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Abstract

Mercury’s orbit can destabilize, generally resulting in a collision with either Venus or the Sun. Chaotic evolution
can cause g; to decrease to the approximately constant value of gs and create a resonance. Previous work has
approximated the variation in g; as stochastic diffusion, which leads to a phenomological model that can reproduce
the Mercury instability statistics of secular and N-body models on timescales longer than 10 Gyr. Here we show
that the diffusive model significantly underpredicts the Mercury instability probability on timescales less than
5 Gyr, the remaining lifespan of the solar system. This is because g; exhibits larger variations on short timescales
than the diffusive model would suggest. To better model the variations on short timescales, we build a new
subdiffusive phenomological model for g,. Subdiffusion is similar to diffusion but exhibits larger displacements on
short timescales and smaller displacements on long timescales. We choose model parameters based on the behavior
of the g, trajectories in the N-body simulations, leading to a tuned model that can reproduce Mercury instability
statistics from 1-40 Gyr. This work motivates fundamental questions in solar system dynamics: why does
subdiffusion better approximate the variation in g, than standard diffusion? Why is there an upper bound on g;, but
not a lower bound that would prevent it from reaching gs?

CrossMark

Unified Astronomy Thesaurus concepts: Mercury (planet) (1024); Planetary dynamics (2173)

1. Introduction

Since the landmark study of Laskar (1994), the potential for
Mercury’s orbit to destabilize has been widely recognized. The
destabilization process has been studied both with simplified
test particle secular models (Lithwick & Wu 2011; Boué et al.
2012; Lithwick & Wu 2014; Batygin et al. 2015) and
sophisticated, high-order secular models (Laskar 2008; Moga-
vero & Laskar 2021; Hoang et al. 2022; Mogavero &
Laskar 2022; Mogavero et al. 2023), as well as more
computationally intensive and physically realistic N-body
codes (Batygin & Laughlin 2008; Laskar 2008; Laskar &
Gastineau 2009; Zeebe 2015a, 2015b; Brown & Rein 2020;
Abbot et al. 2021; Brown & Rein 2022; Hernandez et al. 2022;
Abbot et al. 2023; Brown & Rein 2023). The secular models
have led to the insight that Mercury’s orbit destabilizes due to
resonance between the solar system’s g; and gs secular
eigenfrequencies, which are primarily associated with Mercury
and Jupiter, respectively.

The inherent unpredictability of chaotic dynamical systems
like the solar system makes it necessary to describe the long-
term evolution statistically. Statistical descriptions of how the
phase space distribution of an ensemble of systems evolves
over time are relatively well developed for simple area-
preserving planar maps and 2 degree of freedom systems (e.g.,
Mackay et al. 1984; Meiss 1992; Zaslavsky 2002), though even
in this simplest case there remain important unresolved
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questions (e.g., Meiss 2015). Given the lack of theoretical
understanding of chaotic transport in systems with a larger
number of degrees of freedom, phenomenological models such
as those discussed in this paper can serve as useful tools for
describing complex real-world systems and can potentially
provide clues for better understanding the underlying chaotic
dynamics.

Several diffusive phenomenological models have been used
to approximate the solar system dynamics and predict the
probability of Mercury instability events as a function of time.
Woillez & Bouchet (2020) analyzed the simplified secular
Hamiltonian of Batygin et al. (2015), which considers Mercury
to be massless and approximates the other planets as
quasiperiodic, and they identified the slowly varying comp-
onent of this Hamiltonian as driving Mercury’s dynamics. They
approximated the dynamics as diffusive with constant diffu-
sivity, a reflecting upper boundary, and an absorbing lower
boundary that signifies Mercury instability events.

Later, Mogavero & Laskar (2021) speculated that the
diffusive model might apply to the long-term variation of g,
itself (see Section 2.1 for the definition of g; as the solar
system’s secular eigenfrequencies). They applied the diffusive
model using gs, which is effectively constant (Hoang et al.
2021), as the absorbing lower boundary at which Mercury
instability occurs (Figure 1). They tuned the upper boundary
and diffusivity to produce a reasonable approximation to the
Mercury instability probability statistics of a secular model on
timescales longer than 10 Gyr, when at least 4% of the
simulations have gone unstable. The 10 Gyr timescale is longer
than the future lifespan of the Sun, so their model can only be
interpreted as an abstract investigation of the solar system
dynamics.
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Figure 1. Schematic diagram of the g, diffusion model for Mercury instability
events. g; is initialized at g]0 and diffuses. ng is a hard, reflecting upper

boundary and gll is an absorbing lower boundary. If g reaches gll, a Mercury
instability event occurs.

Recently, Brown & Rein (2023) compared the g; diffusive
model (Mogavero & Laskar 2021) to the 5Gyr N-body
simulations performed by Laskar & Gastineau (2009). They
found what appeared to be reasonable correspondence;
however, in their Figures 2—4, they plotted one minus the
probability of a Mercury instability event, which obscures the
difference between small probabilities spanning orders of
magnitude. Brown & Rein (2023) also compared the g
diffusive model to their own N-body simulations with general
relativity artificially either fully or partially disabled. Similar to
the N-body simulations in this paper, they approximated
general relativity as a simple potential. Their plots suggest that
the diffusive model provides a qualitatively reasonable
approximation of the evolution of the Mercury instability
probability when it is above ~5%, but the plots obscure smaller
probabilities. In summary, the g, diffusive model (Figure 1)
can be tuned to approximate the Mercury instability probability
produced by more complex secular or N-body models, as long
as the Mercury instability probability exceeds ~~5%.

In this paper we will show that the g; diffusive model
significantly underpredicts the Mercury instability probability
over the next 5 Gyr period in which the Sun will remain on the
main sequence. We find that the discrepancy primarily results
from the diffusive model producing variations of g, that are too
small on timescales less than ~0.3 Gyr. To better model the
short-time variations of the g, trajectories, we propose a g;
subdiffusive model (see Henry et al. 2010, for an introduction
to subdiffusion). The subdiffusive model is consistent with the
work of Hoang et al. (2021), who found that g, subdiffuses by
fitting a power law to the standard deviation of g; in a large
ensemble of secular models as a function of time. We fit the
parameters of our subdiffusive model to the mean square
displacement of g, the probability density function (pdf) of g,
from N-body simulations, and the fraction of N-body simula-
tions that reach the instability threshold. This produces a five-
parameter stochastic subdiffusive model that closely approx-
imates N-body Mercury instability probabilities as small as
~107* (the lowest value we are able to estimate with N-body
results due to limited sample size) and as high as ~0.5 (the
highest value we are able to estimate with N-body results due to
limited run lengths). The g; subdiffusive model is successful at
reproducing a variety of statistics from the N-body code,
suggesting that despite its simplicity, the model captures
important aspects of the relevant dynamics.

Abbot et al.

2. Models
2.1. Model Used to Calculate g; Statistics

We calculate g; statistics from the 2750-member Fix dt
ensemble of simulations produced by Abbot et al. (2023). The
simulations contain all eight solar system planets and no
moons, asteroids, or comets. The simulations use the WHFAST
integration scheme (Rein & Tamayo 2015) from the
REBOUND N-body code (Rein & Liu 2012), which is a
Wisdom-Holman scheme (Wisdom & Holman 1991). The
only parameterized physics scheme is an approximation of
general relativity with a modified position-dependent potential
(Nobili & Roxburgh 1986), which is implemented as the
gr_potential scheme in REBOUNDx (Tamayo et al.
2020). We initialized the simulations with solar system
conditions on 2018 February 10 taken from the NASA
Horizons database and then added a uniform grid of
perturbations to Mercury’s x-position, each separated by
10 cm. We used a fixed time step of v/10 ~ 3.16 days, which
we demonstrated was sufficiently small to produce converged
Mercury instability statistics (Abbot et al. 2023), and ran the
simulations for 5 Gyr. The trajectories of eccentricity and g, are
nearly identical among the simulations over the first 138 Myr of
the simulation and then begin to noticeably separate from each
other on the order of ~1%. This is longer than the typical
quoted value of ~50 Myr for solar system orbital calculations
to diverge (e.g., Laskar et al. 2011; Zeebe 2017), possibly
because Mercury’s eccentricity and g, take longer to diverge
than other variables.

The g; frequencies are defined through the following
eigenfunction expansion (Murray & Dermott 1999, Ch. 7):

€;coswm; = Y My cos oy, (1)
&

e; sin w; = Z Mk sin A, (2)
k

where the index i ranges over the planets i=1, 2,....8, ¢;
denotes the eccentricity of each planet, and w; denotes the
longitude of perihelion. The values (M;;)i<ix<s are the
coefficients in the eigenfunction expansion, and the terms
oy = gt + By describe the angles of the oscillations.

The first-order approximation with constant parameter values
(Equations (1)—(2)) is accurate over the shortest period of
oscillation min; 27 /g;, but degrades thereafter. Indeed, when we
fit the approximation to the output of a more complex N-body
simulation, the values My, g, and 3 are all slowly changing as
a function of time. Despite the imprecision, the first-order
approximation leads to qualitative insights, as it correctly
indicates the possibility for destabilization when two of the g;
frequencies approach resonance.

To calculate g;, we use the frequency_modified_-
fourier_transform routine (§idlichovsky* et al. 1997)
from the celmech package (Hadden & Tamayo 2022), which
requires a number of output times that is a power of 2. We find
that 2'° output times are sufficient to obtain stable g; estimates
from data, so we divide the Fix dt ensemble data into blocks
of 10.24 Myr, with each block containing 2'° output times. Our
calculated values of g; are therefore the average value over
each 10.24 Myr segment. We apply frequency_modi-
fied_fourier_transform to e; exp(iw) to calculate the
four Fourier modes with the highest amplitude for a given
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10.24 Myr segment and chose g to be the g; closest to g; from
the previous segment.

2.2. Model Used to Calculate 40 Gyr Instability Statistics

As a new contribution of this paper, we perform 1000
extensions of the Fix dt simulations and make them publicly
available at https://archive.org/download/LongRun. These
extensions have exactly the same parameters as the Fix dt
simulations described above, but we run them for a total of
40 Gyr. As in Abbot et al. (2021, 2023), we define a Mercury
instability event as occurring when Mercury passes within
0.01~au of Venus and stop the simulations at that point. In
Abbot et al. (2023), we showed that after 10'? time steps
(10 Gyr), roundoff relative error is of order 1075 for the
semimajor axis and order 10~° for the energy. Roundoff error
is growing as ~1° at 10 Gyr, so it should remain small for the
40 Gyr simulations we performed.

2.3. Ensemble of Ensembles Used to Compute 5 Gyr Instability
Statistics

To compute Mercury instability statistics on a timescale of
less than 5 Gyr, we use the ensemble of N-body ensembles
constructed by Abbot et al. (2023), which includes the 2501-
member Laskar & Gastineau (2009) ensemble and the 1600-
member Zeebe (2015a) ensemble, as well as both the 2750-
member Var dt and 2750-member Fix dt ensembles of
Abbot et al. (2023), for a total of 9601 members.

2.4. Diffusive and Subdiffusive Models

Both the diffusive and subdiffusive models are defined using
fractional Brownian motion. Fractional Brownian motion is a
mean-zero Gaussian process, which we denote by W(¢) at each
time 7> 0. It is defined as the unique mean-zero Gaussian
process that starts from W(0) = 0 and has increments satisfying

(IW@®) — WP) =t — sPe 3)

at all times ¢, s. Here, o € (0, 1) is the Hurst parameter, which is
a=1/2 for a standard diffusion, whereas a € (0, 1/2) for a
subdiffusion and « € (1/2, 1) for a superdiffusion (Henry et al.
2010, Section 1.2). As a result of the scaling relation (3), a
subdiffusion exhibits larger variations over short timescales
than a standard diffusion.

The simple diffusion model of Mogavero & Laskar (2021,
Section 8.2) states that the g, value at time ¢ (units of Gyr)
satisfies

g+ W@, t<T
&) =

4)
g +rIW @) — maxoc,<, W), t > T,

where W(¢) is a standard Brownian motion, r > 0 is a scaling
factor, g (0) = glo is the initial condition, g1T>g10 is a reflecting
upper boundary condition, and

T=min{r > 0: g* + W) > g/} )

is the first time the process hits the upper boundary. The
process advances forward until hitting the lower boundary gll at
a random time

7=min{t > 0: g(1) = g'}. (6)
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Then, instability occurs in the model (Figure 1).

Mogavero & Laskar (2021, Section 8.2) motivate their use of
diffusion and the reflecting upper boundary by observing that
the pdf of g, has Gaussian tail behavior at low g; values, but
drops off sharply at high g, values (Hoang et al. 2021). Woillez
& Bouchet (2017) provide additional motivation, by referen-
cing the theory of slow—fast dynamical systems (Gardi-
ner 2009), in which the evolution of a slow variable can
sometimes be modeled as a diffusive stochastic differential
equation. However, Hoang et al. (2021) argue that the time
evolution of g; under the secular equations matches a
subdiffusion more closely than a standard diffusion.

Next, we propose a more general model in which we allow
W(t) to be a fractional Brownian motion with a Hurst parameter
a not necessarily equal to 1/2. In the general model, the g,
value at time ¢ is given by the same Equations (4)—(6) but the
standard Brownian motion is replaced by a fractional Brownian
motion. As before, the process advances forward until hitting
the lower boundary gli. Then, instability occurs.

To simulate from the diffusive and subdiffusive models, we
do not invoke Equation (4) directly, because this leads to a
discretization error of size O(6%) for a time step 6 (McGlaughlin
& Chronopoulou 2016). Therefore, we pursue an alternative,
more efficient discretization strategy (Wada & Vojta 2018).
First, we generate a random vector containing the values
of the fractional Brownian motion at discrete output times
W = (W(6), W(26),...,W(NS)), using the algorithm of
Dietrich & Newsam (1997) as implemented in the stochastic
package for python (Flynn 2022). Next, we set g (t = 0) = glo
and apply the recursive update formula

g(1) =gt — 8) + r[W () — W(t — 6)]
g =g —lg —&®]l 7)

This formula directly invokes a fractional Brownian motion
that is reflected off an upper boundary. The formula yields the
exact correct distribution without any discretization error for
a=1/2 (Doob 1953) and closely approximates the distribution
for all o€ (0, 1). We apply Equation (7) with a time step
6=0.01 Gyr in our simulations, and our code is available
at https://knowledge.uchicago.edu/record/10351.

3. Results
3.1. Problems with the g; Diffusive Model

In this subsection, we point out several issues with the g,
diffusive model. As a starting point, the g, diffusive model is
not effective at predicting Mercury instability probabilities over
physically realistic timescales. On timescales longer than
~10 Gyr, the model matches with the instability probabilities
from secular model simulations (Mogavero & Laskar 2021)
and from our 40 Gyr N-body simulations (Figure 2). However,
on the 5 Gyr timescale of the future of the solar system, the
diffusive model underpredicts Mercury instability events by a
factor of 3—-1000 (Figure 2).

One possible explanation for the fact that the g, diffusion
produces too few Mercury instability events on shorter
timescales (<10 Gyr) is that subdiffusion (Henry et al. 2010)
better approximates the chaotic evolution of g;. The main
characteristic of subdiffusion is that it exhibits larger
displacements on short timescales and smaller displacements
on long timescales than diffusion. To investigate this idea
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Figure 2. Probability that Mercury’s orbit becomes unstable as a function of
time for the N-body simulations (black), the Mogavero & Laskar (2021) secular
simulations (blue), the Mogavero & Laskar (2021) diffusive model (magenta),
and the best-fit diffusive model (yellow). We obtained the Mogavero & Laskar
(2021) secular simulation results using a data digitizer.

quantitatively, we calculate the mean square displacement
(|{Agi[?) across a range of time offsets Az and consider a
scaling relationship

(1Ag*) ~ |Ar (®)

where o € (0, 1) is the Hurst parameter that can be chosen to
match the data. As explained in Section 2.4, a=1/2
corresponds to standard diffusion, whereas « € (0, 1/2)
corresponds to subdiffusion and « € (1/2, 1) corresponds to
superdiffusion. The top panel of Figure 3 shows that « for the
N-body model is much less than 1/2 (we will show below that
a = 0.26), and the diffusive model produces a mean square
displacement for g; that is too small on timescales less than
~0.3 Gyr.

Next, let us compare the pdf of g; between the N-body
model and the diffusive model (Figure 3, bottom). The
diffusive model as tuned by Mogavero & Laskar (2021)
overpredicts by 1 order of magnitude the probability that g, has
a value less than 5” yr—'. The unrealistic low values of g, occur
in the diffusion model because the lower boundary on g; is set
to be gs = 4”257 yr '. However, while the main physical
mechanism for a Mercury instability event is a g,—gs resonance
(Batygin et al. 2015), the gs resonance might cause
nondiffusive behavior as gs is approached. For example, the
g trajectories that lead to Mercury instability events in Figure
5 of Mogavero & Laskar (2021) often show large, erratic jumps
from a value of ~5”yr~! to gs as the instability event occurs.
When we allow the lower boundary on g; to be a free
parameter in the best-fit diffusive model, the fit for small g,
improves by about a factor of 2, but a large discrepancy
remains in order for the model to match the instability
probability.

To conclude this subsection, the g; diffusive model has the
following defects:

1. It underpredicts the Mercury instability probability on
timescales less than 10 Gyr.

Abbot et al.
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Figure 3. Top: mean square displacement of g, as function of time offset Az
for the N-body model (black), the Mogavero & Laskar (2021) diffusive model
(magenta), and the best-fit diffusive model (yellow). Bottom: probability
density function (pdf) of g; from the N-body model (black) and the two
diffusive models (magenta and yellow). The pdfs include all g; data over 5 Gyr
from the 2750-member N-body ensemble and an equivalent generated diffusive
ensemble. The values of gs and glo for the Mogavero & Laskar (2021) diffusive
model are indicated on the plot.

2. It produces too small variations in g; on timescales less
than ~0.3 Gyr.

3. It leads to a scaling of the mean square displacement
(|Ag,|?) with the time offset At that does not fit the N-
body simulations.

4. As formulated by Mogavero & Laskar (2021), it assumes
that g; must diffuse all the way to gs to produce an
instability event, which is not the case.

3.2. An Improved g; Subdiffusive Model

We now apply our new subdiffusive model that addresses
the limitations of the g, diffusive model. To begin, we fix the
initial value gl0 = 5760 yr~!, because this is the g; value at
which the N-body simulations start to diverge. Then, we make
the modeling assumption that the mean square displacement
scales as a power law

(1Agi) = r?|ArPe ©)

over short timescales At. This modeling assumption fits the
mean square displacement data for the N-body simulations with
a=0.26 and r = 0716 yr ' (see Figure 4 top). In previous
work, Hoang et al. (2021) estimated the same value oo =0.26
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Figure 4. Top: mean square displacement of g; as function of time offset (Af)
for the N-body model (black) and the subdiffusive model described in
Sections 3.2-3.3 (purple). Bottom: probability density function (pdf) of g, from
the N-body model (black) and the subdiffusive model (purple). The pdfs
include all g; data over 5 Gyr from the 2750-member N-body ensemble and an
equivalent generated subdiffusive ensemble. The values of gs and gl“ are
indicated on the plot.

by fitting a power law to the standard deviation of g; in a large
ensemble of secular models as a function of time.

Next, we impose an absorbing lower boundary gll and a
reflecting upper boundary ng. These boundary conditions fit the
pdf of g, from the N-body simulations for gll = 4"85yr !,
g = 5”79 yr~!. See the bottom panel of Figure 4. We also
tried a soft upper boundary similar to the potential energy of a
coiled spring; although it improved the pdf somewhat, it did
not significantly improve the overall cost, so we do not include
it here to reduce the number of free parameters.

As the main result of our modeling efforts, the g; subdiffusive
model yields an accurate approximation of the Mercury
instability probability statistics for the N-body model both from
1 to 5 Gyr and from 5 to 40 Gyr (Figure 5). The ability of the g,
subdiffusive model to reproduce the Mercury instability statistics
on timescales less than 10Gyr is primarily due to larger
variations in g, on timescales less than 0.3 Gyr and represents a
significant advance beyond the previous g; diffusive model.

3.3. Tuning Algorithm

To fine-tune the values of o, r, gll, and ng in the subdiffusive
model presented in Section 3.2, we introduce the cost function

C=10- Cprob + Clog + Cdisp + 1000 - Gpist,
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Figure 5. Probability that Mercury’s orbit becomes unstable as a function of
time for the N-body model (black) and the subdiffusive model described in
Sections 3.2-3.3 (purple). This figure should be compared with Figure 2, which
gives the equivalent information for the Mogavero & Laskar (2021) diffusive
model.

where the components of the cost function are defined as
follows:

I. Cprop is the sum of differences in the instability
probabilities p for the subdiffusive model and the
N-body model. The sum is performed over all times
t=0,0.01, ...,40 Gyr.

2. Gog is the sum of differences in the weighted log
instability probabilities log p /¢ for the subdiffusive model
and the N-body model. The sum is performed over all
times =0, 0.01,...,40Gyr for which p >0 in the
N-body model.

3. Cyisp is the sum of differences in the weighted log mean
square displacements log (| Ag|*)/At for the subdiffusive
model and the N-body model. The sum is performed over
all time lags Ar=0.01, ...,5.0 Gyr.

4. Cys 1 the sum of differences in the pdfs (histograms) of
g1 position for the subdiffusive model and the N-body
model. The sum is performed over the bins [47000 yr ',
47025 yr "), [47025yr !, 47050 yr Y, ...

In summary, the cost function penalizes disagreements in the
long-time instability probabilities (Cprop, component), the short-
time instability probabilities (o, component), the mean square
displacements (Cg;sp component), and the pdfs of g; position
(Chist component). These four components are scaled by the
appropriate orders of magnitude so that they contribute
similarly to the overall cost.

To minimize the overall cost C, we perform a grid search
over possible parameter values and calculate probabilities
based on 10° realizations of the stochastic model, leading to the
results listed in Table 1. The table shows how the diffusive
model of Mogavero & Laskar (2021) can be slightly improved
by optimizing the parameters r, gll, and ng. In contrast,
adopting the subdiffusive Hurst parameter o =0.26 dramati-
cally reduces the cost. Compared to the original Mogavero &
Laskar (2021) model, the best subdiffusive model has a
3x smaller cost. The subdiffusive model leads to the most
improvement in Gy, Which is weighted toward earlier times,
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Figure 6. Left: a sample trajectory of g; from the N-body model that demonstrates intermittency: sustained quiescent periods alternate with sustained active periods.

Right: a sample trajectory of g, from the subdiffusive model for comparison.

Table 1
Cost Function C for Different Diffusive and Subdiffusive Models
Parameters ML21 Diffusive Subdiffusive
10 - Cpron 305 310 229
Ciog 533 363 85
Cdisp 610 655 63
1000 - Chise 446 235 219
C 1895 1577 595

Note. The ML21 model is taken from Mogavero & Laskar (2021). The
“diffusive” and “subdiffusive” models fix the starting parameter
g](’ = 5”60 yr~! and adapt the parameters r, g]L, and g]T to minimize the cost.
The “diffusive” model fixes v = 0.50, while the “subdiffusive” model adapts «
to minimize the cost.

and Cy;sp, as expected since it was motivated by the poor fit of
the diffusive model to the mean square displacement. See
Table 2 for a list of the five converged parameter values for the
subdiffusive model (four of which are free parameters).

4. Discussion

The success of the g; subdiffusive model at approximating
so many characteristics of the N-body model sets new
challenges for the planetary dynamics community: first, why
does g; subdiffuse rather than diffuse? Second, what is the
physical cause of the restoring upper boundary on g,? Given
that the upper boundary prevents g; from resonating with
g>~7"45 yr', why is not there a restoring lower boundary
on g; that prevents it from reaching gs and thereby prevents
Mercury instability events?

Clues to the answers to these questions may lie in the
properties of a conservative, Hamiltonian system. The phase
space of such systems are generically comprised of a mixture of
regular and chaotic trajectories. The dynamics of 2 degree of
freedom Hamiltonian systems are equivalent to those of area-
preserving maps via the construction of Poincare return maps.
The mixed phase space of two-dimensional area-preserving
maps consists of elliptic periodic orbits surrounded by KAM

Table 2
Parameters and Their Values for the Diffusive and Subdiffusive Models

Parameters ML21 Diffusive Subdiffusive
g "y 5.58 5.60 5.60
g yrh 572 579 5.85
g "yrh 426 455 4.86
a 0.50 0.50 0.26
r (" yr ! Gyr®) 0.20 0.17 0.16

Note. The parameter values for the ML21 diffusive model are taken from
Mogavero & Laskar (2021), but rewritten using our variables.

curves that constitute “islands” embedded in a chaotic “sea”
(e.g., Lichtenberg & Lieberman 1992). The KAM curves of
these regular islands form strict barriers for trajectories in the
chaotic regime. The “stickiness” of the borders of these regular
islands could lead to behavior that can effectively be described
as subdiffusion, similar to how diffusion on fractal materials
can lead to subdiffusion (Henry et al. 2010). In higher
dimensions, the surviving KAM tori of regular trajectories
would no longer impose strict topological constraints on the
phase space accessible to chaotic orbits, but may still limit the
range of excursions in a way that can be described by a soft,
spring-like boundary. Of course this discussion is highly
speculative, and more detailed research is needed to satisfacto-
rily explain the dynamical properties of the solar system we
have identified in this paper.

The g, subdiffusive model is an improvement over the g,
diffusive model, but it does not produce identical behavior to the
N-body model. It is useful for improving understanding of the N-
body model, not for replacing it. For example, the N-body
trajectories show intermittency, transitioning from sustained
quiescent periods to sustained active periods (Figure 6). Periods
of relative quiescence could be associated with proximity to
islands of regularity. Finally, it is important to remember that an
N-body code is not a perfect representation of reality either.

The subdiffusive model fits Mercury instability statistics
from the N-body model much better than the diffusive model
on timescales less than 5 Gyr, but we do not have enough
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N-body Mercury instability events on timescales less than
2 Gyr to thoroughly test the subdiffusive model on the shortest
timescales. One option would be to generate large enough
ensembles (possibly with 10° members) using a high-order
secular code (e.g., Mogavero & Laskar 2021) to estimate the
probability of a Mercury instability event on these short
timescales. Alternatively, more N-body Mercury instability
examples on shorter timescales could be obtained using
Diffusion Monte Carlo (Ragone et al. 2018; Webber et al.
2019; Abbot et al. 2021; Ragone & Bouchet 2021) or action
minimization (E et al. 2004; Plotkin et al. 2019; Woillez &
Bouchet 2020; Schorlepp et al. 2023) rare event schemes, aided
by machine-learning predictor functions (Ma & Dinner 2005;
Chattopadhyay et al. 2020; Finkel et al. 2021; Miloshevich
et al. 2023; Finkel et al. 2023).

5. Conclusions
The main conclusions of this paper are as follows:

1. The g; diffusive model significantly underpredicts the
Mercury instability probability relative to an N-body
model on timescales less than 5 Gyr, which is the
physically relevant timescale for the future of the solar
system. The underprediction results from the fact that the
g1 diffusive model produces too small variations of g; on
timescales less than ~0.3 Gyr.

2. We are able to fit N-body Mercury instability statistics on
timescales of less than 5 Gyr as well as longer timescales
using the g; subdiffusive model. We tune the model using
the mean square displacement of g, pdf of g; from N-
body simulations, and the fraction of N-body simulations
that reach the instability threshold.
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