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Abstract: Vegetation classifications on large geographic scales are necessary to inform conservation
decisions and monitor keystone, invasive, and endangered species. These classifications are often
effectively achieved by applying models to imaging spectroscopy, a type of remote sensing data, but
such undertakings are often limited in spatial extent. Here we provide accurate, high-resolution spa-
tial data on the keystone species Metrosideros polymorpha, a highly polymorphic tree species distributed
across bioclimatic zones and environmental gradients on Hawai’i Island using airborne imaging
spectroscopy and LiDAR. We compare two tree species classification techniques, the support vector
machine (SVM) and spectral mixture analysis (SMA), to assess their ability to map M. polymorpha
over 28,000 square kilometers where differences in topography, background vegetation, sun angle
relative to the aircraft, and day of data collection, among others, challenge accurate classification. To
capture spatial variability in model performance, we applied Gaussian process classification (GPC)
to estimate the spatial probability density of M. polymorpha occurrence using only training sample
locations. We found that while SVM and SMA models exhibit similar raw score accuracy over the test
set (96.0% and 93.4%, respectively), SVM better reproduces the spatial distribution of M. polymorpha
than SMA. We developed a final 2 m ⇥ 2 m M. polymorpha presence dataset and a 30 m ⇥ 30 m
M. polymorpha density dataset using SVM classifications that have been made publicly available for
use in conservation applications. Accurate, large-scale species classifications are achievable, but
metrics for model performance assessments must account for spatial variation of model accuracy.

Keywords: imaging spectroscopy; Metrosideros polymorpha; species classification; support vector
machine; SMA; Gaussian process classification

1. Introduction
Conservation decision-making relies on the quantification and monitoring of forested

ecosystem health across large landscapes. Spatially mapping rare, endangered, keystone,
or invasive tree species is necessary to understand habitat quality, model future forest
assemblages, protect a particular species, and manage ecosystem services, among other
conservation goals. While the number of studies reporting tree species classifications is
increasing, few classify single species across large geographic extents [1]. Large-scale single-
species classifications have many logistical considerations that challenge accurate species
mapping such as intraspecific variation [1], canopy and understory species turnover [2,3],
subcanopy shading [4,5], date of image acquisition [4], and computational limitations [6].
Further, traditional metrics for evaluating model performance do not capture the spatial
variability of model accuracy [7,8] and are therefore impractical for classifications on large
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geographic scales. Due to the pressing need for these data in conservation applications, it
is important to address these challenges associated with tree species classifications over
large geographic extents.

Metrosideros polymorpha (‘ōhi’a lehua) is an ideal overstory tree species to address
these challenges due to its prevalence in many bioclimatic zones, high intra-specific vari-
ation, and the need for accurate spatial data of this keystone species endemic to Hawai’i
(Figure S1). Approximately half of the vegetative biomass [9] and 80% of the native forest
basal area [10] in the state of Hawai’i is M. polymorpha. As a major component of native
Hawaiian forests, M. polymorpha provides habitat to many endemic plants and animals [11],
is culturally important to Native Hawaiians [12,13], and sustains vital ecosystem services
such as groundwater recharge [14]. M. polymorpha, and therefore native Hawaiian forest
ecosystems, is in decline due to the introduction of invasive species and Rapid ‘Ohi’a
Dead (ROD), a widespread disease that has led to millions of M. polymorpha mortalities [15].
M. polymorpha not only represents a keystone species in decline but its existence across mul-
tiple ecosystems from sea level to 7150 m elevation and on a range of soil substrates from
bare lava flows to late successional flows [16] allows us to investigate methods of mapping
a single species across diverse landscapes. While studies have compared the spectral simi-
larity of plants across ecosystems, they largely investigated the effect of species turnover
on spectral variation [6,17]. The M. polymorpha model system [18] allows us to assess the
intraspecific variation of one species across bioclimatic zones. Further, M. polymorpha is
highly polymorphic, exhibiting heritable morphological and chemical differences across
environmental gradients [19–23]. On Hawai’i Island, M. polymorpha has four described
varieties, many of which hybridize naturally, which exist in specific habitats and have
distinct morphologic, chemical, and spectral characteristics [22–24].

Despite the prominence of M. polymorpha on the landscape, spatial data of M. polymorpha
does not exist at the resolution necessary to inform many native forest conservation decision-
making processes. For example, the Hawai’i Gap Analysis Project (HI-GAP) developed
spatial data of forest classes including M. polymorpha and mixed M. polymorpha stands, but
these data were developed in 2001 using 30 m ⇥ 30 m Landsat imagery [25]. While this map
is useful for approximating locations where M. polymorpha may exist, the resolution is too
coarse for detailed spatial analyses, and it includes many classification errors due to the lack
of high spatial and spectral information in Landsat data. Current, high-resolution spatial
information on M. polymorpha is needed for watershed-level decision-making models being
developed for Hawai’i Island [26–28], refining ROD monitoring methods, and defining a
baseline species distribution of M. polymorpha to track future range shifts.

To develop novel and high-resolution (2 m ⇥ 2 m) spatial data of M. polymorpha in
support of these conservation efforts, we used a fusion of airborne imaging spectroscopy
and light detection and ranging (LiDAR) data. Imaging spectroscopy is a process of
image formation that captures reflectance across a continuous portion of the visible to
short-wave infrared (VSWIR) spectrum in short wavelength intervals (~10 nm). These
high-spectral resolution data capture surface chemistry [29,30], and because each species
has a unique chemical fingerprint [31], imaging spectroscopy allows for accurate species
classifications [2,32–37]. LiDAR, which uses pulsed lasers to quantify the surface structure,
has been fused with imaging spectroscopy data to reduce the spectral influence of canopy
shading and provide precise geolocation [38,39]. Prior work has used imaging spectroscopy
from multiple sites across the United States to develop classifications and demonstrated
that accurate classifications on large geographic scales are possible [3,40].

Using airborne imaging spectroscopy and LiDAR data processed over 28,000 km2 of
area at a 2 m spatial resolution, we developed a spatial dataset of M. polymorpha canopies
across Hawai’i Island with two classification techniques, support vector machine (SVM)
and spectral mixture analysis (SMA). We assessed how well these methods can classify
a single highly polymorphic tree species across a large geographic area. Classification
performance was assessed by test set accuracy metrics and a comparison with estimated
spatial probability densities calculated with Gaussian process classification (GPC). The
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final products include an accurate, high-resolution dataset of a keystone species available
to conservationists and decision-makers seeking to protect native Hawaiian forests.

2. Materials and Methods
Imaging spectroscopy data were collected across Hawai’i Island by the Global Air-

borne Observatory (GAO) in January 2019, with some regions filled in with the most
recent data from previous campaigns in January 2016, July 2017, and January 2018 [38].
In addition to the high-fidelity imaging spectrometer (380–2510 nm), the GAO houses a
boresight-aligned dual-laser LiDAR scanner. LiDAR data were used to generate a surface
elevation map and precise time-synced position and orientation data that were used to
orthorectify VSWIR spectroscopy data to a 2 m ⇥ 2 m spatial resolution. After orthorec-
tification, VSWIR data were corrected for atmospheric effects and processed to retrieve
hemispherical-direction reflectance values with ACORN v6.0 (Atmospheric CORrection
Now; AIG LLC; Boulder, CO, USA) [41,42]. Cloud-free mosaics were developed by first
removing clouds and cloud shadows from individual flight-line-level reflectance maps
using a mixture of automated cloud detection provided by a trained neural network model
and manual revision of the produced cloud and cloud shadow outlines. The cleaned flight
line maps were then manually layered based on minimizing flight line edge artifacts as ob-
served in true color composites. Mosaics were developed based on the optimal layer order.
VSWIR surface reflectance data across Hawai’i Island were then brightness-normalized by
dividing each VSWIR channel by the vector norm of the entire VSWIR spectrum for each
pixel after removing bands affected by atmospheric water absorption features. Brightness
normalization is a means to control for variation in reflectance caused by properties not
related to foliar chemistry such as subpixel shade, leaf orientation relative to viewing and
sun angles, and leaf volume [43]. Regions where differences between flight lines caused
erroneous classifications were further processed using bidirectional reflectance distribution
function (BRDF) adjustments. BRDF effects result from the anisotropic scattering of remote
sensing targets, where the basic atmospheric correction model assumes a flat, evenly diffuse
surface. Empirical kernel models were fit to the reflectance and observation angle data,
and spectra were adjusted to a standard observation angle using the difference between
the observed spectra and their modeled BRDF spectra [44]. Next, the data were filtered to
obtain pixels representing photosynthetic vegetation. Normalized difference vegetation
index (NDVI) data were calculated using bands at 650 nm and 860 nm of the VSWIR data,
and all pixels under a 0.7 NDVI threshold were removed. Understory and shaded portions
of the canopy were filtered from the data using top-of-canopy height (TCH) surface maps
generated from LiDAR and a shade mask generated using a ray tracing technique on the
LiDAR-derived surface elevation map [38,45]. TCH surface maps were used to remove
pixels below two meters.

2.1. Training Data Collection
In the summer of 2022 through the spring of 2023, 5366 canopies were delineated and

identified as either M. polymorpha or “other vegetation” largely via field surveys (Figure 1;
Figure S2). 1713 crowns represented M. polymorpha canopies, and 3653 were of other species.
Crowns of other species were grouped and represented all the background vegetation
spectra that the classification models discriminated from M. polymorpha. Field data were
collected using Garmin Glo GPS connected to tablets with GAO TCH, true and false
color composites, and preliminary M. polymorpha classifications developed using a support
vector machine (SVM). These data were brought into the field to increase crown delineation
accuracy. Data were collected using a combination of field excursions, helicopter surveys,
and Google Street View. While data were collected across elevation and soil substrate
age gradients, observations were primarily concentrated along roadways and other easily
accessible sites (Figure 1). In addition to canopy location data collected specifically for the
M. polymorpha mapping effort, canopy delineations from Balzotti et al. [32] and Weingarten
et al. [46] were included in the training data as they used similar methods of delineating
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crowns in 2019 GAO data. Canopy spectra used to train the classification algorithms were
generated by averaging all pixels from the filtered VSWIR reflectance data within each tree
crown (Figure S2).

Figure 1. Location of the 5366 crowns collected across Hawai’i Island to train the classification models.
Red represents all Metrosideros polymorpha canopies, and blue represents all other vegetation types.

2.2. Species Classification
We compared the performance of two classification algorithms—support vector ma-

chine (SVM) and spectral mixture analysis (SMA)—in distinguishing M. polymorpha from
other vegetation across Hawai’i Island. SVM and SMA were selected as both demonstrate
high accuracy in imaging spectroscopy vegetation classifications [2,32–34,36,47–49]. For
both classification algorithms, crown spectra data were randomly separated into training
(70%) and test (30%) datasets to assess model performance.

SMA assumes that an image pixel spectrum is the linear combination of the abundant
materials weighted by their fractional coverage and that this mixed signal can be unmixed
using combinations of “pure” endmember spectra representing different thematic classes.
This method has been successfully used for forest species classifications across many
ecosystems [33,34], including those in Hawai’i [36]. We used Multiple Endmember Spectral
Mixture Analysis [50] on the full VSWIR spectra with automatic band selection, which
allows endmembers and the number of classes used for SMA to change on a per-pixel
basis. We used a two-endmember MESMA model, which assumes that each pixel is either
M. polymorpha or other vegetation plus a shade fraction [50,51]. Because we brightness-
normalized the data, no shade was used in the fitting procedure.

As computational time increases with the number of possible endmember combina-
tions and endmembers from the same class are often spectrally similar, we pruned the
spectral library by clustering training spectra and creating new endmember spectra from
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the mean reflectance of similar endmembers. Endmember similarity was determined using
hierarchical clustering of the spectra within the training data, with a distance matrix com-
puted using the spectral angle. To determine the optimal maximum inter-cluster distance,
we tested a range of distances and used the one that achieved the highest accuracy on
the test dataset. For clusters with endmembers representing both M. polymorpha and other
vegetation, we averaged spectra within the cluster based on their classification to create
multiple endmembers. Other parameters within MESMA such as the maximum RMSE and
shade threshold did not affect accuracy. The MESMA model used to classify GAO data
across Hawai’i Island included a spectral library developed by reducing all the training
data available into 2238 training points via the hierarchical clustering described above.
While most pixels were classified as entirely M. polymorpha or other vegetation due to the
high resolution of the imaging spectroscopy dataset (2 m ⇥ 2 m), we used a threshold of
0.5 to develop a binary M. polymorpha presence/absence dataset.

Similar to SMA, SVM classifiers are commonly used in imaging spectroscopy appli-
cations [2,32,49]. SVMs efficiently handle highly dimensional datasets by maximizing the
distance between training data and decision boundaries between the two categories in
feature space [2,52,53]. SVMs typically outperform other supervised classifiers such as
random forest in imaging spectroscopy classification applications [47–49]. We optimized
hyperparameter selection (kernel coefficient and regulation parameter) of a radial kernel
SVM using a grid search in the scikit-learn package (version 0.24.1) [54] in Python (version
3.6.9). We used Youden’s J statistic, which uses the sensitivity and specificity of the model,
to determine the optimal classification threshold [55].

Throughout the model training process, we noted that traditional classification metrics
such as accuracy did not sufficiently describe model performance, particularly concerning
the spatial distribution of the model predictions. To characterize the spatial variability in
model performance, we compared SVM- and SMA-derived M. polymorpha maps with an
independently trained spatial probability density map estimated using Gaussian process
classification (GPC) in scikit-learn with a radial kernel [54]. GPC is a probabilistic classifica-
tion technique that is used to assign expected class probabilities with the Bayes theorem [56].
The GPC estimates the probability of observing M. polymorpha as a function of the x- and
y-coordinates of the habitat range, providing a benchmark to validate the spatial accuracy
of the spectral models (Figure S3). While the GPC as a predictor for M. polymorpha presence
is limited by the sampling design, it is a useful tool for validating the SVM and SMA results
as it can identify areas that have high and low M. polymorpha presence probability based
on the training dataset. In regions without training data, the GPC has a middle probability
(50/50) of M. polymorpha presence. The GPC trained on the training dataset achieved a 94%
accuracy on the test dataset.

SVM and SMA were then applied to island-wide VSWIR reflectance data filtered to
exclude shaded portions of the canopy, non-photosynthetic features as determined by the
NDVI threshold, and vegetation less than 2 m. To fill gaps in the canopy resulting from the
shade masking, classification data were interpolated using the inverse distance weighting
technique available in the rasterio package fill module v. 1.2.10. We then compared the
accuracies of the two models as well as their island-wide classifications of M. polymorpha
relative to the Bayesian GPC. The best M. polymorpha classification was used to develop
a high-resolution (2 m ⇥ 2 m) canopy map. This high-resolution map was then down-
sampled into a coarse-density product by aggregating the 2 m ⇥ 2 m binary pixels onto a
30 m ⇥ 30 m grid via the mean function.

3. Results
3.1. Model Performance

We compared two classification techniques to assess their performance on the test
dataset and 2 m ⇥ 2 m GAO data across Hawai’i Island (Figure 2; Table 1). The results
showed that SVM outperformed SMA. The SMA model achieved an accuracy of 93.4%
and a precision of 88.7%, while the SVM achieved an accuracy of 96.0% and a precision
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of 91.9% (Table 1). Further, the false positive rate was 1.5 percent higher for SMA (5.6%)
than SVM (4.1%). Applied to the entire island, this two percent difference led to over
684 million more misclassified pixels for SMA than SVM (Figure 2). Interestingly, these
misclassifications were often observed in geographically distinct regions from where the
SVM predicted M. polymorpha to exist, often at lower elevations (Figure 2c). Moreover, false
positives from SMA frequently occurred in regions with a low probability of M. polymorpha
existing according to the Bayesian GPC (Figure 2c). Disagreement between the models was
spatially arranged; 30.8% of pixels classified as M. polymorpha by SMA and not by SVM
were in regions of low M. polymorpha according to the Bayesian GCP probability (<0.33).
Only 13.9% of pixels classified as M. polymorpha by SVM but not SMA were in these regions
of low M. polymorpha probability according to the GCP (Table 2).

Figure 2. Metrosideros polymorpha classifications: (a) SVM, (b) SMA. Red indicates where
M. polymorpha canopies are located according to each model. (c) Comparison of SVM and SMA
classifications. Yellow: M. polymorpha presence predicted by SVM only, Blue: M. polymorpha pres-
ence predicted by SMA only. Gaussian process classification heatmap and contour lines indicating
M. polymorpha likelihood (white: Unlikely, darker: High likelihood).
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Table 1. Confusion matrix for the SMA and support vector machine (SVM) classifications of
M. polymorpha on test datasets (2 m ⇥ 2 m).

Predicted

Spectral Mixture Analysis Support Vector Machine
M. polymorpha Other Vegetation M. polymorpha Other Vegetation

Actual
M. polymorpha 478 46 497 27

Other Vegetation 61 1025 44 1042

Table 2. Island-wide assessment of support vector machine (SVM) and SMA classification relative
to Bayesian GPC spatial classification. Values indicate the percentage of 2 m ⇥ 2 m pixels that were
classified as M. polymorpha by one model and not the other in regions of high (>0.66), low (<0.33),
and medium probability of M. polymorpha according to Bayesian GPC based on training data spatial
information.

High M. polymorpha
Likelihood

Low M. polymorpha
Likelihood

Medium M. polymorpha
Likelihood

Support Vector Machine 47.5 13.9 38.9
Spectral Mixture Analysis 29.4 30.6 39.8

SMA was also more likely to misclassify M. polymorpha canopies as the true positive
rate for SMA (91.2%) was 3.6% lower than that of the SVM (94.8%; Table 1). These false
negatives most often occurred where M. polymorpha forests were predicted to be densest
by the SVM (Figure 2c) and where Bayesian GPC indicated that M. polymorpha was most
likely to occur. Furthermore, 47.5% of the pixels predicted as M. polymorpha by SVM but
not SMA were in regions of high M. polymorpha likelihood (>0.66). In these regions, SVM
predicted denser M. polymorpha forests than SMA. Given the superior performance of SVM
over SMA, the results obtained from SVM classification were utilized to generate the final
M. polymorpha classification products. These include a high-resolution (2 m ⇥ 2 m) canopy
map (Figure 2a) and a 30 m ⇥ 30 m canopy density map (Figure 3).

3.2. Metrosideros Polymorpha Distribution
Hawai’i Island spans 10,430 km2, 2739 km2 of which is forested, and 1626 km2 of these

forests are M. polymorpha according to the 2 m ⇥ 2 m SVM distribution map. M. polymorpha
comprises 59.4% of forest canopies on Hawai’i Island. We compared the existing HI-GAP
M. polymorpha coverage map (Figure S4) with our updated M. polymorpha 30 m ⇥ 30 m
canopy density map. According to HI-GAP, M. polymorpha covered 2346 km2 in 2001.
Moreover, 2063 km2 of the HI-GAP M. polymorpha coverage map overlapped with our
density map. In these overlapping regions, our density map had a mean and median
coverage of 0.84% and 0.98%, respectively. Using the density of M. polymorpha canopies
in this area, we calculated that approximately 1743 km2 of M. polymorpha canopies exist
in this region of overlap. Regions that were not included in the HI-GAP map had lower
M. polymorpha canopy densities, with mean and median percent coverage of 0.53 and 0.54,
respectively. This region included 751 km2 of M. polymorpha canopies. We assume that
most of these canopies existed 18 years before GAO data collection and the difference is
largely a result of higher spatial (2 m ⇥ 2 m scaled to 30 m ⇥ 30 m) and spectral resolution
afforded by airborne imaging spectroscopy as compared to the multispectral 30 m ⇥ 30 m
spaceborne Landsat sensor.
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Figure 3. Metrosideros polymorpha density map. The resolution is 30 m ⇥ 30 m.

4. Discussion
4.1. High-Resolution Model Comparison

In classifying a single, highly polymorphic species across a large geographic extent,
SVM outperformed SMA. Not only did the SVM have higher performance metrics in this
and other Hawai’i-based imaging spectroscopy classification studies [15,32], but when
evaluated in our study, SMA resulted in many false positives outside the current range
of M. polymorpha. SMA was included in this study as it has been suggested as a means of
circumventing issues related to background signals and mixed pixels [1,3] and therefore
is especially useful when classifying species across a broad range of ecosystems. The
relatively poor performance of SMA may be attributed to the reduced variability in the
spectral library [3]. While we attempted to include much of the spectral variability of
the initial training dataset through hierarchical clustering, the MESMA spectral library
included less variability than the original training data used by the SVM. By collecting
a large training dataset that included M. polymorpha crowns with different vegetation
understories and stand compositions, the SVM learned many of the possible M. polymorpha
reflectance signatures and was, therefore, able to achieve higher accuracy and precision
than SMA. Aggregating training data using hierarchical clustering for the SMA model likely
removed much of the variation in M. polymorpha pixels and may have exacerbated noise
from show-through and mixed pixels. Here, we needed to balance model performance
with computation time as the full spectral library of 5366 crowns was too computationally
expensive to run MESMA even using a supercomputer.

4.2. Considerations for Future Large-Scale Modeling Efforts
As imaging spectroscopy technology advances and becomes more widely available

via spaceborne sensors [57–60], it will become increasingly important to address challenges
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associated with large-scale vegetation classifications. Many of these challenges were
present in this mapping effort as differences in topography, background vegetation, sun
angle relative to the aircraft, and day of data collection, among others, challenged the
accurate classification of M. polymorpha as they have for other species [1,4]. While we
used atmospheric correction, brightness normalization, shade masking, and bidirectional
reflectance distribution function because these techniques reduce variation in reflectance
spectra between mosaiced flight lines [4,38], we still needed to adjust our field sampling
to capture the reflectance variation across flight lines. Yet sampling across flight lines in
the field was not possible in all regions due to accessibility issues, and this will likely be
the case for classifications of other species, especially in tropical regions. While helicopter
surveys helped to fill gaps in our ground-based field sampling, the expense and difficulty
of identifying and delineating crowns from above is prohibitive for many classification
endeavors. In future spaceborne applications, differences in reflectance resulting from
satellite passes will need to be addressed to achieve seamless classification maps, especially
as some techniques such as shade masking will likely not be possible due to lower spatial
resolutions.

Differences in background vegetation and stand characteristics across the study area
as well as morphological and spectral variation of M. polymorpha across environmental
gradients [19,20,61,62] challenged the development of this large-scale M. polymorpha spa-
tial distribution dataset. Here, we attempted to classify M. polymorpha growing on lava
flows and manicured lawns as well as individuals existing in largely alien forests and
M. polymorpha-dominated stands. While the high spatial resolution (2 m ⇥ 2 m) of our
imaging spectroscopy data helped circumvent this issue, mixed pixels at the edges of
canopies challenged our classifications. Further, stands dominated by M. polymorpha have
different understory vegetation across Hawai’i Island, from the invasive Psidium cattleianum
(strawberry guava) to the native Dicranopteris linearis (Uluhe fern). Differences in under-
story can cause classification inaccuracies due to show-through [63]. As differences in
canopy density and species dominance within a stand are other factors in the spectral
separability [3,35], the diverse canopy structure and density of M. polymorpha across the
island likely led to different accuracies based on stand structure.

Another challenge to mapping M. polymorpha across Hawai’i Island was assessing
model performance across a large geographic region. Both the SVM and SMA models
achieved high classification accuracies (>93%), but conservationists referencing results
from the SMA model would waste valuable time in geographic regions with high false
positive rates of M. polymorpha. We employed Bayesian GPC to address this shortcoming
of traditional model metrics and assess model performance spatially. While the GPC, like
the spectral classification models, was biased based on our crown sampling locations, it
provided a means to determine where and how the classification models were erroneous.
For example, we were able to assess disagreements between the SVM and SMA outside the
training dataset. While the training dataset was extensive, it biased our ability to fully assess
model performance as we could not entirely capture the variability of M. polymorpha nor
that of the other vegetation. We believe that employing spatial validation techniques such
as the Bayesian GPC model, while not routinely used for species classification validation
currently, will improve future large-scale classification efforts.

5. Conclusions
Large-scale vegetation classifications have many practical uses in conservation decision-

making [64–67]. For example, this island-wide dataset of the keystone species M. polymorpha
can be used to improve disease-tracking models and as input for watershed-level decision-
making models [26–28]. Until recently, these decision-making processes relied on a map-
ping effort from 2001, and while these data were useful for approximating M. polymorpha
across Hawai’i Island, especially in regions with dense M. polymorpha stands, it did not
include up to 316 km2 of M. polymorpha canopies, which are typically found in regions
with low M. polymorpha canopy density. To achieve routine species classifications at large
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spatial scales, we need to address not only the issues discussed above but also questions of
spatial resolution [68] and training data collection [49]. The upcoming spaceborne imaging
spectrometers will collect data at 30 m ⇥ 30 m resolution while the data used here were
2 m ⇥ 2 m. Further, this project required extensive fieldwork to collect over 5000 training
points, but designing better methods of planning sampling schemes across ecosystems
and environmental gradients that would require less fieldwork but lead to similar results
would make mapping projects like this more feasible.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15184365/s1, Figure S1: Metrosideros polymorpha (‘ohi’a lehua) in bloom.;
Figure S2: Mean spectra of Metrosideros polymorpha and other vegetation in the spectral library;
Figure S3: Location of the 5366 crowns collected across Hawai’i Island to train the classification
models; Figure S4: 2001 HI-GAP Metrosideros polymorpha extent as estimated using Landsat data.
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