames [14]. Lee et al.
[13] developed an action-background contrast method for to capture action
completeness. CRRC-Net [52] proposed a probabilistic pseudo-label mining
module to utilize the feature distances from action prototypes to estimate the
likelihood of pseudo samples and rectify their corresponding labels for a more
reliable classication learning. PCL [53] proposed to generate pseudo labels
by estimating the semantic similarity of pair-wise frames in the embedding
space. FBI-TAL [54] proposed a pseudo-label search strategy by combining
foreground and background labels to exploit the information between them
and guide the model. Li et al. [55] uses the relationship of the video seg-
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ments with their neighbors for pseudo-label generation. Lee et al. [56] also
uses pseudo-labels for action instance boundary learning.

We propose a self-training framework designed to learn the continuous
structure of actions with varying duration using our multi-scale transformer,
guided by pseudo-labels. Existing work has utilized pseudo-labels to bridge
the gap between classication and temporal localization. The advantages of
our framework over previous methods are as follows: 1) The simplicity of
the pseudo-label generation module, 2) The ability to capture the complete-
ness of actions using self-training, guided by the estimated pseudo-labels, 3)
The capability to model actions of varying duration with point-supervision
through the design of a feature pyramid, and 4) The integration of a trans-
former to capture temporal dependencies under limited supervision.

3. Our Proposed Method

Point-Supervised problem setting. Given an input video, only a
single frame is annotated for each action instance, following [12, 15, 13].
Formally, if there are N action instances in the video, the annotation can be
denoted by (ϵi,Λi)Ni=1 where ϵi is the frame index selected from the temporal
interval of i−th action instance and Λi is the action label. These annotated
time-stamps are referred to as points. Label Λi is a binary vector where
Λi[c] is equal to 1 if the label of i−th action is c, and 0 otherwise. Video-level
labels are given by aggregating the labels of annotated points in each video.

3.1. Point-Supervised Base Model

We employ a base point-supervised model to predict action proposals in
the training set. These proposals undergo further renement, ultimately gen-
erating pseudo-labels that serve as augmented supervision for our POTLoc
model.

Feature extraction and modeling. The input video is divided into
a sequence of snippets, each of which is processed by a pre-trained visual
encoder (I3D [57]) for feature extraction. These snippet features are then
concatenated to produce a video feature X which is supplied to a shallow
temporal convolutional network followed by a sigmoid function. The out-
put results in a class-specic probability signal, P ∈ R

T×C+1, where p[t, c]
represents the probability that snippet t belongs to action class c. T is the
number of video snippets and C is the number of action classes. Additionally,
bt = p[t, C + 1] is the probability of background at time t. The complement
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Figure 1: (a) Framework overview. The modules outlined in gray and blue indicate
the components of the base and our POTLoc model, respectively. (b) Pseudo-labels are
generated from the noisy action proposals predicted by the base model on the training
set. The proposals are rened and adjusted based on the point-labels and statistics of the
proposals. (c) The pseudo-labels are sampled within a radius around the annotated points
at each level l of the pyramid and the block before the pyramid (l = 0). This sampling
helps to mitigate the addition of excessive noise during training, which could be caused
by imprecise estimated action boundaries. (a,d) The multi-scale temporal transformer
learns to model temporal dependencies and accommodate actions of varying duration
when optimized with our enhanced losses, L∗

MIL
, L∗

Act
, and L∗

BG
supervised with the

pseudo-labels.

of the background score bt is the class-agnostic score, denoted by at. The
class-specic and class-agnostic scores are fused to derive the nal probability
sequence P̂ ∈ RT×C+1, where p̂[t, c] = p[t, c] · at and p̂[t, C + 1] = bt.

Video-level action prediction. We predict a video-level probability
vector using the class-specic probability sequence P . For each action class
c, we identify the K temporal positions with the highest probability scores.
Then, we compute the average score of these positions to represent the video-
level probability score for action c, denoted as pc. Following the MIL scheme
[58], a binary cross-entropy loss guides the classication of actions.
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LMIL = −
C

c=1

Λc log(pc) + (1− Λc) log(1− pc) (1)

Snippet-level action prediction. Given a video with N annotated
points, denoted by (ϵi,Λi)Ni=1, a snippet-level focal loss is employed to
optimize the probability signal P̂ as follows. γ is the focusing parameter
and is set to 2.

LAct =− 1

N

N

i=1

C

c=1

(1− p̂[ϵi, c])
γΛi[c] log(p̂[ϵi, c])

− p̂[ϵi, c]
γ(1− Λi[c]) log(1− p̂[ϵi, c]) (2)

Background modeling. To dierentiate actions from the background,
it is crucial to pinpoint the frames that are likely correlated with the back-
ground. However, since there are no explicit annotations for these back-
ground frames, we implement a method similar to Lee et al. [13] to generate
background seeds during training. These seeds are chosen from timestamps
that have high background scores surpassing a dened threshold. The pre-
dicted background seeds in a given video are denoted by tjMj=1, and btj is
the probability of background at time tj . At these identied time-steps, we
suppress the action probabilities and promote the background probabilities
by applying the snippet-level focal loss on signal P̂ .

LBG =− 1

M

M

j=1

 C

c=1

(p̂[tj , c])
γ log(1− p̂[tj , c])

+ (1− btj)
γ log btj ] (3)

Joint training. The total loss for the base model is a weighted com-
bination of the three aforementioned losses, calculated as follows, where λ⋆

terms balance the losses and are determined through empirical analysis.

LTotal = λMILLMIL + λActLAct + λBGLBG (4)

Action proposal generation. We set a threshold on the predicted
video-level scores to identify the action categories present in the video. Then,
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we apply a threshold on the snippet-level action scores P̂ for those action
categories already predicted. We then merge consecutive candidate segments
to form proposals, each of which is assigned a condence score based on its
outer-inner-contrast score [36]. Finally, we use the non-maximum suppression
(NMS) technique to eliminate overlapping proposals.

3.2. Pseudo-label Generation from Action Proposals

The base model utilizes point-supervision to predict initial action pro-
posals on the training set. These proposals are redundant and noisy and
are unsuitable as pseudo-labels for self-training. In this section, we propose
an algorithm to generate pseudo-labels by leveraging the statistics of the
proposals and their locations in relation to the annotated points.

Proposal formulation. We dene S to be the set of predicted proposals
on the training set V . For each video v ∈ V , Sv denotes the predicted proposal
and ϱv denotes the points. The predicted start, end, label, and condence
score of the j-th proposal φj are denoted by sj , ej , Λj , and csj , respectively.
Also, pi is the i-th point with time ϵi and label Λi.

Sv = jφj = (sj , ej ,Λj , csj) , ϱv = ipi = (ϵi,Λi) (5)

Pseudo-label formulation. For a video v, the pseudo-label set is de-
ned as S∗

v = (ϵn, sn, en,Λn)Nv

n=1 where Nv is the number of annotated
points in the video and ϵn denotes the n-th point. The estimated start, end,
and label of the n-th pseudo-label are denoted by sn, en, and Λn, respec-
tively. One pseudo-label is generated for each annotated point ϵn such that
ϵn ∈ [sn, en]. Set S

∗ is the union of pseudo-labels for all training videos.

S∗ = n(ϵn, sn, en,Λn) (6)

Pseudo-label generation algorithm. Initially, set S∗ only includes the
proposals from S that contain precisely one annotated point. These selected
proposals are considered more reliable because they are neither excessively
long nor too short, avoiding multiple or no points at all. Within S∗, for each
action class c, the average duration of proposals with label c, denoted as d̄c,
is calculated. We must ensure that each annotated point exists in at least
one proposal for complete coverage. Suppose there is a point belonging to
action class c with timestamp ϵi that is not included in any of the proposals
in set S∗. In this case, we search for a list of proposals with label c in
the initial set S that include point ϵi and select the one with the highest
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Algorithm 1 Pseudo-label Generation

Input: Proposals Sv, points ϱv, for each v ∈ V

Sv =


jφj = (sj , ej ,Λj , csj), ϱv =


ipi = (ϵi,Λi)
Output: Pseudo-labels S∗ =


n(ϵn, sn, en,Λn)

Initialization: S∗ = ∅
1: function f(φj , pi) ▷ (Check if pi belongs to φj)
2: if (Λi = Λj)  (sj ≤ ϵi ≤ ej) then return True

3: else return False

4: end if
5: end function
6: for φj ∈ Sv and v ∈ V : do
7: if pipi ∈ ϱv s.t. F (φj , pi) = 1 then
8: S∗ = S∗  (ϵi, sj , ej ,Λj , csj)
9: end if

10: end for
11: for c = 1 to C: do
12: d̄c = mean((ej − sj)φj ∈ S∗ s.t. (Λj [c] = 1))
13: end for
14: for pi in ϱv and v ∈ V : do
15: ∆ = d̄c2 s.t. Λi[c] = 1
16: if φ ∈ S∗F (φ, pi) = ∅ then
17: τ = φ ∈ SF (φ, pi)
18: k = Argmaxcs(τ ) ▷ (proposal with max score)
19: sk = max(sk, ϵi −∆) , ek = min(ek, ϵi +∆)
20: S∗ = S∗  (ϵi, sk, ek,Λk, csk)
21: else
22: τ = φ ∈ S∗F (φ, pi)
23: k = Argmaxcs(τ ) ▷ (proposal with max score)
24: S∗ = (S∗ − τ )  (ϵi, sk, ek,Λk, csk)
25: end if
26: end for

condence score. We truncate this proposal within a distance of d̄c2 from
ϵi to prevent the new proposal from being too long. All the newly generated
proposals from this step are added to set S∗. Finally, we ensure that each
annotated point belongs to exactly one proposal by keeping the proposal with
the highest condence score that contains the point and removing the rest.
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The condence scores csn were only used for pseudo-label generation and are
discarded from S∗ at the end. The details of this procedure is summarized
in Algorithm 1.

3.3. Pseudo-label Oriented Multi-scale Transformer

Fig. 1(a) provides an overview of our framework. The base model uti-
lizes point-supervision to predict initial action proposals. These prelimi-
nary action proposals are subsequently used to generate pseudo-labels for
the training set based on the point-labels and the statistics of the proposals,
as shown in Fig. 1(b). Our POTLoc model employs a multi-scale temporal
transformer to capture the temporal dependencies within video snippets and
to learn multi-scale temporal action instances, Fig. 1(a,d). POTLoc, super-
vised by the pseudo-labels, is optimized with three enhanced loss functions,
L∗

MIL, L∗
Act, and L∗

BG, to separate actions from background and discrimi-
nate actions. Since the pseudo-labels are imprecise estimations of the action
boundaries, we sample from the pseudo-labels to mitigate the potential ad-
dition of excessive noise during training, Fig. 1(c). The pseudo-labels play
a crucial role by equipping the network with detailed information about the
approximate locations of actions. This process enhances the eective use of
the transformer model and feature pyramid, thereby improving the models
ability to understand action dynamics.

Multi-scale temporal transformer. Given an input video, we extract
snippet-level visual features with a pre-trained visual encoder and concate-
nate them to generate a video feature X ∈ R

T , where T is the number of
snippets. Each snippet feature is embedded using a shallow temporal convo-
lutional network with layer normalization and ReLU, resulting in feature vec-
tor Z0 ∈ RT×D. This feature is the input to the transformer network which
is employed to model the temporal dependencies between snippets. Feature
Z0 is projected using learnable parameters WQ ∈ R

D×Dq ,WK ∈ R
D×Dk ,

and WV ∈ R
D×Dv to extract query, key, and values features, denoted by

Q,K, and V , respectively, with Dq = Dk. The output of self-attention is
S = Softmax(QKT


Dq)V where S ∈ R

T×D. We adapt the local self-
attention within a window to reduce the time and memory complexity, fol-
lowing [8]. The transformer network consists of several layers, wherein each
layer is composed of multiheaded self-attention (MSA) and MLP blocks, with
GELU activation. To model multi-scale features for actions with dierent
duration, we implement down-sampling between transformer blocks using a
strided depthwise 1D convolution, resulting in a temporal feature pyramid
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Z = Z1, Z2, · · · , ZL. The l-th transformer block receives the input feature
Z l−1 and returns the feature Z l, where Z l ∈ RTl×D, Tl = Tσl, and σ is the
down-sampling ratio. The input to the rst transformer block is Z0. Feature
pyramid captures multi-scale temporal information, enabling the model to
capture both short-term and long-term temporal dependencies, leading to a
more comprehensive representation of action dynamics.

Action decoder. A shallow 1D convolutional network with layer nor-
malization and ReLU is attached to each pyramid level with its parameters
shared across all levels. A sigmoid function is attached to each output di-
mension to predict the probability of actions and background. The output
of the l-th level of the feature pyramid is a probability sequence, denoted by
Pl ∈ RTl×C+1, where Tl is the temporal dimension on the l-th level. Further-
more, bl,t = pl[t, C + 1] is the probability of background at time t on level
l. The class-specic scores are fused with the class-agnostic scores to derive
the nal probability sequence P̂l ∈ RTl×C+1.

Pseudo-label sampling. We only consider a narrow interval around
the annotated point ϵn as a positive instance, as shown in Fig. 1(c). The
interval [ϵn − r, ϵn + r] is sampled from pseudo-label interval [sn, en], where
r represents the sampling radius and is selected empirically. This sampling
procedure mitigates the potential addition of excessive noise during the train-
ing, as the interval [sn, en] is merely an approximation of the action bound-
aries. The projection of the pseudo-label (ϵn, sn, en,Λn) onto the l-th level of
the pyramid becomes (ϵnσ

l, snσ
l, enσ

l,Λn) where σ represents the down-
sampling ratio. For each level l, we sample an interval with radius σl · r

that is centered around the projected point and located within the projected
boundaries. The pseudo-labels at level l are denoted as following.

S∗
l = n(ϵln, sln, eln,Λn) (7)

Video-level action prediction. The video-level score for class c is de-
ned as the average of pl[t

c
l,k, c] scores where tcl,kKk=1 are the top-K positions

on level l. The average is calculated over all levels of the pyramid. We utilize
the MIL loss (eq. 1) for this extended version and name it L∗

MIL.
Snippet-level action prediction. To simplify the notations, for each

level l, we collect all temporal positions of all pseudo-labels into a set, denoted
by Φl, as follows.

Φl = 
n
(t,Λn) t ∈ [sln, e

l
n] for (ϵ

l
n, s

l
n, e

l
n,Λn) ∈ S∗

l  (8)
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We subsequently rename the elements in Φl as Φl = (tm,Λm)Ml

m=1. We
extend the snippet-level focal loss (Eq. 2) to all temporal positions of all
pseudo-labels to optimize the learning of the probability signal P̂l for each
level l of the pyramid. M is the total number of positive instances.

L
∗
Act = − 1

M

L

l=1

Ml

m=1

C

c=1

(1− p̂l[tm, c])
γΛm[c] log(p̂l[tm, c])

− p̂l[tm, c]
γ(1− Λm[c]) log(1− p̂l[tm, c])

(9)

Background modeling. To distinguish actions from the background,
similar to the base model, we select the temporal positions not belonging to
any of the pseudo-labels and possessing a background probability exceeding
a certain threshold on each level l of the pyramid. The background loss pre-
sented in Eq. 3 is extended to all pyramid levels to optimize the probability
signal P̂l, and is denoted by L∗

BG.

Joint training. Our POTLoc model is trained using a combination of
the three enhanced losses with λ⋆ weighting parameters that are determined
through empirical analysis.

LTotal = λMILL
∗
MIL + λActL

∗
Act + λBGL

∗
BG (10)

Inference. The action categories are identied using the video-level
scores. The action proposals are predicted from all pyramid levels by ap-
plying thresholds to the snippet-level action scores P̂l for each level l for the
predicted classes. The strategy used is similar to the inference of the base
model.

4. Experiments

4.1. Experimental Setting

Datasets. THUMOS14 consists of untrimmed videos spanning 20 dis-
tinct categories. Following previous methods [13, 47], we utilized the valida-
tion set for training, and the testing set for evaluation. ActivityNet-v1.2 is a
large-scale dataset encompassing 100 complex daily activities. We follow the
convention of using the training set to train our model, and the validation
set for evaluation [13, 47].
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Evaluation metric. The Mean Average Precision (mAP) under dierent
Intersection over Union (IoU) thresholds is utilized as the evaluation metric,
wherein the Average Precision (AP) is computed for each action class.

Implementation details. For feature extraction, the two-stream I3D
model [57] is utilized on both datasets. Segments consisting of 16 consecutive
frames are fed as input to the visual encoder, employing a sliding window
approach with a stride of 16 on both THUMOS14 and ActivityNet-v1.2. Both
base and POTLoc models are optimized by Adam [59] with the learning rate
of 10−4 for 50 epochs. In the base model, the original number of feature
segments is used without sampling. However, in the main model, the input
length is set to 768 for THUMOS14 and to 192 for ActivityNet-v1.2, using
random sampling and linear interpolation. A window of 12 and 7 is used
for local self-attention on THUMOS14 and ActivityNet-v1.2, respectively.
In POTLoc model, the number of pyramid levels is set to l = 2 and the
sampling radius is set to r = 2. The parameter r is dened on the feature
grid, representing the distance in terms of the number of features. The batch
size is set to 4 on THUMOS14, and to 64 on ActivityNet-v1.2. At inference
time, the full sequence is fed into the model without sampling. The source
code will be released once the paper is accepted.

Computational Complexity: The number of parameters and FLOPs
are 179B and 126M for the base model and 375B and 244M for multi-scale
transformer.

4.2. Comparison with State-of-the-art Methods

Table 1 presents a comprehensive comparison with the state-of-the-art
methods on THUMOS14 and ActivityNet-v1.2.

Results on THUMOS’14. Our model achieves state-of-the-art perfor-
mance among weakly-supervised and point-supervised methods in terms of
average mAP. Additionally, our model demonstrates remarkable results of an
6% average mAP increase compared to weakly-supervised methods, despite
only using slightly more annotations.

Results on ActivityNet-v1.2. Our model outperforms all the state-
of-the-art weakly and point-supervised methods in terms of mAP, consis-
tently across all the IoU thresholds. We note that the performance gains
over weakly-supervised methods on ActivityNet-v1.2 are smaller compared
to those on the THUMOS14 dataset. This is primarily because the average
number of action instances per video in THUMOS14 is higher than that in
ActivityNet-v1.2 (15.5 vs. 1.5). Consequently, on THUMOS14, the model
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Group Method
THUMOS14 ActivityNet-v1.2

mAP@IoU (%) mAP-AVG mAP@IoU (%) mAP-AVG
0.3 0.4 0.5 0.6 0.7 (0.1:0.7) 0.5 0.75 0.95 (0.5:0.95)

WS

ASL[60] 51.8 - 31.1 - 11.4 40.3 40.2 - - 25.8
CoLA [61] 51.5 41.9 32.2 22.0 13.1 40.9 42.7 25.7 5.8 26.1
AUMN [39] 54.9 44.4 33.3 20.5 9.0 41.5 42.0 25.0 5.6 25.5
FTCL [62] 55.2 45.2 35.6 23.7 12.2 43.6 - - - -
UGCT [50] 55.5 46.5 35.9 23.8 11.4 43.6 41.8 25.3 5.9 25.8
CO2-Net [38] 58.2 47.1 35.9 23.0 12.8 - 43.3 26.3 5.2 26.4
D2-Net [40] 52.3 43.4 36.0 - - - 42.3 25.5 5.8 26.0
ASM-Loc[47] 57.1 46.8 36.6 25.2 13.4 45.1 - - - -
RSKP[63] 55.8 47.5 38.2 25.4 12.5 45.1 - - - -
TS[64] 60.0 47.9 37.1 24.4 12.7 46.2 - - - -
DELU[65] 56.5 47.7 40.5 27.2 15.3 46.4 44.2 26.7 5.4 26.9
P-MIL [66] 58.9 49.0 40.0 27.1 15.1 47.0 44.2 26.1 5.3 26.5
Zhou et al. [67] 60.7 51.8 42.7 26.2 13.1 48.3 - - - -
PivoTAL [68] 61.7 52.1 42.8 30.6 16.7 49.6 - - - -

PS

SF-Net [12] 52.8 42.2 30.5 20.6 12.0 41.2 37.8 - - 22.8
DCM [69] 58.1 46.4 34.5 21.8 11.9 44.3 - - - -
PTAL [15] 58.2 47.1 35.9 23.0 12.8 - - - - -
BackTAL [14] 54.4 45.5 36.3 26.2 14.8 - 41.5 27.3 4.7 27.0
PCL [53] 63.3 55.9 44.4 - - - - - - -
Lee et al. [13] 64.6 56.5 45.3 34.5 21.8 52.8 44.0 26.0 5.9 26.8
CRRC-Net [52] 67.1 57.9 46.6 33.7 19.8 53.8 - - - -
Lee et al. [56] 66.8 57.8 47.1 34.8 21.1 - 44.6 26.7 6.1 27.2
FBI-TAL [54] 66.7 58.3 48.3 36.3 21.9 54.6 - - - -
Li et al. [55] 66.6 59.4 48.6 36.7 22.7 55.1 43.4 31.3 5.4 27.5
POTLoc 68.8 59.5 50.1 37.1 21.2 55.7 45.1 27.6 6.8 28.0

Table 1: Comparison with weakly-supervised (WS) and point-supervised (PS) methods
on THUMOS’14 and ActivityNet-v1.2. The results are reported in terms of mAP (%) at
dierent tIoU thresholds. The bold numbers show the best results.

can learn to distinguish actions from the background with the assistance of
inferred background seeds situated between consecutive action points. This
is more challenging on ActivityNet-v1.2 due to the sparse nature of action
instances.

4.3. Ablation Studies

We conduct ablation studies on THUMOS14 to analyze the impact of
each component of the proposed model.

Pseudo-label generation. Table 2 demonstrates the quality of the
generated pseudo-labels. This table reports the performance on the train
set (validation set) of THUMOS14. α represents the ratio of the number of
generated proposals to the ground-truth instances. The noisy proposals are
predicted by the base model without renement. The renement signicantly
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Step α = #Proposals
#GT mAP@0.5 (%)

mAP-AVG (%)
(0.1:0.7)

Noisy Proposals ∼ 12 57.0 63.5
Pseudo-labels ∼ 1 62.7 69.5

Table 2: Analysis of pseudo-labels on the validation set of THUMOS’14.

Backbone, Losses Supervision SL mAP(%)

Multi-scale Transformer,
Enhanced Losses:
L∗

MIL,L
∗
Act,L

∗
BG

Ground-truth
✓ 56.0
✗ 52.1

Pseudo-labels
(POTLoc)

✓ 55.7
✗ 51.0

Noisy Proposals
✓ 26.8
✗ 38.3

Points ✗ 50.4

Temporal Convolutions,
Base Losses:
LMIL,LAct,LBG

Ground-truth
✓ 50.1
✗ 44.8

Pseudo-labels
✓ 49.8
✗ 46.9

Noisy Proposals
✓ 28.7
✗ 38.2

Points ✗ 47.4

Table 3: Impact of the main components of our framework on THUMOS’14, measured in
terms of average mAP. SL denotes sampling, with the radius set to 2. The bold number
represents the performance of our full POTLoc model.

removes redundant proposals and improves the alignments with ground-truth
intervals. The pseudo-labels provide exactly one interval around each anno-
tated point and α = 1. Furthermore, the performance of the pseudo-labels
is 6% average mAP higher than the noisy proposals which highlights the
eectiveness of the proposed pseudo-label generation method.

Impact of pseudo-labels. Table 3 highlights the crucial role of pseudo-
label generation. It is worth noting that the use of noisy proposals results in
poor performance, underperforming the models supervised with single points.
This is because noisy proposals provide a highly inaccurate estimation of
action boundaries. Moreover, many of these proposals may be redundant
and overlapping. This highlights the importance of proposal renement in
our pseudo-label generation. To further assess the quality of the pseudo-
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Radius
mAP@IoU (%) mAP-AVG (%)

0.3 0.4 0.5 0.6 0.7 (0.1:0.7)
r = 2 68.8 59.5 50.1 37.1 21.2 55.7
r = 4 65.4 56.8 46.0 34.0 18.7 53.0
r = ∞ 63.0 53.8 43.5 32.3 18.4 51.0

Table 4: Impact of the pseudo-label sampling radius r in POTLoc model on THUMOS’14.

labels, we conduct experiments using ground-truth labels. We observe that
the performance of the model supervised by pseudo-labels is comparable with
that of the fully-supervised model. This can be attributed to our model not
depending on information about the precise location of action boundaries,
which could otherwise be employed in a regression loss.

Label sampling. The impact of sampling across dierent supervision
levels is demonstrated in Table 3. Sampling consistently improves the perfor-
mance for both pseudo-labels and ground-truth labels. When pseudo-labels
are utilized, sampling mitigates the noise introduced by imprecise action
boundaries. Moreover, when using ground-truth labels, sampling encour-
ages higher scores around action centers, encouraging the model to learn
meaningful and representative action snippets. In other words, sampling
selects snippets that are closer to the action centers (often more indicative
of the action) while avoiding boundary snippets that can be ambiguous or
contain transitional movements not representative of the action. Therefore,
sampling improves the performance even in the case of training with ground-
truth boundaries. However, sampling does not enhance performance when
the model is supervised with noisy proposals. This is primarily because the
center of the noisy proposals may not necessarily be close to the center of
the action instances. In this scenario, sampling may inadvertently lead to
a focus on a random video snippet such as background. Moreover, Table 4
demonstrates the importance of the sampling strategy with dierent sam-
pling radius r, which r = ∞ indicates no sampling.

The backbone architecture. Table 3 illustrates that the multi-scale
transformer when trained with enhanced losses, achieves signicantly better
results compared to the base model. The latter only consists of convolutional
layers and is trained with base losses. The performance enhancement is con-
sistent across ground-truth, pseudo-labels, and points supervision. However,
for noisy proposals, the results of dierent models are comparable. Table 5
demonstrates the impact of the number of pyramid levels, denoted by l, in
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Levels l = 0 l = 1 l = 2 l = 3 l = 4
mAP@0.7 18.8 18.4 21.2 20.7 19.25
mAP-AVG 51.2 54.7 55.7 55.7 54.1

Table 5: Impact of the number of pyramid levels (denoted by l) on THUMOS’14. The
backbone is POTLOC’s multi-scale transformer supervised with pseudo-labels.

Loss Parameters mAP-AVG (%)
λMIL λAct λBG (0.1:0.7)
1 1 1 552
05 1 1 542
1 05 1 55.7
1 1 05 527

Table 6: Impact of the loss functions in POTLoc on THUMOS’14.

POTLoc. The model denoted by l = 0 incorporates transformer blocks with-
out a feature pyramid, leading to the lowest performance. The model with
l = 2 achieves the highest performance at an IoU of 07 reecting generation
of complete action proposals with the assistance of the feature pyramid. Our
ndings suggest that adding more pyramid levels (l ≥ 3) does not improve
the performance further.

Impact of the loss functions. As mentioned earlier, our POTLoc
model is trained using a combination of three loss functions L∗

MIL, L
∗
Act, and

L∗
BG (eq. 9). Table 6 reports the impact of the λ⋆ weighting parameters. The

highest average mAP is achieved when λMIL = 1, λAct = 05 and λBG = 1.
Distribution of annotated points. In the point-supervision setting,

only a single frame per action instance is annotated in the training set. SF-
Net [12] proposed to simulate point annotations by sampling a single frame
for each action instance. The Uniform distribution method randomly selects
a frame within the action boundaries of each action, while the Gaussian distri-
bution method does so with respect to a given mean and standard deviation.
Typically, the Gaussian distribution is more likely to sample frames closer to
the central timestamps of actions, thereby increasing the chances of choos-
ing a more discriminative snippet. In contrast, the Uniform distribution can
sample frames from any part of the action, without this central bias. Table
7 demonstrates that POTLoc attains state-of-the-art results with both Uni-
form and Gaussian point-level distributions on THUMOS14, indicating its
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Distribution Method
mAP@IoU (%) mAP-AVG (%)
0.3 0.5 0.7 (0.1:0.7)

Gaussian
POTLoc 68.8 50.1 21.2 55.7
LACP [13] 64.6 45.3 21.8 52.8

Uniform
POTLoc 64.1 43.5 17.7 51.3
LACP [13] 60.4 42.6 20.2 49.3

Table 7: Performance comparison with uniform and Gaussian point-level distributions on
THUMOS’14.

robustness. However, it is observed that the POTLocs performance is lower
with the Uniform distribution as compared to the Gaussian distribution. We
conjecture this may be attributed to the Uniform distributions tendency
to select less discriminative snippets for point annotation, which can occur
anywhere within the actions extent, such as at the boundaries. Bridging
the performance gap between models trained with dierent sampling distri-
butions of annotated points (Gaussian and Uniform) can be considered for
future work.

4.4. Temporal Action Detection Error Analysis

DETAD [70] is empolyed for analyzing false negatives (Fig. 2) and false
positives (Fig. 3) of POTLoc in comparison with the base model and a fully-
supervised method (ActionFormer[8]).

False Negative Analysis. Fig. 2 illustrates the false negative (FN)
proling across various coverages, lengths, and number of instances. Part
(b) of Fig. 2 displays the FN proling of POTLoc. The gure reveals that
higher false negative rates are associated with action instances characterized
by: (1) extremely short (Coverage (XS)) or extremely long (Coverage (XL))
durations relative to the video length , (2) actions of very short or very long
lengths (Length (XS) or Length (XL)), and (3) videos containing very small
(#Instances (XS)) or large number of action instances (#Instances (L)).
Furthermore, Fig. 2 demonstrates that POTLoc (part b) reduces the false
negative (FN) rate compared to the base model (part c) in most cases. FN
proling of ActionFormer[8] is provided (part a) which has much lower false
negative rate compared with POTLoc because of access to the annotation of
action boundaries.

False Positive Analysis. Fig. 3 presents a detailed categorization of
false positive errors and summarizes their distribution. In comparison with
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(a) ActionFormer [8] (Fully-supervised).

(b) Our POTLoc model (Point-supervised).

(c) Our base model (Point-supervised).

Figure 2: False negative proling of ActionFormer [8] (fully-supervised), POTLoc (point-
supervised) and the base model (point-supervised) on THUMOS14 using DETAD [70].

Actionformer (part a), the majority of false positive errors in POTLoc (part
b) stem from background errors. This occurs because POTLoc lacks access
to precise action boundaries. Therefore, background snippets close to ac-
tion boundaries may be erroneously detected as actions, resulting in false
positives. Moreover, the false positive proling of POTLoc (part b) is com-
pared against the base model (part c). POTLoc detects more true positive
instances and exhibits fewer localization and confusion errors which conrms
the eectiveness of POTLoc compared to the base model.
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(a) ActionFormer[8](Supervised) (b) POTLoc (Point-supervised) (c) Base model (Point-supervised)

Figure 3: False positive (FP) proling of ActionFormer [8] (fully-supervised), POTLoc
(point-supervised) and base model (point-supervised) on THUMOS14 using DETAD [70].

4.5. Qualitative Results

Fig. 4 presents the qualitative results of our model in comparison with
the base model. POTLoc addresses various types of errors in the base model
such as incompleteness and misalignment. In some cases, POTLoc success-
fully detects complete action proposals, whereas the base model tends to
detect fragmented and disconnected segments of action instances. However,
as a limitation of POTLoc, in some cases the predicted proposals are over-
completed (expanded beyond the action boundaries).

5. Conclusion

We have proposed a novel point-supervised framework, POTLoc, that em-
ploys a self-training scheme to eectively learn action dynamics. A unique
strategy is formulated for pseudo-label generation, which renes action pro-
posals generated from the base model, thus oering supplemental supervi-
sory signals. The eectiveness of the proposed approach for generating and
sampling pseudo-labels is conrmed through our experiments. We further
elucidated how the transformer and the feature pyramid network utilize the
guidance from pseudo-labels to accurately model continuous action struc-
tures and handle actions of various durations. POTLoc outperforms the
state-of-the-art methods on THUMOS14 dataset and ActivityNet-v1.2.
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(a) Action Billiards.

(b) Action Javelin Throw.

(c) Action Long Jump.

Figure 4: Qualitative results on THUMOS’14. The ground-truth instances are highlighted
in green. The detection results are displayed from: (1) the base model supervised with
point-level annotations (blue), and (2) our POTLoc framework (orange). Transparent
frames represent background frames.
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