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ABSTRACT

An issue for molecular dynamics simulations is that events of interest often involve timescales that are much longer than the simulation
time step, which is set by the fastest timescales of the model. Because of this timescale separation, direct simulation of many events is pro-
hibitively computationally costly. This issue can be overcome by aggregating information from many relatively short simulations that sample
segments of trajectories involving events of interest. This is the strategy of Markov state models (MSMs) and related approaches, but such
methods suffer from approximation error because the variables defining the states generally do not capture the dynamics fully. By contrast,
once converged, the weighted ensemble (WE) method aggregates information from trajectory segments so as to yield unbiased estimates of
both thermodynamic and kinetic statistics. Unfortunately, errors decay no faster than unbiased simulation in WE as originally formulated
and commonly deployed. Here, we introduce a theoretical framework for describing WE that shows that the introduction of an approximate
stationary distribution on top of the stratification, as in nonequilibrium umbrella sampling (NEUS), accelerates convergence. Building on
ideas from MSMs and related methods, we generalize the NEUS approach in such a way that the approximation error can be reduced sys-

tematically. We show that the improved algorithm can decrease the simulation time required to achieve the desired precision by orders of

magnitude.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215975

I. INTRODUCTION

The sampling of a stochastic process can be controlled by evolv-
ing an ensemble and splitting and merging the trajectories of its
members, and various algorithms based on this strategy have been
introduced."” Because the trajectory segments between splitting
events are unbiased, such algorithms can yield dynamical statis-
tics, such as transition probabilities and mean first passage times
(MFPTs) to selected states, in addition to steady-state probability
distributions and averages. Furthermore, splitting algorithms gen-
erally require little communication between the members of the
ensemble, making them relatively straightforward to implement
regardless of the underlying dynamics, and community software is
available.”” As a result, splitting algorithms are widely used.

Recent mathematical analysis of one of the oldest splitting algo-
rithms in the molecular simulation literature, weighted ensemble
(WE),! shows that it is asymptotically unbiased and can dramatically
reduce the variance of statistics when the splitting criteria, which are
based on a partition of the state space, are chosen appropriately.'’

However, the method relies on convergence of the steady-state
ensemble of trajectories, which is known to be slow. In fact, as we
argue below and was observed previously,'’ it is as slow as run-
ning direct unbiased simulations. Prior to convergence, the method
is systematically biased.

Some previous work to accelerate the convergence of WE
focused on improving the initialization of walkers using an approx-
imation of the stationary distribution. In one case, the approxima-
tion of the stationary distribution was obtained from a free-energy
method that biased trajectories to escape metastable wells,'' while
in another it was obtained from a machine-learning method based
on unbiased short trajectories.'” The former approach requires the
underlying dynamics to obey detailed balance to ensure the valid-
ity of the free energy method, while the latter approach relies on
a Markov approximation (but does not make other restrictions on
the dynamics). In both cases, however, the approximation to the
stationary distribution is used only for the first iteration, and so if
the approximation is deficient, significant bias can persist in the WE
calculation for many iterations.
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Others focused on improving the rate estimates from WE.'>"*

Of particular relevance to the present study, Copperman and Zuck-
erman exploited the fact that splitting algorithms sample unbi-
ased trajectory segments to construct history-augmented Markov
state models (haMSMs)'® from their WE data.'”” In an haMSM,
the system is divided into discrete states, and the probabilities for
transitions between them are computed from data, just as in a
standard MSM, except that the path ensemble is split based on
the last metastable state visited; the rate constant is then com-
puted as the flux from A to B conditioned on having last visited
A, normalized by the steady-state probability of having last visited
A. The idea is that finer discretization of the state space than the
WE simulation yields improved estimates. In itself, this approach
does not accelerate the convergence of the sampling. However,
Refs. 8 and 13 suggest that iteratively restarting the WE simulation
from the steady-state distribution estimated from the haMSM could
accelerate convergence.

Here, we build on this idea to introduce a general framework
for how to apply a short-trajectory based approximation to the
stationary distribution between successive iterations. As we show
below, the approximation must satisfy certain properties and be
correctly integrated in the algorithm; if these criteria are met, the
approach can accelerate the convergence by several orders of mag-
nitude without introducing systematic bias. Our approach is able
to compute the full stationary distribution with minimal assump-
tions about the dynamics, as well as kinetic statistics such as
rates and committors (probabilities of visiting selected states before
others).

Conceptually, one can view our approach as a form of strat-
ification, in which the weights of not just individual trajectory
segments but groups of them are manipulated. Stratification was
first introduced for controlling the sampling of trajectory segments
in nonequilibrium umbrella sampling (NEUS).”*'*""* NEUS groups
trajectories that are in the same regions of state space, as defined
by collective variables (CVs), and estimates the steady-state proba-
bilities of the regions by solving a global flux balance equation; this
strategy was subsequently adopted in extensions of WE*” and exact
milestoning (EM).° A unified framework for trajectory stratification
that incorporates elements of all of the above-mentioned algorithms
and is unbiased in the limit that each region contains an infinite
number of ensemble members is presented in Ref. 19, which also
shows that the regions can be defined in terms of path-based quan-
tities. Mathematical analyses of trajectory stratification algorithms
can be found in Refs. 21 and 22.

Our paper is organized as follows. In Sec. I1, we review the WE
algorithm and recast it to show why an initialization bias is slow to
disappear. This formulation also clarifies the relation of WE to the
NEUS algorithm as described in Ref. 19, and we show how software
for WE can be easily extended to enable trajectory stratification in
Sec. I1L. In Sec. IV, we introduce a generalization of MSMs that rep-
resents the dynamics through a basis expansion” ** and, in turn, our
strategy for accelerating sampling, which we term Basis-Accelerated
NEUS (BAD-NEUS). We show that the NEUS algorithm is a spe-
cial case of our new scheme. In Secs. V and VI, we demonstrate
BAD-NEUS on a two-dimensional model with a known steady-state
distribution and a molecular example.

ARTICLE pubs.aip.org/aip/jcp

Il. WEIGHTED ENSEMBLE (WE)

As described earlier, in WE, the state space is partitioned, and
then trajectories are copied (cloned or split) or removed (killed or
pruned) from the ensemble based on criteria. Mathematically, we
denote the state of ensemble member (henceforth, walker) 7 at time
t by X}, and we associate with i a weight w} such that Y, w} = 1.
We track the index of the region containing X; by an index pro-
cess J;. For example, J; might track the element of a partition of
state space in which X; currently resides. However, much more
general choices, such as ones based on path quantities'”® or dis-
tances between walkers,””** are also possible. See Ref. 19 for further
discussion.

Here, we use a relatively simple procedure and represent the
splitting and pruning by resampling the ensemble within each region
(or, more generally, value of the index process). Each iteration of
the sampling thus consists of two steps: evolution according to the
underlying dynamics and resampling the ensemble. In the evolution
step, for each walker i, we numerically integrate for a time inter-
val A to obtain X/, , from X; and update Ji,a accordingly. In this
step the weights are unchanged; wy, , = w;. We note that A can be a
random stopping time, not just a fixed time interval. An often use-
ful choice is to take ¢ + A to be the first time after time ¢ that the
value of the index process J changes.‘;‘““ ' 1n this case, each walker
has a different value for A. In the resampling step, for each value
k of the index process (e.g., for each region in a partition of state
space), if there is at least one walker with Ji, , = k, we select a number
Ny. Then we sample from the set ® = {i: Jj,, = k} Ny times with
replacement according to the probabilities p; = w;, o/Y; cp Wisa- For
each index r so chosen, we append (X7, /1y ps X Wiy a/Ni) to the
new ensemble.

If the underlying dynamics are ergodic, in the case where A isa
fixed time horizon, WE can be used to compute steady-state averages
of functions as

Exyor[¢(X0, X1, .+, Xam1)]

R A . . . .
=1im > = e(Xun Xuasts - - > Xnasac1)Wnar (1)
T T 2 N i3

where the subscript on the expectation indicates that we draw the
initial state X, from the steady-state distribution 7, and n indexes
successive weighted ensemble iterations. We present necessary mod-
ifications for the case where A is a random variable later. Here
and below, X without a superscript indicates a realization of the
underlying Markov process rather than a walker in an ensemble. An
important example is the steady-state flux into a set D of interest,
which can be used to compute the MFPT to D from another set in
the right algorithmic setup.!” This flux can be obtained by setting
g(Xo, ..., Xa) = 1p:(Xo)1p(X1), where 1p(x) is an indicator func-
tion that is 1 if x € D and 0 otherwise, and I¥ is the complement of
the set D. This amounts to counting the number of walkers that enter
D in a single time step and summing the total weight of those
walkers.

Having stated the basic WE algorithm, we now present WE
in a new way. While this may initially appear to complicate the
description, it reveals that WE is slow to converge and facilitates
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the introduction of approaches to accelerate convergence. In this
description, which we call the distribution representation of WE,
we directly evolve distributions rather than approximating them
through individual walkers. To this end, we define the flux
distributions

ﬁg(dx|k) = P[Xs(g) € dx|]5(£) = k], (2)

where dx is an infinitesimal volume in state space that is located at
a specific value of x, and S(¢) is an increasing sequence of stopping
times. For example, if we choose S(¢) = ¢A for a fixed A, the follow-
ing description corresponds to the standard version of WE already
sketched. Alternatively, we can let S(¢) be the time of the ¢th change
in the value of the index process J, as in NEUS, 1%

$(0) =0, 3)
S(1) =min{t>0:J; + Ji-1},

S(é): mln{t > S(Z - 1) Z]t * ]tfl}-

This choice of stopping time has the advantage that walkers cannot
go significantly beyond their regions, providing more control over
the sampling.

In all practical implementations of the sampling algorithms
that we discuss, the conditional flux distributions take the form of
empirical distributions of N walkers,

N

_ 1 i i
7o (dxlk) ~ %Z; Wyi(eyOx, , ()T (Fscoy)- @)

where 6 is the Dirac delta function centered at position x, and the
normalization constant Z; is the total weight in region k at time S(¢),

N
—k i i
Zp = ]PUS(Z) =k] =~ Z; wsf(g)“{k}(]sf(g))- (5)

The outputs of the weighted ensemble iteration and the accelerated
variants that we consider here are approximations of the steady-state
conditional flux distributions, as well as estimates of the corre-
sponding normalization constants (region weights). The conditional
flux distributions are related to joint flux distributions through the
normalization constants,

7o (dx, k) = P[Xg(p) € dx,Js(e) = k], (6)
= Z57, (dx|k), )

and we work with 7 (dx, k) below.

In particular, we now write the evolution and resampling steps
in terms of operators. For the former, we define the operator U,
which propagates the joint flux distribution of (Xg), /) for a
duration of S(¢ + 1) — §(¥¢),

Ut (dx, k) = Tp41 (dx, k). 8)
In the long-time limit, this yields the eigenequation

7(dx, k) = Un(dx, k), 9)

ARTICLE pubs.aip.org/aip/jcp

where 7 is the steady-state joint flux distribution. In practice, one
approximates the distributions through walkers, and we denote the
corresponding evolution by /. Mathematically,

1 & i
I/{I:N; wsf(e)éxgx(é) (dx)]]{k} (]Si(z)):l

IS s (@l (10)
= Ny b0, (@10 s )

The subscript on the weight does not change because the evolution
step only affects the state and index of a walker, not its weight. Oper-
ationally, this equation corresponds to propagating an ensemble’s
empirical distribution by running the dynamics until the stopping
criterion and then assigning the initial weight of each walker to its
final state and index. I{ as defined in (10) is an unbiased stochastic
approximation of ¢/ in the sense that, for any function g and any
distribution p,

> /g(nk)[bfp](dx,k)-la[g /g(mk)[bfp](dx,k)} an

If distributions are represented with some ansatz such as a neural
network, one can also apply an approximate propagator based on a
variational method as outlined in Refs. 29 and 30. Such a scheme
would not require new trajectories to be run at each iteration, nor
would it require a resampling step.

As noted earlier, we represent resampling through an oper-
ator, Ry. We define it such that, for any distribution p and any
function g

Jeb(grnn) -5 feshmio], (2

and

G~ [ paxk) (13)

Here, the LHS of (12) selects the portion of the distribution p in
region k and then renormalizes it, while the RHS corresponds to
resampling from the distribution. This equation expresses the con-
dition that the resampling operator must preserve the weighted
distribution in the sense that the empirical mean of any func-
tion is the same in expectation after resampling. A simple choice
that is commonly employed for the operator Ry is to sam-
ple the set of walkers in region k at the end of the evolution
(denoted K) from a multinomial distribution with probability pro-
portional to {w;,(z)ﬂ{k} (];f(e))},-eK with Ny trials and then return
the distribution

1Y ; 1
Ri ﬁ; ws‘(l)ax‘s[(z)(dx)“{k} (]s'(e)) = ﬁké 5x;,(£)(dx), (14)
and normalization
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In other words, (14) shows that R; constructs the state distri-
bution from a sum over the resampled walkers in each region.
There are other possible ways of resampling in the walker
representation,” "' and these may in practice be better. However,
any choice that satisfies (12) suffices for our discussion.

Finally, we connect the flux distributions 77(dx|k) to the steady-
state distribution 7(x, k) for the process (X;,],), where the absence
of superscripts again indicates the underlying Markov process rather
than a walker in an ensemble. We do this with a key identity, which
we now state. For a function g of a length 7 trajectory,

E(x,J0)~7[&(X0s Jos - - - s X2, Jr) ]
2 [ Ex oyt D055 T €KX X Jior) |
Yk 2" [A(dxlk) Ex sy [S(1)]

>

(16)

where now 7 is the steady-state joint distribution of (X;,/,). This
identity says that, for each region k, we draw initial walker states
Xo from 7(dx|k) and set ], = k; we evolve those walkers until they
leave region k; then we compute averages over them and weight the
contribution from the walkers that started in region k by Ek, which
is the steady-state limit of Z;. We derive (16) in the Appendix. The
distribution representation of WE is summarized in Algorithm 1.

We see that each step of WE applies the operator I to the previ-
ous distribution 7 (dx, k). Therefore, WE can be seen as performing
a power iteration in I{, starting from some initial distribution. The
resampling step in WE plays a role analogous to the normalization
step in standard power iteration in the following sense. In standard
power iteration, the normalization step serves to prevent the iter-
ate from becoming too small or too large and introducing numerical
instability. In WE, the resampling step serves to prevent any of the
region distributions from becoming poorly sampled, which would
increase variance. However, the normalization step in power itera-
tion and, in turn, the resampling step in WE do not accelerate decay
of initialization bias, nor is the WE autocorrelation time reduced
relative to direct sampling.

Algorithm 1 suggests that, if 7 = 7 in step 3, convergence would
be achieved. Therefore, our strategy for accelerating WE is to replace

ALGORITHM 1. WE (distribution representation).

Require: Approximate Markov propagator u, resampling operator

Ry, starting flux distributions {70 (dx|k) };_;, initial

region weights {Zf }7_, with ¥, Z = 1, total number

of iterations L, number of strata n.

for?/=0,...,Ldo
7o (dx, k) < Z57o(dx|k)
7 < (U] (dx, k)
fork=1,...,ndo

T (dxlk), 24, < Ril7]

end for

end for

return {7, (dx|k)}_, and {Z} }7_,

> one power iteration step

ARTICLE pubs.aip.org/aip/jcp

the power iteration step with a more accurate approximation. Specif-
ically, we compute changes of measure (i.e., reweighting factors)
ve such that

7(dx, k) ~ ve(x, k)7 (dx, k). (17)

If we set up our approximation such that whenever my = 7, we
get v, = 1, then the resulting modification of WE will have a fixed
point at the true steady-state distribution, and there will be no
approximation error resulting from deficiencies in the approxima-
tion algorithm’s specific ansatz. Our scheme has the advantage that
it can potentially approach steady state much faster than WE. This is
the idea that we develop in Secs. IIT and I'V.

lll. NONEQUILIBRIUM UMBRELLLA SAMPLING (NEUS)

We now present NEUS as a simple extension to WE that
accelerates convergence in the way suggested in (17); EM° can be
formulated similarly. Our development is based on the algorithm
in Ref. 19, which corrects a small systematic bias in earlier NEUS

papers.”'°"'¥ We begin by making the observation that, at steady
state,

Ex, 711k Uo)] = Expnz[ 11y Usry) 15 (18)

or, in terms of the density we wish to compute,
[FxR) =% 7 ) Exmnei 1 Us)) (19)
j

This equation says that the steady-state probability of index process
k is the same as the total probability of walkers that were initialized
from the steady-state distribution and flowed into (or remained in)
k at the stopping time. This observation introduces one equation per
possible value of the index k. Therefore, we can parameterize the
change of measure with as many free parameters,

7(dx, k) ~ chzs7e (dxlk). (20)

Substituting this ansatz into (19) and simplifying yields the matrix
equation

k—k i—j =
ciZe = ), ¢Z,Giko 1)
j

where
Gj = fﬁ(de)EXo:xJo:j (11 Usy) s (22)

tracks the total flux from region j to region k. We summarize NEUS
in Algorithm 2.

We thus see that NEUS is distinguished from WE in its origi-
nal formulation by steps 2—4, in which the total fluxes between pairs
of regions are estimated and the region weights are adjusted to sat-
isfy a global balance condition. In practice, walkers are drawn and
their dynamics are simulated to determine S(¢ + 1) in the loop over

J. Chem. Phys. 161, 084109 (2024); doi: 10.1063/5.0215975
Published under an exclusive license by AIP Publishing

161, 084109-4

22:05:00 ¥202 Jequisides 0



The Journal
of Chemical Physics

ALGORITHM 2. NEUS.

Require: Approximate Markov propagator u, resampling operator
Ry, starting flux distributions {70 (dx|k) };_;, initial
region weights {Z }7_, with ¥, Z§ = 1, total number
of iterations L, number of strata n.

1: forl=0,...,Ldo

2 Gy [Ao(dx] j)Bxymnio=i[ 111y Usry)]
3: Solve ¢z¢G = ¢z for cpzy

4. ﬁg(dx,k) <~ C]éﬂ {k}Eléﬁg(dx\k)

5: T~ Llﬁg(dx, k)

6: fork=1,...,ndo

7: Tos1 (dxlk), Z5,, < Ri[7]

8: end for

9: end for

10: return {7, (dx|k)}i_, and {Z} }1_,

£ prior to step 2 (the resulting state distribution is used later in step
5); then, G ik is computed in step 2 from walkers at iteration £ as

G~ 2 “{j}(];"(z))“ {k} (];’(£+1))
k™ i
210 Usco)
We solve for product ¢,z directly and update the approximation for
7 accordingly. We then proceed as in WE.
If the flux distributions and region weights assume their steady-

state values such that 7,(dx|k) = 7(dx|k) and Z§ =z, a global
balance condition is satisfied. That is,

z° =3 Z/G;. (24)
7

. (23)

In this limit, (21) is solved by c* = 1, and NEUS has the correct fixed
point (i.e., the same fixed point as ¢/, which encodes the unbiased
dynamics).

IV. BAD-NEUS

To improve on NEUS, it is necessary to improve the approx-
imation of the change of measure in (17). Here, we do so by
introducing a basis expansion. This allows us to vary the expressivity
of the approximation through the number of basis functions, which
can exceed the number of regions, in contrast to the steady-state
condition in (18).

To this end, we note that, for any lag time 7 and any function

f(x,k),
E(x, 1)~ f (X0 Jo) = f(Xw, )] = 0. (25)

We stress that this relation holds for any fixed time 7. Expand-
ing this expectation using (16), with g(Xo, /o, - . ., Xr,J;) = f(Xo0,Jo)
- f(X+,J,) and multiplying through by the normalization in the
denominator, we obtain

S(1)-1

(f (X6 Je) = f(Xesrs Jrer)) |-
(26)

=

0=z f n(dxk)EXD_x,,o_k[
k

ARTICLE pubs.aip.org/aip/jcp

We then introduce the basis set {¢,(x,k)}, for the change of
measure in (17) and write

(dx,k) = 2 F(dxlk) ~ 3 by (x. k)Zime (dxlk).  (27)
p

Making the choice f = ¢, and inserting the basis expansion into (26)
gives

0= > &2 [ g kme(dali)
k p

S(1)-1

X EX()X,](]I([ (¢r(Xt>]t) - ¢V(Xt+‘r:]t+1)) . (28)

t=

This is a linear system that can be solved for the expansion
coefficients,

0=>" cIMp, (29)
P

with the matrix entries given by

My =37 f 69 (x, k)70 (dlk)
k

1)-1

(¢r (X6 Jt) = ¢r(Xewrs Jexr)) | (30)

S(
X ]EX(,=x,](,=k|:
t=
The basis set must include the constant function in its span so that
the system has a unique nontrivial solution.

We summarize the BAD-NEUS algorithm in Algorithm 3. If
the flux distributions and region weights assume their steady-state
values such that 7, (dx|k) = 7(dx|k) and Z§ = Z*, then (26) is sat-
isfied for all f. In that case, just as (24) and (21) lead to &=1in
NEUS, (26) and (28) lead to Zp cp¢(x, k) = 1in BAD-NEUS. In this

ALGORITHM 3. BAD-NEUS.

Require: Approximate Markov propagator U, resampling operator
Ry, starting flux distributions {70 (dx|k) }}_,, initial region
weights {Z§}7_, with ¥, 25 = 1, basis set {¢,(x, k) },,
lag time 7, number of past iterations to retain A,
total number of iterations L, number of strata n.
for/=0,...,Ldo
T < Tigp
S(1)-1
Ad < Z,:O ¢r(XrJt) - ¢r(Xt+rJt+r)
My < S [Zibp (3, k)T (dx|R) Exy o=k [A¢)]
Solve cM =0
7o (dx, k) < 3 by (x,k)Zgme (dxlk)
ﬁ <~ Z/?ﬁg(dx, ])
fork=1,...,ndo
9: Toe1 (dxlk), 25, < Ry[7]
10: end for
11: end for

12: return {7 (dx|k)}}_, and {Z} }1_,

J. Chem. Phys. 161, 084109 (2024); doi: 10.1063/5.0215975
Published under an exclusive license by AIP Publishing

161, 084109-5

22:05:00 ¥202 Jequisides 0



The Journal
of Chemical Physics

case, step 6 in Algorithm 3 reduces to 7, (dx, k) < z*7(dx|k), and
BAD-NEUS has the correct fixed point.

Specific choices for the basis functions, lag time, and stopping
time correspond to existing methods. NEUS as described in Sec. I11
and Algorithm 2 corresponds to the choice

¢p(x, k) = 175y (k), (31)

7 =1, and A as defined in (3). We can obtain a version of iteratively
restarted WE as suggested in Refs. 8 and 13 by choosing the basis set
to be indicator functions that are one on sets that are finer than the
stratification (“microbins”), 7 = 1, and a fixed stopping time A. For
these choices, the sum over ¢ in (30) telescopes, and M can be row-
normalized and written as T — I, where T is the transition matrix for
the MSM defined by the basis set.

Consistent with WE and NEUS, in practice, we estimate the
integral My, through a sum over walkers,

Mpr 3 3 25y (X K) 11y ()
F T

S'(L+1)-1

>

t=5(£)

($:(X0JD) = 6 (XienJire)) | (32)
Given M and, in turn, the estimated expansion coefficients, we
update the weights as

*]S’(lf)

i z i i
Wso) = ZTEP: CZ¢P(XSi(£)’]S‘(Z))’ (33)

ALGORITHM 4. Trajectory stratification (walker representation).

ARTICLE pubs.aip.org/aip/jcp

where Z normalizes the total of the walker weights to one. Oper-
ationally, we loop over each walker before the resampling step
and evaluate (33) to adjust its weight. Physically, this corresponds
to apportioning the weight of the region containing the walker

[E;W) /Z in (33)] according to the basis expansion representing the
change of measure to the steady-state. We then proceed with the
resampling step as in the usual WE algorithm.

To reduce variance in our estimate of the matrix M to ensure a
stable solve, it is often useful to work with the mixture distribution
for the last h iterations,

_ 1
ﬂg}h(dx‘k) = -

4
h > m(dxlk). (34)

t=0—h+1

When working with walkers, this mixture distribution corresponds
to concatenating the walkers from the last h iterations and, there-
fore, contains more data than using a single iteration. We simply
substitute 7y, for 7, in all of our algorithms. A unified walker-
based algorithm that we use in practice is given in Algorithm 4,
with the additional steps needed for NEUS and BAD-NEUS in
Algorithm 5.

Finally, we note that the general strategy of improving the
approximation of the change of measure is not limited to using
a basis expansion. Just as one can use various means to solve
the equations of the operator that encodes the statistics of the
dynamics,”***"** one can represent the change of measure here by
either a basis expansion or a nonlinear representation. In particu-
lar, our tests based on the neural-network approach in Ref. 30 show
significant promise (unpublished results).

Require: Starting ensemble of walkers Eo = { (X, Jo,wh) } X, with SN, wh = 1, lag time 7, number of past

iterations to retain A, total number of iterations L, number of strata n.

1: for{=0,...,Ldo
2: N < length(E,)
3: Generate a list of trajectories

To < {[(X o sy s o) Ksoyr T Wy ) > Ksanye s*(e+1)+r’ws"(e))]},-:l’Where (Xs 0y T5 0y We o)) = Eeli]

T < concatenate({T¢, T¢_1, . .
N « length(T,)

o> Teper})

Update weights {w’s o Y, using Algorithm 5. (Omit for weighted ensemble)

Initialize an empty list Eg4; = {}

4
5:
6:  Renormalize the weights in T, by dividing each by h.
7.
8
9 fork=1,...,ndo

10: Zn Tt w;f(e)“{k} (].19‘(£+1))

11: forr=1,...,Nido

12: Sample an index b with probability proportional to wé’,, o T ( ]gb ( e+1))
13: Append to E; the configuration (Xé’h(“l),]é’b(“l),EIEH/Nk)

14: end for

15:  end for

16: end for

17: return Ty and {Z} }7_,
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ALGORITHM 5. Approximating the steady-state flux distribution (walker representation).

Require: List of trajectories Ty, lag time 7, basis functions {¢,},, region weights v

_ i i §'(e+1)-
L: Myr < Xy Z’Z‘PP(X *(z)’k)“{k} (]0)[Zt:(8‘&1)) 1
2: Solve ¢,M =0
; 7];{ . i i
Bwg, < (2, /12)%, Clz%(xs‘(e)’]s'(e))
4: return {wlsi(e)}ﬁl

(80 (X0 J) = 9 (XirsJi)) |

V. TWO-DIMENSIONAL TEST SYSTEM

We first illustrate our approach by sampling a two-dimensional
system, which enables us to compare estimates of the steady-state
distribution to the Boltzmann probability to ensure that simula-
tions are run until convergence. Specifically, the system x = (u,v)
is defined by the Miiller-Brown potential,”® which is a sum of four
Gaussian functions,

4
Vme (14, v) = 2—102; C; exp [a,‘(u—v,-)2
+b,»(u—u,-)(v—vi)+c,~(v—v,-)2]. (35)

For all results shown, we use C;={-200,-100,-170,15}, a;
={-1,-1,-6.5,0.7}, bi ={0,0,11,0.6}, i = {-~10,-10,-6.5,0.7},
u; = {1,-0.27,-0.5,-1}, and v; = {0,0.5,1.5, 1}. The potential with
these parameter choices is shown in Fig. 1. The presence of mul-
tiple metastable states and a minimum energy pathway that does
not parallel the axes of the variables used for the numerical inte-
gration make this system representative of difficulties commonly
encountered in molecular simulations. Because the model is two-
dimensional, we can readily visualize results and compare them with
statistics independently computed using the grid-based scheme in
Ref. 30.

We evolve the system with overdamped Langevin dynamics,
discretized with the BAOAB algorithm,*

[ dt
Xiragr =Xt — VVMB (Xt)dt + % (Zt + Zt—dt)» (36)

where dt is the time step, S is the inverse temperature, and
Z; ~N(0,I) is a random vector with components drawn from the

10.0
=
7.5 g
50 2
C
[}
25 ©
(=

FIG. 1. Miiller—Brown potential. Orange and red ovals indicate states A and B,
respectively. Contours are spaced every kg T.

normal distribution with zero mean and unit standard deviation
(I is the two-dimensional identity matrix). For all results shown, we
use dt = 0.001 and 8 = 2.

A. Comparison of algorithms

A key point of our theoretical development is that NEUS
and BAD-NEUS are simple elaborations of WE. This enables us
to define a unified walker-based algorithm that we use in prac-
tice (Algorithm 4, with the added operations needed for NEUS
and BAD-NEUS in Algorithm 5). Splitting and stratification are
defined through the rule for switching the index process. The
sequence of stopping times S(¢) is then determined by the index
process through (3). The update rule for J; that we employ for
all three algorithms is as follows. Let {yy(x)}¢=1....» be a set of
nonnegative functions. If yj,(X;44) > 0, then J .4 = J;; otherwise,
PlJirar = k] = vi(Xevar) /| Z Vi (Xrsar)- That is, the value of the
index process remains the same until the walker leaves the sup-
port of yj,, and then a new index value k is drawn with likelihood
proportional to y, (X, 4 ). For the Miiller-Brown model, we use

1, if [v— v <g and 1 <k <n,
1, ifv—v,<ég and k=1,
ve(u,v) = ‘ (37)
1, ifvp—v>¢ and k=n,
0, otherwise.

Unless otherwise indicated, we set n = 10, space the v; uniformly
in the interval [-0.2,1.8], and set & = 0.6(vi;; — vk), so that the
regions of support (strata) overlap. This choice prevents walkers in
barrier regions from rapidly switching back and forth between index
values, limiting the overhead of the algorithms. Unless otherwise
indicated, we use 2000 walkers per region and run them until their
index processes switch values. Initial configurations for J, = k are
generated by uniformly sampling the support of .

For BAD-NEUS, we use a basis set consisting of ten indicator
functions per stratum. The indicator functions are determined by
clustering all the samples in a stratum with k-means clustering and
partitioning it into Voronoi polyhedra based on the cluster means.
Unless otherwise indicated, we compute statistics using data from
the last i = 3 iterations and use a lag time of 7 = 10 time steps.

We measure convergence by computing the root mean square
(RMS) difference in In (77(x)) from —BV,;;(x), where 7(x) is an
estimate of the steady-state distribution from the normalized his-
togram of samples. For the histogram, we use a uniform 50 x 50 grid
on the rectangle defined by the minimum and maximum values in
the NEUS dataset. Since some grid regions are empty because they
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FIG. 2. Convergence of the steady-state distribution of the Miiller—Brown sys-
tem for WE as defined in Algorithm 1 (blue, no 7 solve), NEUS as defined in
Algorithm 2 [orange, 7 solve using the strata in (37) as a basis], and BAD-NEUS as
defined in Algorithm 3 (green, 7 solve using a basis defined by k-means clustering,
as described in the text).

correspond to energies too high for NEUS to sample, we only com-
pute errors over bins with Vi < 7. We stop each simulation when
the RMS difference drops below one. Results are shown in Fig. 2.
We see that WE (without any acceleration strategy) requires about
73 times more iterations than NEUS, which in turn requires about
13 times more iterations than BAD-NEUS to reach the convergence
criterion.

B. Choice of hyperparameters

Having demonstrated that trajectory stratification outper-
forms WE (without any acceleration strategy) for this system, we
now examine the effect of key hyperparameters in NEUS and
BAD-NEUS.

First, we investigate the effect of the number of strata. To com-
pare simulations that require essentially the same resources, we hold
the total number of walkers fixed at 40 000, and we divide the walk-
ers uniformly across the strata. For these simulations, we use a lag
time of 7 = 1 and retain h = 3 past iterations. In Fig. 3, we plot both
the number of iterations to reach convergence and the total num-
ber of time steps needed for convergence as we vary the number of
strata. We see that the number of BAD-NEUS iterations required
for convergence increases linearly with the number of strata. How-
ever, the lengths of trajectories decrease because the strata are
spaced more closely. Due to this interplay, the total effort to achieve
convergence decreases until about 12 strata and then levels off.
While actual performance will depend on the overhead incurred
by stopping and starting the dynamics engine and computing the
BAD-NEUS weights, these results indicate that finer stratification is
better.

Next, we examine the dependence of convergence on the num-
ber of iterations used to compute statistics, i (other hyperparameters
are set to the default values given earlier). Using data from a larger
number of iterations allows for more averaging, but it can also con-
taminate the statistics with samples obtained before the steady-state
distribution has converged. While the trends are clearer for NEUS
than BAD-NEUS because the former converges more slowly, Fig. 4
indicates that retaining fewer iterations is better for both NEUS and
BAD-NEUS. It is, therefore, important to use enough walkers per
iteration that data from past iterations need not be retained. If one
has access to a large number of processing elements and many walk-
ers can be simulated in parallel, this is not a severe restriction. Once
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FIG. 3. Effect of the number of strata on convergence of BAD-NEUS applied to the
Miiller—Brown system. The number of iterations required (top) and the total number
of time steps (bottom)—a proxy for computational effort—until convergence. The
total number of walkers is held fixed. Error bars are the standard deviation over
ten replicate simulations. For these simulations, there are 40 000 walkers total,
and the lag time is 7 = 1 time step.

convergence is achieved, one can begin accumulating data to reduce
variance.

Finally, we investigate the impact of the lag time in Fig. 5 (other
hyperparameters are set to the default values given earlier). We find

= NEUS Retain 1
=6 ~— NEUS Retain 3
— —— NEUS Retain 6
£ —— NEUS Retain 9
—
4
—
wl
wn
=
0 50 100 150 200

—— BAD-NEUS Retain 1
’E —— BAD-NEUS Retain 3
—=4 —— BAD-NEUS Retain 6
£ —— BAD-NEUS Retain 9
— —— BAD-NEUS Retain 12
o
—
(AN}
n 2
=
o

0 5 10
Iteration

FIG. 4. Effect of retaining past iterations on convergence of NEUS (top) and BAD-
NEUS (bottom) applied to the Miiller-Brown system.
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FIG. 5. Dependence of convergence on the lag time for BAD-NEUS applied to
the Miller-Brown system. Error bars are the standard deviation over ten replicate
simulations.

that using longer lag times weakly decreases the number of iterations
required for convergence.

C. Kinetic statistics

A common problem in molecular dynamics is that while equi-
librium averages are relatively straightforward to calculate from
biased simulations (via, for example, the various methods reviewed

J

Vi (Xiar)1a (XTXU5(2+dt) )/Z, V/zA (Xevdr)s

P[Jisar = k] = V/k(XHdt)]]B(XT;

T Uo)s

Therefore, there are n + m total strata, the first n of which con-
tain walkers that last visited A, and the remainder of which contain
walkers that last visited B. The steady-state distribution of walkers
that last visited A is proportional to 7(x)q_(x), and that which last
visited B is proportional to 71(x)(1 — g_(x)). This ensemble lets us
compute dynamical averages. The backward committor projected
onto a space of CVs can be computed using

[T4o,...1y Ue) Tgasy (0(X2))]
E[T4 (0(X))]

E
4’ (s) = , (39)

where 6 is a vector with components that are the CVs and ds is a bin
in the space. The TPT rate constant is defined as

kg = Erla-() 15 () TiT5(x)]
Er[q-(x)] ’

(40)

where B is the complement of B, and 7 is the operator that
describes the evolution of expectations of functions,

T:8(%.7) = Exy=xo=i[§ (X6 Jt) ] (41)

L () )/21 V’xB (Xivdr)s

ARTICLE pubs.aip.org/aip/jcp

in Ref. 35), dynamical averages are much harder. In this section, we
use BAD-NEUS to compute dynamical averages efficiently. To do so,
we split the ensemble of transition paths based on the last metastable
state visited as previously for NEUS.'""**® We specifically compute
the backward committor, q_, which is the probability that the sys-
tem last visited a reactant state A rather than a product state B, and
the transition path theory (TPT) rate, defined as the mean number
of A to B transitions per unit time divided by the fraction of time
spent lastin A. The former can be obtained without saving additional
information once we split the path ensemble. The forward com-
mittor, g, which is the probability that the system next visits state
B rather than state A, can also be obtained from NEUS but requires
saving additional information.”® Here, both of the systems that we
consider are microscopically reversible, so we can obtain g, from
q,=1-¢g_.

For the Miiller-Brown system, we consider the follow-
ing history dependent stratification. Let {yf(x)}te1..., and
{wf (%) }k=1.....m be non-negative functions; let y; = v if k < n; oth-
erwise, let gy = Wf_n, and let 14 and 13 be indicator functions on sets
A and B, respectively. Let Ty z(t) be the time the system sampled
at time ¢ was last in A or B so that HA(XTXUBU)) =1- HB(XT;U’J(,))
reports whether A rather than B was last visited. Define the index
process by the following update rule:

k <n,yy,(Xerar) = 0or
Ta (XT;UB(Hdt) ) # 14 (XTXUB(’) )

k> nyy, (Xesar) = 00r (38)
Ta(Xr-

u.

5 (t+dt) ) #1a (XTXUB(‘) ))
otherwise.

In practice, we compute (40) from (16) by choosing

8(XosJo- s Xe, Jr) = Tpe(Xo) VB(X1) T o,....03 Jo)s (42)

for the numerator and

g(XO)]O-”)Xt»]t) = H{O,...,n}(]0)> (43)

for the denominator. This corresponds to the steady-state flux into
B from trajectories that originated in A.
For the Miiller-Brown system, we define states A and B as

A={uv:65u+05)"—11(u+0.5)(v-1.5)+6.5(u—-15)><0.3},

B={uv:(u-06)"+0.5(v-002)" <02}
(44)
We use a similar index process construction as for the equilibrium
calculations, except there are 10 vy that are evenly spaced in the
interval (0, 1.6) for wj? and 10 vy that are evenly spaced in the interval
(~0.3,0.8) for y7, for a total of 20 strata. We use different definitions
for y;' and y; because, for walkers originating from state A (B), a
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FIG. 6. Convergence of the TPT inverse rate estimate for the Miiller—Brown sys-
tem. The green line is the grid-based reference obtained from 45. For these
simulations, there are 2000 walkers per stratum, h = 4 iterations are retained, and
the lag time is 7 = 10 time steps.

stratum located below (above) state B (A) is unlikely to be popu-
lated. Both NEUS and BAD-NEUS use 2000 walkers per stratum,
and we compute statistics using data from the last h = 3 iterations.
For BAD-NEUS, we use a basis set consisting of ten indicator func-
tions per stratum, again based on k-means clustering; we use a lag
timeof 7 = 1.

To compute reference values for these kinetic statistics, we
use the grid-based approximation to the generator in Ref. 30, with
the same grid parameters. Since the dynamics are microscopically
reversible, we obtain the backward committor by solving for the
forward committor using the approach in Ref. 30, then setting
q_=1-q,. We solve for the reaction rate using

_ 2(g)" (Piy)
(773-)(Per) "

where P is the discretized transition matrix defined on the grid, e is
the grid spacing, and arrows indicate vectors of function values on
the grid points (77q- is a single vector of product values).

Figure 6 shows estimates for the TPT rate. We see that BAD-
NEUS converges several fold faster than NEUS. Each BAD-NEUS

AB (45)

FIG. 7. lllustration of the backward committor computed from BAD-NEUS.
(top) Reference. (bottom) BAD-NEUS results. (left) Backward committor. (right)
In(g_/(1-g_)), which emphasizes states near A and B. These results are
obtained from the same simulations as Fig. 6.
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iteration requires an average of 407 time units of sampling (arising
from 2000 walkers in each of 20 strata, with an average time before
leaving the stratum of 10.2 time steps). Each iteration is, therefore,
significantly less total computational cost than generating a single
A to B transition on average (1200 time units, as evidenced by k33)
and is amenable to parallelization.

Figure 7 shows the backward committor computed at BAD-
NEUS iteration 20 using (39) with the variables of numerical integra-
tion as the CVs. We represent the results in two ways: the committor
itself and its logit function. The former emphasizes the transition
region (q_ ~ 0.5), while the latter emphasizes values close to states
A and B (q_~ 0 and g_ ~ 1). Both show excellent agreement with
the reference.

VI. MOLECULAR TEST SYSTEM

As a more challenging test of the method, we estimate the
folding rate of the first 39 amino acids of the N-terminal domain
of ribosomal protein L9 (NTL9). The native secondary structure
of NTL9 is Sfafa sequentially. In the native state, the S-strands
form an anti-parallel B-sheet, and the a-helices pack on either side
of it. NTL9(1-39) lacks the C-terminal helix (Fig. 8). We choose
this system because it enables direct comparison with an earlier
computational study”” (described further below), which estimated
the folding to be on the millisecond timescale, consistent with
experimental studies of (full) NTL9***’ and earlier simulations of
NTL9(1-39).%

All molecular dynamics simulations were performed with
OpenMM.*! We compute CVs including backbone RMS deviations
(RMSDs) and fractions of native contacts using MDtraj.** To enable
direct comparison with Ref. 37, we model NTL9(1-39) using the
AMBER FF14SB force field*® and the Hawkins, Cramer, and Truh-
lar generalized Born implicit solvent model.**"” We use a Langevin
thermostat with a time step of 2 fs, a temperature of 300 K, and a fric-
tion constant of y = 80 ps~", which corresponds to the high-viscosity
case considered in Ref. 37.

We run the molecular dynamics for each walker in intervals of
20 ps and compute the CVs to update the index process at the end of
each interval. For BAD-NEUS, after an index process changes values
[(S(1) in (3)], we run the walker 7 additional molecular dynamics
steps to ensure that we have a total of 7 steps beyond S(1). While
this procedure allows walkers to run beyond the time that they exit
their stratum, it does not bias the results. Since our algorithm only
requires us to stop and start the molecular dynamics engine while

-
: ~ad %

v x )
| o \
4

FIG. 8. Representative NTL9(1-39) structures drawn from the (left) native and
(right) denatured states in the BAD-NEUS simulation. There is residual helical
structure in the denatured state in both our simulations and those to which we
compare.*’
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TABLE |. Hyperparameter choices used for NTL9(1-39) simulations.

Hyperparameter Kinetic statistics
Stratification CV Qand T4(Tyug(t))
Stopping rule Stratum exit
Walkers per stratum 4000
Number of strata 40
Number of iterations retained, h 4

Type of basis set k-means indicator
Number of basis functions per stratum 10

Lag time, T 10 ps

running unbiased dynamics, we do not need to modify OpenMM in
any way.

The stratification is similar to that for the Miiller-Brown
system. Namely, we set

1, 1f|Q(X)—Qk‘ < &k

(46)
0, otherwise,

Y (X) = y£ () ={

where Q(X) is the fraction of native contacts using the definition
of Ref. 46. We determine the native contacts from the crystal
structure in the Protein Data Bank (PDB), PDB ID 2HBB.” We
space 20 Q. values uniformly in the interval (0.35, 0.85) and set
& = 0.6(Qry1 — Qx), so that the regions overlap. Therefore, there
are 40 total strata. We define the folded state as full backbone
RMSD <0.28 nm and Q > 0.85; the denatured state has full backbone
RMSD >0.80 nm and Q < 0.35.

To initialize the simulation, we minimize the energy starting
from the PDB structure, draw velocities from a Maxwell-Boltzmann
distribution for 380 K, and simulate for 80 ns at that temperature;
this denatures the protein (Fig. 8). We sample 4000 frames in each of
the 40 strata from this trajectory and weight them uniformly; this set
forms our starting walkers, {X;, Jo, 1/N}Y,, where N = 40. We use
a lag time of 10 ps, and we retain a history of & = 4 iterations. The
initialization pipeline, integrator settings, and stratification choice
are the same between NEUS and BAD-NEUS. The hyperparameter
choices are summarized in Table I.

To construct the basis set for BAD-NEUS, we define the fol-
lowing seven CVs: (1) the fraction of native contacts, (2) the full
backbone RMSD, (3-5) the backbone RMSD for each of the three
B-strands taken individually (residues 1-4, 17-20, and 36-38), (6)
the backbone RMSD for the a-helix (residues 22-29), and (7) the
backbone RMSD for the three f-strands together. Our basis set
consists of ten indicator functions on each stratum constructed by
k-means clustering on the seven-dimensional CV space. At each
iteration (i.e., one pass through the outer loop in Algorithm 4), we
determine the basis functions for stratum j by taking the associated
cluster centers from the prior iteration and refining them with ten
iterations of Lloyd’s algorithm*® using all the samples with index
process Ji = j from the last h iterations.

Here, we focus on the convergence of the folding rate; a detailed
analysis of the NTL9 folding mechanism (with and without the
C-terminal helix) based on potentials of mean force and commit-
tors will be presented elsewhere (see also Ref. 49). As mentioned
earlier, we compare our results to those of Ref. 37, which estimates
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FIG. 9. Comparison of inverse rates for NTL9(1-39) folding from BAD-NEUS and
haMSM-WE. The haMSM-WE results are from Ref. 37. The shaded area shows
the Bayesian 95% credible interval reported in that publication.

rates using haMSMs applied to data from WE (haMSM-WE). As
discussed in Sec. I, BAD-NEUS goes beyond haMSM-WE by using
the basis set (Markov model) to accelerate the convergence of the
sampling rather than just the rate estimates.

Figure 9 shows the inverse rate constant obtained from BAD-
NEUS and haMSM-WE."” The average inverse rate over the final
15 iterations of BAD NEUS is 4.74 ms, with a standard deviation of
0.99 ms, while the authors of Ref. 37 used a Bayesian bootstrapping
approach to estimate a confidence interval of 0.17-1.9 ms, which
they state is likely an underestimate of the true 95% confidence inter-
val owing to the limited number of independent samples used in
the analysis. Given that we have only a single BAD NEUS run, the
standard deviation of the final 15 (highly correlated) inverse rate
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FIG. 10. (Top) BAD NEUS bin weights for the NTL9(1-39) system. Strata with
indices less than 20 correspond to the folding direction (trajectories last in the
denatured state), and strata with indices greater than or equal to 20 correspond to
the unfolding direction (trajectories last in the native state). (Bottom) Deviation of
weights (In (z)) from those in the last iteration.
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estimates is also likely a significant underestimate of our statistical
error. We thus view the results in Fig. 9 as in agreement.

We examine the weights in more detail in Fig. 10. The increase
in the inverse rate around iteration 35 in Fig. 9 [and concomitant
decrease below 5 in Fig. 10 (bottom)] corresponds to a shift in the
weights of strata with indices close to 25 [compare iterations 30 and
45 in Fig. 10 (top)]. These strata contain walkers that are nearly
denatured from trajectories that last visited the native state, and the
shift in weights in that region stabilizes the denatured state relative
to the native state.

We run each walker until its index process changes and then
an additional 10 ps, so the trajectory length and time per iteration
are random variables. For the NTL9 simulations, the average tra-
jectory length was 50 ps, and the average time per iteration was
4 ps. The results in Fig. 9 thus required about 204 ys in total, com-
parable to the 252 s for the haMSM-WE calculation. The time to
compute the rate constant by BAD-NEUS and haMSM-WE is much
less than the millisecond timescale of a single folding event, which
we also expect to be the time to converge WE without any acceler-
ation strategy. BAD-NEUS actually provides some speedup relative
to haMSM-WE in the sense that it provides potentials of mean force
and committors in its present form, whereas a calculation in the
unfolding direction (performed either separately or simultaneously,
as here) would be required to obtain these statistics from haMSM-
WE. By the same token, we likely could reduce the computation time
for BAD-NEUS by “teleporting” walkers from B to A and comput-
ing only the forward rate.”” However, we expect most investigators
would seek the mechanistic information provided by the potentials
of mean force and committor (which can be used to also obtain reac-
tive currents’*) if they are investing the computational resources to
compute the rate, and free energies computed from ratios of forward
and backward rates can serve as checks on the rates.”’

VIl. CONCLUSIONS

Trajectory stratification methods enable enhanced sampling
for estimating both thermodynamic (equilibrium) and kinetic
(nonequilibrium) statistics. Here, we introduced a new trajectory
stratification method, BAD-NEUS, which converges faster than
existing ones. We show that our method is a natural generalization
of NEUS and EM, which in turn can be formulated as extensions
of WE. In the process, we show that WE as originally formulated'
converges no faster than unbiased dynamics. The key modifica-
tion introduced in NEUS and elaborated here is the insertion of an
approximation to the steady-state distribution before the resampling
step. Importantly, we design this approximation algorithm so that it
preserves the steady-state distribution of the dynamics and, there-
fore, does not introduce systematic errors into the algorithm in the
large-data limit.

Our approach defines precise ingredients needed for itera-
tive restart strategies to converge to the correct fixed point (i.e.,
a fixed point consistent with unbiased dynamics). In this way,
it both restricts and generalizes iterative restart strategies previ-
ously proposed,”'” and we provide numerical demonstrations that
such strategies can accelerate the convergence of both equilib-
rium and kinetic statistics. In the future, it would be interesting
to compare BAD-NEUS with the WE milestoning approach, which
instead embeds WE simulations within coarse regions (i.e., between
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milestones).”””” While this approach also combines fine and coarse
information, it is fundamentally different from BAD-NEUS and
haMSM-WE in that it introduces an additional sampling rather than
analysis algorithm at the fine level. Indeed, adding an element of
stratification to the WE simulations within WE milestoning may
result in further speedups. The similarities and differences between
various approaches highlight the importance of a theoretical frame-
work for relating algorithms like the one that we introduce here;
we believe it can serve as the basis for a thorough, systematic cat-
aloging of methods for computing dynamical statistics, analogous
to recent attempts for enhanced sampling methods for equilibrium
statistics.”

In the present study, we use a simple basis expansion to model
the steady-state distribution, but our strategy is general, and alterna-
tives are also possible. One could use neural networks to learn the
steady-state distribution and/or the basis functions.”””’ One could
also incorporate memory.” These alternatives, which could be used
separately or together, alleviate the need to identify basis sets and/or
CVs that describe the dynamics well and, in the case of memory,
may reduce the sampling required. We thus expect our method to
be a significant step toward accurate estimates of rates for protein
folding and similarly complex molecular conformational changes.
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APPENDIX: DERIVATION OF (16)

Here, we derive (16) by modifying the proof from Ref. 55. Let
Z: be a Markov process, T be the operator defined in (41), and
Sy = Y1) g(Z) be the partial sum of a function g. Let w(z) satisfy
the linear problem

(Th = D)w(2) = -(g(2) - Ex[g]), (A1)

subject to the constraint E,[w] = 0.
Consider the process,

Uy = Sn = Ex[g]n + w(Zy). (A2)

Then Uy is a martingale with respect to Zy, ..., Z;. To see this, we

compute

E[Uss1 - UilZor. .. 2] = E[Sis1 - Enlg](t 4 1) + 0(Zis1)
= (St = Exlg]t + w(Z1))|20, - . . 24]

=E[g(Z) - Ex[g] + 0(Zi+1) — w(Z)| 2o, . . . Zt]

=g(Zt) - Exlg] + E[w(Zi11) -~ w(Z1)| 20, - - - Zi]
=g(Z) = Erlg] + (T1 - Dw(Z:)
=8(Z1) - Exlg] - g(Z) + Exlg]

=0. (A3)

We refer the reader to Ref. 55 for a more technical discussion and
conditions under which the relevant expectations are bounded such
that we may apply the optional stopping theorem. Then, for any
stopping time T with E[T] < oo,

0=E[Ur - Uo] = E[Sr] - Ex[g]E[T] + E[w(Zr)] - E[w(Z)],

(A4)
which yields the result,
B[ g(Z)] _ E[w(%)] - E[w(Zr)]
I - ¢ B

Now take Z; = (X1,];,. .. X141, J14,) and take the stopping time
to be S(1). In the case where Xo,], is distributed according
to the steady state flux distribution 7(dx, k), (9) implies that
(Xr,J1) ~ 7(dx, k), and hence the distribution of Zy and Zr are the
same, and so the residual term in (A5) is zero. In this case, we note
that the distribution of (Xo, J,) is given by

n(dx) = P[Xo € dx], (A6)
= Z IP[X() €dx | ]0 = k]PU() = k], (A7)

k
= 3 2" (dxlk). (A8)

k

The joint distribution for (X, ]) is 7(dx, k) = Z*7(dx|k). Therefore,

S(1)-1
E Z g(Xt,]t,---,XtJrr,]Hr)

t=

. S(1)-1
= Z z /‘E(dx|k)EX0:x,/0:k Z g(XrJz,. o Xevn Jiir) |
k t=0
(A9)

ARTICLE pubs.aip.org/aip/jcp

and
E[s(1)] =3 z* f T(dxk)Ex, sk [S(D]. (A10)
k

Substituting these into (A5) and remembering that the residual term
is zero yields (16).
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