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ABSTRACT

Many chemical reactions and molecular processes occur on time scales that are significantly longer than those accessible by direct simu-
lations. One successful approach to estimating dynamical statistics for such processes is to use many short time series of observations of
the system to construct a Markov state model, which approximates the dynamics of the system as memoryless transitions between a set of
discrete states. The dynamical Galerkin approximation (DGA) is a closely related framework for estimating dynamical statistics, such as com-
mittors and mean first passage times, by approximating solutions to their equations with a projection onto a basis. Because the projected
dynamics are generally not memoryless, the Markov approximation can result in significant systematic errors. Inspired by quasi-Markov
state models, which employ the generalized master equation to encode memory resulting from the projection, we reformulate DGA to
account for memory and analyze its performance on two systems: a two-dimensional triple well and the AIB9 peptide. We demonstrate
that our method is robust to the choice of basis and can decrease the time series length required to obtain accurate kinetics by an order of
magnitude.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0187145

I. INTRODUCTION

Models that seek to treat complex systems with high fidelity
typically have many variables (e.g., the positions and velocities of all
the atoms in a molecular system). However, often the dynamics of
interest of such models can be largely captured by a relatively small
number of variables that are functions of the original ones [collec-
tive variables (CVs)]. Projecting the dynamics on to these CVs can
facilitate analysis, by both improving the convergence of statistics
and simplifying interpretation. However, the coupling of the CVs to
orthogonal ones generally introduces a form of memory in which
the projected dynamics depend not only on the states of the CVs but
also on their histories.

When the dynamics have a separation of time scales, it may be
possible to find CVs that minimize the memory so that it can be
neglected. This is the idea behind Markov State Models (MSMs), in
which the dynamics are treated as hops between discrete states, and
a large number of states are often used in the hope of minimizing the
time for equilibration within states. However, not all dynamics have

a clear separation of time scales, and, even if they do, finding CVs
that minimize the memory can be challenging.1

Thus, various strategies have been introduced to account for
memory. One is to consider explicit histories of the CVs, as in
delay embedding.2–7 However, this increases the effective num-
ber of variables, mitigating the advantages of projecting described
above. An alternative is to account for the memory through the
Mori–Zwanzig formalism.8,9 In this approach, the projected dynam-
ics are represented through a generalized Langevin/master equation
(GLE/GME) that involves a time integral over the CV histories and a
kernel. This approach is physically well-motivated and can, in prin-
ciple, yield highly accurate dynamics. In practice, it can be hard to
determine the memory kernel.

Traditionally, researchers chose the memory kernel based on
physical intuition,10,11 and many studies still assume a specific func-
tional form for the kernel (most often exponential) when estimating
it from data. A few studies allow for more flexibility by introducing
an expansion in basis functions12–15 or alternative fitting forms16,17

for the kernel or its Laplace/Fourier transforms,18–20 and these show
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that it does not have a simple universal functional form. However,
solving for the coefficients of the expansion can be numerically ill-
posed,21 and data-driven parameterization of GLEs/GMEs remains
an active area of research.22–26

Recently, approaching the problem from the perspective of
improving the accuracy of MSMs with relatively small numbers of
states,27 Cao and co-workers obtained the memory kernel at suc-
cessive discrete time points by directly inverting a GME for the
state-to-state transition matrix.27–29 This enabled them to signif-
icantly shorten the lag times needed to construct the transition
matrix, which reduced the amount of simulation needed to converge
statistics and increased the time resolution of the model; the small
number of states facilitates interpretation.

Like many MSM studies, the studies described immediately
above focus on computing implied time scales (via time correlation
functions rather than directly from the eigenvalues of the transition
matrix). However, MSMs can be used to solve for statistics that pro-
vide more direct insights into the mechanisms of specified events,
such as the committor,30 and we recently introduced a closely related
framework that solves operator equations for such statistics, which
we term dynamical Galerkin approximation (DGA).6,7 The goal of
this paper is to show howmemory can improve the accuracy of such
statistics.

To this end, we incorporate memory into DGA by inter-
preting it as an iterative algorithm and applying a discrete-time
Mori–Zwanzig formalism. We present formulas for computing the
aforementioned statistics and numerically demonstrate that mem-
ory, indeed, improves results for a two-dimensional triple well and
the AIB9 peptide.

II. THEORY

Here, we briefly review DGA as previously presented.6,7 We
then recast it as an iteration to show that its solutions can be
viewed as projections; the iteration and resulting projection opera-
tors lead naturally to a discrete-time GME and, in turn, an improved
estimator. This estimator can be used without iteration.

A. Form of the problem

Let Xt denote a time-homogeneous ergodic Markov process at
time t. Our goal is to compute a statistic u of this process that satisfies
an equation of the following form:

Ȧ
0
u = −ḃ

0
, (1)

where Ȧ
0 is a linear operator that describes the time evolution of

expectations of functions of Xt (akin to a time derivative) and ḃ 0

is the rate of change in u at Xt . We can interpret (1) as finding a
time-invariant solution to the equation specifying the dynamics of
u,

dut

dt
= Ȧ

0
ut + ḃ

0
. (2)

Integrating (2) over a time interval Ä > 0 that we call the lag
time yields the Richardson iteration,

ut = ut−Ä + (A
Ä
ut−Ä + b

Ä), (3)

where A
Ä
= ∫ Ä

0 C
Ä′
Ȧ

0 dÄ′ = C
Ä
− I , bÄ = ∫ Ä

0 C
Ä′ ḃ 0 dÄ′, C

Ä
= e Ȧ

0Ä ,
and I is the identity operator. Equation (3), as we discuss further
in Sec. II C, corresponds to an iteration in u that is consistent with
the dynamics in (2). The fixed point of the iteration is the finite time
analog of (1),

A
Ä
u = −b

Ä
. (4)

For example, the mean time to first enter the set B starting from state
x, u(x) ∶= m(x) = E[TB ∣ X0 = x], where TB = min{t ≥ 0 ∣ Xt ∈ B},
satisfies7

(SÄ
B − I)m = −+

Ä

0
S
t
B1Bc

dt, (5)

subject to the boundary conditionm(x) = 0 for x ∈ B. Here,

S
Ä
B f (x) = E[ f (XÄ∧TB

) ∣ X0 = x] (6)

is the stopped transition operator,

+
Ä

0
S
t
B1Bc
(x) dt = E[Ä ' TB ∣ X0 = x], (7)

Ä ' TB = min{Ä,TB}, and 1Bc(x) is an indicator function that equals

one for x ∈ Bc and zero for x ∉ Bc. We define other statistics of
interest in Sec. III.

B. Dynamical Galerkin approximation (DGA)

The DGA solves (4) by expanding u in a basis and estimat-
ing the resulting matrix elements by averages over random samples.
We represent the basis by a vector ϕ of functions that satisfy
homogeneous boundary conditions. Then, we approximate u by

û = û0 + ϕ
T
v, (8)

where û0 is a “guess function” for u that satisfies the boundary condi-
tions, v is a vector of coefficients, and we use the symbol ˆ to denote
functions that can be represented by (8). To solve for the coefficients,
we substitute (8) into (4), multiply from the left by ϕ, and integrate
over an arbitrary distribution of samples of initial conditions ¾. This
yields

G
Ä
v = −h

Ä
, (9)

where

G
Ä
= ⟨ϕ, AÄ

ϕ
Tð, (10)

h
Ä
= ⟨ϕ, AÄ

û0 + b
Äð, (11)

ALGORITHM 1. DGA.

GÄ
= ⟨ϕ, AÄϕTð

hÄ = ⟨ϕ, AÄû0 + b
Äð

v = −(GÄ)−1hÄ

û Ä
= û0 + ϕ

T
v

uÄ = û Ä
+ (AÄû Ä

+ bÄ)
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and ⟨ f , gð = ∫ f (x)g(x)¾(x) dx. The matrix GÄ and vector hÄ are
estimated from averages over trajectories of length Ä; explicit expres-
sions are given in Sec. III. Given these estimates, (9) can be solved
directly for v. DGA is summarized in Algorithm 1. We select Ä by
increasing its value until the estimate of u appears to converge.

C. Iterative solution

The form in (3) and our recent use of it in the context of inex-
act numerical linear algebra31 suggest that one can view DGA as the
fixed point of the inexact iteration,

u
Ä
t = û

Ä
t−Ä + (AÄ

û
Ä
t−Ä + b

Ä), (12a)

û
Ä
t = û

Ä
t−Ä + P(uÄt − ûÄt−Ä), (12b)

where P is an operator that projects functions onto linear combina-
tions of basis functions,

P f = ϕ
T(K0)−1⟨ϕ, f ð (13)

and

K
t
= ⟨ϕ, Ct

ϕ
Tð. (14)

We use the superscript Ä on uÄt to distinguish that it comes from the
inexact iteration (12) involving the projected function ûÄt (and thus
a layer of approximation) rather than the exact iteration (3). The
fixed points are indicated without subscripts: uÄ = limt→∞ uÄt and û

Ä

= limt→∞ ûÄt .
We now identify the approximation associated with DGA by

comparing the inexact iteration (12) with the exact iteration,

ut = ut−Ä + (AÄ
ut−Ä + b

Ä), (15a)

ût = ût−Ä + P(ut − ût−Ä). (15b)

Let us define the complementary projection

Q = I − P. (16)

We note that Q(ût − ût′) = 0 for any t and t′ since Qϕ = 0 and

ût − ût′ = ϕ
T
v for some v (we work with differences because we do

not assume Qû0 = 0). By substituting P = I − Q into (15b) and
replacing t with t − Ä, we find that ut−Ä = ût−Ä + Q(ut−Ä − ût−2Ä); in
turn, by substituting this expression into (15a), we can express (15)
as

ut = ût−Ä + (AÄ
ût−Ä + b

Ä) + C
Ä
Q(ut−Ä − ût−2Ä), (17a)

ût = ût−Ä + P(ut − ût−Ä). (17b)

The fixed point û = limt→∞ ût satisfies P(AÄû + bÄ) + PC
Ä
Q(u −

û) = 0. Comparing (12a) and (15a) shows that they both use the pre-
vious estimate (ûÄt−Ä or u

Ä
t−Ä , respectively) to construct an improved

estimate uÄt . Because û
Ä
t−Ä can be represented using the basis, we only

need length Ä trajectories to approximate uÄt . Hence, DGA makes
the approximation PC

Ä
Q(u − û) ≈ 0, which avoids the need for

trajectories longer than Ä. In contrast, the exact iteration requires
infinite-length trajectories since the last term of (17a) prevents ût
from depending on ût−Ä alone.

To understand the need for memory, we observe that (15a)
specifies the Markovian dynamics for ut : the value of ut at the cur-
rent iteration t is fully determined by the value of ut−Ä at the last
iteration t − Ä. DGA amounts to making the approximation that the
dynamics of the projected function ût observed at discrete time inter-
vals Ä is Markovian. This perspective suggests that we can derive
an improved estimator by mitigating the Markov approximation.
We do this by using projected statistics at multiple times (i.e., using
memory), rather than a single time, as we now describe.

D. Iterative solution with memory

Our starting point is (17a) with Ä replaced by Ã, where Ä/Ã is a
positive integer,

ut = ût−Ã + (AÃ
ût−Ã + b

Ã) + C
Ã
Q(ut−Ã − ût−2Ã). (18)

The underlined term is not representable by the basis and prevents
solving for û by a fixed point iteration with length Ä trajectories. By
repeatedly substituting (18), we obtain

ut = ût−Ã +
2

∑
n=1

(CÃ
Q)n−1(AÃ

ût−nÃ + b
Ã)

+ (CÃ
Q)2(ut−2Ã − ût−3Ã)

⋮

= ût−Ã +
Ä/Ã

∑
n=1

(CÃ
Q)n−1(AÃ

ût−nÃ + b
Ã)

+ (CÃ
Q)Ä/Ã(ut−Ä − ût−Ä−Ã), (19)

where the underline indicates the location of the next substitution.
We now have an alternative iteration to (17) that depends on the last
Ä/Ã projections,

ut = ût−Ã +
Ä/Ã

∑
n=1

(CÃ
Q)n−1(AÃ

ût−nÃ + b
Ã)

+(CÃ
Q)Ä/Ã(ut−Ä − ût−Ä−Ã), (20a)

ût = ût−Ã + P(ut − ût−Ã). (20b)

Equation (20a) is similar to a discrete-time GME (e.g., Ref. 27) or a
discrete-time Mori–Zwanzig decomposition (e.g., Ref. 32 for eigen-
decomposition of the transition operator). It describes ut at iteration
t by its projection ût−Ã at iteration t − Ã (Markov approximation, first
term and n = 1 of the second term), the projections ût−nÃ at previ-
ous iterations t − nÃ (memory, n > 1 of the second term), and the
complementary projection Qut−Ä at time t − Ä (orthogonal dynam-
ics, last term). The approximation used in DGA is the first two terms
of (20a) with Ã = Ä (i.e., the previous solution and the first term of the
sum). The remaining terms correct for the Markov approximation
by introducing memory.

Omitting the last term of (20a) yields a computable iteration,
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ALGORITHM 2. DGA with memory.

for n ∈ {1, . . . , Ä/Ã} do
KnÃ
= ⟨ϕ, CnÃϕTð

GnÃ
= ⟨ϕ, AnÃϕTð

hnÃ = ⟨ϕ, AnÃ û0 + b
nÃð

GÃ,nÃ
= GnÃ

−3n−1
n′=1 K

(n−n′)Ã(K0)−1GÃ,n′Ã

hÃ,nÃ = hnÃ −3n−1
n′=1 K

(n−n′)Ã(K0)−1hÃ,n′Ã
end for

v = −(GÃ,Ä)−1hÃ,Ä
û Ã,Ä
= û0 + ϕ

T
v

u
Ã,Ä
= û

Ã,Ä
+ (AÄ

û
Ã,Ä
+ b

Ä)
−∑Ä/Ã

n=1
C
Ä−nÃ

ϕ
T(K0)−1(GÃ,nÃ

v + h
Ã,nÃ)

u
Ã,Ä
t = û

Ã,Ä
t−Ã +

Ä/Ã

∑
n=1

(CÃ
Q)n−1(AÃ

û
Ã,Ä
t−nÃ + b

Ã), (21a)

û
Ã,Ä
t = û

Ã,Ä
t−Ã + P(uÃ,Ät − û

Ã,Ä
t−Ã), (21b)

with a fixed point that solves

Ä/Ã

∑
n=1

P(CÃ
Q)n−1(AÃ

û
Ã,Ä
+ b

Ã) = 0. (22)

Comparing (20) and (22), we see that the latter corresponds to

making the approximation P(CÃ
Q)Ä/Ã(u − û) ≈ 0. When the basis

captures much of the slower dynamics of the system, we expect

the DGA with memory approximation P(CÃ
Q)Ä/Ã(u − û) ≈ 0 to

be better than the DGA approximation PC
Ä
Q(u − û) ≈ 0 because

the additional applications of Q remove these slower dynamics. We
show this numerically in Sec. IV.

E. DGA with memory

Here, we derive the DGA with memory algorithm, which we
summarize in Algorithm 2. As in (8), we expand û Ã,Ä in a basis. Sub-

stituting û Ã,Ä
= û0 + ϕ

T
v into (22) and applying ⟨ϕi, P f ð = ⟨ϕi, f ð

leads to the linear system,

G
Ã,Ä
v = −h

Ã,Ä
, (23)

where

G
Ã,Ä
=

Ä/Ã

∑
n=1

⟨ϕ, (CÃ
Q)n−1AÃ

ϕ
Tð, (24)

h
Ã,Ä
=

Ä/Ã

∑
n=1

⟨ϕ, (CÃ
Q)n−1(AÃ

û0 + b
Ã)ð. (25)

We can calculate matrices GÃ,Ä and hÃ,Ä by expanding
each Q in the expectations as ⟨ f , Qgð = ⟨ f , gð − ⟨ f , Pgð = ⟨ f , gð
− ⟨ f ,ϕTð(K0)−1⟨ϕ, gð until none remain. For instance, to calculate
the term hÃ,3Ã , we expand

h
Ã,3Ã
= ⟨ϕ, bÃ + C

Ã
Qb

Ã
+ (CÃ

Q)2bÃð
= ⟨ϕ, bÃ + C

Ã
b
Ã
+ C

2Ã
b
Ãð

− ⟨ϕ, CÃ
P(bÃ + C

Ã
Qb

Ã)ð − ⟨ϕ, C2Ã
Pb

Ãð
= h

3Ã
− K

Ã(K0)−1hÃ,2Ã − K2Ã(K0)−1hÃ ,
h
Ã,2Ã
= ⟨ϕ, bÃ + C

Ã
Qb

Ãð
= ⟨ϕ, bÃ + C

Ã
b
Ãð − ⟨ϕ, CÃ

Pb
Ãð

= h
2Ã
− K

Ã(K0)−1hÃ.
The underlined expectations contain Q and must be expanded in
terms of matrices that do not contain Q, which can be directly eval-
uated as averages over random samples. We have rearranged and
grouped terms for numerical stability because GÃ,Ä and hÃ,Ä can be
very sensitive to how they are computed. Using this approach, we
can derive the following iterative formulas:

G
Ã,Ä
= G

Ä
−

(Ä/Ã)−1

∑
n=1

K
Ä−nÃ(K0)−1GÃ,nÃ

, (26a)

h
Ã,Ä
= h

Ä
−

(Ä/Ã)−1

∑
n=1

K
Ä−nÃ(K0)−1hÃ,nÃ. (26b)

A similar iteration was used to calculate the discretized memory
kernel in Ref. 27 and the transfer tensors in Ref. 33.

After we solve (23), we can compute a stochastic approximation
of u,

u
Ã,Ä
= û

Ã,Ä
+

Ä/Ã

∑
n=1

(CÃ
Q)n−1(AÃ

û
Ã,Ä
+ b

Ã), (27)

which is the fixed point of (21a). In this case, we expand each

Q f = f − ϕT(K0)−1⟨ϕ, f ð from left to right until only Qs inside
expectations remain (which can be grouped into matrices GÃ,nÃ and
hÃ,nÃ),

u
Ã,Ä
= û

Ã,Ä
+ (AÄ

û
Ã,Ä
+ b

Ä) − Ä/Ã

∑
n=1

C
Ä−nÃ

¶u
Ã,Ä
n , (28)

where ¶uÃ,Än = ϕ
T(K0)−1(GÃ,nÃ

v + hÃ,nÃ). As in (26), we have com-
bined terms in (28) for numerical stability.

We select Ã and Ä by increasing Ä with Ä/Ã fixed until a statis-
tic appears to converge; we try this for a few small integer values of
Ä/Ã. As we show numerically in Sec. IV, only a few correction terms
(i.e., small Ä/Ã) are generally needed to obtain most of the benefit of
including memory.

III. DYNAMICAL STATISTICS

Here, we introduce the statistics that we want to compute and
the equations that they solve. We describe a variety of statistics
beyond theMFPT that can be solved using DGA or DGAwithmem-
ory. Provided that a statistic can be written in the form (4), we can
solve for it with DGA or DGA with memory by evaluating (9) or
(23), respectively, with appropriate Kt , Gt , and ht matrices.
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A. Stationary distribution

The stationary distribution Ã is invariant with respect to time
translation, and therefore,

+ Ã(x) f (x) dx = + Ã(x)T t
f (x) dx (29)

for all functions f , where the transition operator

T
t
f (x) = E[ f (Xt) ∣ X0 = x] (30)

propagates the expectations of functions f forward-in-time. The
sampling distribution ¾ can be reweighted to obtain the stationary
distribution Ã via w = Ã/¾,7,34 which satisfies an operator equation
in the form of (4),

((T t)† − I)w = 0, (31)

where (T t)† denotes the adjoint of T
t with respect to ¾:⟨ f , (T t)†gð = ⟨g, T t f ð for all functions f and g. We expand

ŵ = ŵ0 + ϕ
T
v, where ∫ ŵ0(x)¾(x) dx = 1 and ∫ ϕ(x)¾(x) dx = 0;

these conditions ensure that the resulting estimates of ŵ and w are
normalized. The corresponding matrices are

K
t
= ⟨ϕ, (T t)†ϕTð
= E[ϕ(Xt)ϕT(X0) ∣ X0 ∼ ¾], (32a)

G
t
= ⟨ϕ, ((T t)† − I)ϕTð
= E[(ϕ(Xt) − ϕ(X0))ϕT(X0) ∣ X0 ∼ ¾], (32b)

h
t
= ⟨ϕ, ((T t)† − I)ŵ0ð
= E[(ϕ(Xt) − ϕ(X0))ŵ0(X0) ∣ X0 ∼ ¾], (32c)

and we approximate the expectations of functions f with respect to
Ã as

⟨ f ,wÃ,Äð = E
⎡⎢⎢⎢⎢⎣
f (XÄ)ŵ Ã,Ä(X0) − Ä/Ã

∑
n=1

f (XÄ−nÃ)¶wÃ,Ä
n (X0)

RRRRRRRRRRRX0 ∼ ¾

⎤⎥⎥⎥⎥⎦
.

(33)

B. Mean first passage time

The mean first passage time (MFPT)

m(x) = E[TB ∣ X0 = x] (34)

is the expected time until a trajectory starting at x first enters B. As
noted above, it satisfies an equation of the form (4),

(St
B − I)m = −+ t

0
S
t′

B1Bc
dt
′

, (35)

subject to the boundary condition m(x) = 0 for x ∈ B [cf. (5)–(7)].
Physically, this equation states that applying S

t
B to m(x) reduces

the mean remaining time to enter by E[t ' TB ∣ X0 = x]. The
corresponding matrices are

K
t
= ⟨ϕ, St

Bϕ
Tð

= E[ϕ(X0)ϕT(Xt∧TB
) ∣ X0 ∼ ¾], (36a)

G
t
= ⟨ϕ, (St

B − I)ϕTð
= E[ϕ(X0)(ϕT(Xt∧TB

) − ϕT(X0)) ∣ X0 ∼ ¾], (36b)

h
t
= ⟨ϕ, (St

B − I)m̂0 ++
t

0
S
t′

B1Bc
dt
′⟩

= E[ϕ(X0)(m̂0(Xt∧TB
) − m̂0(X0) + (t ' TB)) ∣ X0 ∼ ¾], (36c)

andm can be approximated from its projection using

m
Ã,Ä(x) = E

⎡⎢⎢⎢⎢⎣
m̂

Ã,Ä(XÄ∧TB
) + (Ä ' TB)

−

Ä/Ã

∑
n=1

¶m
Ã,Ä
n (X(Ä−nÃ)∧TB

)RRRRRRRRRRRX0 = x

⎤⎥⎥⎥⎥⎦
. (37)

C. Forward committor

The forward committor

q(x) = E[1B(XTA∪B
) ∣ X0 = x] (38)

is the probability that a trajectory starting at x will enter B before A.
The forward committor satisfies

(St
A∪B − I)q = 0 (39)

with boundary condition q(x) = 1B(x) for x ∈ A ∪ B. The corre-
sponding matrices are

K
t
= ⟨ϕ, St

A∪Bϕ
Tð

= E[ϕ(X0)ϕ(Xt∧TA∪B
) ∣ X0 ∼ ¾], (40a)

G
t
= ⟨ϕ, (St

A∪B − I)ϕTð
= E[ϕ(X0)(ϕ(Xt∧TA∪B

) − ϕ(X0)) ∣ X0 ∼ ¾], (40b)

h
t
= ⟨ϕ, (St

A∪B − I)q̂0ð
= E[ϕ(X0)(q̂0(Xt∧TA∪B

) − q̂0(X0)) ∣ X0 ∼ ¾], (40c)

and q can be approximated as

q
Ã,Ä(x) = E

⎡⎢⎢⎢⎢⎣
q̂
Ã,Ä(XÄ∧TA∪B

) − Ä/Ã

∑
n=1

¶q
Ã,Ä
n (X(Ä−nÃ)∧TA∪B

)RRRRRRRRRRRX0 = x

⎤⎥⎥⎥⎥⎦
. (41)

D. Backward committor

The backward committor is the probability that a trajectory
ending at x exited A after B,
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q̃(x) = E[1A(X−T̃A∪B
) ∣ X0 = x], (42)

where T̃A∪B = min{t ≥ 0 ∣ X−t ∈ A ∪ B}. The backward committor
satisfies

(S−tA∪B − I)q̃ = 0 (43)

with boundary condition q̃(x) = 1A(x) for x ∈ A ∪ B.
S
−t
A∪B f (x) = E[ f (X−(t∧T̃A∪B)

) ∣ X0 = x] (44)

is the stopped transition operator for the time-reversed process. We
take conditional expectations backward-in-time with respect to the
time-reversed process: given an infinite, statistically stationary trajec-
tory X, we look backward in time from each time t, where Xt = x.
Mathematically,

E[ f (X
−(t∧T̃A∪B)

) ∣ X0 = x]
= + E[ f (X

−(t∧T̃A∪B)
) ∣ X0 = x,X−Ä = x

′]Ã(x′) dx′, (45)

which follows from the definition of conditional probability and
Ã(x) = P[X−Ä = x]. Because Ã(x) = w(x)¾(x) = P[X0 = x] = P[X−Ä
= x],
⟨g, S−tA∪B f ð = + E[g(X0) f (X−(t∧T̃A∪B)

) ∣ X0 = x]¾(x) dx
= E[g(X0) f (X−(t∧T̃A∪B)

) w(X−Ä)
w(X0) ∣X−Ä ∼ ¾], (46)

as we show explicitly in Ref. 7 (with the zero of time shifted). The
corresponding matrices are

K
t
= ⟨ϕ, S−tA∪BϕTð
= E[ϕ(X0)ϕ(X−(t∧T̃A∪B)

) w(X−Ä)
w(X0) ∣X−Ä ∼ ¾], (47a)

G
t
= ⟨ϕ, (S−tA∪B − I)ϕTð
= E[ϕ(X0)(ϕ(X−(t∧T̃A∪B)

) − ϕ(X0)) w(X−Ä)
w(X0) ∣X−Ä ∼ ¾], (47b)

h
t
= ⟨ϕ, (S−tA∪B − I)ˆ̃q0ð
= E[ϕ(X0)(ˆ̃q0(X−(t∧T̃A∪B)

) − ˆ̃q0(X0)) w(X−Ä)
w(X0) ∣X−Ä ∼ ¾]. (47c)

We estimate q̃ as

q̃
Ã,Ä(x) = E

⎡⎢⎢⎢⎢⎣
ˆ̃q
Ã,Ä(X

−(Ä∧T̃A∪B)
) − Ä/Ã

∑
n=1

¶q̃
Ã,Ä
n (X−((Ä−nÃ)∧T̃A∪B)

)RRRRRRRRRRRX0 = x

⎤⎥⎥⎥⎥⎦
.

(48)

IV. NUMERICAL EXAMPLES

Here, we demonstrate our method on two systems. First, we
illustrate our method with a two-dimensional triple-well potential,
for which an exact reference can be calculated using finite differ-
ences. Next, we test our method on a more complex system, AIB9,
for which we have long, unbiased trajectories as a reference.

A. Two-dimensional triple-well

Here, we illustrate DGA with memory on a simple model
system. The system is a drift–diffusion process obeying the
Fokker–Planck equation,

∂tpt(x) = ∇ ⋅ (pt(x)∇V(x)) + ´−1∇2
pt(x), (49)

where ´ is the inverse temperature, which we set to ´ = 2, x
= (Ç1, Ç2), and V is the potential35

V(Ç1, Ç2) = 3e−Ç21−(Ç2−1/3)2 − 3e−Ç21−(Ç2−5/3)2
− 5e

−(Ç1−1)
2
−Ç22 − 5e

−(Ç1+1)
2
−Ç22

+ 0.2Ç
4
1 + 0.2(Ç2 − 1/3)4. (50)

FIG. 1. Potential energy surface of the two-dimensional triple well. The boundaries
of sets A and B are indicated using dotted lines. (a) Contours are drawn every
0.5´−1. (b) 8 × 8 grid basis used for DGA and DGA with memory.
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FIG. 2. Reference statistics for the two-dimensional triple well.

We define the reactant state A and product state B as circles with
radii 0.25 centered at (±1.05,−0.05), respectively [Fig. 1(a)].

We discretize the system on an 80 × 80 grid of equally spaced
points (with spacing h = 0.05) in the range [−2, 2] × [−1.5, 2.5]. The
dynamics of this discretized system follow the master equation,6,31

∂tpt(x) =∑
x′

pt(x
′)L(x′, x), (51)

where the elements of the matrix L are

L(x, x′) =
2´−1

h2
1

1 + e−´(V(x)−V(x
′))

(52)

for x − x′ ∈ {(0,±h), (±h, 0)}, L(x, x) = −3x′≠x L(x, x
′), and

L(x, x′) = 0 otherwise. We use L to calculate finite-time operators,
such as (T t)† and S

t
B. These expressions are given in Appendix B.

We then directly compute the DGA matrices by taking inner
products. For example, we compute (32a) as

⟨ϕ, (T t)†ϕTð =∑
x,x′

¾(x)ϕ(x)(T t)†(x, x′)ϕT(x′),

where (T t)† f (x) = 3x′ (T
t)†(x, x′) f (x′).

We calculate reference statistics by directly solving (31), (35),
(39), and (43). For the DGA calculations, we use a basis of 64
indicator functions on an equally spaced 8 × 8 grid in the range
[−2, 2] × [−1.5, 2.5], as shown in Fig. 1(b). Operationally, we first

calculate the stationary distribution Ã using (33) with an arbitrary
distribution of initial conditions and ŵ0 = 1; we subtract the mean
from each basis function to normalize Ã. For other statistics, we use
the resulting stationary distribution (estimated with the same Ã and
Ä) for ¾, and we set the value of each basis function to zero for points
in B (for m) or A ∪ B (for q and q̃). We use guess functions m̂0 = 0,
q̂0 = 1B, and ˆ̃q0 = 1A.

In Fig. 2, we show the stationary distribution (Ã), the MFPT to
B (m), and the forward and backward committors for the reactionA
to B (q and q̃). The improvement due to memory is most noticeable
in the MFPT, which we plot in Fig. 3. For DGA (Ä/Ã = 1), a lag time
of Ä = 1 is required for mÃ,Ä to qualitatively match the reference in
Fig. 2. Meanwhile, for DGA with memory (Ä/Ã = 5), Ä = 0.05 is suf-
ficient to obtain a reasonable approximation of the reference. When
trajectory length is the limiting factor, this shorter lag time directly
translates to an order of magnitude savings in simulation time.

We look at the effect of varying parameters Ã and Ä in Fig. 4.We
focus on the rate constant kAB for the transition from A to B because
it is the most sensitive to errors; we calculate it as the inverse of the
MFPT from configurations in the A state,36

k
−1
AB = +

A
m(x)Ã(x) dx. (53)

For this system, the true inverse rate constant is k−1AB ≈ 57. In
Fig. 4(a), keeping the number of memory terms constant (by fixing
Ä/Ã) and increasing Ä makes the rate constant converge to the cor-
rect value. The best improvement that DGA with memory can give
over DGA for a particular Ä (which is limited by the dataset) can be
seen by comparing the Ä/Ã = 1 (DGA) curve with the Ä/Ã = 10 curve
(which is approximately the same as the Ä/Ã =∞ limit). The inverse
rate converges at Ä ≈ 10 without memory and at Ä ≈ 0.05 with mem-
ory. In Fig. 4(b), keeping Ã constant and increasing the number of
memory terms also leads to convergence to the correct value. We
note that DGA with memory overestimates the inverse rate around
Ä = 0.05: memory can overcorrect for the error, so one must be care-
ful when assessing convergence since the curve may appear flat at
local extrema. In Fig. 4(c), we consider the effect of increasing the
number of memory terms with fixed Ä. In this case, the result does
not converge to the true value but, instead, retains a fixed error when

FIG. 3. Mean first passage time for the two-dimensional triple well, estimated using DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã = 5). DGA with memory requires shorter
lag times to achieve comparable results to DGA.
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FIG. 4. Dependence of the estimated inverse rate constant k−1
AB

for the two-dimensional triple well on (a) Ä with a fixed number of memory terms, (b) Ä with fixed Ã, and (c)
the number of memory terms with fixed Ä. The true value of the inverse rate constant is indicated by the dashed line.

Ä is too short for the orthogonal variables to relax (see Appendix A
for a graphical explanation).

These results inform our procedure for selecting Ä and Ã.
Namely, we increase Ä with fixed Ä/Ã until statistics of interest
converge, as in Fig. 4(a). Our examples suggest that we could,
instead, hold Ã fixed, as in Fig. 4(b), but we expect this procedure
to be more sensitive to statistical errors in more demanding appli-
cations because it increases the number of terms in the memory
sum.

To demonstrate that these improvements are not specific to the
MFPT and the rate constant, we plot the errors in other dynamical
statistics in Figs. 5 and 6. We calculate the relative errors for Ã and
m as �uÃ,Ä/u and for q and q̃ as �uÃ,Ä/(u(1 − u)), where �uÃ,Ä = uÃ,Ä

− u. In Fig. 5, we look at the relative error in each dynamical statistic
at Ä = 0.05. In all cases, we observe that DGA with memory (Ä/Ã
= 5) has a significantly lower error than DGA (Ä/Ã = 1). We note
that DGA has large regions of errors with the same sign, while DGA
with memory has smaller regions of oscillating errors from memory

corrections with opposite signs. In Fig. 6, we look at the mean of the
absolute value of the relative error in regions with V ≤ 0 (where the
system spends the most time; see Fig. 1) for each of the dynamical
statistics. In all cases, DGA with memory outperforms DGA at the
same lag time, especially at shorter lag times. We observe that, for
Ä/Ã > 2, DGA with memory estimates for all statistics converge at
Ä ≈ 0.1, even though each statistic has a different memory kernel. In
contrast, for DGA (Ä/Ã = 1),m requires a much larger Ä to converge
than other statistics.

B. Left-to-right helix transition in AIB9

To demonstrate DGA with memory for a molecular system,
we analyze the dynamics of AIB9, a peptide consisting of nine ³-
aminoisobutyric acid (AIB) residues. AIB is an unnatural achiral
amino acid that forms both left-handed and right-handed 310 helices
with equal probability. The left-to-right helix transition was previ-
ously studied using MSMs and long, unbiased molecular dynamics

FIG. 5. Relative error in the DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã = 5) estimates for each dynamical statistic at Ä = 0.05, for the two-dimensional triple well.
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FIG. 6. Effect of the lag time and number of memory terms on the mean of the absolute value of the relative error for each dynamical statistic for the two-dimensional triple
well.

simulations.37,38 We recently performed both short and long simu-
lations and used the resulting data to estimate statistics with MSMs
and neural networks.31

Each amino acid can isomerize between left-handed (l) and
right-handed (r) states, which are defined by the ϕ and È dihedral
angles. Similarly to Ref. 31, we take an amino acid to be in the l state
if its dihedral angle values are within a circle of radius 25○ centered
at (41○, 47○), that is, (ϕ − 41○)2 + (È − 47○)2 ≤ (25○)2. Amino acids
are classified as being in the r state using the same radius but cen-
tered, instead, at (−41○,−47○). States A and B are defined by the
amino acids at sequence positions 3–7 being all l or all r, respec-
tively. We show such configurations in Fig. 7. We do not use the
two residues on each end of AIB9 in defining the states as these are
typically more flexible.38

The datasets that we use are from Ref. 31. For that work, we
ran simulations in OpenMM 7.7.039 using the Langevin integrator
at 300 K with a friction coefficient of 1 ps−1 and a time step of 4 fs.
We used AIB parameters from Forcefield NCAA40 with a hydro-
gen mass repartitioning scheme41 and the GBNeck2 implicit-solvent
model.42 The short-trajectory dataset that we analyze consists of 10
trajectories of duration 20 ns from each of the 691 starting con-
figurations in Ref. 38. The dataset thus contains 6910 trajectories,
corresponding to a total sampling time of 138.2 ¾s. As a reference
for comparison, we use 20 simulations of 15 ¾s with the same simu-
lation parameters, corresponding to a total sampling time of 300 ¾s.

FIG. 7. A and B configurations of AIB9. Carbon, nitrogen, oxygen, and hydrogen
atoms are colored cyan, blue, red, and white, respectively.

In addition, we augment the reference dataset with its reflection
(since AIB9 is achiral).

We visualize the results on the CV space,

Ç1 = µ3 + µ4 + µ5 + µ6 + µ7, (54a)

Ç2 = µ3 + µ4 − µ6 − µ7, (54b)

where µi = −0.8(sinϕi + sinÈi). The l state has µ ≈ −1 and the r state
has µ ≈ 1, although these values also contain states other than l and r.

FIG. 8. (a) Potential of the mean force of AIB9 in the (Ç
1
, Ç

2
) CV space with

two metastable states A and B labeled. The contours are drawn every kBT . (b)
Location and coordinates of the centers (dots) of the 18 states in the CV space.
Note that multiple intermediates may overlap in the same location in the CV space
(30 different intermediates appear as 16 states). The edges of the basis functions
are indicated by lines.
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FIG. 9. Reference statistics for AIB9 calculated from the long trajectories. From left to right, the stationary distribution (Ã), the MFPT to the all-right state B (m), the forward
committor for the transition from the all-left state A to the all-right state B (q), and the backward committor for the same transition (q̃).

We choose these CVs because they can distinguish the tenmost pop-
ulated states and have physical meaning: Ç1 measures the chirality of
a configuration, and Ç2 measures the difference in chirality between
the two halves of the molecule. These CVs are similar to the first two
principal components of the dihedral angle dynamics, which were
used in Refs. 31, 38, and 43. We project statistics onto the CV space
using a kernel density estimate with a Gaussian kernel with a scale
parameter of 0.2.

We compute the potential of mean force (PMF) on the (Ç1, Ç2)
space from a histogram of CV pairs sampled in the reference
dataset [Fig. 8(a)]. This shows the metastable A and B states on
the left and right sides, respectively, as well as the intermediate
states connecting them. In Fig. 9, we show the reference statis-
tics for the stationary distribution, the MFPT to the B state, and
the forward and backward committors from the A state to the B
state.

FIG. 10. Mean first passage time to the all-right B state for AIB9 estimated using DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã = 5), at different lag times Ä. DGA with
memory requires shorter lag times to achieve comparable results to DGA.

FIG. 11. Dependence of the estimated AIB9 inverse rate constant on (a) Ä with fixed Ä/Ã, (b) Ä with fixed Ã, and (c) Ä/Ã with fixed Ä. The true inverse rate constant is between
50 and 60 ns, which is indicated by the gray region.
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FIG. 12. Relative errors in the DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã = 5) estimates of the AIB9 dynamical statistics at lag time Ä = 0.05 ns.

FIG. 13. Effect of the lag time and number of memory terms on the mean of the absolute value of the relative error for each dynamical statistic for AIB9.

For the DGA calculations, we use a basis of 18 indicator func-
tions on the (Ç1, Ç2) space as shown in Fig. 8(b). These indicator
functions are Voronoi cells with centers at points (Ç1, Ç2) with
each µi = ±1. We compute statistics using the same procedure as in
Sec. IV A, where we first estimate the stationary distribution and
then use it for other statistics. However, here, we use short-trajectory
data. We use a rolling window, so all choices of Ã and Ä use the same
amount of data.

In Fig. 10, we look at the MFPT, which, as for the two-
dimensional triple well, most clearly shows the improvement due to
memory. At Ä = 0.05 ns, DGA with memory (Ä/Ã = 5) is quite sim-
ilar to the reference (Fig. 9). Meanwhile, DGA (Ä/Ã = 1) drastically
underestimates the MFPT in all of the CV space. The DGA-with-
memory results at Ä = 0.2 ns are comparable to the DGA results at
Ä = 1 ns. Looking at the inverse rate constant from A to B (Fig. 11),
which we estimate to be between 50 and 60 ns from the reference tra-
jectories, DGA with memory enters the correct range at Ä ≈ 0.05 ns,
whereas DGA requires an order of magnitude more, Ä ≈ 0.5 ns.

We calculate errors by first projecting onto the (Ç1, Ç2) space
and then using the relative error formulas as described in Sec. IV A.
We restrict the points used to calculate the mean absolute value of
the relative absolute error to those with ∣Ç1∣ + ∣Ç2∣ ≤ 7 and ∣Ç2∣ ≤ 5.5
due to a lack of samples outside of this region. The committors
show limited improvement with memory (as shown in Figs. 12 and
13), so we focus on the stationary distribution and the MFPT. In

Fig. 12, we show the results of DGA (Ä/Ã = 1) and DGA with mem-
ory (Ä/Ã = 5) at Ä = 0.05 ns. Both algorithms accurately estimate the
stationary probabilities of states A and B even at this short lag time,
but DGA overestimates the weights of intermediates, especially the
minor intermediates in the center. DGA drastically underestimates
the MFPT to the B state in all regions. Figure 13 shows that, for the
stationary distribution and MFPT, DGA with memory requires an
of order magnitude shorter lag time to achieve a comparable error
to DGA. Note that the error fails to reach zero and even increases
at longer lag times for Ã, q, and q̃; this is due to an increase in the
statistical error at longer lag times in both the DGA estimates and
the reference statistics. Overall, the relative performances of DGA
and DGA with memory for AIB9 are qualitatively similar to those
for the two-dimensional triple well, despite the complications that
we compute the statistics for AIB9 from limited simulation data and
quantify the error following projection to the (Ç1, Ç2) space.
V. CONCLUSIONS

In this paper, we incorporate memory to improve the accuracy
of statistics estimated by the dynamical Galerkin approximation.
Our work builds on numerical approaches for solving the orthog-
onal dynamics equation of the Mori–Zwanzig formalism32 and
quasi-MSMs27–29 and shows that the basic concept behind these
approaches can be generalized and used to compute much more
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than relaxation time scales. A key feature of quasi-MSMs and the
present approach is that the memory corrections are obtained by
directly inverting a GME so that it is not necessary to assume
a particular functional form for the memory. Quasi-MSMs and
DGA with memory also contrast with traditional applications of the
Mori–Zwanzig formalism in that the models are high-dimensional.
As a result, the memory decays rapidly, and we find that even a few
correction terms are sufficient to achieve high accuracy (with most
of the correction coming from the first term beyond the Markov
model). In our numerical experiments, the memory correction
decreases the data requirement by an order of magnitude.

Our approach has numerical advantages over quasi-MSMs and
other methods that predict long-time statistics by integrating the
GME. Integrating the GME requires estimating the full coarse-
grained propagator and then using it to extrapolate in time. Solving
statistic-specific equations, as we do here, allows better control of
errors. In particular, because boundary conditions and other con-
straints are satisfied regardless of the choice of Ä and Ã, we can
increase Ä to decrease the error while keeping Ä/Ã small. A separate
strategy that can be applied to improve the numerical performance
further is to integrate over lag times.28,44

While DGA with memory can decrease the sensitivity of esti-
mates to the choice of basis, a choice must still be made. To address
this issue, we recently introduced an inexact subspace iteration to
learn a basis represented by neural networks.31 In Ref. 31, we apply
the memory correction after we learn the basis, but one could apply
it after each subspace iteration to accelerate convergence. Even when
the representation of a dynamical statistic does not have the form
in (8) (e.g., Ref. 45, or the Richardson iterate in Ref. 31), one
could define a nonlinear projection operator and, in turn, compute
a memory correction to compensate for deficiencies of the input
features.

It would be interesting to compare theMori–Zwanzig approach
to memory taken here to alternative means of treating memory,
such as delay embedding,2,4–7 with regard to data requirements and
robustness to hyperparameter choices for high-dimensional models
like those considered here.
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APPENDIX A: GRAPHICAL DEPICTION OF THE EFFECT
OF MEMORY

We compare DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã
= 2) graphically in Fig. 14. The projected dynamics move the sys-
tem horizontally, while the orthogonal dynamics move it vertically.
We show early iterations in Fig. 14(a) and the fixed point in
Fig. 14(b). The iterations alternate between using length-Ä trajecto-
ries to propagate the projected function ûÄt to uÄt+Ä (colored curves)
and projecting back onto the subspace spanned by the basis (dashed
lines).

In the case of DGA [Fig. 14(a), Ä/Ã = 1], the iteration (12)
rapidly diverges from the exact iteration in (15), which is plotted
in gray. The fixed point (12) occurs when propagating û Ä for lag
time Ä to uÄ such that projecting returns the same û Ä [Fig. 14(b)].
As drawn, fast variables propagate û Ä up and to the right and slow
variables ultimately return the system so as to be directly above û Ä ,
yielding the blue curve. In the absence of error due to sampling tra-
jectories, û Ä deviates from û because Ä is insufficiently long for uÄ to
reach u.

Comparing the iteration without memory (Ä/Ã = 1) to the iter-
ation with memory (Ä/Ã = 2), we see that the latter approximates
the exact iteration with significantly greater accuracy. Each iteration
with memory shown in the figure consists of four steps: (1) propa-
gating ûÃ,Ät by time Ã (which initially moves the system up and to the
right as drawn), (2) adjusting the projected variable with the orthog-
onal projection so that the projection is ûÃ,ÄÃ (whichmoves the system
to the left horizontally), (3) propagating by another time Ã to uÃ,Ät+2Ã
(which again moves the system up and to the right), and (4) pro-
jecting to ûÃ,Ät+2Ã (which moves the system vertically). More generally,
whereas each iteration without memory propagates the dynamics
for time Ä, each iteration with memory propagates the dynamics
for time Ã, in which the projected variable is adjusted (Ä/Ã) − 1
times.

As for the case of DGA, the fixed point is reached when the final
projection in each step of the iteration returns the system to û Ã,Ä

[Fig. 14(b), bottom]. In DGA, the fast modes propagate û Ä toward
the upper right; Ä must be long enough for the slow mode to correct
this additional rightward shift. The impact of thememory correction
is to eliminate this shift so that if Ä is sufficiently large to relax the
fast modes that affect the projected variable, the deviation from u
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FIG. 14. Schematic of the iterations and their solutions. (a) Inexact Richardson iteration corresponding to DGA [Ä/Ã = 1, (12)] and DGA with memory [Ä/Ã = 2, (21)]. The
exact Richardson iteration in (15) is plotted is gray. (b) Solutions to DGA (Ä/Ã = 1) and DGA with memory (Ä/Ã = 2). To guide the eye, exact Richardson iterations starting
at different projections are plotted in gray.

depends only on the interaction between the slow modes and the
orthogonal variables.

APPENDIX B: COMPUTING FINITE-TIME OPERATORS
USING THE INFINITESIMAL GENERATOR

Here, we express the finite-time operators (e.g., T t and S
t
B) in

terms of the infinitesimal generator,

L = lim
ϵ→0+

T
ϵ
− I

ϵ
. (B1)

For a continuous-timeMarkov jump process on a finite discrete state
space, L is a matrix [e.g., (52)] and functions on the grid are vectors,
so

L f (x) =∑
x′

L(x, x′) f (x′), (B2)

and we can evaluate expressions in terms of L directly.

1. Transition operator

The transition operator can be expressed as

T
t
= (T ϵ)t/ϵ = lim

ϵ→0+
(I + ϵL)t/ϵ = et L. (B3)

Similarly,

(T t)†(x, x′) = et L†(x, x′) (B4)

and

L
†(x, x′) = ¾(x′)L(x′, x)/¾(x) (B5)

from the definition of the adjoint.

2. Stopped transition operator

Here, we express the stopped transition operator in terms of the
infinitesimal generator. To this end, we observe that

f (Xt'TB
) = lim

ϵ→0+

⎛
⎝ f (X0) + (t/ϵ)−1∑

n=0

⎡⎢⎢⎢⎢⎣
n

/
n′=0

1
Bc
(Xn′ϵ)

⎤⎥⎥⎥⎥⎦
× ( f (X(n+1)ϵ) − f (Xnϵ))). (B6)

That is, at time nϵ, we propagate the process forward-in-time only
if nϵ < TB (the product above is 1 only if X0, . . . ,Xnϵ ∈ B

c and 0
otherwise). Therefore, we can express (6) as

S
t
B f (x) = E[ f (Xt'TB

) ∣ X0 = x] (B7)

= lim
ϵ→0+

⎛
⎝ f (x) +

(t/ϵ)−1

∑
n=0

(D(1
Bc
)T ϵ)nD(1

Bc
)

× (T ϵ
− I) f (x)⎞⎠ (B8)

= f (x) ++ t

0
e
t′ D(1

Bc
)L

D(1
Bc
)L f (x) dt′ (B9)

= e
tD(1

Bc
)L

f (x). (B10)

We substitute (B6) into (B7) and express the resulting conditional
expectation in terms of T

ϵ(x, x′) = P[Xt+ϵ = x
′ ∣ Xt = x] to obtain

(B8). Taking the limit ϵ→ 0+ yields (B9), and evaluating the integral
yields (B10). We define D(g) to be a diagonal matrix with entries
D(g)(x, x) = g(x); the matrix D(1

Bc
)L has entries

(D(1
Bc
)L)(x, x′) = 1

Bc
(x)L(x, x′). (B11)
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We evaluate the integral ∫ t
0 S

t′

B1Bc dt′ = ∫ t
0 e

t′ D(1
Bc
)L
1
Bc

dt′ in
(36c) using the identity

exp
⎛
⎜
⎝
t

⎡⎢⎢⎢⎢⎢⎣

D(1
Bc
)L 1

Bc

0 0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

= lim
ϵ→0+

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

I 0

0 I

⎤⎥⎥⎥⎥⎥⎦
+ ϵ

⎡⎢⎢⎢⎢⎢⎣

D(1
Bc
)L 1

Bc

0 0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

t/ϵ

= lim
ϵ→0+

⎡⎢⎢⎢⎢⎢⎣

(I + ϵD(1
Bc
)L)t/ϵ ϵ∑(t/ϵ)−1

n=0
(I + ϵD(1

Bc
)L)n1

Bc

0 I

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

e
tD(1

Bc
)L +

t

0
e
t′ D(1

Bc
)L

1
Bc

dt′

0 1

⎤⎥⎥⎥⎥⎥⎦
. (B12)

That is, we compute the exponential and then take only the upper
right element of the result.

3. Stopped transition operator for the time-reversed
process

Similarly to (B6)–(B10), we use the identity

f (X
−(t'T̃A∪B)

) = lim
ϵ→0+

⎛
⎝ f (X0) + (t/ϵ)−1∑

n=0

⎡⎢⎢⎢⎢⎣
n

/
n′=0

1
(A∪B)c

(X
−n′ϵ)
⎤⎥⎥⎥⎥⎦

× ( f (X−(n+1)ϵ) − f (X−nϵ))) (B13)

to express (46) as

⟨g, S−tA∪B f ð = E[g(X0) f (X−(t'T̃A∪B)
) w(X−Ä)
w(X0) ∣X−Ä ∼ ¾] (B14)

= lim
ϵ→0+
∑
x

g(x)¾(x)
w(x)

⎛
⎝ f (x)(T Ä)†w(x) + (t/ϵ)−1∑

n=0

× [(D(1
(A∪B)c

)(T ϵ)†)nD(1
(A∪B)c

)
× ((T ϵ)†D( f ) − D( f )(T ϵ)†)(T Ä−(n+1)ϵ)†w(x)]⎞⎠

(B15)

=∑
x

g(x)¾(x)
w(x) ( f (x)eÄ L

†

w(x) ++ t

0
e
t′ D(1

(A∪B)c
)L†

× D(1
(A∪B)c

)(L†
D( f )−D( f )L†)e(Ä−t′)L†

w(x) dt′).
(B16)

We substitute (B13) into (B14) and expand the resulting expecta-
tion in terms of (T ϵ)†(x, x′) = P[Xt+ϵ = x ∣ Xt = x

′]¾(x′)/¾(x) to
obtain (B15). Taking the limit ϵ→ 0+ yields (B16), where the entries
of matrices D(1

(A∪B)c
)L† and D(1

(A∪B)c
)(L†

D( f ) − D( f )L†)
are

(D(1
(A∪B)c

)L†)(x, x′) = 1
(A∪B)c

(x)L†(x, x′), (B17)

(D(1
(A∪B)c

)(L†
D( f ) − D( f )L†))(x, x′)

= 1
(A∪B)c

(x)L†(x, x′)( f (x′) − f (x)). (B18)

Likewise,

⟨g, (S−tA∪B − I) f ð = E[g(X0)( f (X−(t'T̃A∪B)
) − f (X0)) w(X−Ä)

w(X0) ∣X−Ä ∼ ¾] (B19)

=∑
x

g(x)¾(x)
w(x) +

t

0
e
t′ D(1

(A∪B)c
)L†

D(1
(A∪B)c

)(L†
D( f ) − D( f )L†)e(Ä−t′)L†

w(x) dt′. (B20)

The integrals in (B16) and (B20) can be evaluated similarly to (B12),

exp
⎛⎜⎝t
⎡⎢⎢⎢⎢⎢⎣
D(1

(A∪B)c
)L†

D(1
(A∪B)c

)(L†
D( f ) − D( f )L†)

0 L
†

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠ (B21)

=

⎡⎢⎢⎢⎢⎢⎣
e
tD(1

(A∪B)c
)L†

+
t

0
e
t′ D(1

(A∪B)c
)L†

D(1
(A∪B)c

)(L†
D( f ) − D( f )L†)e(t−t′)L†

dt
′

0 e
L
†t

⎤⎥⎥⎥⎥⎥⎦
. (B22)

The expressions for S
−t
A∪B are more complicated than those

for S
t
A∪B because we want (B16) and (B20) to be equivalent

to (B14) and (B19), respectively, when w is approximated.
If we evaluate them without approximating w, L

†
w = 0

and eL
†t
w = w; therefore, ⟨g, S−tA∪B f ð = 3x,x′ (g(x)¾(x)/

w(x))etD(1(A∪B)c )L†(x, x′) f (x′)w(x′) and ⟨g, (S−tA∪B − I) f ð
= 3x,x′ (g(x)¾(x)/w(x))(etD(1(A∪B)c )L†

− I)(x, x′) f (x′)w(x′).
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