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Abstract—With the immense amount of publicly available
data online, many companies and research institute are able to
download the online data for free and train the machine learning
models which will finally result in products that would enhance
our everyday life. While enjoying the advantages of such large
amount of free data, people (data providers or data owners) have
the concern that their personal data may be crawled without
the owner’s consent. This brings out an underlying issue in
the context of machine learning that in the current literature
and applications, dataset owners (also referred to as “dataset
providers” in the following text) can only choose between the
two extreme decisions of either to share their data entirely, or
not share any of their data at all. Another side of this issue is
that the privacy of the dataset to be shared is either completely
revealed due to the full disclosure of the dataset, which benefits
the potential consumers of the dataset (referred to as dataset
user/buyer in the following text); or the dataset is not shared at
all which preserves the privacy, but impede the development of
new technologies.

In this paper, we propose the novel Hide-and-Seek data sharing
framework that serves as a middle point between the difficult
“share or no share” extreme decisions, which provides a “partial
share” option based on the consumers’ needs, and hence is able to
protect the partial privacy of the dataset providers while sharing
enough amount of data needed for the user to train their models
at a desired accuracy. Extensive amount of experiments have been
conducted on the CIFAR-10, Street View House Number (SVHN),
and the CIFAR-100 datasets. Our experimental results verify the
effectiveness of the proposed Hide-and-Seek framework. We also
show in the experiments that our framework is able to protect
data provider’s privacy without changing the visual patterns of
the dataset, and therefore, doesn’t affect the regular usage of the
data (such as using it as a profile photo).

Index Terms—Hide-and-Seek, Multi-level Data Sharing,
Privacy-Preserving, Unlearnable Dataset, Dataset Recovery

I. INTRODUCTION

In the recent decade, with the rise of big data and ad-

vancements in technology such as machine learning, we keep

hearing the statement that “data is currency”. Such statement

highlights the value of data in the context of machine learning,

since models trained on the larger and broader dataset tend

to behave better during the testing phase. Along with such

benefits, data from online resources are largely extracted to

construct datasets such as ImageNet [1] for training purposes.

While enjoying the advantages of such large amount of pub-

licly available data, a rising concern is that many of these

data are crawled without the owner’s consent [2]. For example,

Online Dataset

Crawled Train

Fig. 1. Illustration of the existing problem: Online public dataset could be
crawled for commercial model training purposes.

personal data such as Facebook and LinkedIn profile photos

could be collected unconsciously to train the commercial

products [3], as illustrated in Figure 1. Some companies are

even fined because of such data breaching activities which

violate the consumers’ privacy [4].

In order to prevent personal data (such as profile photos)

from being collected unconsciously, existing works such as

[5] and [6] try to generate perturbations to be applied to the

dataset. Such perturbation works in a way that the machine

learning models trained on the perturbed dataset (by patching

the perturbation on the original dataset) would fail to extract

the original features of the dataset and hence fail the learning

objectives. However, while such methods provide the nice

privacy protection functionality for the data providers, these

works are too harsh on the companies and research institutes

who are relying on the data to improve their products and

technologies. To summarize, the current data sharing protocols

lie on the two extremes: either to share the data entirely which

leaks the privacy, or not share any data at all which impede

the development of new technologies. A framework that lies

in the middle which not only protects the privacy, but also

shares enough data for the research institutes to reach certain

training/learning performance is highly desirable.

A naive approach for such problem is to only share a

fraction (% of the entire dataset) of the dataset, aiming to

achieve the same fraction of the goal while protecting most of

the privacy. Such method may work well in some contexts

such as video codec (i.e., video encoding and decoding).

For example, sharing the 90%-compressed version of a video

clip should achieve 10% of the original video quality after

decoding. However, such approach does not work in the

context of machine learning. For example, sharing only 10%
of the training dataset doesn’t necessarily mean that the model

accuracy trained on the 10% data achieves only 10% of
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Fig. 2. Our proposed Hide-and-Seek framework protects the data provider’s privacy while allow data user to access the shared data needed for model training
purposes. The data provider first apply the strongest mask to the dataset (this is the Hide Phase), and then publish the unlearnable dataset (original dataset +
strongest mask). (Top) If a web-crawler downloads the published dataset and utilizes it for training purposes, his final label would perform bad on the clean
(regular, unmasked) data samples. (Bottom) If a user is interested in the dataset, he needs to download the published dataset, and purchase the desired version
(defined by the performance of the final learning outcome). When the data provider receives the payment, he will send the corresponding cleaner patch to the
user. The user apply the cleaner to the downloaded dataset (this is the Seek Phase), and train on the resulting dataset to get the desired model performance.

the accuracy from model trained on full dataset. Instead, its

accuracy is dependant among other settings as well.

Targeting the above weaknesses in current data sharing

protocols in machine learning, in this paper, we propose a

novel Hide-and-Seek data sharing framework which provides

an option for the data providers to choose other than the

difficult “share, or no share” options. The Hide-and-Seek

framework could be divided into the Hide Phase and the

Seek Phase. In the Hide Phase, the dataset provider first trains

different levels (or scales) of masks. Each mask, when patched

to the original dataset, hides the features of the original dataset

to a desired extent that when the task is trained on the

masked dataset, achieves a corresponding testing accuracy.

Taking a 10-class classification task as an example, and assume

it reaches a certain testing accuracy after fully trained on

the original dataset. By carefully designing and training the

different levels of masks and apply them on the original

dataset, the classification task trained on the masked dataset

would achieve the pre-defined testing accuracy between 10%
(random guess) and the ideal accuracy (i.e., a mask could

be trained that lead to 30%, 40%, ...,etc. testing accuracy)

depending on the consumer’s need. The strongest mask that

lead to the random guess accuracy is equivalent to the “not

share” option, as the masked dataset is fully “unlearnable”

[5]. And the zero mask leads to original testing accuracy, and

is equivalent to the “share” option where no actual mask is

applied. It is worth noting that none of the masks (including

the strongest one) hides the visual patterns of the data (i.e.,

human eyes are still able to recognize the original visual

patterns of the data).

In the Seek Phase, after getting the multi-scale masks, the

data provider computes a set of data-cleaners based the masks.

As will be clear shortly, the cleaners are also in multiple

scales, and are used to clean the unlearnable (fully masked)

dataset. Finally, utilizing the trained masks and cleaners, we

aim to solve the problem illustrated in Figure 1 by the

Hide-and-Seek data sharing framework shown in Figure 2

and described as follows. The data provider first utilizes the

strongest mask to produce the unlearnable dataset (this is the

co-called “Hide”) and publishes it on a publicly-accessible

website without the need to worry about whether the data

would be crawled for training purposes. Because even if the

dataset is crawled and used for training, the model trained on

such unlearnable (masked) dataset would fail on the testing

phase (test on clean dataset). Along with the publishing of

the unlearnable dataset, the data provider should also set a

price table that each version (defined by the test accuracy or

learning outcome of the model learned on the dataset) of the

dataset should come with a different purchase price. If a user

(buyer) is interested in purchasing the dataset, he can make

a query to the dataset provider along with the desired level

of learning outcome needed. Upon receiving the payment, the

data provider sends the corresponding cleaner to the user. The

user can then downloads the publicly available dataset, applies

the cleaner on it, and starts his task training procedures. The

model trained on the cleaned dataset (after applying the cleaner

on the unlearnable dataset) will achieve the desired level of

testing accuracy (and this is the co-called “Seek”).

The main contribution of this work includes the following

three folds:

• We propose the Hide-and-Seek multi-scale data sharing

framework. Given a dataset, we are able to generate a

set of masks that lead to different levels of learning out-

comes when trained on the corresponding level of masked

datasets. Such masks provide the privacy protection to

some extent for data providers while satisfying the needs
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of data acquisition from companies/research institutes in

order to develop new technologies.

• Enlightened by existing works, we propose a novel

method to train the set of masks to fulfill the need of the

Hide Phase of the Hide-and-Seek framework. We limit

the magnitudes of the masks so that the original visual

patterns is still preserved.

• We conduct extensive experiments on multiple datasets

including the CIFAR-10, Street View House Number

(SVHN) and CIFAR-100 datasets. The experiment results

verify the effectiveness of the proposed Hide-and-Seek

multi-scale data sharing framework. We also demonstrate

examples of the original data samples and their masked

data samples in different mask levels, and calculated the

Mean Squared Error (MSE) and Structural Similarity

Index (SSIM) to show the preservation of the visual

patterns.

The rest of this paper is organized as follows. The existing

data sharing frameworks and the privacy-preserving techniques

in machine learning are reviewed in Section II. We describe the

details of the proposed Hide-and-Seek framework in Section

III in which the III-B section explains how the different scales

of masks are trained (i.e., the Hide Phase), and III-C subsection

describes how the corresponding cleaners are computed (i.e.,

the Seek Phase). The performance evaluation of the Hide-and-

Seek data sharing framework is shown in Section IV, and

finally we conclude this paper in Section V.

II. RELATED WORKS

A. Privacy Protection Methods for Data Sharing

Although there are existing industrial data-sharing platforms

such as [7] that strictly restricts the user accessibility in

a fine-grained level to achieve the privacy-protection goal,

researchers are investigating other possible solutions to pro-

tect the data in a more direct way. The current literature

that protects the data privacy from being leaked during the

sharing phase could be summarized into two categories. The

first category is the Reversible Data Hiding (RDH) or the

lossless/invertible data hiding frameworks, where data can be

embedded into a cover medium for data sharing, and are

later extracted by the receiver once received [8] [9]. In real

applications, one of the most widely used medium is the

compressed JPEG images [10] [11] [12]. This is due to the

fact that JPEG offers an effective trade-off by reducing the file

size of images while maintaining a satisfactory level of visual

fidelity. Another emerging choice to hide the secret data and

retrieve it back is to embed it into audio/video clips. [13], [14]

and [15] are the representing research works done in this area.

They used the inner product between the motion vector and

the modulation error, two-dimensional histogram modification

and reversible video watermarking to achieve the reversibility,

respectively. The disadvantage for such RDH methods is that

they suffer from large computational costs to hide even a single

data sample, and hence would introduce a huge overhead in

the machine learning context, since the latter usually requires

a large amount of data to train even a small model.

In the other category, researchers apply the encryption

techniques to protect the dataset so that only the intended

(user) receiver with the corresponding key is capable of

accessing the data. [16] proposes a scheme that utilizes the

proxy re-encryption algorithm and oblivious random access

memory (ORAM) aiming to ensure the privacy and prevent

the traceability in cloud computing. Such method enables

multiple users to securely share the data while preserving their

privacy. [17] develops an enhanced attribute-based encryption

method that combines a personal access policy for users and a

professional policy for the fog nodes. Such encryption ensures

the effective provision of the medical services. And in [18],

the authors present FPDS (Flexible Privacy-Preserving Data

Sharing) sheme for cloud assisted IoT in which the data of

IoT users are encrypted by an identity-based encryption that

ensures the privacy and confidentiality in the phase of data

sharing. Similar to the first category where the researchers

are applying the RDH to protect the data privacy, adding

the encryption for privacy concerns suffer from the same

drawbacks that it adds a huge overload in the machine learning

context since it usually require a large amount of training data.

B. Privacy-Preserving Machine Learning

Due to a recent observation that machine learning mod-

els tend to memorize some information about the training

dataset [19] [20] [21], leading to its vulnerability to the

privacy attacks [22] [23] such as membership inference attack

[24], the privacy-preserving machine learning that not only

protects the privacy of the training dataset, but also enables

the regular learning process becomes highly desirable. The

current literature approaches the privacy-preserving machine

learning (PPML) topic from two perspectives: protecting the

training dataset, and proposing the privacy-preserving learn-

ing/computing algorithms.

The privacy protection of training dataset could be further

divided into three groups. In the first group, researchers are

applying the anonymization technique on the dataset. [25]

proposes a method that provides the k-anonymity in the ma-

chine learning algorithms, [26] proposes a method that injects

the utility into the anonymized dataset and [27] replaces the

original dataset by a surrogate one according to the grouping

of the anonymized data. In the second group, different kinds

of perturbation are added to the dataset to protect its privacy.

[6] and [5] train perturbation to be applied to training dataset

so that the common data features in one or more classes are

not extractable. And [28] [29] are the two representatives of

adding differential privacy noises to the training dataset. The

last group involves the encryption of the dataset. [30] and [31]

fall into this category, which adds a little more overhead since

the decryption procedure is also required at some point.

Unlike those in the first category which focus more on the

training dataset, the researchers in the second category focus

on the training/computational phase of machine learning. [32]

proposes a differentially private stochastic gradient descent

algorithm with a modest privacy budget, [33] develops a

novel method to train a large recurrent model with user-level
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Description Notation

Dataset Provider S
Authorized User (Buyer) P

Dataset (clean, masked, unlearnable) Dc, Dk , Dkmax

Dataset (validation, test, cleaned) Dv , Dt, D′

k

Mask with strength k(0 ≤ k ≤ kmax) mk

Desired training (learning) levels λk

Noise boundary ε

Cleaners with scale k ck

TABLE I
HIDE-AND-SEEK NOTATION TABLE

differential privacy guarantee, and [34] presents an efficient

privacy-preserving protocol for neural networks among two

non-colluding server with the secure two-party computation

(P2C). As GPU is one of the most important computational

resources needed for machine learning, [35] introduces Crypt-

GPU which identify several cryptographic methods to enforce

the privacy-preserving operations on GPUs. Furthermore, the

privacy-preserving machine learning had also been applied in

the medical imaging field [36].

With all of the above methods mentioned in this section,

none of them is capable of providing the “partial share” or

“share by level” feature. Such feature is indeed in demand

because it could not only serve as a middle point between

extreme decisions of either share or not share, it could also

satisfy some of the realistic applications. For example, in the

scenarios of transfer learning, only partial training results of

the mother model is needed because it would be later fine-

tuned on the child’s dataset anyway. Embracing the above

demand, in this paper, we propose the novel Hide-and-Seek

framework that provides the options for the dataset users to

purchase the need-based customized dataset and meanwhile

protects the data privacy from the data provider’s perspective.

III. HIDE-AND-SEEK DATA SHARING FRAMEWORK

In this section, we first present the overall workflow of

the Hide-and-Seek protocol in subsection III-A assuming we

have already trained the multi-level masks and generated the

multi-level cleaners. After that, as the name suggests, our

framework could be divided into two phases: the Hide Phase

(masks generation) explained in III-B and the Seek Phase

(cleaners generation and application) described in III-C. The

Hide Phase generates different scales of masks that when

applied to the dataset, hide the original dataset to a certain

extent, defined by the corresponding learning outcome. In the

Seek Phase, we compute a set of cleaners that are capable of

recovering the unlearnable (fully masked) dataset to a desired

scale (also defined by the corresponding learning performance

after training). To enhance the readability of the algorithms,

we introduce the notation table in Table I.

A. Hide-and-Seek Protocol

The Hide-and-Seek data sharing framework is summarized

in Protocol 1 and explained as follows. The Hide-and-

Seek data sharing protocol starts with the dataset provider

S publishing the unlearnable dataset Dkmax
by applying the

strongest mask mkmax
on the clean dataset Dc. Notice that

none of our masks (including the strongest mask) hides the

visual patterns of the real data samples, therefore applying

even the strongest mask won’t affect the regular usage of the

original data (for example, it could still be used as a profile

photo,...,etc.). Therefore, taking the advantage of such feature,

the potential user is still capable of recognizing the visual

patterns of the data, and then decides if such dataset fits his

scenarios. Once a user P decides that he needs this dataset

for his work, he makes a query to the dataset provider S
along with his desired level of learning outcome k and the

corresponding payment. S receives the query and payment

from user P , and sends the cleaner with the corresponding

clean scale, Ck to the user P . Upon the receiving of the

cleaner, P applies Ck on the published/downloaded dataset

Dkmax
, and get the “kth-level” cleaned dataset, D′

k. He can

then starts training his models on D′

k and gets the “k-th level”

learning performance which is equivalent as was trained on

Dk (kth-level masked dataset). And hence the Hide-and-Seek

data sharing is completed.

Protocol 1 Hide-and-Seek Data Sharing Protocol

Participants:

One S (data provider), and multiple P (authorized

users/buyers).

Data Provider’s Goal:

1. Share the desired-level (defined by the buyer) of dataset

with buyers.

2. Protect the original data from being trained by unauthorized

users.

Buyers’ Goal:

Gain access (purchase) to the dataset that provide the desired

learning outcome.

The protocol:

Step 1: S publishes the unlearnable dataset (Dkmax
).

For each buyer P:

Step 2: P reviews Dkmax
, and pays to purchase Dk by

specifying k.

Step 3: S sends ck to P .

Step 4: P downloads Dkmax
and retrieve D′

k according

to Equation (6).

B. The Hide Phase (Mask Generation)

Inspired by the paper that proposed the Unlearnable Exam-

ples [5], we extend the algorithm so that instead of finding

the purely unlearnable perturbations, we search for the masks

that lead to a desired level of learning outcome.

1) Assumption on Data Provider’s Capability: We assume

that the data provider has full access to the dataset that they

would like to share, but can only manipulate the dataset prior

to the sharing phase. After that, the dataset provider has

no access during the sharing process or after the sharing is

completed. This assumption is made based on the fact that

once something is published online, whether it’s used and how

it’s used will be out of the publisher’s control. Although we
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Fig. 3. The illustration of how masks are trained. The blue dots denote the
accuracy selected (λk) to produce the corresponding masks, and each image
denotes the mask mk produced at the chosen level, λk . Notice that in this
figure, the masks are just illustrations, and the mask scales are later normalized
into an ε-ball prior to being applied on the clean dataset.

assume that the dataset provider could no longer change the

dataset after the sharing phase, it is realistic to assume that

there is a communication channel between the user and the

provider, and they are able to exchange information (such as

the dataset cleaner) via that channel.

2) Problem Formulation: With the simplicity of the idea

explanation, and without the loss of generalizability, we for-

mulate the problem in the context of image classification. For

a Z-class classification task, we denote the original (clean)

training dataset as Dc = {xi, yi}
n
i=1 with x ∈ X ⊂ R

d are

the data samples and y ∈ Y = {0, ..., Z − 1} are the labels of

the data samples. Z denotes the total number of classes, and n

denotes the total number of data samples. The testing dataset is

denoted as Dt which shares the same data distribution as Dc.

A typical model training procedure is guided by the objective

function

argmin
θ

E(x,y)∼Dc
L(f(x), y) (1)

which learns the mapping from the input space to the label

space: f : X → Y , where L the classification loss function

such as the wide-used cross entropy loss.

In the Hide Phase, our goal is to find a list of masks mk’s

with different scales k’s such that the machine learning model

trained on the resulting masked dataset (after applying mk on

Dc), denoted as Dk = {x′

i, yi}
n
i=1, where x

′

i = xi + mk,

||mk|| ≤ ε, would be able to achieve the degradation of the

testing performance to a certain level (or scale) λk after being

tested on Dt. Instead of training with the objective function

in Equation (1), our Mask-Generation algorithm is guided by

argmin
θ

E(x′,y)∼Dk
L(f(x′), y) (2)

and we stop the training process and output mk once the

validation accuracy reaches λk. Notice that in this paper, the

masks are the class-wise masks, i.e., under a certain mask scale

k, there will be in total of Z masks (Z is the total number

of classes), and therefore x
′

i = xi + m
yi

k , m
yi

k ∈ Mk =
{m0

k,m
1
k, ...m

Z−1
k }. Data samples in the same class share

the same mk. In the extended version of this work, we will

explore the sample-wise masks for comparisons.

Given an original data sample x, we adopt the same mask

generation method as in [5]:

argmin
θ

E(x,y)∼Dc
min
mk

[L(f ′(x+mk), y)]

s.t. ||mk|| ≤ ε
(3)

which is a bi-level optimization problem that both the inner

and outer parts minimize the classification loss. The difference

is that the outer part tries to find the parameters θ while the

inner part tries to find the mask mk under the condition that its

norm is bounded by ε. It is worth noting that the optimization

step of θ should be limited to enforce the effectiveness in

finding mk due to the fact that the two parts of the bi-

level optimization problem share the same objective (loss

minimization). We solve the inner optimization problem with

the PGD algorithm [37] as follows:

x
′

t+1 = Πε(x
′

t − α · sign(∇xL(f
′(x′

t), y))) (4)

where ∇xL(f
′(x′

t), y) denotes the gradient with respect to

input x, t is the iteration number, and Πε is the clipping

function that enforces the norm bound of mk. The detailed

masks generation algorithm is summarized in Algorithm 1.

The intuition of the mask generation process is illustrated

in Figure 3. Specifically, as the figure illustrated, a machine

learning model that trains on the dataset together with a larger

mask tends to learn less of the mapping from the original

feature space (X ) to the label space, as more of the features

are hidden by the larger mask. In experiments, we empirically

pick several level of the desired accuracy (λk) to stabilized the

model on, and then output the masks (mk) at corresponding

levels.

After the generation of all desired level of masks, the dataset

provider can publish Dkmax
along with the price table for each

level of learning outcome λk. Once a user queries to purchase

Dk, the data provider will send ck to the user. We explain

the computation of ck with different levels of k in the next

subsection.

C. The Seek Phase (Cleaners Generation and Application)

1) Cleaners Generation: In the previous subsection, the

data provider gained a list of masks that is able to hide the

original dataset to a certain level. In this subsection, the goal is

to generate different levels of dataset cleaners that after applied

to the unlearnable dataset, Dkmax
, the resulting dataset D′

k will

achieve the corresponding learning outcome λk, as designed.

Given the set of masks mk’s with different hiding scales,

we define the mask cleaners with the corresponding cleaning

levels as:

ck = mk −mkmax
(5)

where ck denotes the dataset cleaner with cleaning level k.

As will be clear shortly, such definition of the dataset cleaner

is capable of cancelling out the unlearnable mask during the
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Algorithm 1 Mask Generation

1: Input: λk, and for each x ∈ Dc

2: Initialize mk

3: for t=0 ... end of training iterations do

4: Train the model on x+mk according to Equation (3);

5: Test on validation dataset Dv;

6: if The result of line 5 is consistently within a threshold

with λk then

7: break

8: else

9: Update mk according to Equation (4);

10: continue with line 4;

11: end if

12: end for

13: mk = x
′ − x

14: Output: mk

Algorithm 2 Cleaner Generation

1: Input: mk’s trained as in Section III-B, and

2: k from the user.

3: Dataset provider computes ck with the given k according

to Equation 5.

4: Output: ck

cleaner application process from the user’s perspective. The

cleaner generation algorithm is summarized in Algorithm 2.

After receiving the payment from the user, the dataset provider

will then send the corresponding ck to the user, and the user

will apply the cleaner on the unlearnable dataset to retrieve

the cleaned dataset with the desired learning outcome.

2) Cleaner Application: The user starts the cleaning pro-

cess by first downloading the publicly available dataset Dkmax

which is currently unlearnable. The user purchases the dataset

cleaner ck with the desired cleaning scale k, from the dataset

provider, and apply it on the unlearnable dataset, Dkmax
as

the following:

D′

k = Dkmax
+ ck

= Dc +mkmax
+mk −mkmax

= Dc +mk

= Dk

(6)

where D′

k is the dataset that the user retrieved after applying

the dataset cleaner. From Equation (6) is could be seen that it is

equivalent to Dk the originally masked dataset which achieves

the desired level of learning outcome. And the Seek Phase is

finished once the user recovers the unlearnable dataset to the

desired level of learning outcome.

We show the effectiveness of the mask generation, cleaner

generation and cleaner application algorithms in Section IV.

IV. EXPERIMENTS

A. Experimental Setup

We conduct extensive experiments to verify the effective-

ness and generalizability of the proposed Hide-and-Seek data

Algorithm 3 Cleaner Application

1: Input: Dkmax
published by dataset provider, and

2: ck purchased.

3: User downloads Dkmax
.

4: User receives ck and apply it on Dkmax
according to

Equation 6.

5: Output: Dk

sharing framework on the CIFAR-10 [38], Street View House

Number (SVHN) [39], and the CIFAR-100 [38] datasets. We

train our framework on ResNet [40] on Nvidia RTX 4090

GPUs.

We demonstrate the effectiveness of the Hide (mask gener-

ation) Phase and the Seek (cleaner generation and application)

Phase in sections IV-B and IV-C, respectively. In section

IV-D, we plot the original data sample, together with the

corresponding different-level-masked version of the same data

samples. Such plots illustrate that our masks are capable of

preserving the original visual features on the head of protecting

the privacy of the dataset, and hence enables the regular usage

of the original data sample, such as the usage as a profile

photo.

B. Validation on Effectiveness of Masks

We verify the effectiveness of the masks trained (as de-

scribed in Section III-B) by testing whether the machine

learning model trained on each masked dataset would achieve

the corresponding testing accuracy. Figure 4 demonstrates the

effectiveness of our masks on CIFAR-10, SVHN and CIFAR-

100 datasets. It’s worth noting that an ambiguity of Figure

4 is that it seems like each sub-figure is showing a single

training process, however, this is not the way it is. Instead,

we train each mask in a separate training process, and stop to

save (output) the mask until the testing accuracy of the model

trained on the masked dataset stabilizes at the desired (pre-

selected) level. One example of the sequence of trained masks

for different accuracy levels for the “Cat” class in the CIFAR-

10 dataset is shown in the first and third rows of Figure 6.

We then plot in Figure 4 each level of mask versus the test

accuracy achieved on the corresponding level of the masked

dataset.

It could be observed that with the increased scales of masks,

the testing accuracy of the model trained on the masked dataset

is dropped. However, the rate of such dropping of accuracy is

not constant. In the beginning and at the end of the plots, such

drop rate is smaller, reflecting the smaller accuracy change

with the increase of the mask scales. In the middle part,

however, the drop rate is steep, suggesting that even a small

change of the mask scale could lead to a relatively larger

accuracy drop. Due to such a steep change of the learning

accuracy, occasionally it’s not feasible to find a mask that

stabilizes a learning model at certain accuracy. An example

of such scenario is that in the SVHN dataset, we aren’t able

to get the masks that stabilizes the learning outcome around

70% and 80% (as shown in Figure 5 in SVHN). Note that in
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CIFAR-10 CIFAR-100

(a) (b) (c)

SVHN

Fig. 4. Validation on the Effectiveness of Masks on the CIFAR-10, SVHN, and CIFAR-100 datasets, respectively. The line graph depicts the accuracy during
different scales of mask training.

Fig. 5. Validation on the Effectiveness of Cleaners. Top: the model accuracy achieved (orange bars) after each scale of cleaner is applied to the unlearnable
dataset (blue bars) on CIFAR-10, SVHN, and CIFAR-100 datasets, respectively. Bottom: The designed level of accuracy that the masks are generated on (blue),
and the learning accuracy achieved after training on the corresponding level of cleaned datasets (orange) on CIFAR-10, SVHN, and CIFAR-100 datasets,
respectively.

the extensive experiments we have conducted, such scenario

only happens for the SVHN dataset between the 70% and 80%
accuracy range (a.k.a. black-out range), and hence should be

considered as a rare event. Due to the rarity of this scenario,

in practice the issue can be simply by-passed by not including

the related black-out accuracy range in the price table offered

to the data users.
Another interesting fact is that with the increase of the

difficulty/complexity of the dataset, the difficulty to find the

masks that stabilize the learning performance also increases.

This is intuitive as the training on a difficult dataset usually has

higher variance and will be more sensitive to the perturbations.

C. Validation on Effectiveness of Cleaners

We verify the effectiveness of our multi-scale cleaners com-

puted in the Seek Phase (Section III-C). Figure 5 demonstrates

the cleaning results for the CIFAR-10, SVHN, and CIFAR-

100 datasets, respectively (from left to right). The sub-figures

in the top row (sub-figures (a)-(c)) compare the learning

outcome (testing accuracy) between the models trained on the

unlearnable dataset (blue bars) and on the cleaned dataset with

different cleaning level (scale). It could be observed that in

all of the three datasets, our multi-scale cleaners are capable

of recovering (or seeking) the unlearnable dataset to different

levels.

Furthermore, validating the effectiveness of the dataset

cleaners alone is not enough. It is also important for the users

(buyers) to verify that the learning outcome on the cleaned

dataset matches the original desired performance. To this end,

we compare the designed testing accuracy and the achieved

accuracy on the bottom row of Figure 5 (sub-figures (d)-(f)).

The blue curves denote the testing accuracy of the models

trained on the masked datasets, Dk in different masking level,

and the orange curves demonstrates the testing accuracy of

the models trained on the cleaned datasets, D′

k, also at the

corresponding cleaning levels. It could be observed that the

blue and orange curves are very close to each other, indicating

that the learning outcomes of the cleaned datasets is very

similar to the testing accuracy of the masked datasets. Hence,

we complete the validation on the effectiveness of our dataset

cleaners, i.e., it could not only recover the unlearnable dataset,

but also to the levels as they were designed (or per the requests

from the users).
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Fig. 6. The Mean Squared Error (MSE) and Structural Similarity Index
(SSIM) computed between the original data sample (top left sub-figure),
and different levels of masked data samples (2nd and 4th rows) after the
corresponding masks (1st and 3rd rows) are applied. The original data sample
is picked from class “cat” in the CIFAR-10 Dataset.

Fig. 7. The MSE and SSIM computed between the original data sample
(top left sub-figure), and different levels of masked data samples (all other
sub-figures). The original data sample is picked from class “0” in the SVHN
Dataset.

D. Validation on the Consistency of Visual Patterns

In this subsection, we show that the masked dataset still

preserves the visual patterns of the original dataset. We pick

a sample from each of the CIFAR-10, SVHN and the CIFAR-

100 dataset, and plot the original samples and their corre-

sponding multi-scaled masked versions in Figures 6, 7 and 8,

respectively. It could be seen by human eyes that all masked

versions (although with different masking levels) are capable

of preserving the original visual patterns (i.e., all masked cat

images from the CIFAR-10 dataset are still the same cat, and

same for the number 0 image in the SVHN dataset and the

Fig. 8. The MSE and SSIM computed between the original data sample
(top left sub-figure), and different levels of masked data samples (all other
sub-figures). The original data sample is picked from class “caccoon” in the
CIFAR-100 Dataset.

caccoon image in the CIFAR-100 dataset).

To empirically verify the observation, we calculate the

Mean Squared Error (MSE) and the Structural Similarity Index

(SSIM) scores between the original sample and each masked

samples, as these two metrics are well-known to measure the

similarities between two images. The MSE and SSIM scores

are listed under the corresponding sub-figure, respectively. It

could be observed that all the MSE scores are very small

(≤ 10e−3 for all three datasets), indicating that all the masked

data samples are very similar with the original data. It could

also be observed that with the increase of the masking level,

the MSE increases by a small scale. This suggests that stronger

masks does cause a bigger distortion of the original data

sample, but such distortion is too small to be concerned.

Furthermore, the SSIM scores indicate the same observa-

tion. The SSIM scores are all very high (≥ 0.99 for all three

datasets), indicating that all masked samples resembles the

structural patterns of the original data. And similarly, although

the SSIM score decreases with the increase of mask level,

such decrease is too small to change the visual features of

the original data. And hence we finish the verification that

our masks are capable of preserving the visual patterns of the

original datasets.

V. CONCLUSION

In this paper, we propose a novel Hide-and-Seek data shar-

ing framework that is able to protect the data privacy for data

providers and enables the desired level (defined by the user)

of sharing for the training purposes in the context of machine

learning. Such flexible framework bridges the gap between the

current “either completely share or not share at all” extreme

decisions in the current machine learning field. Following the

Hide-and-Seek framework, the data provider first publishes

the unlearnable (strongest-level-masked) dataset, and sends the

corresponding dataset cleaners only to the users (buyers) who

query with the payment. Upon receiving the dataset cleaner,

the user can apply it on the downloaded unlearnable dataset,

and retrieve the cleaned dataset at the corresponding cleaning
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level. The machine learning task, after being trained on the

cleaned dataset, would achieve the desired level of learning

outcome on the testing dataset.
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