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Abstract

Introduction: Shared selection pressures often explain
convergent trait loss, yet anurans (frogs and toads) have
lost their middle ears at least 38 times with no obvious
shared selection pressures unifying “earless” taxa. An-
uran tympanic middle ear loss is especially perplexing
because acoustic communication is dominant within
Anura and tympanic middle ears enhance airborne
hearing in most tetrapods. Methods: Here, we use
phylogenetic comparative methods to examine whether
particular geographic ranges, microhabitats, activity
patterns, or aspects of acoustic communication are
associated with anuran tympanic middle ear loss.
Results: Although we find some differences between the
geographic ranges of eared and earless species on av-
erage, there is plenty of overlap between the geographic
distributions of eared and earless species. Additionally,
we find a higher prevalence of diurnality in earless
species, but not all earless species are diurnal. We find
no universal adaptive explanation for the many in-
stances of anuran tympanic middle ear loss. Conclusion:
The puzzling lack of universally shared selection pres-
sures among earless species motivates discussion of

alternative hypotheses, including genetic or develop-
mental constraints, and the possibility that tympanic

middle ear loss is maladaptive.  © 2023 The Author(s).
Published by S. Karger AG, Basel

Introduction

Repeated trait losses provide some of the most clear-
cut examples of convergent evolution under shared
selection pressures. Examples include limb loss or
reduction in aquatic or fossorial mammals and
squamates [1-3], loss of pigmentation and eye re-
duction in cavefish [4-6], and loss of the vascular
cambium in aquatic plants [7]. However, trait loss
research has also revealed important case studies for
genetic or developmental constraint [8-13]. For ex-
ample, genetic trade-offs between taste bud and eye
development in cavefish may contribute to convergent
eye reduction and loss [14]. Although extrinsic en-
vironmental selection pressures are often first con-
sidered in cases of convergent trait loss and are
dominant in the literature, intrinsic constraints may
play an equally important role in cases of convergent
trait loss.

Tympanic middle ear loss within Anura (frogs and
toads) provides a particularly intriguing case study to
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examine how extrinsic and intrinsic factors contribute
to trait loss. The tympanic middle ear facilitates
hearing on land for the vast majority of tetrapods [15],
yet shows surprising evolutionary lability within
Anura. The tympanic middle ear has been completely
lost in anurans at least 38 different times [16], despite
negative hearing consequences at higher frequencies
(=900 Hz) [17, but see 18]. Given that acoustic
communication evolved early in Anura and is em-
ployed by the vast majority of anuran species [19], the
prevalence of anuran tympanic middle ear loss is
perplexing and we lack an adaptive explanation that
broadly explains the losses.

Although tympanic middle ear loss is most prevalent
in anurans, tympanic middle ear reduction and mod-
ification is associated with species habitat use in nu-
merous other tetrapod clades. Changes to middle ear
morphology are known to have occurred in burrowing
mammals [20], burrowing lizards [21, 22], aquatic
mammals [15, 23], and aquatic birds [24]. Anurans
range in microhabitats, including aquatic, torrential,
and fossorial microhabitats that could similarly alter
selection on acoustic communication (e.g., high
background noise in torrential habitats) and/or tym-
panic middle ear structures (e.g., risk of structural
damage to tympanic membrane when burrowing).
Additionally, changes in circadian activity patterns,
such as increased diurnality, could select for visual or
other communication modes that relax selection on
acoustic communication. Beyond habitat use, increased
frequency of tympanic membrane absence has been
associated with environmental variables, such as higher
elevation in the frog genus Phrynopus [25], indicating
more macro-level habitat variables may also influence
tympanic middle ear evolution. Macrohabitat variables,
such as elevational range, may impose selection pres-
sures on communication modalities and strategies or
affect population sizes, influencing the likelihood of
genetic drift. Although extrinsic factors provide an
adaptive explanation for many convergent trait losses,
it remains untested whether particular macro- or mi-
crohabitats are associated with convergent middle ear
loss in anurans.

Beyond the potential for extrinsic factors to influence
anuran ear loss, shared intrinsic factors among earless
frogs, specifically sensory constraints related to smaller
body size, could provide an explanation for anuran
tympanic middle ear loss. Sensory system consequences
of miniaturization have been linked to functional con-
straints in the salamander visual system [26] as well as the
frog vestibular system [27]. Prior work has noted a re-
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lationship between smaller anuran body size and tym-
panic middle ear loss [28]. Frogs with smaller body sizes
have less sensitive hearing, especially at higher fre-
quencies [29] at which the tympanic middle ear enhances
hearing sensitivity [17]. Frogs with smaller body sizes
tend to produce higher frequency calls, and this negative
relationship between body size and dominant call fre-
quency holds across the anuran clade with very few
exceptions [30]. This apparent conflict suggests that small
frogs with poor high frequency hearing could experience
relaxed selection on hearing conspecific calls. Alterna-
tively, earless frogs may be avoiding hearing costs as-
sociated with tympanic middle ear loss by producing
lower frequency calls, which may be sensed with non-
tympanic hearing mechanisms [17, 31-33]. Yet, no study
to-date has tested whether tympanic middle ear loss is
more common in smaller sized anurans or compared call
features of eared and earless species while accounting for
phylogenetic relationships.

Here, we test whether particular environmental,
ecological, or life-history traits are associated with
anuran tympanic middle ear loss and can provide
extrinsic or intrinsic explanations for this perplexing
repeated trait loss. We compare the geographic ranges,
microhabitats, and circadian activity periods of eared
and earless species to determine whether ear loss is
associated with particular macro- or microhabitat
features. We compare body size and call dominant
frequency between eared and earless species to test
whether communication constraints from small body
sizes and high frequency calls likely altered selection
pressures on the tympanic middle ear. Examining
body size and call dominant frequencies also allows us
to test an alternative hypothesis that earless frogs
lowered their call frequencies to escape the hearing
consequences of ear loss. We find very few consistent
differences between eared and earless species and we
discuss remaining explanations for this widespread
and puzzling trait loss.

Materials and Methods

Data Collection

Species-level data were gathered from published datasets for
tympanic middle ear presence/absence [16], geographic range [34],
microhabitat [35], circadian activity period [36], maximum body
size [37], and call dominant frequency [30]. Species’ range mea-
surements (latitudinal degrees, elevation in meters above sea level),
maximum body size (snout-vent length (mm), regardless of sex),
and call dominant frequency (Hertz) were all quantified and
analyzed as continuous variables. Tympanic middle ear presence/
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absence was considered a binary state: eared - tympanic mem-
brane or tympanic annulus present; earless — columella absent,
which indicates all other middle ear structures (ie., tympanic
membrane, tympanic annulus, and middle ear cavity) are likewise
missing. We conservatively removed species with a columella
present but without a confirmed tympanic membrane or tympanic
annulus because cryptic tympanic membranes and tympanic
annuli can be difficult to identify externally in some species.
Microhabitat included eight categories defined by Moen and
Wiens [35]: (a) aquatic - almost always in water, (b)
arboreal - typically on aboveground vegetation, (c)
burrowing - nonbreeding season spent underground or in bur-
rows they have dug, (d) semiaquatic - partially aquatic and
partially terrestrial, (e) semiarboreal - partially arboreal and
partially terrestrial, (f) semi-burrowing - partially burrowing and
partially terrestrial, (g) terrestrial - found on the ground, under
rocks, or in leaf litter, and (h) torrential - found in high-gradient,
fast flowing streams, usually on rocks in the stream or under
waterfalls. Activity diel periods were defined by Oliveira et al. [36]
and included: diurnal - active during the day, nocturnal - active
during the night, and crepuscular - active during the period
immediately after dawn and immediately before dusk, with species
categorized as active for one, two, or all three periods. All data are
accessible via Dryad (10.5061/dryad.j9kd51cgd) and GitHub
(https://github.com/mcwomack/BBE_EarlessEcology).

Phylogenetic Comparative Analysis

We performed all phylogenetic comparative analyses within R
[38]. All analyses used an existing phylogeny from Portik et al.
[39]: a concatenated maximum likelihood tree that was time-
calibrated using penalized likelihood. The phylogeny was trim-
med to the species within each dataset using the R packages
phytools v1.2 [40] and geiger v 2.0.10 [41, 42].

We ran phylogenetic generalized least squares (PGLS)
models in caper v. 1.0.1 [43] to test for associations between the
dependent variable of tympanic middle ear presence/absence
(1/0) and each of the following independent variables in turn:
measures of latitudinal and elevational species’ ranges (mini-
mum, mean, maximum, and range), microhabitat, circadian
activity, body size, call dominant frequency, and the interaction
between body size and call dominant frequency. Models esti-
mated phylogenetic signal (lambda) in the residual error si-
multaneously with the regression parameters [44]. We checked
for heteroscedasticity in the PGLS models by plotting the re-
siduals of the models and running tests to ensure models fit the
assumptions. To decrease observed heteroscedasticity in the
PGLS models, we log-transformed body size, call dominant fre-
quency, and latitudinal range data and square root-transformed
species elevational minimum, maximum, mean, and range data be-
fore analysis. For microhabitat, we ran two different models, one with
semi-microhabitat states included as separate microhabitat categories
in the model (semiarboreal, semiaquatic, etc.) and a second model with
semi-microhabitat species removed from the dataset. For circadian
activity patterns, we tested whether tympanic middle ear loss was
associated with diurnality. For those models, we removed species that
were both diurnal and nocturnal, and we also removed the small
portion of species that were exclusively crepuscular (<2% of the
dataset). We used an ANOVA model comparison within the caper
package to determine if the interaction between body size and call
dominant frequency explained any variation in ear presence/absence
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that was not already explained by body size or call dominant frequency
alone. All R code and phylogenies used for analyses are accessible via
Dryad (10.5061/dryad.jokd51cgd) and GitHub (https://github.com/
mcwomack/BBE_EarlessEcology).

Results

Earless frogs are geographically widespread and found
at similar elevations and latitudes when compared to
eared species. We found that earless species are wide-
ranging geographically and are not restricted to particular
areas or ecoregions. Of the 211 earless species examined
here, at least one species is present on all six continents
where anurans are found today (Fig. 1a).

Using a subset of species that were within the phy-
logeny used for our analyses and had latitudinal and
elevational data (69 earless and 1,020 eared), we found
that eared and earless species have similar minimum
latitudes (Table 1; Fig. 1b), but earless species had lower
mean and maximum latitudes and smaller latitudinal
ranges compared to eared species (Table 1; Fig. lc-e).
When considering all species for which we have lat-
itudinal and elevational data, regardless of phylogenetic
information (86 earless and 1,038 eared), fewer than 10%
of earless species have ranges that extend beyond 15
degrees north of the equator, and only two species, As-
caphus truei and Bombina bombina, have species ranges
that extend beyond 30 degrees north of the equator. A
greater percentage (33%) of earless species have ranges
that extend below 15 degrees south of the equator, in-
cluding 17 species with ranges that extend below 30
degrees south of the equator. Furthermore, 87% of earless
species had latitudinal ranges smaller than five degrees,
compared to 60% of eared species.

When comparing the elevational ranges of eared and
earless species, we found earless species had higher
minimum and mean elevational ranges, as well as smaller
elevational ranges when compared to eared species
(Table 1; Fig. 1f-g,i). However, eared and earless species
had similar maximum elevational ranges (Table I;
Fig. 1h). The average earless species had a minimum
elevation of 1,289 m and maximum elevation of 1,975 m,
while the average eared species had a minimum elevation
of 445 m and a maximum elevation of 1,436 m.

Earless Frogs Range in Microhabitat and Activity

Time but Are More Likely to Be Diurnal

Our dataset includes microhabitat data for 123 earless
and 1,299 eared species. Eared and earless species are
found in similar proportions in aquatic (3% earless, 3%
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Fig. 1. Geographic distribution of earless anuran species. a We
plotted range maps for amphibians without ears from two
sources: IUCN [45] and AmphibiaWeb [46], which are both
projects that create GIS polygons to represent species ranges.
Earless species ranges were visualized in Quantum GIS (v 3.22.5)
using the “multiply” Blending mode so that more saturated areas
on the map signify overlapping ranges. Additionally, we show

eared), semiaquatic (5% earless, 7% eared), semiarboreal
(9% earless, 9% eared), burrowing (4% earless, 3% eared),
semi-burrowing (2% earless, 2% eared), and torrential
microhabitats (2% earless, 4% eared). The largest mi-
crohabitat proportion differences between eared and
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box plots of the latitudinal minimum (b), mean (c), maximum
(d), and range (e) as well as the elevational minimum (f), mean
(g9), maximum (h), and range (i) of each eared (blue) and earless
(orange) species’ range. Dots represent individual species and
half-eye plots are alongside each box plot to better visualize
sampling density. Results from PGLS models are provided within
panels (b-i).

earless species are found in terrestrial (65% earless, 37%
eared) and arboreal species (10% earless, 35% eared).
However, when considering species within our phylogeny
(100 earless and 1,275 eared), we found no association
between lacking tympanic middle ears and microhabitat
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Table 1. Results from PGLS models testing associations between tympanic middle ear presence/absence and numerous variables,
with significant associations bolded and asterisks denoting significance level * <0.05, ** <0.001, *** <0.001

Variable N (species) Lambda F statistic Adjusted R? p value
Latitude (min) Earless — 69 eared - 1,020 A =095 Fi1087 = 1.63 adj. R? = 0.001 p = 0.202
Latitude (mean) A =095 F11087 = 5.38 adj. R2 = 0.004 p = 0.021*
Latitude (max) A =095 F11087 = 9.31 adj. R? = 0.008 p = 0.002**
Latitude (range) A =095 Fi1087 = 1533  adj. R? = 0.013 p < 0.007***
Elevation (min) A=0.95 Fi1087 = 28.39  adj. R? = 0.025 p < 0.007***
Elevation (mean) A =095 Fi1087 = 1576 adj. R? = 0.013 p < 0.007***
Elevation (max) A=0.95 Fi1087 = 1.86 adj. R? = 0.001 p =0.173
Elevation (range) A =0.95 F11087 = 7.09 adj. R? = 0.006 p = 0.008**
Microhabitat (with semi- Earless — 100 eared - 1,275 A =0.97 F71367 = 1.80 adj. R2 = 0.004 p = 0.083
microhabitats)

Microhabitat (no semi- Earless — 86 eared - 1,045 A =097 Fa1126 = 1.66 adj. R? = 0.002 p = 0.157
microhabitats)

Circadian activity time Earless — 42 eared - 660 A =0.96 F1700 = 8.46 adj. R = 0.011 p = 0.004**
Body size Earless — 89 eared - 1,524 A =095 Fi1611 = 18.55  adj. R> = 0.011 p < 0.007***
Call dominant frequency Earless — 40 eared - 909 A =0.99 F1947 = 0.83 adj. R? = 0.000 p = 0.364
Body size*call dominant Earless — 26 Eared - 839 A =099 Fi861 = 0.07 ANOVA Model p = 0.799
frequency comparison

(Fig. 2a), regardless of whether semi-microhabitats (e.g.,
semiaquatic) were considered as independent categories
or removed from the dataset (Table 1).

Our dataset also included circadian activity patterns
for 42 earless and 660 eared species within our phylogeny
(Fig. 2b). We found lacking tympanic middle ears was
associated with differences in circadian activity patterns
(Table 1). Specifically, we found species lacking tympanic
middle ears were more likely to be exclusively active
during the day (diurnal) or active during the day and
active during the period immediately after dawn and
immediately before dusk (diurnal/crepuscular). When
considering all species for which we have activity data,
regardless of phylogenetic information (86 earless and
673 eared), eighty-four percent of earless species are
diurnal (Fig. 2b). Meanwhile, only 25% of eared species
show only diurnal or diurnal and crepuscular activity
(Fig. 2b).

On Average Earless Frogs Are Slightly Smaller but Do

Not Differ in Call Dominant Frequency

Using body size data from 89 earless and 1,524 eared
species within our phylogeny, we found earless species
have smaller body sizes, measured as maximum snout-
vent length, compared to eared species (Table 1; Fig. 3a).
The smallest earless species, Brachycephalus didactylus,
had a maximum snout-vent length of 10.7 mm, which
was similar in size to the smallest eared species, Eleu-
therodactylus iberia at 11 mm. However, the largest
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earless species, Bufo aspinius, was only 95 mm, while the
largest eared species, Calyptocephalella gayi and Conraua
goliath, had maximum snout-vent lengths of 320 mm.

Using call dominant frequency data from 40 earless
and 909 eared species within our phylogeny, we found the
dominant frequencies of earless species do not differ from
those of eared species (Table 1; Fig. 3b). The dominant
call frequency of earless species ranged from 500 to 6,800
Hz, with only three earless species, Alsodes tumultuous,
Bombina bombina, and Rhinophrynus dorsalis, having
call dominant frequencies below 1 kHz. Furthermore, the
relationship between body size and dominant call fre-
quency did not differ between eared and earless species
(Table 1; Fig. 3¢), indicating that earless species do not
have unexpected call dominant frequencies for their
body size.

Discussion

Repeated evolutionary trait losses often coincide
with shared extrinsic or intrinsic factors that con-
tribute to shared selection pressures among taxa that
have convergently lost a trait. For the first time, we test
whether tympanic middle ear loss in frogs is associated
with particular environments, ecologies, or commu-
nication traits across a wide range of eared and earless
species while accounting for phylogenetic relation-
ships. Although we find some average differences in
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Fig. 2. a, b Relationship between tympanic middle ear presence/absence, microhabitat, and circadian
activity periods. Proportion plots display the relative percentage of species within each microhabitat and
circadian activity category. Only eared and earless species with known microhabitat or circadian activity
data are displayed and the total number of eared and earless species represented in each bar is displayed at

the top.

species latitudinal and elevational ranges, body size,
and diurnality between eared and earless frogs, we find
no universally shared condition among earless species
that provides a consistent adaptive explanation for
tympanic middle ear loss. Yet, several adaptive and
nonadaptive explanations remain untested for earless
frogs, including tympanic middle ear costs and genetic
or developmental constraints (e.g., pleiotropy). Fi-
nally, it is possible that no universal explanation for
tympanic middle ear loss exists and instead frogs may
have lost their middle ears for various lineage-specific
reasons, each of which may or may not be adaptive.
The lack of universal selection pressures warrants
discussion of these alternative hypotheses and the
possibility that tympanic middle ear loss may be
maladaptive.

Convergent Anuran Middle Ear Loss
Lacks a Universal, Adaptive Explanation

Earless Frogs Are Not Geographically Distinct from

Eared Frogs but Display Average Differences in

Latitudinal and Elevational Ranges

Although eared anurans are found at slightly higher
latitudes, earless anurans are not found in distinct geo-
graphic areas from eared anurans. Instead, earless an-
urans are geographically widespread and are found in
areas alongside eared frogs. Although earless anuran
species ranges have lower mean and maximum latitudes,
this is primarily a consequence of few earless species
present far north of the equator. Eared species extend to
71 degrees north of the equator whereas earless species
only reach 56 degrees north of the equator. The smaller
latitudinal ranges of earless species may likewise be ex-
plained by the paucity of earless species at higher latitude,
as predicted by Rapoport’s rule. Rapoport’s rule states
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Fig. 3. Relationship between tympanic middle ear loss, body size, and dominant call frequency. Box plots compare
eared (orange) and earless (blue) species snout-vent lengths (a) and call dominant frequencies (b). Additionally,
we plotted the relationship between snout-vent length and call dominant frequency for species with both pieces of
information available (c). Dots represent individual species and half eye plots are alongside each box plot to better
visualize sampling density. Results from PGLS models are provided within each panel.

that range size correlates positively with distance from the
equator (absolute latitude) [47] and has been supported at
regional scales in amphibians [48]. However, differences
in latitudinal range sizes between eared and earless
species remain even when only comparing species with
absolute latitudinal maximums below 25 and 15 degrees
(online suppl. Fig. 1; for all online suppl. material, see
https://doi.org/10.1159/000534936). Instead, it is possible
the more restricted latitudinal ranges of earless species are
indicative of smaller population sizes and lower genetic
diversity, which support the hypothesis that drift con-
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tributes to tympanic middle ear loss. The International
Union for Conservation of Nature reports that 31% of
earless species are critically endangered, 20% are en-
dangered, and an additional 10% are vulnerable, further
supporting the hypothesis that earless species may have
small effective population sizes [45]. However, 19% of
earless species have a threat status of least concern, and
tympanic middle ear loss remains puzzling as a specific
and repeated consequence of drift.

Although earless anurans are found at slightly
higher elevations on average, earless anurans are not

Womack/Hoke

20z Ae|N 9| uo 3senb Aq Jpd-9e6¥£5000/L5G | 2L ¥/062/9/86/4Pd-8101e/80q/ W00 18bIe//:dRy woly pepeojumoq


https://doi.org/10.1159/000534936
https://doi.org/10.1159/000534936

found at distinct elevations from eared anurans.
Earless species had higher minimum and average el-
evational ranges when compared to eared species.
However, both eared and earless species are found
from sea level up to 4,800 m above sea level. Thus, the
frequency of tympanic middle ear loss increases in
higher elevation species but is not restricted to high
elevations. And although the elevational ranges of
earless frogs appear less restricted than their lat-
itudinal ranges, earless species had smaller elevational
ranges when compared to eared species. However,
when only comparing species with a latitudinal
maximum below 25 or 15 degrees, there are no dif-
ferences in elevational range between eared and earless
species. Thus, larger elevational ranges of eared species
at high latitudes seemingly driving the differences in
elevational ranges between eared and earless species in
the full dataset (online suppl. Fig. 2). Tympanic middle
ear loss might be more common at higher elevations
due to differences in the acoustic habitat or commu-
nication modalities of higher elevation species. Al-
ternatively, higher elevation species might have
smaller population sizes that facilitate drift contrib-
uting to tympanic middle ear loss. Numerous studies
have found evidence of gene flow limitation among
montane anuran populations [49-52], but whether
there is a direct association between tympanic middle
ear loss and effective population size remains untested.

Earless Frogs Share Similar Microhabitats to Eared
Frogs but a Larger Proportion of Earless Species Are
Diurnal

In addition to the eared and earless species overlapping
in their geographic ranges, no differences in microhabitat
use were found between eared and earless anurans. Given
burrowing and aquatic lifestyles are associated with
middle ear variation in other tetrapod clades [15, 20-24],
the lack of association between anuran middle ear loss
and microhabitat is surprising. There are nearly identical
proportions of aquatic and burrowing earless anuran
species compared to eared species. Thus, microhabitat use
is not associated with middle ear evolution in anurans as
in other tetrapod clades.

Increased diurnality among earless species may point
toward changes in communication as a contributor to
tympanic middle ear loss in some clades. The vast ma-
jority of anurans are nocturnally active (71% in this
dataset) and this is reflected in the 59% of eared species
which are exclusively active at night or at night and
during the period immediately after dawn and imme-
diately before dusk (nocturnal or nocturnal/crepuscular).

Convergent Anuran Middle Ear Loss
Lacks a Universal, Adaptive Explanation

In contrast, 80% of earless species are active during
daylight (diurnal) and show no nocturnal activity. In-
creased predation pressure during the day could impose
directional selection against loud calls and relax selection
on airborne hearing. Additionally, species that are active
during the day may rely disproportionately on non-
acoustic communication modes, such as the visual dis-
plays of Atelopus zeteki [53], which might have relaxed
selection on middle ears. Alternatively, tympanic middle
ear loss may have evolutionarily preceded shifts to di-
urnality, and increased diurnality may be a response to
decreased reliance on acoustic communication. Further
natural history information is needed for diurnal eared
and earless species to determine if and how diurnality
contributes to tympanic middle ear loss.

Sensory and Communication Constraints Associated
with Smaller Body Size Do Not Universally Explain
Ear Loss Evolution

Although earless species are 12 mm smaller on average
than eared species, the dominant frequencies of earless
species’ calls do not differ from eared species. Further-
more, 42 of the 45 earless species in our full dataset have a
call dominant frequency greater than 900 Hz despite
documented hearing consequences of tympanic middle
ear loss above 900 Hz [17]. If having smaller body sizes,
higher frequency calls, and poorer overall hearing relaxed
selection on the tympanic middle ear, we would expect
earless species to have higher frequency calls compared to
eared species. Alternatively, if having lower frequency
calls relaxed selection on high frequency hearing, we
might expect earless species to have call dominant fre-
quencies below 1 kHz that could be sensed by non-
tympanic hearing pathways. In contrast to both alter-
native hypotheses, we find earless species do not have
higher frequency calls than eared species and the call
dominant frequencies of earless species are mostly above
1 kHz.

The commonality of earless frogs still suggests relaxed
selection on airborne hearing [15], and relaxed selection
on acoustic communication may be an important con-
tributor to tympanic middle ear loss in many clades.
Many earless species lack vocal sacs and lack advertise-
ment calls entirely [25] or have weak or infrequent calls
[54-56], which may reflect relaxed selection on airborne
hearing in many (but not all) earless species. Although in
earless clades lacking vocal sacs and/or calls, it has not
been determined whether tympanic middle ears were lost
prior to changes in vocal sacs or calling behavior or vice
versa. Additionally, three species in our analysis had call
dominant frequencies below 1 kHz, which can likely be
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sensed by nontympanic hearing pathways. Finally, nu-
merous earless species with advertisement calls use ad-
ditional signaling modalities, such as visual signals [53] or
calling in close proximity such that substrate-borne vi-
brations may be more or as important than airborne
hearing [57]. Thus, ear loss may only be puzzling when
viewed through a lens that is focused on anuran acoustic
communication. As research into other, less studied
anuran sensory systems (e.g., vision - [58-61];
olfaction - [62, 63]; vibration - [64-66]) and commu-
nication styles [67] increases, tympanic middle ear loss
might not seem so odd from a frog’s sensory standpoint.

Caveats of Using Present-Day Data of Extant Species

to Explain Trait Evolution

We should caveat our results by pointing out the
limitations of testing associations between tympanic
middle ear loss and present-day habitat and trait data
(e.g., body size) in extant taxa. Species ranges, micro-
habitat use, and other traits examined here evolve over
time and using present-day states could overlook key
ancestral states at the time of middle ear loss. Similar
issues have muddled the associations between ecology
and trait loss in other clades, such as snake limb loss
potentially associated with ancestral burrowing or aquatic
lifestyles [68-70] and plethodontidae lung loss potentially
associated with larval stream habitats [71-74]. Analyses
that estimate and incorporate ancestral states (e.g.,
BayesTraits) when testing trait coevolution could address
these issues but are unlikely to uncover a universal as-
sociation between tympanic middle ear loss and partic-
ular geographic patterns, microhabitats, or circadian
activity patterns. This is because tympanic middle ears are
lost in many ecologically distinct clades. Therefore, we
should consider alternative, intrinsic explanations for the
pervasiveness of anuran tympanic middle ear loss.

Do Tympanic Middle Ears Carry Unknown Costs?

When trait losses cannot be easily rationalized, it is
often assumed the lost traits have costs that would di-
rectionally select against the trait, increasing the speed
and likelihood of loss in comparison to drift that would be
reliant on passive mutation accumulation to generate trait
loss. For example, attempts to explain eye loss in cavefish
often posited that the energetic costs of developing and
maintaining a functioning eye contributed to the extreme
reduction in the eye when dark cave environments re-
laxed selection on vision [75, 76]. It is possible tympanic
middle ears carry a common cost that has not been
measured yet. However, earless frogs incur the energetic
costs of maintaining hearing pathways and neural cir-
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cuitry, as low frequency hearing via bone conduction and
other nontympanic hearing pathways are preserved, and
earless frogs do not noticeably differ in their inner ear
structures [54, 77]. Additionally, although a number of
organisms, such as parasitic trematodes, are known to
parasitize the tympanic middle ear cavity and can affect
hearing [78, 79], the overlapping ranges of eared and
earless species do not provide confidence that increased
parasite risk promotes tympanic middle ear loss. Thus,
there is no current evidence to support the hypothesis
that development and maintenance of the middle ear is
costly and likely to be selected against, even if selection on
high frequency hearing was relaxed.

Is Tympanic Middle Ear Loss the Result of Genetic or

Developmental Constraint?

It is also possible that tympanic middle ears are
commonly lost via pleiotropy or some other genetic or
developmental constraint not yet measured. If an
adaptive genetic or developmental change to one trait
results in the disruption of tympanic middle ear de-
velopment, then it would be selected for as long as the
benefit of that genetic or developmental change out-
weighed any costs of tympanic middle ear loss. Plei-
otropy could be the sole driver of tympanic middle ear
loss or pleiotropy could trigger tympanic middle ear
loss in combination with relaxed selection on high
frequency hearing in certain clades. In cavefish,
pleiotropic links that create a trade-off between eye
development and taste bud enhancement have been
implicated as a contributor to convergent eye reduction
[14, but see [80]. Thus far, no evidence of a shared
phenotypic change among earless species (aside from
tympanic middle ear loss) has been demonstrated.
Womack et al. [81] examined skull shape and presence/
absence of late-forming skull features in relation to ear loss
within the family Bufonidae and von May et al. [25] examined
body shape difference between eared and earless species
within the genus Phrynopus. Neither study found consistent
phenotypic differences between eared and earless species.
Other studies have investigated whether tympanic middle ear
loss is a side effect of changes in developmental timing or rate
(heterochrony), but none have found consistent shifts in
development among earless species [77, 82-84]. However,
these studies did not exhaustively quantify earless species
phenotypes, making it possible that a shared developmental or
phenotypic change exists among earless taxa. Given the nearly
unlimited potential pleiotropic connections between the
tympanic middle ear and other traits, genetic scans for mu-
tations associated with tympanic middle ear loss and com-
parative developmental studies that examine changes during

Womack/Hoke

20z Ae|N 9| uo 3senb Aq Jpd-9e6¥£5000/L5G | 2L ¥/062/9/86/4Pd-8101e/80q/ W00 18bIe//:dRy woly pepeojumoq


https://doi.org/10.1159/000534936

the window of arrested tympanic middle ear development
[77] would allow a more thorough examination of this
hypothesis.

Concluding Remarks

Earless frogs provide a captivating evolutionary puzzle
that contradicts trait loss systems tied to colonization of
distinct environments and shared environmental selection
pressures. Tympanic middle ears appear to be repeatedly lost
in the context of a variety of environmental selection
pressures. It has been suggested that some cases of ear loss
are “probably best viewed as an historical accident” [15],
which may or may not be adaptive, while other cases of
tympanic middle ear loss may be explained by some of the
lineage-specific explanations we explore here (e.g., bur-
rowing or aquatic microhabitats, low frequency calls). Re-
gardless, the puzzling prevalence of tympanic middle ear loss
suggests relaxed selection in anurans for acute hearing and
provides an incentive for increased research into additional
frog sensory systems and communication strategies.
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