

Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry

Théo Malas-Danzé^{1,2}, Alexandre Dugelay^{1,2}, Nir Navon^{2,3} and Hadrien Kurkjian^{4,5}

1 ENS Paris-Saclay 91190 Gif-Sur-Yvette, France

2 Department of Physics, Yale University, New Haven, Connecticut 06520, USA

3 Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA

4 Laboratoire de Physique Théorique, Université de Toulouse,
CNRS, UPS, 31400, Toulouse, France

5 Laboratoire de Physique Théorique de la Matière Condensée,
Sorbonne Université, CNRS, 75005, Paris, France

Abstract

We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions. The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the transferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the molecular Bose-Einstein condensate regime.

Copyright T. Malas-Danzé *et al.*

This work is licensed under the Creative Commons

[Attribution 4.0 International License](#).

Published by the SciPost Foundation.

Received 19-12-2023

Accepted 03-06-2024

Published ??-??-20??

Check for
updates

[doi:10.21468/SciPostPhys.?.?.??](https://doi.org/10.21468/SciPostPhys.?.?.??)

¹

Contents

3	1 Introduction	2
4	2 Interferometric protocol	2
5	3 Measuring long-range pair ordering	5
6	4 BCS mean-field approximation	7
7	References	9

⁸

⁹

10 1 Introduction

11 At low temperatures, the behavior of quantum matter is often marked by the emergence
 12 of coherent ordered phases displaying remarkable macroscopic properties. Such condensed
 13 phases appear in various contexts, such as solid-state physics [1], nuclear or neutron matter [2],
 14 and ultracold atomic gases [3, 4]. They are characterized by long-range coherence
 15 carried by a macroscopically occupied wavefunction. In the simple case of the weakly inter-
 16 acting Bose gas, this order shows up as off-diagonal long-range order (ODLRO) in the one-
 17 body density matrix $\rho_1(\mathbf{r}, \mathbf{r}') = \langle \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}(\mathbf{r}') \rangle$ (where $\hat{\Psi}$ is the Bose field operator), such that
 18 $\lim_{|\mathbf{r}-\mathbf{r}'| \rightarrow \infty} \rho_1(\mathbf{r}, \mathbf{r}') = n_0$ is the density of the Bose-Einstein condensate (BEC). The ODLRO in
 19 a Bose gas has been measured for instance via the single-particle momentum distribution [5, 6],
 20 which for a translationally invariant system is the Fourier transform of ρ_1 .

21 In spin-1/2 Fermi systems, the one-body density matrix cannot exhibit ODLRO, owing to
 22 Pauli's exclusion principle, and the momentum distribution remains smooth across the phase
 23 transition [7]. Instead, a macroscopically occupied wavefunction signalling pair condensation
 24 can only appear in the two-body (pair) density matrix $\rho_2(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}'_1, \mathbf{r}'_2) = \langle \hat{\Psi}_\uparrow^\dagger(\mathbf{r}_1) \hat{\Psi}_\uparrow^\dagger(\mathbf{r}_2) \hat{\Psi}_\downarrow(\mathbf{r}'_2) \hat{\Psi}_\downarrow(\mathbf{r}'_1) \rangle$
 25 (where $\hat{\Psi}_\sigma$ is the Fermi field operator for the fermion of spin σ) [3, 8]. Measurements of
 26 ODLRO are for this reason considerably more challenging in Fermi systems. Rapid ramps of the
 27 magnetic field have been used to project the pair condensate onto a BEC of molecules [9–12];
 28 however, the measured molecular fraction is notoriously difficult to interpret theoretically, due
 29 to the various two- and many-body time scales involved in the problem [13]. Measurements of
 30 pair correlations in time-of-flight images have been proposed as a way to access ODLRO [14,
 31 15]; an analogous protocol has been implemented, albeit on a small Fermi system [16].

32 Interferometric protocols offer an alternative route to measure the coherence properties
 33 of quantum gases. Cold-atom experiments are particularly well suited for matter-wave inter-
 34 ferometry, due to the possibilities of creating a coherent copy of the gas by manipulating the
 35 internal or external state of the atoms [17]. In Bose gases, direct real-space measurements of
 36 $\rho_1(\mathbf{r}, \mathbf{r}')$ were performed using Ramsey sequences based on interferometry of Bragg-diffracted
 37 gases [18–21]. In Fermi gases, matter-wave interference between small atom numbers ex-
 38 tracted by spatially resolved Bragg pulses was proposed as a way to measure ρ_2 [22].

39 Inspired by such techniques, we propose a protocol to measure ρ_2 from the fluctuations
 40 of a Ramsey-Bragg interferometer. A copy of the spin-1/2 Fermi gas is created by imparting
 41 a large velocity to a fraction of the atoms. Interactions are turned off, and the copy travels
 42 ballistically, thereby stretching or translating the pairs of fermions by a distance proportional
 43 to the interrogation time. When the interferometric sequence is closed by the second pulse,
 44 the stretched and translated pairs interfere with those at rest, and a measurement of the cor-
 45 relations between the number of spin \uparrow and spin \downarrow recoiling atoms reveal the most important
 46 features of ρ_2 . In the pair-condensed phase, the interferometric signal carries information on
 47 the magnitude of the fermionic condensate and on the wavefunction of the fermionic pairs.

48 2 Interferometric protocol

49 In Fig. 1 we show a sketch of the proposed measurement protocol. We consider a homogeneous
 50 spin-1/2 Fermi gas in a cubic box of size L [23]. At $t = 0$, a first Bragg pulse is shined on
 51 the gas for a duration t_{pulse} . We place ourselves in the regime of a short and intense pulse,
 52 designed to be resonant with the whole gas and to create a moving copy of the cloud whose
 53 momentum distribution does not overlap with the original one (see Fig. 1). Both spin states
 54 are in a superposition of two components: a copy with no average momentum, and a copy with
 55 a large average momentum \mathbf{q}_{rec} . Assuming that the gas initially has zero mean velocity, the

56 energy transferred by the pulse is adjusted to $\hbar\omega = \epsilon_{\mathbf{q}_{\text{rec}}}$ (where $\epsilon_{\mathbf{k}} = \hbar^2 k^2 / 2m$ is the kinetic
 57 energy and m is the mass of the fermion), in resonance with the atoms at rest. Since the atoms
 58 traveling at a velocity $\hbar\mathbf{k}/m \neq \mathbf{0}$ experience a detuning $\hbar\omega - \epsilon_{\mathbf{k}+\mathbf{q}_{\text{rec}}} + \epsilon_{\mathbf{k}} = -\hbar^2 \mathbf{q}_{\text{rec}} \cdot \mathbf{k}/m$, the
 59 duration of the pulse t_{pulse} should be short enough so that this detuning remains negligible
 60 compared to the Fourier broadening over the typical range δk of the momentum distribution
 61 of the gas:

$$\frac{\hbar q_{\text{rec}} \delta k}{m} t_{\text{pulse}} \ll 1. \quad (1)$$

62 Note that the pulse duration should also be long enough *i.e.* $t_{\text{pulse}} \gg m/\hbar q_{\text{rec}}^2$ such that second-
 63 order transitions to states of momenta $\mathbf{k} + 2\mathbf{q}_{\text{rec}}$ or $\mathbf{k} - \mathbf{q}_{\text{rec}}$ remain negligible. To evaluate
 64 the condition (1), let us consider the case of contact interactions between \uparrow and \downarrow fermions,
 65 characterized by an s-wave scattering length a . On the Bardeen-Cooper-Schrieffer side (BCS,
 66 $a < 0$), one can estimate $\delta k \approx \rho^{1/3}$, where ρ is the total density, and on the molecular
 67 Bose-Einstein condensate side (BEC, $a > 0$) $\delta k \approx 1/a$. In this limit, the broadening of the
 68 momentum distribution implies that fulfilling $1/q_{\text{rec}} \ll \hbar q_{\text{rec}} t_{\text{pulse}}/m \ll 1/\delta k$ will no longer
 69 be possible at fixed q_{rec} .

70 In the intense-pulse regime of condition (1), the gas can be approximated by a two-level
 71 system undergoing Rabi oscillations between a state *at rest* (violet distribution in the upper
 72 sketches of Fig. 1) and a *recoiling* one (green distribution). The evolution during the first Bragg
 73 pulse corresponds to a rotation of angle $\theta = \Omega_R t_{\text{pulse}}$ (where Ω_R is the Rabi frequency of the
 74 Bragg pulse) on the Bloch sphere of this effective two-level system:

$$\begin{pmatrix} \hat{a}_{\mathbf{k},\sigma} \\ \hat{a}_{\mathbf{k}+\mathbf{q}_{\text{rec}},\sigma} \end{pmatrix}(t_{\text{pulse}}) = \mathcal{S}(\theta, 0) \begin{pmatrix} \hat{a}_{\mathbf{k},\sigma} \\ \hat{a}_{\mathbf{k}+\mathbf{q}_{\text{rec}},\sigma} \end{pmatrix}(0). \quad (2)$$

75 Here $\hat{a}_{\mathbf{k},\sigma}$ annihilates a fermion of wavevector \mathbf{k} and spin σ and the matrix
 76 $\mathcal{S}(\theta, \varphi) = \begin{pmatrix} \cos(\theta/2) & -i \sin(\theta/2)e^{i\varphi} \\ -i \sin(\theta/2)e^{-i\varphi} & \cos(\theta/2) \end{pmatrix}$ describes a rotation of angle θ around the vec-
 77 tor $(\cos \varphi, -\sin \varphi, 0)$ of the equatorial plane of the Bloch sphere.

78 After this first pulse, the recoiling and non-recoiling components evolve ballistically during
 79 an interrogation time τ . In contrast to the Ramsey-Bragg interferometry of weakly interacting
 80 gases [18, 20], it is crucial that interactions are turned off in strongly interacting gases before
 81 the first Bragg pulse. This would mitigate both fast many-body evolution during the interro-
 82 gation sequence, and the high collisional density that would prevent the diffracted component
 83 from flying freely [24]. This could be achieved either with a fast Feshbach field ramp or with
 84 fast Raman pulses [16, 25]. The recoiling component travels a distance $\mathbf{x}_\tau \equiv \hbar \tau \mathbf{q}_{\text{rec}}/m$, at a
 85 velocity sufficiently large to exit the trapping potential (in the direction of propagation). This
 86 means that only a fraction $(1 - x_\tau/L)$ of the cloud remains within the box volume after the
 87 interrogation time (assuming \mathbf{q}_{rec} is aligned with an axis of the cubic trap) and gives an upper
 88 limit $\tau < mL/\hbar q_{\text{rec}}$ to the interrogation time.

89 After the interrogation time, the dephasing between the recoiling and non-recoiling com-
 90 ponents is $\varphi_{\mathbf{k}}(\tau) = ((\epsilon_{\mathbf{k}+\mathbf{q}_{\text{rec}}} - \epsilon_{\mathbf{k}})/\hbar - \omega)\tau$ relatively to the Bragg transition, and a second
 91 Bragg pulse recombines the two components:

$$\begin{aligned} \begin{pmatrix} \hat{a}_{\mathbf{k},\sigma} \\ \hat{a}_{\mathbf{k}+\mathbf{q}_{\text{rec}},\sigma} \end{pmatrix}(\tau + 2t_{\text{pulse}}) &= \mathcal{S}(\theta, \omega\tau) \begin{pmatrix} \hat{a}_{\mathbf{k},\sigma} \\ \hat{a}_{\mathbf{k}+\mathbf{q}_{\text{rec}},\sigma} \end{pmatrix}(\tau + t_{\text{pulse}}) \\ &= \mathcal{S}(\theta, \varphi_{\mathbf{k}}(\tau)) \mathcal{S}(\theta, 0) \begin{pmatrix} \hat{a}_{\mathbf{k}} \\ \hat{a}_{\mathbf{k}+\mathbf{q}_{\text{rec}}} \end{pmatrix}(0). \end{aligned} \quad (3)$$

92 Eq. (3) thus describes a Ramsey sequence with a dephasing $\varphi_{\mathbf{k}}(\tau)$ that depends on the initial
 93 momentum of the atoms.¹ This makes the interferometer sensitive to the spatial structure

¹Note that the dephasing $\varphi_{\mathbf{k}}(2t_{\text{pulse}})$ accumulated during the two Bragg pulses is negligible by virtue of Eq. (1).

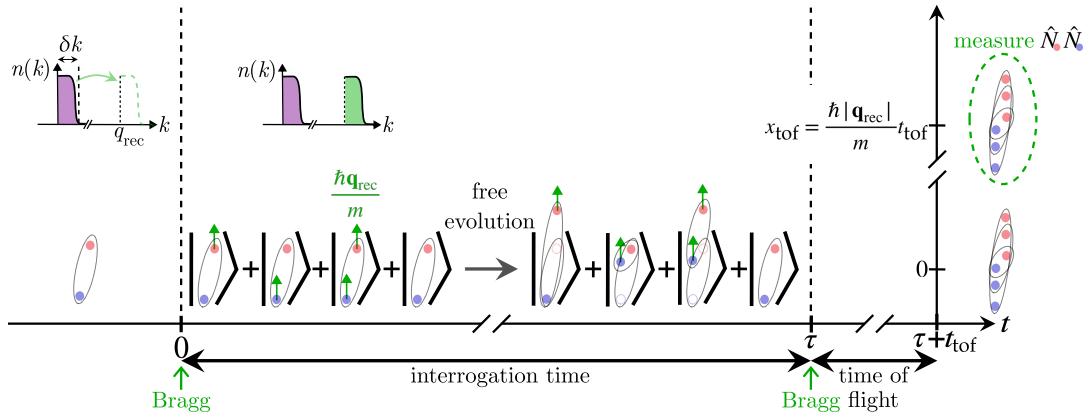


Figure 1: (a) Sketch of the Ramsey-Bragg interferometer applied to a pair of fermions. The blue (resp. red) circles represent spin \uparrow (resp. \downarrow) atoms. The Bragg pulses create superpositions of atoms at rest and moving with a recoil momentum q_{rec} . After the time of flight, the component at rest and the recoiling one are separated by x_{tof} . For clarity, the finite pulse duration t_{pulse} is not shown.

94 of the gas, where short interrogation times allow to probe short-range correlations, and long
95 times probing long-range correlations. Since the number of recoiling atoms is zero before the
96 measurement sequence, the terms proportional to $\hat{a}_{\mathbf{k}+q_{\text{rec}}}(0)$ can be omitted. For the operator
97 describing the recoiling atoms at $t_f = \tau + 2t_{\text{pulse}}$ this gives

$$\hat{a}_{\mathbf{k}+q_{\text{rec}},\sigma}(t_f) \rightarrow -i \frac{\sin \theta}{2} e^{-i\epsilon_{\mathbf{k}+q_{\text{rec}}}\tau} (1 + e^{i\varphi_{\mathbf{k}}(\tau)}) \hat{a}_{\mathbf{k}}(0). \quad (4)$$

98 After the Ramsey sequence, these recoiling atoms are spatially separated from the atoms
99 at rest by a time of flight t_{tof} . An absorption image is taken to measure their number in each
100 spin component:

$$\hat{N}_{\text{rec},\sigma} \equiv \sum_{\mathbf{k} \in \mathcal{B}} \hat{a}_{\mathbf{k}+q_{\text{rec}},\sigma}^\dagger(t_f) \hat{a}_{\mathbf{k}+q_{\text{rec}},\sigma}(t_f) = \int \hat{\Psi}_{\text{rec},\sigma}^\dagger(\mathbf{r}) \hat{\Psi}_{\text{rec},\sigma}(\mathbf{r}) d\mathbf{r}. \quad (5)$$

101 The summation over \mathbf{k} is here restricted to the recoiling atoms, that is, to a neighborhood \mathcal{B}
102 of \mathbf{q}_{rec} of typical size δk , small compared to q_{rec} . Using Eq. (4), we have expressed $\hat{N}_{\text{rec},\sigma}$ in
103 terms of a field operator which superimposes atoms from different initial positions in the gas:

$$\hat{\Psi}_{\text{rec},\sigma}(\mathbf{r}) = \frac{\sin \theta}{2} (\hat{\Psi}_{\sigma}(\mathbf{r}) + \hat{\Psi}_{\sigma}(\mathbf{r} - \mathbf{x}_{\tau})), \quad (6)$$

104 where $\hat{\Psi}_{\sigma}(\mathbf{r}) = (1/\sqrt{L^3}) \sum_{\mathbf{k} \in \mathcal{B}} e^{-i\mathbf{k} \cdot \mathbf{r}} \hat{a}_{\mathbf{k},\sigma}(0)$ is the field operator at $t = 0$. Consequently, pairs
105 of recoiling atoms are described by the pairing field $\hat{\Psi}_{\text{rec},\downarrow} \hat{\Psi}_{\text{rec},\uparrow}$, which yields the superposition
106 depicted in Fig. 1:

$$\begin{aligned} \hat{\Psi}_{\text{rec},\downarrow}(\mathbf{r}_2) \hat{\Psi}_{\text{rec},\uparrow}(\mathbf{r}_1) &= \frac{\sin^2 \theta}{4} [\hat{\Psi}_{\downarrow}(\mathbf{r}_2) \hat{\Psi}_{\uparrow}(\mathbf{r}_1) + \hat{\Psi}_{\downarrow}(\mathbf{r}_2) \hat{\Psi}_{\uparrow}(\mathbf{r}_1 - \mathbf{x}_{\tau}) \\ &\quad + \hat{\Psi}_{\downarrow}(\mathbf{r}_2 - \mathbf{x}_{\tau}) \hat{\Psi}_{\uparrow}(\mathbf{r}_1) + \hat{\Psi}_{\downarrow}(\mathbf{r}_2 - \mathbf{x}_{\tau}) \hat{\Psi}_{\uparrow}(\mathbf{r}_1 - \mathbf{x}_{\tau})]. \end{aligned} \quad (7)$$

107 The four terms here represent respectively a pair at rest, a pair where the \uparrow or the \downarrow fermion
108 has been stretched by \mathbf{x}_{τ} , and a pair globally translated by \mathbf{x}_{τ} .

109 3 Measuring long-range pair ordering

110 As in Bose gases, the measurements of \hat{N}_{rec} give access to one-body correlations:

$$111 \quad \hat{N}_{\text{rec},\sigma} = \frac{\sin^2 \theta}{2} [\hat{N}_\sigma + \hat{\rho}_{1,\sigma}(\mathbf{x}_\tau)], \quad (8)$$

112 where $\hat{\rho}_{1,\sigma}(\mathbf{x}_\tau) = \int \hat{\Psi}_\sigma^\dagger(\mathbf{r}) \hat{\Psi}_\sigma(\mathbf{r} - \mathbf{x}_\tau) d\mathbf{r}$ is the one-body correlation operator and \hat{N}_σ is the
113 total number of atoms of spin σ ; we assumed that $\hat{\rho}_{1,\sigma}$ is symmetric under parity, *i.e.*
 $\hat{\rho}_{1,\sigma}(-\mathbf{x}_\tau) = \hat{\rho}_{1,\sigma}(\mathbf{x}_\tau)$.

114 In Fermi gases, ρ_2 is more interesting since it is the observable that exhibits long-range
115 (pair) order. To measure ρ_2 , we propose to record the correlations of the numbers of spin \uparrow
116 and \downarrow recoiling atoms:

$$117 \quad S(\mathbf{x}_\tau) = \langle \hat{N}_{\text{rec},\uparrow}(\mathbf{x}_\tau) \hat{N}_{\text{rec},\downarrow}(\mathbf{x}_\tau) \rangle - \langle \hat{N}_{\text{rec},\uparrow}(\mathbf{x}_\tau) \rangle \langle \hat{N}_{\text{rec},\downarrow}(\mathbf{x}_\tau) \rangle. \quad (9)$$

118 Such interferometric signal is constructed by averaging individual realizations of $N_{\text{rec},\uparrow}$ and
119 $N_{\text{rec},\downarrow}$. Using Eq. (7) to express the quartic part of S , we recognize the following contractions
of ρ_2 :

$$120 \quad f_{\text{tr}}(\mathbf{x}_\tau) = \int \rho_2(\mathbf{r}_1 - \mathbf{x}_\tau, \mathbf{r}_2 - \mathbf{x}_\tau; \mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2, \quad (10)$$

$$121 \quad f_{\text{str},\uparrow}(\mathbf{x}_\tau) = \int \rho_2(\mathbf{r}_1 - \mathbf{x}_\tau, \mathbf{r}_2; \mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2, \quad (11)$$

$$122 \quad f_{\text{str},\downarrow}(\mathbf{x}_\tau) = \int \rho_2(\mathbf{r}_1, \mathbf{r}_2 - \mathbf{x}_\tau; \mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2, \quad (12)$$

$$123 \quad f_{\text{str},\uparrow\downarrow}(\mathbf{x}_\tau) = \int \rho_2(\mathbf{r}_1 - \mathbf{x}_\tau, \mathbf{r}_2; \mathbf{r}_1, \mathbf{r}_2 - \mathbf{x}_\tau) d\mathbf{r}_1 d\mathbf{r}_2. \quad (13)$$

124 These functions have a simple interpretation: f_{tr} measures the overlap between the translated
125 and the original pair of Eq. (7), $f_{\text{str},\sigma}$ the overlap between the pair stretched by the spin σ
126 fermion and the original one, and $f_{\text{str},\uparrow\downarrow}$ the overlap between the two pairs stretched by the
127 fermion of the opposite spin. Using Eq. (8) for the quadratic part of S , we finally obtain:

$$128 \quad S = \frac{\sin^4 \theta}{4} \left[f_{\text{str},\uparrow} + f_{\text{str},\downarrow} + \frac{f_{\text{str},\uparrow\downarrow} + f_{\text{tr}}}{2} - \rho_{1,\uparrow} \rho_{1,\downarrow} - N_{\uparrow} \rho_{1,\downarrow} - N_{\downarrow} \rho_{1,\uparrow} \right], \quad (14)$$

129 where $\rho_{1,\sigma} \equiv \langle \hat{\rho}_{1,\sigma}(\mathbf{x}_\tau) \rangle$. The signal S is maximum for $\theta = \pi/2$; we thus set θ at this value
130 from now on. When the gas is in the normal phase, the functions f_{str} , f_{tr} and ρ_1 vanish at large
131 distances. On the contrary, when the gas is pair condensed, the contribution of the translated
132 pairs f_{tr} does not vanish when $\mathbf{x}_\tau \rightarrow +\infty$. In this case, ρ_2 has a macroscopic eigenvalue N_0
133 associated to a wavefunction ϕ_0 and behaves at large distances (that is, when the pair center
134 of mass $\mathbf{R} = |\mathbf{r}_1 + \mathbf{r}_2|/2$ and $\mathbf{R}' = |\mathbf{r}'_1 + \mathbf{r}'_2|/2$ are infinitely separated) as

$$135 \quad \lim_{|\mathbf{R} - \mathbf{R}'| \rightarrow +\infty} \rho_2(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}'_1, \mathbf{r}'_2) = N_0 \phi_0^*(\mathbf{r}_1, \mathbf{r}_2) \phi_0(\mathbf{r}'_1, \mathbf{r}'_2). \quad (15)$$

136 This implies that $\lim_{x_\tau \rightarrow +\infty} f_{\text{tr}}(\mathbf{x}_\tau) = N_0$, such that

$$137 \quad S_\infty \equiv \lim_{x_\tau \rightarrow +\infty} S(\mathbf{x}_\tau) = \frac{N_0}{8}. \quad (16)$$

138 We have assumed here that fluctuations of the total atom numbers, if there are any, are uncor-
139 related: $\langle \hat{N}_\uparrow \hat{N}_\downarrow \rangle = N_\uparrow N_\downarrow$. Eq. (16) provides a direct measurement of the magnitude N_0 of the

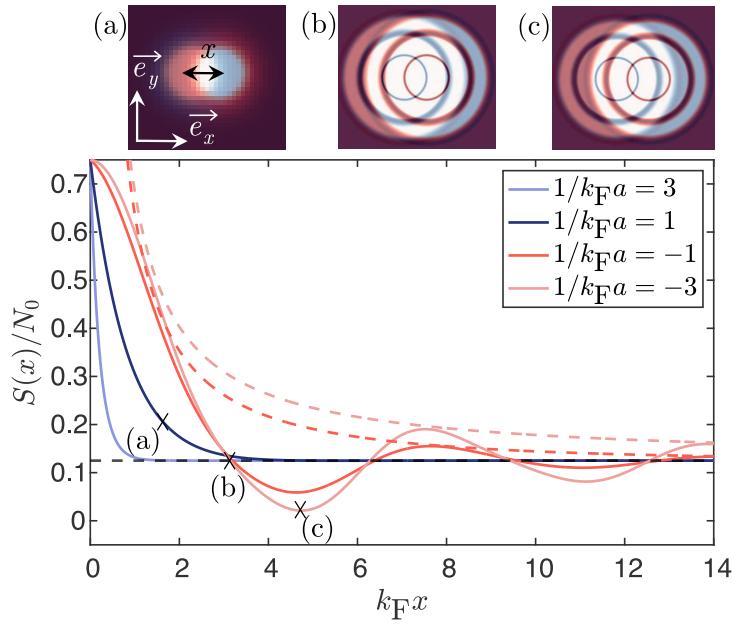


Figure 2: The interferometric signal $S(x)$ as a function of the distance x for different values of the interaction strength, calculated using the mean-field BCS theory (solid curves); here, we assume $x = x_{\tau,\uparrow} = x_{\tau,\downarrow}$. On the BCS side, where S oscillates, the envelope is $(x_0/\pi x) \exp(-x/\xi_x)$ (dashed lines). (a)-(c) Sketches of the interference patterns for S originating from the condensate wavefunction ϕ_0 . The copy at rest is shown in blue ($|\phi_0(\mathbf{r}_1, \mathbf{r}_2)|^2$) and the translated one in red ($|\phi_0(\mathbf{r}_1, \mathbf{r}_2 + \mathbf{x}_\tau)|^2$), where $x = |\mathbf{x}_\tau|$; (a) in the BEC regime, (b) in the BCS regime, where the displacement x corresponds to the first cancellation of S (see main panel), and (c) in the BCS regime, where the displacement corresponds to the first minimum of S .

long-range order, a quantity that cannot be measured using the rapid ramp technique [9, 10]. Note that N_0 cannot be interpreted as the number of condensed pairs away from the BEC limit.²

The contribution of the stretched pairs to S through $f_{\text{str},\sigma}$ and $f_{\text{str},\uparrow\downarrow}$, although negligible at distances greater than the pair size ξ_{pair} , carries essential information on the condensate wavefunction ϕ_0 . It is possible to isolate the contribution of $f_{\text{str},\sigma}$ using a spin-selective Bragg pulse, such that the displacements $\mathbf{x}_{\tau,\uparrow}$ and $\mathbf{x}_{\tau,\downarrow}$ of the two spins no longer coincide. For $\mathbf{x}_{\tau,\downarrow} = \mathbf{0}$ and $\mathbf{x}_{\tau,\uparrow} \neq \mathbf{0}$, Eq. (14) becomes

$$S(\mathbf{x}_{\tau\uparrow}) = \frac{f_{\text{str},\uparrow}(\mathbf{x}_{\tau\uparrow}) - N_{\downarrow} \rho_{1,\uparrow}(\mathbf{x}_{\tau\uparrow})}{2}. \quad (17)$$

This result can be used to reveal the momentum structure of ϕ_0 . Let us suppose that the system is isotropic and translationally invariant. If the pairs are tightly bound (as in the BEC limit), then $\phi_0(\mathbf{r}_1, \mathbf{r}_2)$ decreases rapidly and almost monotonically with $x = |\mathbf{r}_1 - \mathbf{r}_2|$, and so does $f_{\text{str},\sigma}$; the corresponding behavior for S is schematically depicted in Fig. 2(a). Conversely, if pairing occurs at a non-zero wavenumber, as in the BCS limit, ϕ_0 oscillates as a function of x at a wavelength corresponding to the inverse of that wavenumber, and so does $f_{\text{str},\sigma}$ (see Figs. 2(b)-(c)).

²The pair-condensate annihilation operator $\hat{b}_0 = \int \phi_0^*(\mathbf{r}_1, \mathbf{r}_2) \hat{\Psi}_\downarrow(\mathbf{r}_1) \hat{\Psi}_\uparrow(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$ is not bosonic, as $\langle [\hat{b}_0, \hat{b}_0^\dagger] \rangle \leq 1$ (the inequality is saturated only in the BEC limit). Therefore, $N_0 = \langle \hat{b}_0^\dagger \hat{b}_0 \rangle$ is not the number of atoms in the condensate in the general case.

148

4 BCS mean-field approximation

149 To obtain a more explicit expression for S , and illustrate its behavior when $x_\tau \approx \xi_{\text{pair}}$, we now
 150 use the BCS mean-field approximation and assume that the gas is balanced, such that $N_\uparrow = N_\downarrow$,
 151 $f_{\text{str},\uparrow} = f_{\text{str},\downarrow}$ and $\rho_{1,\uparrow} = \rho_{1,\downarrow}$. The total density $\rho = \rho_\uparrow + \rho_\downarrow$ defines the Fermi wavenumber
 152 $k_F = (3\pi^2\rho)^{1/3}$, and in the BCS state ρ_2 factorizes into

$$\rho_2(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}'_1, \mathbf{r}'_2) = N_0 \phi_0^*(\mathbf{r}_1, \mathbf{r}_2) \phi_0(\mathbf{r}'_1, \mathbf{r}'_2) + \rho_1(\mathbf{r}_1, \mathbf{r}'_1) \rho_1(\mathbf{r}_2, \mathbf{r}'_2). \quad (18)$$

153 If the gas is translationally invariant and isotropic, the functions previously defined in Eqs.
 154 (10)-(13) depend only on $x_\tau = |\mathbf{x}_\tau|$. Since symmetry-breaking BCS states do not have a fixed
 155 number of particles, there is a nonzero covariance $\langle \psi_{\text{BCS}} | \hat{N}_\uparrow \hat{N}_\downarrow | \psi_{\text{BCS}} \rangle \neq N_\uparrow N_\downarrow$. We get rid of
 156 this well-known artifact of BCS theory, by projecting the BCS states onto the subspace with
 157 a fixed number of atoms (see e.g. Eq. (41) in [26]). The interferometric signal in the case
 158 $\mathbf{x}_{\tau,\uparrow} = \mathbf{x}_{\tau,\downarrow}$ [Eq. (14)] becomes:

$$S(x_\tau) = \frac{N_0}{8} \left[1 + 4f(x_\tau) + f(2x_\tau) \right]. \quad (19)$$

159 Here the function

$$f(x) = \int \phi_0^*(\mathbf{r}_1 - \mathbf{x}, \mathbf{r}_2) \phi_0(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2, \quad (20)$$

160 is the overlap between a stretch and an original pair of the condensate; it is related to the
 161 functions introduced before by $f_{\text{str},\sigma} = N_0 f + N_\sigma \rho_1$ and $f_{\text{str},\uparrow\downarrow}(x) = N_0 f(2x) + \rho_1^2(x)$. The
 162 condensate wavefunction in Fourier space $\phi_{\mathbf{k}}$, defined as $\phi_0(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\mathbf{k}} \phi_{\mathbf{k}} e^{-i\mathbf{k} \cdot (\mathbf{r}_1 - \mathbf{r}_2)} / L^3$,
 163 takes the form

$$\phi_{\mathbf{k}} = \frac{\Delta}{2E_{\mathbf{k}} \sqrt{N_0^{\text{BCS}}}}, \quad (21)$$

164 where Δ is the gap, $E_{\mathbf{k}} = \sqrt{(\epsilon_{\mathbf{k}} - \mu)^2 + \Delta^2}$ is the BCS dispersion relation, and μ is the chemical
 165 potential. The associated macroscopic eigenvalue is $N_0^{\text{BCS}} = \sum_{\mathbf{k}} \Delta^2 / (4E_{\mathbf{k}}^2)$. The maximum of
 166 $|\phi_{\mathbf{k}}|$ is reached at the minimum of the BCS dispersion relation, that is, at $k_{\min} = \sqrt{2m\mu}/\hbar$
 167 on the BCS side ($\mu > 0$) and $k = 0$ on the BEC side ($\mu < 0$). Using the BCS condensate
 168 wavefunction Eq. (21), we can calculate the integral over \mathbf{k} analytically in Eq. (20), which
 169 yields

$$f(x) = e^{-x/\xi_x} \text{sinc}(\pi x/x_0), \quad (22)$$

170 where the exponential decay length

$$\xi_x^2 = \frac{\hbar^2}{m\Delta} \left(\frac{\mu}{\Delta} + \sqrt{1 + \frac{\mu^2}{\Delta^2}} \right), \quad (23)$$

171 can be identified with the characteristic length of the one-body density matrix [27, 28], and

$$\frac{x_0^2}{\pi^2} = \frac{\hbar^2}{m\Delta} \frac{1}{\frac{\mu}{\Delta} + \sqrt{1 + \frac{\mu^2}{\Delta^2}}}, \quad (24)$$

172 is the oscillation length.

173 Oscillations of S are visible before S reaches its asymptotic value depending on the ratio
 174 x_0/ξ_x . In the BCS limit ($\mu/\Delta \rightarrow +\infty$ or $k_F a \rightarrow 0^-$), the oscillation length $x_0 \sim \pi/k_F$ is much
 175 shorter than the exponential-decay length $\xi_x \sim \hbar^2 k_F / m\Delta$ which diverges as $O(\xi_{\text{pair}})$. Thus, in
 176 the BCS regime, S exhibits oscillations (the dark and light red curves in Fig. 2 correspond to
 177 $1/k_F a = -1$ and -3); the oscillations decay as a cardinal sine, on a typical length scale $1/k_F$.

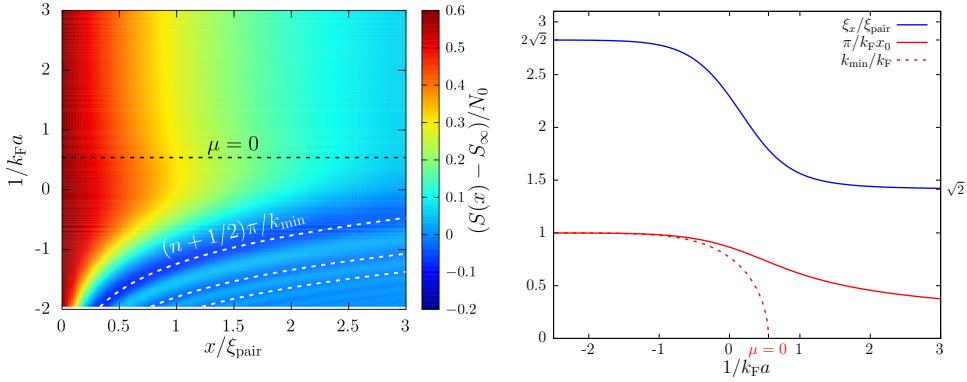


Figure 3: (Top panel) The interferometric signal $S(x) - S_\infty$ normalized to N_0 as a function of x/ξ_{pair} and $1/k_F a$ within the mean-field BCS approximation. The boundary between the BEC and BCS regime ($\mu = 0$ at $1/k_F a \simeq 0.54$) is marked by the black dashed line. On the BCS side, we compare the local minima of the oscillatory signal to $x_n = (n + 1/2)\pi/k_{\text{min}}$ (white dashed curves). (Bottom panel) The wavenumber π/x_0 (normalized to k_F) and the exponential attenuation length ξ_x (normalized to the Cooper pair size ξ_{pair}) of the overlap function f in the BEC-BCS crossover. The dashed red curve shows the location of the dispersion minimum $k_{\text{min}} = \sqrt{2m\mu}/\hbar$ on the BCS side ($\mu > 0$).

Conversely, in the BEC limit ($\mu/\Delta \rightarrow -\infty$ or $k_F a \rightarrow 0^+$), $\xi_x \sim a$ tends to zero like the size of the bosonic dimers. At the same time, the oscillation frequency diverges as $x_0 \sim \sqrt{3\pi/4k_F a}(\pi/k_F)$, such that no oscillations are visible in this regime (the dark and light blue curves on Fig. 2 correspond to $1/k_F a = 1$ and 3). A transition between the two regimes (illustrated in the top panel of Fig. 3) occurs around the point where $\xi_x = x_0/\pi$, that is, $\mu = 0$, which coincides with the point where the minimum k_{min} of the BCS dispersion relation reaches 0 . A measurement of the BCS gap is also accessible through the relation

$$\frac{\xi_x x_0}{\pi} = \frac{\hbar^2}{m\Delta}. \quad (25)$$

In Fig. 3, we compare ξ_x to the pair size defined as [29]

$$\xi_{\text{pair}} = \left(\int \rho_2(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_1, \mathbf{r}_2) |\mathbf{r}_1 - \mathbf{r}_2|^2 d\mathbf{r}_1 d\mathbf{r}_2 / \int \rho_2(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 \right)^{1/2}$$

(see the blue line), showing that the two quantities remain comparable throughout the BEC-BCS crossover.³ We also compare the wavenumber π/x_0 of the overlap function f to the location of the dispersion minimum $k_{\text{min}} = \sqrt{2m\mu}/\hbar$: they coincide in the BCS limit but differ outside, in particular because π/x_0 does not vanish (solid red curve on Fig. 3), unlike k_{min} (dashed red line).

While our quantitative discussion of $S(x)$ is restricted to the mean-field approximation, we note that ρ_2 in general, and the contractions introduced in (10)–(13) in particular, have been computed using more advanced diagrammatic approximations [27]. Away from the BCS

³We derived the analytic expression:

$$\xi_{\text{pair}}^2 = \frac{\hbar^2}{2m\Delta} \frac{4\alpha^2(\alpha + r_\alpha) + 7\alpha + 5r_\alpha}{8r_\alpha(\alpha + r_\alpha)},$$

where $\alpha = \mu/\Delta$ and $r_\alpha = \sqrt{1 + \alpha^2}$.

193 limit, where fluctuations in the bosonic collective modes become important, a slower decay
194 than the exponential one predicted by Eq. (22) is expected, which is reminiscent of the power-
195 law convergence of ρ_1 to the condensed fraction in a Bose gas [30].

196 In summary, we proposed an interferometric protocol to probe the two-body density matrix
197 in spin-1/2 Fermi gases. By measuring the correlations between the recoiling atoms of \uparrow and \downarrow
198 after a Ramsey-Bragg sequence, one records as a function of the interrogation time a damped
199 oscillatory signal whose attenuation time, frequency, and asymptotic value give access all at
200 once to the size of the Cooper pairs, to their relative wave number, and to the macroscopic
201 eigenvalue of the two-body density matrix. Those important features of fermionic condensates
202 are difficult to access experimentally [31]. Furthermore, this method has the advantage that
203 a fine spatial resolution on ρ_2 is obtained through a fine temporal resolution, which is rather
204 easy to achieve experimentally. The correlation signal recorded at the end of the sequence also
205 involves a macroscopic fraction of the atoms initially present in the trap, which makes it more
206 robust to experimental noise. In the future, it would be interesting to extend this calculation
207 to the case of fermions with three internal states [32].

208 Acknowledgments

209 We thank S. Huang, G. Assumpção for insightful discussions. H.K. thanks Yale University for
210 its hospitality.

211 **Funding information** This work was supported by the NSF (Grant Nos. PHY-1945324 and
212 PHY-2110303), DARPA (Grant No. HR00112320038), AFOSR (Grant No. FA9550-23-1-0605),
213 the EUR grant NanoX n° ANR-17-EURE-0009 in the framework of the “Programme des In-
214 vestissements d’Avenir”. N.N. acknowledges support from the David and Lucile Packard Foun-
215 dation, and the Alfred P. Sloan Foundation.

216 References

- 217 [1] A. L. Fetter and J. D. Walecka, *Quantum theory of many-particle systems*, McGraw-Hill,
218 San Francisco, USA, ISBN 9780070206533 (1971).
- 219 [2] J.-P. Blaizot and G. Ripka, *Quantum theory of finite systems*, MIT Press, Cambridge, Mas-
220 sachusetts, USA, ISBN 9780262022149 (1985).
- 221 [3] A. J. Leggett, *Quantum liquids*, Oxford University Press, Oxford, UK, ISBN
222 9780198526438 (2006).
- 223 [4] L. Pitaevskii and S. Stringari, *Bose-Einstein condensation and superfluidity*,
224 Cambridge University Press, Cambridge, UK, ISBN 9780198758884 (2016),
225 doi:[10.1093/acprof:oso/9780198758884.001.0001](https://doi.org/10.1093/acprof:oso/9780198758884.001.0001).
- 226 [5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, *Obser-
227 vation of Bose-Einstein condensation in a dilute atomic vapor*, Science **269**, 198 (1995),
228 doi:[10.1126/science.269.5221.198](https://doi.org/10.1126/science.269.5221.198).
- 229 [6] M. Greiner, C. A. Regal and D. S. Jin, *Emergence of a molecular Bose-Einstein condensate
230 from a Fermi gas*, Nature **426**, 537 (2003), doi:[10.1038/nature02199](https://doi.org/10.1038/nature02199).

231 [7] M. Houbiers, R. Ferwerda, H. T. C. Stoof, W. I. McAlexander, C. A. Sackett and R. G.
232 Hulet, *Superfluid state of atomic ^6Li in a magnetic trap*, Phys. Rev. A **56**, 4864 (1997),
233 doi:[10.1103/PhysRevA.56.4864](https://doi.org/10.1103/PhysRevA.56.4864).

234 [8] W. Zwerger (ed.), *The BCS-BEC crossover and the unitary Fermi gas*, Springer, Berlin,
235 Heidelberg, Germany, ISBN 9783642219771 (2012), doi:[10.1007/978-3-642-21978-8](https://doi.org/10.1007/978-3-642-21978-8).

236 [9] R. G. Scott, F. Dalfovo, L. P. Pitaevskii and S. Stringari, *Rapid ramps across the BEC-
237 BCS crossover: A route to measuring the superfluid gap*, Phys. Rev. A **86**, 053604 (2012),
238 doi:[10.1103/PhysRevA.86.053604](https://doi.org/10.1103/PhysRevA.86.053604).

239 [10] A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.-S. Bernier, C. Kollath and M. Köhl,
240 *Higgs mode in a strongly interacting fermionic superfluid*, Nat. Phys. **14**, 781 (2018),
241 doi:[10.1038/s41567-018-0128-6](https://doi.org/10.1038/s41567-018-0128-6).

242 [11] T. Paintner et al., *Pair fraction in a finite-temperature Fermi gas on the BEC side of the
243 BCS-BEC crossover*, Phys. Rev. A **99**, 053617 (2019), doi:[10.1103/PhysRevA.99.053617](https://doi.org/10.1103/PhysRevA.99.053617).

244 [12] P. Dyke, A. Hogan, I. Herrera, C. C. N. Kuhn, S. Hoinka and C. J. Vale, *Dynamics of a Fermi
245 gas quenched to unitarity*, Phys. Rev. Lett. **127**, 100405 (2021),
246 doi:[10.1103/PhysRevLett.127.100405](https://doi.org/10.1103/PhysRevLett.127.100405).

247 [13] W. Ketterle and M. W. Zwierlein, *Making, probing and understanding ultracold Fermi gases*,
248 Riv. Nuovo Cim. **5**, 247 (2008), doi:[10.1393/ncr/i2008-10033-1](https://doi.org/10.1393/ncr/i2008-10033-1).

249 [14] E. Altman, E. Demler and M. D. Lukin, *Probing many-body states of ultracold atoms via
250 noise correlations*, Phys. Rev. A **70**, 013603 (2004), doi:[10.1103/PhysRevA.70.013603](https://doi.org/10.1103/PhysRevA.70.013603).

251 [15] A. Polkovnikov, E. Altman and E. Demler, *Interference between independent fluctuating
252 condensates*, Proc. Natl. Acad. Sci. **103**, 6125 (2006), doi:[10.1073/pnas.0510276103](https://doi.org/10.1073/pnas.0510276103).

253 [16] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter, C. Heintze, P. Lunt, P. M. Preiss and
254 S. Jochim, *Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas*, Nature
255 **606**, 287 (2022), doi:[10.1038/s41586-022-04678-1](https://doi.org/10.1038/s41586-022-04678-1).

256 [17] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle,
257 *Observation of interference between two Bose condensates*, Science **275**, 637 (1997),
258 doi:[10.1126/science.275.5300.637](https://doi.org/10.1126/science.275.5300.637).

259 [18] E. W. Hagley et al., *Measurement of the coherence of a Bose-Einstein condensate*, Phys. Rev.
260 Lett. **83**, 3112 (1999), doi:[10.1103/PhysRevLett.83.3112](https://doi.org/10.1103/PhysRevLett.83.3112).

261 [19] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin and E. Demler, *Probing real-space
262 and time-resolved correlation functions with many-body Ramsey interferometry*, Phys. Rev.
263 Lett. **111**, 147205 (2013), doi:[10.1103/PhysRevLett.111.147205](https://doi.org/10.1103/PhysRevLett.111.147205).

264 [20] N. Navon, A. L. Gaunt, R. P. Smith and Z. Hadzibabic, *Critical dynamics of spontaneous
265 symmetry breaking in a homogeneous Bose gas*, Science **347**, 167 (2015),
266 doi:[10.1126/science.1258676](https://doi.org/10.1126/science.1258676).

267 [21] J. Beugnon and N. Navon, *Exploring the Kibble-Zurek mechanism with homogeneous
268 Bose gases*, J. Phys. B: At. Mol. Opt. Phys. **50**, 022002 (2017), doi:[10.1088/1361-6455/50/2/022002](https://doi.org/10.1088/1361-
269 6455/50/2/022002).

270 [22] I. Carusotto and Y. Castin, *Atom interferometric detection of the pairing order parameter in
271 a Fermi gas*, Phys. Rev. Lett. **94**, 223202 (2005), doi:[10.1103/PhysRevLett.94.223202](https://doi.org/10.1103/PhysRevLett.94.223202).

272 [23] N. Navon, R. P. Smith and Z. Hadzibabic, *Quantum gases in optical boxes*, Nat. Phys. **17**,
273 1334 (2021), doi:[10.1038/s41567-021-01403-z](https://doi.org/10.1038/s41567-021-01403-z).

274 [24] G. Veeravalli, E. Kuhnle, P. Dyke and C. J. Vale, *Bragg spectroscopy of a strongly interacting*
275 *Fermi gas*, Phys. Rev. Lett. **101**, 250403 (2008), doi:[10.1103/PhysRevLett.101.250403](https://doi.org/10.1103/PhysRevLett.101.250403).

276 [25] P. Wang, Z. Fu, L. Huang and J. Zhang, *Momentum-resolved Raman spectroscopy of a noninteracting ultracold Fermi gas*, Phys. Rev. A **85**, 053626 (2012),
277 doi:[10.1103/PhysRevA.85.053626](https://doi.org/10.1103/PhysRevA.85.053626).

278 [26] P. W. Anderson, *Random-phase approximation in the theory of superconductivity*, Phys. Rev.
279 **112**, 1900 (1958), doi:[10.1103/PhysRev.112.1900](https://doi.org/10.1103/PhysRev.112.1900).

280 [27] L. Pisani, P. Pieri and G. Calvanese Strinati, *Spatial emergence of off-diagonal long-
281 range order throughout the BCS-BEC crossover*, Phys. Rev. B **105**, 054505 (2022),
282 doi:[10.1103/PhysRevB.105.054505](https://doi.org/10.1103/PhysRevB.105.054505).

283 [28] J. C. Obeso-Jureidini, G. A. Domínguez-Castro, E. Neri, R. Paredes and V. Romero-Rochín,
284 *Universal correlations along the BEC-BCS crossover*, New J. Phys. **25**, 113019 (2023),
285 doi:[10.1088/1367-2630/ad0854](https://doi.org/10.1088/1367-2630/ad0854).

286 [29] M. Marini, F. Pistolesi and G. C. Strinati, *Evolution from BCS superconductivity to Bose
287 condensation: Analytic results for the crossover in three dimensions*, Eur. Phys. J. B **1**, 151
288 (1998), doi:[10.1007/s100510050165](https://doi.org/10.1007/s100510050165).

289 [30] E. L. Pollock and D. M. Ceperley, *Path-integral computation of superfluid densities*, Phys.
290 Rev. B **36**, 8343 (1987), doi:[10.1103/PhysRevB.36.8343](https://doi.org/10.1103/PhysRevB.36.8343).

291 [31] C. H. Schunck, Y.-i. Shin, A. Schirotzek and W. Ketterle, *Determination of the
292 fermion pair size in a resonantly interacting superfluid*, Nature **454**, 739 (2008),
293 doi:[10.1038/nature07176](https://doi.org/10.1038/nature07176).

294 [32] G. L. Schumacher, J. T. Mäkinen, Y. Ji, G. G. T. Assumpção, J. Chen, S. Huang, F. J. Vivanco
295 and N. Navon, *Observation of anomalous decay of a polarized three-component Fermi gas*,
296 (arXiv preprint) doi:[10.48550/arXiv.2301.02237](https://arxiv.org/abs/2301.02237).

297