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Abstract

Vegetation species mapping using airborne imaging spectroscopy yields accurate results and is
important for advancing conservation objectives and biogeographic studies. As these data become
more readily available owing to the upcoming launch of spaceborne imaging spectrometers, it is
necessary to understand how these data can be used to consistently classify species across large
geographic scales. However, few studies have attempted to map species across multiple ecosystems;
therefore, little is known regarding the effect of intra-specific variation on the mapping of a single
species across a wide range of environments and among varying backgrounds of other non-target
species. To explore this effect, we developed and tested species classification models for
Metrosideros polymorpha, a highly polymorphic canopy species endemic to Hawai’i, which is found
in a diverse array of ecosystems. We compared the accuracies of support vector machine (SVM)
and random forest models trained on canopy reflectance data from each of eight distinct
ecosystems (ecosystem-specific) and a universal model trained on data from all ecosystems. When
applied to ecosystem-specific test datasets, the ecosystem-specific models outperformed the
universal model; however, the universal model retained high (>81%) accuracies across all
ecosystems. Additionally, we found that models from ecosystems with broad variation in M.
polymorpha canopy traits, as estimated using chemometric equations applied to canopy spectra,
accurately predicted M. polymorpha in other ecosystems. While species classifications across
ecosystems can yield accurate results, these results will require sampling procedures that capture
the intra-specific variation of the target species.

1. Introduction

Spatial information on tree species distributions has many conservation applications including monitoring
keystone or endangered species [1], invasive species tracking [2—4], and modeling climate change outcomes
[5-7], among others. Remote sensing data are increasingly being used to circumvent the limitations of
traditional field-based forest inventories. While species classifications have successfully used light detection
and ranging (LiDAR) and multispectral images, complex cases often rely on airborne imaging spectroscopy
to achieve sufficient accuracies [8—14]. Despite the potential of these data to operationally map plant species
across large geographic regions, classification studies using imaging spectroscopy are often limited to small
geographic regions [10, 12, 13], and thus the effects of intra-specific spectral variability, driven by variation
in canopy traits, on classification accuracies remains underexplored [10].

By collecting solar-reflected radiance spectra from the visible (~350-700 nm) through near-infrared
(700-1100 nm) and into the shortwave infrared (SWIR; 1100-2500 nm) at narrow wavelength intervals
(<10 nm) and over extensive geographic areas, imaging spectroscopy often yields higher tree classification
accuracies than other remote sensing methods [15, 16]. Accurate classifications via imaging spectroscopy are

© 2024 The Author(s). Published by IOP Publishing Ltd
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largely a result of the ability of these data to capture chemical and morphological traits of canopies [17, 18],
which are taxonomically driven [17, 19-24]. These data can even capture intra-specific variations at the
canopy level [20, 25, 26]. Yet the effect of this intra-specific variability on species classifications when
mapping a single species across ecosystems or environmental gradients is largely unknown [10].

Intra-specific leaf traits vary substantially across ecosystems [27, 28] and environmental gradients [26,
29-31]. For example, ecosystem of origin, as opposed to taxonomy, explained nearly 30% of leaf trait
variation in species that crossed the Amazon-Cerrado transition [27]. Metrosideros polymorpha, a keystone
canopy species endemic to Hawaii, demonstrates high polymorphism in that its four subspecies on Hawaii
Island are environmentally filtered along elevation and soil substrate gradients and are characterized by
morphological differences such as leaf pubescence, shape, and thickness [32-35]. Intra-specific trait
variation helps drive community structure, often indirectly, such as through the microbial composition [36].
It also helps explain not only how a single species can exist in contrasting environmental conditions, but also
how many species coexist in diverse environments [37, 38]. Because traits can vary within a species, leaf traits
often converge within a given environment regardless of taxonomic association [39]. While a growing body
of literature focuses on intra-specific variation, the relative effect of trait convergence versus taxonomy on
species classifications across ecosystems remains poorly known.

To address how intra-specific variation affects species classifications across ecosystems, we employed the
Hawaii Island model system where M. polymorpha exists along and across extreme environmental gradients.
Hawaii Island is home to twelve natural and anthropogenic ecosystems, eight of which host M. polymorpha.
The intra-specific variation that characterizes M. polymorpha includes morphological [32, 40], chemical, and
spectral variation [26, 31] across environmental gradients and has led to its differentiation into four
genotypes that self-sort along these gradients [34, 35]. The polymorphism of this species has challenged
large-scale classification efforts [41] and makes it an ideal study organism to assess species classifications
across ecosystems.

2. Methods

2.1. Airborne imaging spectroscopy

Imaging spectroscopy data across Hawai’i Island were collected by the Arizona State University Global
Airborne Observatory (GAO), which houses a high-fidelity imaging spectrometer (380-2510 nm) and a
boresight aligned dual-laser LiDAR scanner. Collection and processing of the data followed Seeley et al [41],
which are described briefly here. Data were collected in January 2019, with some regions filled in using
previous campaign data from January 2016, July 2017, and January 2018 [42]. Spectroscopy data were
orthorectified to 2 m x 2 m spatial resolution using accurate position and orientation data along with a ray
tracing technique to match viewing geometry to LiDAR-derived surface maps. Observed radiance spectra
were corrected for atmospheric effects and converted to reflectance using ACORN v6.0 (Atmospheric
CORrection Now; AIG LLC; Boulder, CO) [43, 44]. After brightness-normalized cloud-free VSWIR surface
reflectance mosaics across Hawaii Island were developed, a normalized difference vegetation index (NDVI)
and height threshold as well as a shade mask were applied to the dataset. Only pixels with photosynthetic
vegetation, as determined by a NDVI threshold of >0.7 were kept; NDVI was calculated using the 650 and
860 nm wavelengths of the VSWIR data. LiDAR-derived top of canopy height (TCH) was used to remove
vegetation below one meter, and shaded portions of the canopy were removed using a shade mask created
using a ray tracing technique applied to the LiDAR surface maps [42, 45]. Canopy traits (table S1) were
estimated using the filtered canopy datasets by applying universal chemometric algorithms developed by
Asner et al [46].

2.2. Crown data collection

Crown reflectance data was derived from the filtered canopy datasets using averaged spectra from within
field-collected canopy polygons. A total of 3154 canopies in eight distinct Hawaii Island ecosystems were
delineated and identified as either M. polymorpha or ‘other vegetation’ between August 2022 and April 2023.
Crowns were delineated in the field using Garmin Glo GPS connected to PC tablets with GAO TCH, true and
false color composites, and preliminary M. polymorpha classifications developed using a support vector
machine (SVM). Additional delineations were made using Google Street View. As Balzotti et al [9] and
Weingarten et al [47] employed similar crown delineation methods, their crown classifications were included
in the training dataset. All pixels in the filtered reflectance dataset within a crown polygon were averaged to
generate canopy spectra and leaf trait data. Crowns of other species were grouped together and represented
the background vegetation spectra from which the classification models were trained to discriminate M.
polymorpha.
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Figure 1. (a) Spatial arrangement of the eight ecosystems on Hawai’i Island inhabited by Metrosideros polymorpha. Ecosystems
were designated by the U.S. Geological Survey Gap Analysis Program in 2001 [48]. Boxplots of (b) elevation (m) and (c) annual
precipitation (mm) in each ecosystem are presented. Elevation data originated from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) digital elevation model (DEM), and the 30 year mean annual precipitation (1978-2007) was
obtained from the University of Hawai’i-Manoa Hawaii Rainfall Atlas [49].

Using geospatial ecosystem delineations across Hawaii Island, canopy spectra were sorted into one of
eight ecosystems based on their location. Ecosystem delineations were created using 2001 Landsat data by the
U.S. Geological Survey Gap Analysis Program [48] and included grassland, shrubland, and forest in two
precipitation regimes—wet and mesic (figure 1). Wet forests at low elevations often contain a mixture of
invasive species, while wet and mesic forests at higher elevations are often comprised of native Acacia koa and
M. polymorpha. Grasslands and shrublands on Hawai’i Island are commonly a consequence of abandoned
cattle pastures, and these ecosystems include shrubby M. polymorpha, other native trees and shrubs, and
opportunistic invasive species. Ecosystems designated as grasslands include savannas as large spreading trees
like Samanea saman dominate these landscapes. The anthropogenic ecosystem included in this study,
‘developed’, included developed regions like cities and roads. Developed areas included non-native
ornamental species, many of which are present in lowland wet forests, palm species, trees with edible fruits
such as Artocarpus altilis, Mangifera indica, and Persea americana, and M. polymorpha cultivated from across
the Hawaiian Islands. The bare ecosystem denoted regions with relatively recent lava flows where M.
polymorpha and other shrubby vegetation grows out of rocky lava fields with no understory or vegetated
ground cover. As M. polymorpha rarely grows in agricultural fields and not in any of the three dry
ecosystems, these were excluded from the study.

2.3. Analysis

Several analyses were undertaken to explore the characteristics of M. polymorpha reflectance patterns across
the eight ecosystems relative to background vegetation. The initial investigation included a visual assessment
of canopy spectra. Mean spectra for M. polymorpha and background vegetation within each ecosystem were
plotted together to understand patterns in the spectra. Reflectance across the VSWIR spectra is an expression
of leaf traits and leaf and canopy structure, and different traits often have a stronger influence on different
portions of the spectra. As a result, a qualitative assessment of the VSWIR spectra can provide insight into
the variations of M. polymorpha across ecosystems relative to background vegetation. To further understand
patterns in canopy spectra, canopy leaf traits for M. polymorpha and background vegetation across the
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ecosystems were compared. Within each ecosystem, leaf trait differences between M. polymorpha and other
vegetation were assessed via a Mann-Whitney test using the scipy python package [50].

After assessing patterns in canopy spectra and traits, several SVM classification and random forest
models were fit to the data using the scikit-learn python package (version 1.1.3). SVMs produce accurate
species classifications and efficiently handle the highly dimensional imaging spectroscopy datasets by
creating decision boundaries in feature space that maximize the distance between that boundary and the
training data [8, 11, 51-55]. We used a radial kernel SVM with hyperparameter selection (kernel coefficient
and regulation parameter) performed using a grid search available in the scikit-learn python package
(version 0.24.1) [56]. Random forest is an ensemble classifier consisting of many decision trees and has been
used for many remote sensing classification applications [57, 58]. The random forest model was likewise
performed using a grid search to optimize classifier hyperparameters.

As the number of training crowns from each ecosystem was uneven (table S2), 88 crowns were selected
from each ecosystem via stratified random sampling. As the ecosystem with the least number of crowns was
‘wet shrub), which had 88 crowns, 88 crowns were selected from each ecosystem using random selection
stratified based on species (M. polymorpha or other vegetation) to create datasets with an equivalent number
of data points in each category, where possible. An additional category (‘Universal’) that included data from
all the ecosystems was created using 11 crowns from each of the eight ecosystems. As before, half of the
crowns in the Universal category were M. polymorpha (either five or six M. polymorpha from each
ecosystem), and half were other vegetation. The 88 crowns from each ecosystem were split randomly into
70/30 training/test datasets. An SVM and random forest was fit to training crown reflectance data from each
ecosystem category (ecosystem-specific models) and to data from all ecosystems (universal model). Accuracy
scores were obtained by fitting the models trained on data from each ecosystem to all test datasets.

Lastly, the intra-specific variability of M. polymorpha was compared with the inter-specific variability
across the ecosystems. For these investigations, we developed two SVM models—one that included only M.
polymorpha, and the other included only other vegetation. The SVM was fit to each dataset and its
performance in categorizing crowns based on their ecosystem of origin was assessed. For this investigation, a
60/40 training/test split via stratified random sampling was used to increase the test dataset size as the
number of classification categories increased.

3. Results

3.1. Reflectance spectra

Overall, mean M. polymorpha canopy reflectance overlapped with that of other vegetation in the visible
(450-700 nm). The mean reflectance of M. polymorpha and other vegetation converged before the green
reflectance peak (~550 nm) in the developed, mesic forest, bare, and all wet ecosystems, though the mean
reflectance was slightly higher for M. polymorpha (figure 2). Where spectra diverged between M. polymorpha
and other background vegetation, M. polymorpha had higher reflectance values in all ecosystems except the
bare ecosystem (figures 2 and S1). Divergence between the vegetation categories was greatest in the mesic
shrub ecosystem (figure S1). M. polymorpha spectra diverged from other vegetation in the near-infrared
(750-1320 nm) across all ecosystems. Between 750 and 1000 nm, M. polymorpha spectra were lower than
that of other vegetation, but the pattern reversed between 1170 and 1320 nm. While these patterns were
consistent across all ecosystems in the visible and near-infrared, divergence between spectra in the SWIR
(1450-2500 nm) of M. polymorpha and other species differed for each ecosystem (figure 2). The developed,
bare, wet grassland, and to a lesser extent, wet shrub ecosystems, had similar reflectance in the SWIR.
Reflectance of M. polymorpha and other vegetation in the wet shrub ecosystem diverged between 1450 and
1800 nm but nearly converged after 2000 nm. For all other ecosystems, M. polymorpha had higher reflectance
in the SWIR than the background vegetation from any ecosystem (figure S1).

3.2. Canopy chemistry

Across all ecosystems, M. polymorpha had lower median values than background vegetation for all chemistry
indices except leaf mass per area (LMA; figure 3). LMA indices of M. polymorpha were higher than
background vegetation in all ecosystems except the bare ecosystem where the pattern reversed (figure 3). All
differences between chemistry indices for M. polymorpha and background vegetation were significant
according to the MannWhitney two-sided test (p < 0.5) except for nonstructural carbohydrates (NSC) in the
mesic shrub ecosystem. Except for mesic shrub, variability of chlorophyll a and b (a + b), carotenoids, lignin,
total carbon (C), and nitrogen (N) was greater in background vegetation than M. polymorpha across all
ecosystems (figure 3). M. polymorpha in the mesic shrub ecosystem had greater variability for all chemistry
indices than M. polymorpha, and often background vegetation, from the other ecosystems (figure 3). For
background vegetation, there was high variability in chlorophyll a + b, carotenoids, and N from wet
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Figure 2. Mean brightness normalized reflectance of Metrosideros polymorpha (red) and other vegetation (blue). Each line
represents a different ecosystem. Individual plots of spectra within each ecosystem can be seen in figure S1.

ecosystems (figure 3). M. polymorpha in wet shrub ecosystems likewise had higher N, phenols, and NSCs
than that in other ecosystems. This pattern of higher values for cellulose, phenols, and total C in both wet
forest and grasslands ecosystems as well as higher carotenoids, chlorophyll a 4+ b, N, and NSC in wet
grasslands, compared to other ecosystems was mirrored by background vegetation. Similarly, background
vegetation in wet forest and grasslands had lower LMA than that in other ecosystems. All vegetation from the
mesic shrub ecosystem had higher LMA than vegetation in other ecosystems. M. polymorpha from mesic
shrub ecosystems had higher LMA and lower carotenoids, cellulose, chlorophyll a + b, lignin, and N than all
but one ecosystem, most often the bare ecosystem. Background vegetation similarly had higher LMA than
background vegetation from other ecosystems except for mesic grassland, but the other patterns did not
hold.

3.3. Classification models

M. polymorpha classification across all Hawaii Island ecosystems was most accurately performed by the
universal SVM model (81.5% accuracy; table 1). The best model for each ecosystem classified M. polymorpha
canopies with 81.5%—100% accuracy (table 1). As M. polymorpha from all ecosystems except for mesic shrub
and mesic forest was most accurately classified by SVM, as opposed to random forest, the following results
refer to SVM unless stated otherwise (tables 1 and S3). Mesic grassland was best classified by data trained
from mesic forests as well as the developed ecosystem (96.3% accuracy for both; table 1). Wet grasslands were
most accurately classified by the bare ecosystem model (85.2%; table 1). Mesic forest was most accurately
classified by the random forest model trained on data from developed ecosystems (92.6%; table S3), though
the mesic forest SVM was the most accurate SVM model (88.9%; table 1). For all other ecosystems, M.
polymorpha classification accuracies were highest for models trained on data from the same ecosystem

(table 1). Models tested on data from developed ecosystems had the same high accuracy when trained using
data from three other ecosystems (table 1). Models trained using data from mesic and wet grasslands had
some of the lowest classification accuracies across all ecosystems (table 1). The mesic forest SVM model was
the most universal, followed by the bare model, in that the highest accuracies for four ecosystems were
achieved with this model (table 1).

To address whether vegetation from the same environment is more similar spectrally than individuals of
the same species from different environments, we trained an SVM to classify M. polymorpha and other
vegetation spectra into their respective ecosystems (table 2). M. polymorpha in mesic grasslands was most
accurately classified into the correct ecosystem (66.7%), while that from the other ecosystems had 22.2%
(developed) to 55.6% (mesic forest) accuracy (table 2). M. polymorpha from wet forests was most often
misclassified as wet shrub (table 2). M. polymorpha canopies from developed and bare areas were
misclassified with similar rates into all ecosystems, though they were most often misclassified as being from
the mesic shrub ecosystem (table 2). Each ecosystem had at least one misclassification in the developed
ecosystem (table 2). M. polymorpha spectra were more accurately classified based on ecosystem than other
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Figure 3. Boxplots of ten canopy traits as estimated by chemometric equations created by Asner et al [46]. Red boxes represent the
canopy trait variation of the Metrosideros polymorpha training datasets for each ecosystem while blue represents that of
background vegetation.

vegetation for all ecosystems except wet shrub, wet forest, and bare (table 2). For other vegetation, the canopy
spectra from the bare ecosystem were the most accurately classified (55.6%) while that from the wet
grassland and developed ecosystems were the least accurately classified (16.7%; table 2). Other vegetation
canopy spectra from mesic and wet ecosystems were most often misclassified as another ecosystem in a
similar moisture regime.
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Table 1. Accuracy of support vector machine (SVM) when trained on one ecosystem (columns) and applied to another (rows). The
‘Universal’” category represents data from all ecosystems combined. Bold values indicate the best scores in each row. See table S3 for
random forest accuracy results.

SVM

Mesic Mesic Mesic ~ Wet Wet Wet

grassland  shrub forest  grassland  shrub  forest Developed  Bare Universal
Mesic Grassland ~ 85.2 88.9 96.3 14.8 66.7 74.1 96.3 59.3 852
Mesic Shrub 70.4 88.9 66.7 44.4 59.3 704  66.7 55.6 85.2
Mesic Forest 51.9 74.1 88.9 59.3 85.2 85.2 81.5 85.2 81.5
Wet Grassland 66.7 81.5 77.8 81.5 77.8 77.8 70.4 85.2 815
Wet Shrub 55.6 81.5 96.3 74.1 96.3 88.9 92.6 88.9 92.6
Wet Forest 44.4 92.6 92.6 88.9 88.9 100.0  92.6 96.3  92.6
Developed 44.4 85.2 85.2 63.0 81.5 77.8  85.2 852 815
Bare 63.0 88.9 96.3 63.0 63.0 81.5 81.5 100.0 92.6
Universal 56.1 77.4 78.8 66.5 73.6 81.1 79.2 80.7  81.5

Table 2. Confusion matrix of SVM classifying (top) Metrosideros polymorpha and (bottom) other vegetation crowns into their respective
ecosystems.

Predicted

Metrosideros polymorpha

Mesic Mesic Mesic Wet
grassland shrub forest grassland Wetshrub Wet forest Developed Bare Accuracy

Mesic Grassland 6 1 0 0 0 0 2 0 66.7
Mesic Shrub 2 8 1 0 0 2 3 1 47.1
Mesic Forest 0 1 10 0 5 1 1 0 55.6
Wet Grassland 1 0 0 7 4 0 2 4 38.9
Wet Shrub 1 1 2 1 6 3 3 1 33.3
Wet Forest 0 0 1 1 7 6 1 1 35.3
Developed 0 4 2 2 3 2 4 1 22.2
Bare 1 4 1 2 1 1 2 6 33.3
Observed Other Vegetation
Mesic Grassland 12 6 7 0 0 0 1 0 46.2
Mesic Shrub 2 8 5 0 0 0 2 0 47.1
Mesic Forest 3 3 6 0 2 1 2 1 33.3
Wet Grassland 1 0 2 3 7 3 2 0 16.7
Wet Shrub 0 0 1 2 8 3 3 0 47.1
Wet Forest 1 0 0 3 3 7 3 0 41.2
Developed 3 3 1 1 1 1 3 5 16.7
Bare 1 1 1 0 3 0 2 10 55.6

4. Discussion

Intra-specific spectral variation of dominant canopy species has been demonstrated at the leaf [21, 24] and
canopy [20, 25, 26, 59, 60] levels, yet the effect of intra-specific variation on species classifications in remote
sensing, specifically imaging spectroscopy, data has been largely unexplored. Here, we addressed this
question using M. polymorpha, a highly polymorphic canopy species that varies morphologically and
chemically across environmental gradients [26, 31, 32, 40]. For example, M. polymorpha had a four-fold
increase in leaf mass per area and three-fold change in foliar nitrogen across an elevation gradient [32]. Here,
we first demonstrated that M. polymorpha varies spectrally across eight Hawaii Island ecosystems by visually
comparing reflectance spectra and by building a classifier that predicted the ecosystem of origin for M.
polymorpha canopy spectra. We then assessed how the intra-specific variation of M. polymorpha across these
ecosystems affected species classification accuracies. We found that, while M. polymorpha classifiers
performed best when trained and tested on data from the same ecosystem, most models performed with
reasonably high accuracies (<70%) on data from other ecosystems.

When comparing ecosystem-specific models with a universal model trained on data from all ecosystems,
we found that the universal model only outperformed ecosystem-specific models when tested on combined
data from all ecosystems. In contrast, Marconi et al (2022) found that a generalized model trained using data
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from 27 National Ecological Observatory Network sites across the contiguous US, Alaska, and Guam
outperformed site-specific tree crown classifiers. Marconi et al (2022) included the site centroid in the model
to reduce site-level effects, which may have resulted in improved classification. Further, they did not specify
whether their site-specific models have the same number of training samples as their general model, which
would also affect classification accuracies as a larger training dataset in the general model would result in
higher accuracies. Another study achieved high (>70%) accuracies when classifying species and habitats in
five diverse sites across the contiguous United States (US), though they did not include site-specific models
[12]. Both our results and these studies demonstrate that species classifications with high accuracies (>70%)
across large geographic regions is possible, but accurate species mapping will require training data that
represents the intra-specific variation of target species across the region.

In remote sensing classifications, selecting training datasets that best represent the spectral variation of
the data results in models with higher accuracies [11, 61, 62]. In this study, ecosystem-specific models trained
on data from mesic grasslands had the lowest accuracies (min 44.4%) when classifying data from other
ecosystems. When looking at the range of the first and third quantiles, data from mesic grasslands often had
M. polymorpha canopy chemical indices outside that of other ecosystems. Though this difference in canopy
chemistries may be a result of a sampling bias and not representative of the intra-specific variation of M.
polymorpha in mesic grasslands, it likely resulted in lower classifications accuracies as M. polymorpha canopy
characteristics present in datasets from other ecosystems was not represented in the mesic grasslands data. In
contrast, the SVM trained on mesic shrubs, which had the largest M. polymorpha canopy chemistry variation,
had consistently high accuracies across all ecosystems (>74.1%). This was not necessarily the case for
ecosystems with high variation in background vegetation canopy traits as models trained on data from wet
ecosystems yielded low accuracies (min 14.8%) when tested on other ecosystems. Training data selection is an
important consideration when developing classification models across large geographic scales, though, due
to the hyperplanes SVMs create as decision boundaries, simply increasing dataset size without consideration
for the target species variation may not necessarily result in more accurate classifications [63, 64].

M. polymorpha is a unique case study for this investigation due to its high intra-specific variation [24, 26,
32, 34, 35, 40]. Here, we found that a SVM was able to predict the ecosystem of origin more accurately for M.
polymorpha canopy spectra than those of other species. This may be a result of other species growing in
ecosystems of the same moisture regime and having less intra-specific variation across grassland, shrub, and
forest designations than M. polymorpha, especially as many of these species are non-native invasives and
likely experienced genetic bottlenecks [65]. The developed ecosystem had the least unique spectra for both
M. polymorpha and other vegetation. This is likely a result of developed areas on Hawai’i Island existing in
regions with high and low rainfall regimes as well as people cultivating plants from multiple origins across
the Hawaiian Islands.

5. Conclusions

In the upcoming era of spaceborne imaging spectrometers [66—69], large-scale vegetation classifications will
become more feasible. Yet despite the imminent data availability, few studies have attempted to classify trees
species across ecosystems using imaging spectroscopy data [12, 13]. This investigation addressed how
intraspecific variation of tree species across ecosystems affected species classifications from imaging
spectroscopy data, which is an important consideration in large-scale vegetation mapping. Implications of
accurate vegetation species classifications across large geographic areas include developing baseline species
distributions for tracking future range shifts [5-7], identifying locations where rare species exist [1], and
monitoring invasive species [2—4]. Here we demonstrated that despite the high intra-specific variability of M.
polymorpha across ecosystems, accurate classifications of this species were possible. While ecosystem-specific
models tended to outperform the universal model, the universal model achieved high (>80%) accuracies.
When classifying species across environmental gradients, developing a dataset that represents the
intra-specific variation of the target species will be key to developing accurate models.
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