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Abstract

We propose an interferometric method to probe pair correlations in a gas of spin-1/2

fermions. The method consists of a Ramsey sequence where both spin states of the

Fermi gas are set in a superposition of a state at rest and a state with a large recoil

velocity. The two-body density matrix is extracted via the fluctuations of the transferred

fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range

order is directly reflected in the asymptotic behavior of the interferometric signal for

long interrogation times. The method also allows to probe the spatial structure of the

condensed pairs: the interferometric signal is an oscillating function of the interrogation

time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the

molecular Bose-Einstein condensate regime.
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1 Introduction10

At low temperatures, the behavior of quantum matter is often marked by the emergence11

of coherent ordered phases displaying remarkable macroscopic properties. Such condensed12

phases appear in various contexts, such as solid-state physics [1], nuclear or neutron mat-13

ter [2], and ultracold atomic gases [3, 4]. They are characterized by long-range coherence14

carried by a macroscopically occupied wavefunction. In the simple case of the weakly inter-15

acting Bose gas, this order shows up as off-diagonal long-range order (ODLRO) in the one-16

body density matrix ρ1(r, r′) = 〈Ψ̂²(r)Ψ̂(r′)〉 (where Ψ̂ is the Bose field operator), such that17

lim|r−r′|→∞ρ1(r, r′) = n0 is the density of the Bose-Einstein condensate (BEC). The ODLRO in18

a Bose gas has been measured for instance via the single-particle momentum distribution [5,6],19

which for a translationally invariant system is the Fourier transform of ρ1.20

In spin-1/2 Fermi systems, the one-body density matrix cannot exhibit ODLRO, owing to21

Pauli’s exclusion principle, and the momentum distribution remains smooth across the phase22

transition [7]. Instead, a macroscopically occupied wavefunction signalling pair condensation23

can only appear in the two-body (pair) density matrixρ2(r1, r2, r′1, r′2)=



Ψ̂
²
↑(r1)Ψ̂

²
↓(r2)Ψ̂↓(r

′
2)Ψ̂↑(r

′
1)
�

24

(where Ψ̂σ is the Fermi field operator for the fermion of spin σ) [3, 8]. Measurements of25

ODLRO are for this reason considerably more challenging in Fermi systems. Rapid ramps of the26

magnetic field have been used to project the pair condensate onto a BEC of molecules [9±12];27

however, the measured molecular fraction is notoriously difficult to interpret theoretically, due28

to the various two- and many-body time scales involved in the problem [13]. Measurements of29

pair correlations in time-of-flight images have been proposed as a way to access ODLRO [14,30

15]; an analogous protocol has been implemented, albeit on a small Fermi system [16].31

Interferometric protocols offer an alternative route to measure the coherence properties32

of quantum gases. Cold-atom experiments are particularly well suited for matter-wave inter-33

ferometry, due to the possibilities of creating a coherent copy of the gas by manipulating the34

internal or external state of the atoms [17]. In Bose gases, direct real-space measurements of35

ρ1(r, r′) were performed using Ramsey sequences based on interferometry of Bragg-diffracted36

gases [18±21]. In Fermi gases, matter-wave interference between small atom numbers ex-37

tracted by spatially resolved Bragg pulses was proposed as a way to measure ρ2 [22].38

Inspired by such techniques, we propose a protocol to measure ρ2 from the fluctuations39

of a Ramsey-Bragg interferometer. A copy of the spin-1/2 Fermi gas is created by imparting40

a large velocity to a fraction of the atoms. Interactions are turned off, and the copy travels41

ballistically, thereby stretching or translating the pairs of fermions by a distance proportional42

to the interrogation time. When the interferometric sequence is closed by the second pulse,43

the stretched and translated pairs interfere with those at rest, and a measurement of the cor-44

relations between the number of spin ↑ and spin ↓ recoiling atoms reveal the most important45

features of ρ2. In the pair-condensed phase, the interferometric signal carries information on46

the magnitude of the fermionic condensate and on the wavefunction of the fermionic pairs.47

2 Interferometric protocol48

In Fig. 1 we show a sketch of the proposed measurement protocol. We consider a homogeneous49

spin-1/2 Fermi gas in a cubic box of size L [23]. At t = 0, a first Bragg pulse is shined on50

the gas for a duration tpulse. We place ourselves in the regime of a short and intense pulse,51

designed to be resonant with the whole gas and to create a moving copy of the cloud whose52

momentum distribution does not overlap with the original one (see Fig. 1). Both spin states53

are in a superposition of two components: a copy with no average momentum, and a copy with54

a large average momentum qrec. Assuming that the gas initially has zero mean velocity, the55
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energy transferred by the pulse is adjusted to ħhω = εqrec
(where εk = ħh

2k2/2m is the kinetic56

energy and m is the mass of the fermion), in resonance with the atoms at rest. Since the atoms57

traveling at a velocity ħhk/m ̸= 0 experience a detuning ħhω− εk+qrec
+ εk = −ħh2qrec · k/m, the58

duration of the pulse tpulse should be short enough so that this detuning remains negligible59

compared to the Fourier broadening over the typical range δk of the momentum distribution60

of the gas:61

ħhqrecδk

m
tpulse≪ 1 . (1)

Note that the pulse duration should also be long enough i.e. tpulse≫ m/ħhq2
rec such that second-62

order transitions to states of momenta k + 2qrec or k − qrec remain negligible. To evaluate63

the condition (1), let us consider the case of contact interactions between ↑ and ↓ fermions,64

characterized by an s-wave scattering length a. On the Bardeen-Cooper-Schrieffer side (BCS,65

a < 0), one can estimate δk ≈ ρ1/3, where ρ is the total density, and on the molecular66

Bose-Einstein condensate side (BEC, a > 0) δk ≈ 1/a. In this limit, the broadening of the67

momentum distribution implies that fulfilling 1/qrec ≪ ħhqrec tpulse/m≪ 1/δk will no longer68

be possible at fixed qrec.69

In the intense-pulse regime of condition (1), the gas can be approximated by a two-level70

system undergoing Rabi oscillations between a state at rest (violet distribution in the upper71

sketches of Fig. 1) and a recoiling one (green distribution). The evolution during the first Bragg72

pulse corresponds to a rotation of angle θ = ΩRtpulse (where ΩR is the Rabi frequency of the73

Bragg pulse) on the Bloch sphere of this effective two-level system:74

�

âk,σ

âk+qrec,σ

�

(tpulse) = S (θ , 0)

�

âk,σ

âk+qrec,σ

�

(0) . (2)

Here âk,σ annihilates a fermion of wavevector k and spin σ and the matrix75

S (θ ,ϕ) =

�

cos(θ/2) −i sin(θ/2)eiϕ

−i sin(θ/2)e−iϕ cos(θ/2)

�

describes a rotation of angle θ around the vec-76

tor (cosϕ, − sinϕ, 0) of the equatorial plane of the Bloch sphere.77

After this first pulse, the recoiling and non-recoiling components evolve ballistically during78

an interrogation time τ. In contrast to the Ramsey-Bragg interferometry of weakly interacting79

gases [18,20], it is crucial that interactions are turned off in strongly interacting gases before80

the first Bragg pulse. This would mitigate both fast many-body evolution during the interro-81

gation sequence, and the high collisional density that would prevent the diffracted component82

from flying freely [24]. This could be achieved either with a fast Feshbach field ramp or with83

fast Raman pulses [16, 25]. The recoiling component travels a distance xτ ≡ ħhτqrec/m, at a84

velocity sufficiently large to exit the trapping potential (in the direction of propagation). This85

means that only a fraction (1 − xτ/L) of the cloud remains within the box volume after the86

interrogation time (assuming qrec is aligned with an axis of the cubic trap) and gives an upper87

limit τ < mL/ħhqrec to the interrogation time.88

After the interrogation time, the dephasing between the recoiling and non-recoiling com-89

ponents is ϕk(τ) = ((εk+qrec
− εk)/ħh −ω)τ relatively to the Bragg transition, and a second90

Bragg pulse recombines the two components:91

�

âk,σ

âk+qrec,σ

�

(τ+ 2tpulse) = S (θ ,ωτ)

�

âk,σ

âk+qrec,σ

�

(τ+ tpulse)

= S (θ ,ϕk(τ))S (θ , 0)

�

âk

âk+qrec

�

(0) . (3)

Eq. (3) thus describes a Ramsey sequence with a dephasing ϕk(τ) that depends on the initial92

momentum of the atoms.1 This makes the interferometer sensitive to the spatial structure93

1Note that the dephasing ϕk(2tpulse) accumulated during the two Bragg pulses is negligible by virtue of Eq. (1).
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Figure 1: (a) Sketch of the Ramsey-Bragg interferometer applied to a pair of

fermions. The blue (resp. red) circles represent spin ↑ (resp. ↓) atoms. The Bragg

pulses create superpositions of atoms at rest and moving with a recoil momentum

qrec. After the time of flight, the component at rest and the recoiling one are sepa-

rated by xtof. For clarity, the finite pulse duration tpulse is not shown.

of the gas, where short interrogation times allow to probe short-range correlations, and long94

times probing long-range correlations. Since the number of recoiling atoms is zero before the95

measurement sequence, the terms proportional to âk+qrec
(0) can be omitted. For the operator96

describing the recoiling atoms at tf = τ+ 2tpulse this gives97

âk+qrec,σ
(tf)→−i

sinθ

2
e−iεk+qrec

τ
�

1+ eiϕk(τ)
�

âk(0) . (4)

After the Ramsey sequence, these recoiling atoms are spatially separated from the atoms98

at rest by a time of flight ttof. An absorption image is taken to measure their number in each99

spin component:100

N̂rec,σ ≡
∑

k∈B
â

²
k+qrec,σ

(tf)âk+qrec,σ(tf) =

∫

Ψ̂
²
rec,σ(r)Ψ̂rec,σ(r)dr . (5)

The summation over k is here restricted to the recoiling atoms, that is, to a neighborhood B101

of qrec of typical size δk, small compared to qrec. Using Eq. (4), we have expressed N̂rec,σ in102

terms of a field operator which superimposes atoms from different initial positions in the gas:103

Ψ̂rec,σ(r) =
sinθ

2

�

Ψ̂σ(r) + Ψ̂σ(r− xτ)
�

, (6)

where Ψ̂σ(r) = (1/
p

L3)
∑

k∈B e−ik·râk,σ(0) is the field operator at t = 0. Consequently, pairs104

of recoiling atoms are described by the pairing field Ψ̂rec,↓Ψ̂rec,↑, which yields the superposition105

depicted in Fig. 1:106

Ψ̂rec,↓(r2)Ψ̂rec,↑(r1) =
sin2 θ

4

�

Ψ̂↓(r2)Ψ̂↑(r1) + Ψ̂↓(r2)Ψ̂↑(r1 − xτ)

+ Ψ̂↓(r2 − xτ)Ψ̂↑(r1) + Ψ̂↓(r2 − xτ)Ψ̂↑(r1 − xτ)
�

. (7)

The four terms here represent respectively a pair at rest, a pair where the ↑ or the ↓ fermion107

has been stretched by xτ, and a pair globally translated by xτ.108
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3 Measuring long-range pair ordering109

As in Bose gases, the measurements of N̂rec give access to one-body correlations:110

N̂rec,σ =
sin2 θ

2

�

N̂σ + ρ̂1,σ(xτ)
�

, (8)

where ρ̂1,σ(xτ) =
∫

Ψ̂
²
σ(r)Ψ̂σ(r − xτ)dr is the one-body correlation operator and N̂σ is the111

total number of atoms of spin σ; we assumed that ρ̂1,σ is symmetric under parity, i.e.112

ρ̂1,σ(−xτ) = ρ̂1,σ(xτ).113

In Fermi gases, ρ2 is more interesting since it is the observable that exhibits long-range114

(pair) order. To measure ρ2, we propose to record the correlations of the numbers of spin ↑115

and ↓ recoiling atoms:116

S(xτ) =



N̂rec,↑(xτ)N̂rec,↓(xτ)
�

−



N̂rec,↑(xτ)
�


N̂rec,↓(xτ)
�

. (9)

Such interferometric signal is constructed by averaging individual realizations of Nrec,↑ and117

Nrec,↓. Using Eq. (7) to express the quartic part of S, we recognize the following contractions118

of ρ2:119

ftr(xτ) =

∫

ρ2(r1 − xτ, r2 − xτ; r1, r2)dr1dr2 , (10)

fstr,↑(xτ) =

∫

ρ2(r1 − xτ, r2; r1, r2)dr1dr2 , (11)

fstr,↓(xτ) =

∫

ρ2(r1, r2 − xτ; r1, r2)dr1dr2 , (12)

fstr,↑↓(xτ) =

∫

ρ2(r1 − xτ, r2; r1, r2 − xτ)dr1dr2 . (13)

These functions have a simple interpretation: ftr measures the overlap between the translated120

and the original pair of Eq. (7), fstr,σ the overlap between the pair stretched by the spin σ121

fermion and the original one, and fstr,↑↓ the overlap between the two pairs stretched by the122

fermion of the opposite spin. Using Eq. (8) for the quadratic part of S, we finally obtain:123

S =
sin4 θ

4

�

fstr,↑ + fstr,↓ +
fstr,↑↓ + ftr

2
−ρ1,↑ρ1,↓ − N↑ρ1,↓ − N↓ρ1,↑

�

, (14)

where ρ1,σ ≡ 〈ρ̂1,σ(xτ)〉. The signal S is maximum for θ = π/2; we thus set θ at this value124

from now on. When the gas is in the normal phase, the functions fstr, ftr and ρ1 vanish at large125

distances. On the contrary, when the gas is pair condensed, the contribution of the translated126

pairs ftr does not vanish when xτ → +∞. In this case, ρ2 has a macroscopic eigenvalue N0127

associated to a wavefunction φ0 and behaves at large distances (that is, when the pair center128

of mass R= |r1 + r2|/2 and R′ = |r′1 + r′2|/2 are infinitely separated) as129

lim
|R−R′|→+∞

ρ2(r1, r2, r′1, r′2) = N0φ
∗
0(r1, r2)φ0(r

′
1, r′2) . (15)

This implies that lim
xτ→+∞

ftr(xτ) = N0, such that130

S∞ ≡ lim
xτ→+∞

S(xτ) =
N0

8
. (16)

We have assumed here that fluctuations of the total atom numbers, if there are any, are uncor-131

related: 〈N̂↑N̂↓〉 = N↑N↓. Eq. (16) provides a direct measurement of the magnitude N0 of the132

5



Select SciPost Phys. ?, ??? (20??)

Figure 2: The interferometric signal S(x) as a function of the distance x for different

values of the interaction strength, calculated using the mean-field BCS theory (solid

curves); here, we assume x = xτ,↑ = xτ,↓. On the BCS side, where S oscillates, the

envelope is (x0/πx)exp(−x/ξx) (dashed lines). (a)-(c) Sketches of the interference

patterns for S originating from the condensate wavefunction φ0. The copy at rest is

shown in blue (|φ0(r1, r2)|2) and the translated one in red (|φ0(r1, r2+xτ)|2), where

x = |xτ|; (a) in the BEC regime, (b) in the BCS regime, where the displacement x

corresponds to the first cancellation of S (see main panel), and (c) in the BCS regime,

where the displacement corresponds to the first minimum of S.

long-range order, a quantity that cannot be measured using the rapid ramp technique [9,10].133

Note that N0 cannot be interpreted as the number of condensed pairs away from the BEC134

limit.2135

The contribution of the stretched pairs to S through fstr,σ and fstr,↑↓, although negligible136

at distances greater than the pair size ξpair, carries essential information on the condensate137

wavefunction φ0. It is possible to isolate the contribution of fstr,σ using a spin-selective Bragg138

pulse, such that the displacements xτ,↑ and xτ,↓ of the two spins no longer coincide. For139

xτ,↓ = 0 and xτ,↑ ̸= 0, Eq. (14) becomes140

S(xτ↑) =
fstr,↑(xτ↑)− N↓ρ1,↑(xτ↑)

2
. (17)

This result can be used to reveal the momentum structure of φ0. Let us suppose that the141

system is isotropic and translationally invariant. If the pairs are tightly bound (as in the BEC142

limit), then φ0(r1, r2) decreases rapidly and almost monotonically with x = |r1 − r2|, and so143

does fstr,σ; the corresponding behavior for S is schematically depicted in Fig. 2(a). Conversely,144

if pairing occurs at a non-zero wavenumber, as in the BCS limit, φ0 oscillates as a function of145

x at a wavelength corresponding to the inverse of that wavenumber, and so does fstr,σ (see146

Figs. 2(b)-(c)).147

2The pair-condensate annihilation operator b̂0 =
∫

φ∗
0
(r1, r2)Ψ̂↓(r1)Ψ̂↑(r2)dr1dr2 is not bosonic, as


�

b̂0, b̂
²
0

��

≤ 1

(the inequality is saturated only in the BEC limit). Therefore, N0 =



b̂
²
0 b̂0

�

is not the number of atoms in the

condensate in the general case.

6
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4 BCS mean-field approximation148

To obtain a more explicit expression for S, and illustrate its behavior when xτ ≈ ξpair, we now149

use the BCS mean-field approximation and assume that the gas is balanced, such that N↑ = N↓,150

fstr,↑ = fstr,↓ and ρ1,↑ = ρ1,↓. The total density ρ = ρ↑ + ρ↓ defines the Fermi wavenumber151

kF = (3π
2ρ)1/3, and in the BCS state ρ2 factorizes into152

ρ2(r1, r2, r′1, r′2) = N0φ
∗
0(r1, r2)φ0(r

′
1, r′2) +ρ1(r1, r′1)ρ1(r2, r′2) . (18)

If the gas is translationally invariant and isotropic, the functions previously defined in Eqs.153

(10)-(13) depend only on xτ = |xτ|. Since symmetry-breaking BCS states do not have a fixed154

number of particles, there is a nonzero covariance 〈ψBCS|N̂↑N̂↓|ψBCS〉 ̸= N↑N↓. We get rid of155

this well-known artifact of BCS theory, by projecting the BCS states onto the subspace with156

a fixed number of atoms (see e.g. Eq. (41) in [26]). The interferometric signal in the case157

xτ,↑ = xτ,↓ [Eq. (14)] becomes:158

S(xτ) =
N0

8

�

1+ 4 f (xτ) + f (2xτ)
�

. (19)

Here the function159

f (x) =

∫

φ∗0(r1 − x, r2)φ0(r1, r2)dr1dr2 , (20)

is the overlap between a stretch and an original pair of the condensate; it is related to the160

functions introduced before by fstr,σ = N0 f + Nσρ1 and fstr,↑↓(x) = N0 f (2x) + ρ2
1(x). The161

condensate wavefunction in Fourier space φk, defined as φ0(r1, r2) =
∑

kφke−ik·(r1−r2)/L3,162

takes the form163

φk =
∆

2Ek

q

NBCS
0

, (21)

where∆ is the gap, Ek =
p

(εk −µ)2 +∆2 is the BCS dispersion relation, and µ is the chemical164

potential. The associated macroscopic eigenvalue is NBCS
0 =
∑

k∆
2/(4E2

k
). The maximum of165

|φk| is reached at the minimum of the BCS dispersion relation, that is, at kmin =
p

2mµ/ħh166

on the BCS side (µ > 0) and k = 0 on the BEC side (µ < 0). Using the BCS condensate167

wavefunction Eq. (21), we can calculate the integral over k analytically in Eq. (20), which168

yields169

f (x) = e−x/ξx sinc(πx/x0) , (22)

where the exponential decay length170

ξ2
x =
ħh2

m∆

�

µ

∆
+

√

√

1+
µ2

∆2

�

, (23)

can be identified with the characteristic length of the one-body density matrix [27,28], and171

x2
0

π2
=
ħh2

m∆

1

µ
∆
+

Ç

1+
µ2

∆2

, (24)

is the oscillation length.172

Oscillations of S are visible before S reaches its asymptotic value depending on the ratio173

x0/ξx . In the BCS limit (µ/∆→ +∞ or kFa→ 0−), the oscillation length x0 ∼ π/kF is much174

shorter than the exponential-decay length ξx ∼ ħh2kF/m∆ which diverges as O(ξpair). Thus, in175

the BCS regime, S exhibits oscillations (the dark and light red curves in Fig. 2 correspond to176

1/kFa = −1 and −3); the oscillations decay as a cardinal sine, on a typical length scale 1/kF.177

7
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√

2

0

0.5

1

1.5

2

2.5

3

µ = 0-2 -1 0 1 2 3

√

2

1/kFa

ξx/ξpair
π/kFx0

kmin/kF

Figure 3: (Top panel) The interferometric signal S(x)− S∞ normalized to N0 as a

function of x/ξpair and 1/kFa within the mean-field BCS approximation. The bound-

ary between the BEC and BCS regime (µ= 0 at 1/kFa ≃ 0.54) is marked by the black

dashed line. On the BCS side, we compare the local minima of the oscillatory signal

to xn = (n + 1/2)π/kmin (white dashed curves). (Bottom panel) The wavenumber

π/x0 (normalized to kF) and the exponential attenuation length ξx (normalized to

the Cooper pair size ξpair) of the overlap function f in the BEC-BCS crossover. The

dashed red curve shows the location of the dispersion minimum kmin =
p

2mµ/ħh on

the BCS side (µ > 0).

Conversely, in the BEC limit (µ/∆ → −∞ or kFa → 0+), ξx ∼ a tends to zero like178

the size of the bosonic dimers. At the same time, the oscillation frequency diverges as179

x0 ∼
p

3π/4kFa (π/kF), such that no oscillations are visible in this regime (the dark and180

light blue curves on Fig. 2 correspond to 1/kFa = 1 and 3). A transition between the two181

regimes (illustrated in the top panel of Fig. 3) occurs around the point where ξx = x0/π,182

that is, µ = 0, which coincides with the point where the minimum kmin of the BCS dispersion183

relation reaches 0. A measurement of the BCS gap is also accessible through the relation184

ξx x0

π
=
ħh2

m∆
. (25)

In Fig. 3, we compare ξx to the pair size defined as [29]

ξpair =

�∫

ρ2(r1, r2, r1, r2)|r1 − r2|2dr1dr2/

∫

ρ2(r1, r2, r1, r2)dr1dr2

�1/2

(see the blue line), showing that the two quantities remain comparable throughout the BEC-185

BCS crossover.3 We also compare the wavenumber π/x0 of the overlap function f to the186

location of the dispersion minimum kmin =
p

2mµ/ħh: they coincide in the BCS limit but differ187

outside, in particular because π/x0 does not vanish (solid red curve on Fig. 3), unlike kmin188

(dashed red line).189

While our quantitative discussion of S(x) is restricted to the mean-field approximation,190

we note that ρ2 in general, and the contractions introduced in (10)±(13) in particular, have191

been computed using more advanced diagrammatic approximations [27]. Away from the BCS192

3We derived the analytic expression:

ξ2
pair
=
ħh2

2m∆

4α2(α+ rα) + 7α+ 5rα

8rα(α+ rα)
,

where α= µ/∆ and rα =
p

1+α2.

8
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limit, where fluctuations in the bosonic collective modes become important, a slower decay193

than the exponential one predicted by Eq. (22) is expected, which is reminiscent of the power-194

law convergence of ρ1 to the condensed fraction in a Bose gas [30].195

In summary, we proposed an interferometric protocol to probe the two-body density matrix196

in spin-1/2 Fermi gases. By measuring the correlations between the recoiling atoms of ↑ and ↓197

after a Ramsey-Bragg sequence, one records as a function of the interrogation time a damped198

oscillatory signal whose attenuation time, frequency, and asymptotic value give access all at199

once to the size of the Cooper pairs, to their relative wave number, and to the macroscopic200

eigenvalue of the two-body density matrix. Those important features of fermionic condensates201

are difficult to access experimentally [31]. Furthermore, this method has the advantage that202

a fine spatial resolution on ρ2 is obtained through a fine temporal resolution, which is rather203

easy to achieve experimentally. The correlation signal recorded at the end of the sequence also204

involves a macroscopic fraction of the atoms initially present in the trap, which makes it more205

robust to experimental noise. In the future, it would be interesting to extend this calculation206

to the case of fermions with three internal states [32].207
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