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Abstract—With the immense amount of publicly available
data online, many companies and research institute are able to
download the online data for free and train the machine learning
models which will finally result in products that would enhance
our everyday life. While enjoying the advantages of such large
amount of free data, people (data providers or data owners) have
the concern that their personal data may be crawled without
the owner’s consent. This brings out an underlying issue in
the context of machine learning that in the current literature
and applications, dataset owners (also referred to as ‘‘dataset
providers” in the following text) can only choose between the
two extreme decisions of either to share their data entirely, or
not share any of their data at all. Another side of this issue is
that the privacy of the dataset to be shared is either completely
revealed due to the full disclosure of the dataset, which benefits
the potential consumers of the dataset (referred to as dataset
user/buyer in the following text); or the dataset is not shared at
all which preserves the privacy, but impede the development of
new technologies.

In this paper, we propose the novel Hide-and-Seek data sharing
framework that serves as a middle point between the difficult
“share or no share” extreme decisions, which provides a “partial
share” option based on the consumers’ needs, and hence is able to
protect the partial privacy of the dataset providers while sharing
enough amount of data needed for the user to train their models
at a desired accuracy. Extensive amount of experiments have been
conducted on the CIFAR-10, Street View House Number (SVHN),
and the CIFAR-100 datasets. Our experimental results verify the
effectiveness of the proposed Hide-and-Seek framework. We also
show in the experiments that our framework is able to protect
data provider’s privacy without changing the visual patterns of
the dataset, and therefore, doesn’t affect the regular usage of the
data (such as using it as a profile photo).

Index Terms—Hide-and-Seek, Multi-level Data Sharing,
Privacy-Preserving, Unlearnable Dataset, Dataset Recovery

I. INTRODUCTION

In the recent decade, with the rise of big data and ad-
vancements in technology such as machine learning, we keep
hearing the statement that “data is currency”. Such statement
highlights the value of data in the context of machine learning,
since models trained on the larger and broader dataset tend
to behave better during the testing phase. Along with such
benefits, data from online resources are largely extracted to
construct datasets such as ImageNet [1] for training purposes.
While enjoying the advantages of such large amount of pub-
licly available data, a rising concern is that many of these
data are crawled without the owner’s consent [2]. For example,
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Fig. 1. Tllustration of the existing problem: Online public dataset could be
crawled for commercial model training purposes.

personal data such as Facebook and LinkedIn profile photos
could be collected unconsciously to train the commercial
products [3], as illustrated in Figure 1. Some companies are
even fined because of such data breaching activities which
violate the consumers’ privacy [4].

In order to prevent personal data (such as profile photos)
from being collected unconsciously, existing works such as
[5] and [6] try to generate perturbations to be applied to the
dataset. Such perturbation works in a way that the machine
learning models trained on the perturbed dataset (by patching
the perturbation on the original dataset) would fail to extract
the original features of the dataset and hence fail the learning
objectives. However, while such methods provide the nice
privacy protection functionality for the data providers, these
works are too harsh on the companies and research institutes
who are relying on the data to improve their products and
technologies. To summarize, the current data sharing protocols
lie on the two extremes: either to share the data entirely which
leaks the privacy, or not share any data at all which impede
the development of new technologies. A framework that lies
in the middle which not only protects the privacy, but also
shares enough data for the research institutes to reach certain
training/learning performance is highly desirable.

A naive approach for such problem is to only share a
fraction (% of the entire dataset) of the dataset, aiming to
achieve the same fraction of the goal while protecting most of
the privacy. Such method may work well in some contexts
such as video codec (i.e., video encoding and decoding).
For example, sharing the 90%-compressed version of a video
clip should achieve 10% of the original video quality after
decoding. However, such approach does not work in the
context of machine learning. For example, sharing only 10%
of the training dataset doesn’t necessarily mean that the model
accuracy trained on the 10% data achieves only 10% of
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Fig. 2. Our proposed Hide-and-Seek framework protects the data provider’s privacy while allow data user to access the shared data needed for model training
purposes. The data provider first apply the strongest mask to the dataset (this is the Hide Phase), and then publish the unlearnable dataset (original dataset +
strongest mask). (Top) If a web-crawler downloads the published dataset and utilizes it for training purposes, his final label would perform bad on the clean
(regular, unmasked) data samples. (Bottom) If a user is interested in the dataset, he needs to download the published dataset, and purchase the desired version
(defined by the performance of the final learning outcome). When the data provider receives the payment, he will send the corresponding cleaner patch to the
user. The user apply the cleaner to the downloaded dataset (this is the Seek Phase), and train on the resulting dataset to get the desired model performance.

the accuracy from model trained on full dataset. Instead, its
accuracy is dependant among other settings as well.

Targeting the above weaknesses in current data sharing
protocols in machine learning, in this paper, we propose a
novel Hide-and-Seek data sharing framework which provides
an option for the data providers to choose other than the
difficult “share, or no share” options. The Hide-and-Seek
framework could be divided into the Hide Phase and the
Seek Phase. In the Hide Phase, the dataset provider first trains
different levels (or scales) of masks. Each mask, when patched
to the original dataset, hides the features of the original dataset
to a desired extent that when the task is trained on the
masked dataset, achieves a corresponding testing accuracy.
Taking a 10-class classification task as an example, and assume
it reaches a certain testing accuracy after fully trained on
the original dataset. By carefully designing and training the
different levels of masks and apply them on the original
dataset, the classification task trained on the masked dataset
would achieve the pre-defined testing accuracy between 10%
(random guess) and the ideal accuracy (i.e., a mask could
be trained that lead to 30%,40%, ...,etc. testing accuracy)
depending on the consumer’s need. The strongest mask that
lead to the random guess accuracy is equivalent to the “not
share” option, as the masked dataset is fully “unlearnable”
[5]. And the zero mask leads to original testing accuracy, and
is equivalent to the “share” option where no actual mask is
applied. It is worth noting that none of the masks (including
the strongest one) hides the visual patterns of the data (i.e.,
human eyes are still able to recognize the original visual
patterns of the data).

In the Seek Phase, after getting the multi-scale masks, the
data provider computes a set of data-cleaners based the masks.
As will be clear shortly, the cleaners are also in multiple

scales, and are used to clean the unlearnable (fully masked)
dataset. Finally, utilizing the trained masks and cleaners, we
aim to solve the problem illustrated in Figure 1 by the
Hide-and-Seek data sharing framework shown in Figure 2
and described as follows. The data provider first utilizes the
strongest mask to produce the unlearnable dataset (this is the
co-called “Hide”) and publishes it on a publicly-accessible
website without the need to worry about whether the data
would be crawled for training purposes. Because even if the
dataset is crawled and used for training, the model trained on
such unlearnable (masked) dataset would fail on the testing
phase (test on clean dataset). Along with the publishing of
the unlearnable dataset, the data provider should also set a
price table that each version (defined by the test accuracy or
learning outcome of the model learned on the dataset) of the
dataset should come with a different purchase price. If a user
(buyer) is interested in purchasing the dataset, he can make
a query to the dataset provider along with the desired level
of learning outcome needed. Upon receiving the payment, the
data provider sends the corresponding cleaner to the user. The
user can then downloads the publicly available dataset, applies
the cleaner on it, and starts his task training procedures. The
model trained on the cleaned dataset (after applying the cleaner
on the unlearnable dataset) will achieve the desired level of
testing accuracy (and this is the co-called “Seek”).

The main contribution of this work includes the following
three folds:

o We propose the Hide-and-Seek multi-scale data sharing
framework. Given a dataset, we are able to generate a
set of masks that lead to different levels of learning out-
comes when trained on the corresponding level of masked
datasets. Such masks provide the privacy protection to
some extent for data providers while satisfying the needs
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of data acquisition from companies/research institutes in
order to develop new technologies.

o Enlightened by existing works, we propose a novel
method to train the set of masks to fulfill the need of the
Hide Phase of the Hide-and-Seek framework. We limit
the magnitudes of the masks so that the original visual
patterns is still preserved.

« We conduct extensive experiments on multiple datasets
including the CIFAR-10, Street View House Number
(SVHN) and CIFAR-100 datasets. The experiment results
verify the effectiveness of the proposed Hide-and-Seek
multi-scale data sharing framework. We also demonstrate
examples of the original data samples and their masked
data samples in different mask levels, and calculated the
Mean Squared Error (MSE) and Structural Similarity
Index (SSIM) to show the preservation of the visual
patterns.

The rest of this paper is organized as follows. The existing
data sharing frameworks and the privacy-preserving techniques
in machine learning are reviewed in Section II. We describe the
details of the proposed Hide-and-Seek framework in Section
IIT in which the III-B section explains how the different scales
of masks are trained (i.e., the Hide Phase), and III-C subsection
describes how the corresponding cleaners are computed (i.e.,
the Seek Phase). The performance evaluation of the Hide-and-
Seek data sharing framework is shown in Section IV, and
finally we conclude this paper in Section V.

II. RELATED WORKS
A. Privacy Protection Methods for Data Sharing

Although there are existing industrial data-sharing platforms
such as [7] that strictly restricts the user accessibility in
a fine-grained level to achieve the privacy-protection goal,
researchers are investigating other possible solutions to pro-
tect the data in a more direct way. The current literature
that protects the data privacy from being leaked during the
sharing phase could be summarized into two categories. The
first category is the Reversible Data Hiding (RDH) or the
lossless/invertible data hiding frameworks, where data can be
embedded into a cover medium for data sharing, and are
later extracted by the receiver once received [8] [9]. In real
applications, one of the most widely used medium is the
compressed JPEG images [10] [11] [12]. This is due to the
fact that JPEG offers an effective trade-off by reducing the file
size of images while maintaining a satisfactory level of visual
fidelity. Another emerging choice to hide the secret data and
retrieve it back is to embed it into audio/video clips. [13], [14]
and [15] are the representing research works done in this area.
They used the inner product between the motion vector and
the modulation error, two-dimensional histogram modification
and reversible video watermarking to achieve the reversibility,
respectively. The disadvantage for such RDH methods is that
they suffer from large computational costs to hide even a single
data sample, and hence would introduce a huge overhead in
the machine learning context, since the latter usually requires
a large amount of data to train even a small model.

In the other category, researchers apply the encryption
techniques to protect the dataset so that only the intended
(user) receiver with the corresponding key is capable of
accessing the data. [16] proposes a scheme that utilizes the
proxy re-encryption algorithm and oblivious random access
memory (ORAM) aiming to ensure the privacy and prevent
the traceability in cloud computing. Such method enables
multiple users to securely share the data while preserving their
privacy. [17] develops an enhanced attribute-based encryption
method that combines a personal access policy for users and a
professional policy for the fog nodes. Such encryption ensures
the effective provision of the medical services. And in [18],
the authors present FPDS (Flexible Privacy-Preserving Data
Sharing) sheme for cloud assisted IoT in which the data of
IoT users are encrypted by an identity-based encryption that
ensures the privacy and confidentiality in the phase of data
sharing. Similar to the first category where the researchers
are applying the RDH to protect the data privacy, adding
the encryption for privacy concerns suffer from the same
drawbacks that it adds a huge overload in the machine learning
context since it usually require a large amount of training data.

B. Privacy-Preserving Machine Learning

Due to a recent observation that machine learning mod-
els tend to memorize some information about the training
dataset [19] [20] [21], leading to its vulnerability to the
privacy attacks [22] [23] such as membership inference attack
[24], the privacy-preserving machine learning that not only
protects the privacy of the training dataset, but also enables
the regular learning process becomes highly desirable. The
current literature approaches the privacy-preserving machine
learning (PPML) topic from two perspectives: protecting the
training dataset, and proposing the privacy-preserving learn-
ing/computing algorithms.

The privacy protection of training dataset could be further
divided into three groups. In the first group, researchers are
applying the anonymization technique on the dataset. [25]
proposes a method that provides the k-anonymity in the ma-
chine learning algorithms, [26] proposes a method that injects
the utility into the anonymized dataset and [27] replaces the
original dataset by a surrogate one according to the grouping
of the anonymized data. In the second group, different kinds
of perturbation are added to the dataset to protect its privacy.
[6] and [5] train perturbation to be applied to training dataset
so that the common data features in one or more classes are
not extractable. And [28] [29] are the two representatives of
adding differential privacy noises to the training dataset. The
last group involves the encryption of the dataset. [30] and [31]
fall into this category, which adds a little more overhead since
the decryption procedure is also required at some point.

Unlike those in the first category which focus more on the
training dataset, the researchers in the second category focus
on the training/computational phase of machine learning. [32]
proposes a differentially private stochastic gradient descent
algorithm with a modest privacy budget, [33] develops a
novel method to train a large recurrent model with user-level
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Description Notation
Dataset Provider S
Authorized User (Buyer) P
Dataset (clean, masked, unlearnable) D¢, Dk, Di,,

Dataset (validation, test, cleaned) Dy, Dy, D%
Mask with strength k(0 < k < kmaxz) my
Desired training (learning) levels Ak
Noise boundary €
Cleaners with scale k c

TABLE I
HIDE-AND-SEEK NOTATION TABLE

differential privacy guarantee, and [34] presents an efficient
privacy-preserving protocol for neural networks among two
non-colluding server with the secure two-party computation
(P2C). As GPU is one of the most important computational
resources needed for machine learning, [35] introduces Crypt-
GPU which identify several cryptographic methods to enforce
the privacy-preserving operations on GPUs. Furthermore, the
privacy-preserving machine learning had also been applied in
the medical imaging field [36].

With all of the above methods mentioned in this section,
none of them is capable of providing the “partial share” or
“share by level” feature. Such feature is indeed in demand
because it could not only serve as a middle point between
extreme decisions of either share or not share, it could also
satisfy some of the realistic applications. For example, in the
scenarios of transfer learning, only partial training results of
the mother model is needed because it would be later fine-
tuned on the child’s dataset anyway. Embracing the above
demand, in this paper, we propose the novel Hide-and-Seek
framework that provides the options for the dataset users to
purchase the need-based customized dataset and meanwhile
protects the data privacy from the data provider’s perspective.

ITII. HIDE-AND-SEEK DATA SHARING FRAMEWORK

In this section, we first present the overall workflow of
the Hide-and-Seek protocol in subsection III-A assuming we
have already trained the multi-level masks and generated the
multi-level cleaners. After that, as the name suggests, our
framework could be divided into two phases: the Hide Phase
(masks generation) explained in III-B and the Seek Phase
(cleaners generation and application) described in III-C. The
Hide Phase generates different scales of masks that when
applied to the dataset, hide the original dataset to a certain
extent, defined by the corresponding learning outcome. In the
Seek Phase, we compute a set of cleaners that are capable of
recovering the unlearnable (fully masked) dataset to a desired
scale (also defined by the corresponding learning performance
after training). To enhance the readability of the algorithms,
we introduce the notation table in Table I.

A. Hide-and-Seek Protocol

The Hide-and-Seek data sharing framework is summarized
in Protocol 1 and explained as follows. The Hide-and-
Seek data sharing protocol starts with the dataset provider
S publishing the unlearnable dataset Dy, by applying the

max

strongest mask my, . on the clean dataset D.. Notice that
none of our masks (including the strongest mask) hides the
visual patterns of the real data samples, therefore applying
even the strongest mask won’t affect the regular usage of the
original data (for example, it could still be used as a profile
photo,....etc.). Therefore, taking the advantage of such feature,
the potential user is still capable of recognizing the visual
patterns of the data, and then decides if such dataset fits his
scenarios. Once a user P decides that he needs this dataset
for his work, he makes a query to the dataset provider S
along with his desired level of learning outcome %k and the
corresponding payment. S receives the query and payment
from user P, and sends the cleaner with the corresponding
clean scale, C; to the user P. Upon the receiving of the
cleaner, P applies C; on the published/downloaded dataset
Dy,,... and get the “kth-level” cleaned dataset, D;,. He can
then starts training his models on D), and gets the “k-th level”
learning performance which is equivalent as was trained on
Dy, (kth-level masked dataset). And hence the Hide-and-Seek
data sharing is completed.

Protocol 1 Hide-and-Seek Data Sharing Protocol

Participants:
One S (data provider),
users/buyers).
Data Provider’s Goal:
1. Share the desired-level (defined by the buyer) of dataset
with buyers.
2. Protect the original data from being trained by unauthorized
users.
Buyers’ Goal:
Gain access (purchase) to the dataset that provide the desired
learning outcome.
The protocol:
Step 1: S publishes the unlearnable dataset (Dy,
For each buyer P:
Step 2: P reviews Dy
specifying k.
Step 3: S sends ¢, to P.
Step 4: ‘P downloads Dy
to Equation (6).

and multiple P (authorized

'nLa'J;)'

and pays to purchase Dy by

max

and retrieve D;; according

max

B. The Hide Phase (Mask Generation)

Inspired by the paper that proposed the Unlearnable Exam-
ples [5], we extend the algorithm so that instead of finding
the purely unlearnable perturbations, we search for the masks
that lead to a desired level of learning outcome.

1) Assumption on Data Provider’s Capability: We assume
that the data provider has full access to the dataset that they
would like to share, but can only manipulate the dataset prior
to the sharing phase. After that, the dataset provider has
no access during the sharing process or after the sharing is
completed. This assumption is made based on the fact that
once something is published online, whether it’s used and how
it’s used will be out of the publisher’s control. Although we
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Fig. 3. The illustration of how masks are trained. The blue dots denote the
accuracy selected (\g) to produce the corresponding masks, and each image
denotes the mask mj produced at the chosen level, Ag. Notice that in this
figure, the masks are just illustrations, and the mask scales are later normalized
into an e-ball prior to being applied on the clean dataset.

assume that the dataset provider could no longer change the
dataset after the sharing phase, it is realistic to assume that
there is a communication channel between the user and the
provider, and they are able to exchange information (such as
the dataset cleaner) via that channel.

2) Problem Formulation: With the simplicity of the idea
explanation, and without the loss of generalizability, we for-
mulate the problem in the context of image classification. For
a Z-class classification task, we denote the original (clean)
training dataset as D. = {z;,y;}", with x € X C R? are
the data samples and y € Y = {0,..., Z — 1} are the labels of
the data samples. Z denotes the total number of classes, and n
denotes the total number of data samples. The testing dataset is
denoted as D; which shares the same data distribution as D..
A typical model training procedure is guided by the objective
function

argemin E(zy)~p L(f(2), ) (D

which learns the mapping from the input space to the label
space: f : X — ), where L the classification loss function
such as the wide-used cross entropy loss.

In the Hide Phase, our goal is to find a list of masks my’s
with different scales k’s such that the machine learning model
trained on the resulting masked dataset (after applying my, on
D.), denoted as Dy, = {x},y;}1",, where &, = x; + my,
[lmk|| < €, would be able to achieve the degradation of the
testing performance to a certain level (or scale) \j after being
tested on D,. Instead of training with the objective function
in Equation (1), our Mask-Generation algorithm is guided by

argamin E(w’7y),vpk£(f(m/)v Y) @)

and we stop the training process and output mj once the
validation accuracy reaches Aj. Notice that in this paper, the
masks are the class-wise masks, i.e., under a certain mask scale
k, there will be in total of Z masks (Z is the total number

of classes), and therefore «; = =; + m}’, mj}’ € M; =
{m9 m},..m7? !}, Data samples in the same class share
the same m,. In the extended version of this work, we will
explore the sample-wise masks for comparisons.

Given an original data sample x, we adopt the same mask

generation method as in [5]:

argmin Eg ,yp, min[L(f'(x + mk),y)]
0 Mk 3)

s.t. |mil| <e

which is a bi-level optimization problem that both the inner
and outer parts minimize the classification loss. The difference
is that the outer part tries to find the parameters 6 while the
inner part tries to find the mask 1, under the condition that its
norm is bounded by e. It is worth noting that the optimization
step of 6 should be limited to enforce the effectiveness in
finding my due to the fact that the two parts of the bi-
level optimization problem share the same objective (loss
minimization). We solve the inner optimization problem with
the PGD algorithm [37] as follows:

w1 = Te(@; — o - sign(Va L(f'(w),y))) “)

where V,L(f'(x}),y) denotes the gradient with respect to
input @, t is the iteration number, and Il is the clipping
function that enforces the norm bound of m. The detailed
masks generation algorithm is summarized in Algorithm 1.

The intuition of the mask generation process is illustrated
in Figure 3. Specifically, as the figure illustrated, a machine
learning model that trains on the dataset together with a larger
mask tends to learn less of the mapping from the original
feature space (X) to the label space, as more of the features
are hidden by the larger mask. In experiments, we empirically
pick several level of the desired accuracy (\y) to stabilized the
model on, and then output the masks (my) at corresponding
levels.

After the generation of all desired level of masks, the dataset
provider can publish Dy, along with the price table for each
level of learning outcome \g. Once a user queries to purchase
Dy, the data provider will send cj, to the user. We explain
the computation of ¢ with different levels of £ in the next
subsection.

C. The Seek Phase (Cleaners Generation and Application)

1) Cleaners Generation: In the previous subsection, the
data provider gained a list of masks that is able to hide the
original dataset to a certain level. In this subsection, the goal is
to generate different levels of dataset cleaners that after applied
to the unlearnable dataset, Dy, ., the resulting dataset D) will
achieve the corresponding learning outcome A, as designed.

Given the set of masks my’s with different hiding scales,
we define the mask cleaners with the corresponding cleaning
levels as:

Cp =M — Mg, &)

where c; denotes the dataset cleaner with cleaning level k.
As will be clear shortly, such definition of the dataset cleaner
is capable of cancelling out the unlearnable mask during the
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Algorithm 1 Mask Generation

Algorithm 3 Cleaner Application

1: Input: A\, and for each x € D,

2: Initialize my,

3: for t=0 ... end of training iterations do

4:  Train the model on « + my, according to Equation (3);

5 Test on validation dataset D,;

6:  if The result of line 5 is consistently within a threshold
with \; then

7: break

8: else

9: Update my, according to Equation (4);
10: continue with line 4;

11:  end if

12: end for

B:my=x —x
14: Output: my,

Algorithm 2 Cleaner Generation
1: Input: my’s trained as in Section III-B, and
2: k from the user.
3: Dataset provider computes ¢ with the given k£ according
to Equation 5.
4: Output: ¢

cleaner application process from the user’s perspective. The
cleaner generation algorithm is summarized in Algorithm 2.
After receiving the payment from the user, the dataset provider
will then send the corresponding ¢y, to the user, and the user
will apply the cleaner on the unlearnable dataset to retrieve
the cleaned dataset with the desired learning outcome.

2) Cleaner Application: The user starts the cleaning pro-
cess by first downloading the publicly available dataset Dy,
which is currently unlearnable. The user purchases the dataset
cleaner ¢, with the desired cleaning scale k, from the dataset
provider, and apply it on the unlearnable dataset, Dy, as
the following:

D), =Dy, +ck
= Dc +my,
=D, +my
= Dk‘

Tmy — My,
(6)

max

where D, is the dataset that the user retrieved after applying
the dataset cleaner. From Equation (6) is could be seen that it is
equivalent to Dy, the originally masked dataset which achieves
the desired level of learning outcome. And the Seek Phase is
finished once the user recovers the unlearnable dataset to the
desired level of learning outcome.

We show the effectiveness of the mask generation, cleaner
generation and cleaner application algorithms in Section IV.

IV. EXPERIMENTS

A. Experimental Setup

We conduct extensive experiments to verify the effective-
ness and generalizability of the proposed Hide-and-Seek data

max

2: ¢y, purchased.

3: User downloads Dy, .

4: User receives ci and apply it on Dy
Equation 6.

5: Output: Dy,

1: Input: Dy, published by dataset provider, and

according to

max

sharing framework on the CIFAR-10 [38], Street View House
Number (SVHN) [39], and the CIFAR-100 [38] datasets. We
train our framework on ResNet [40] on Nvidia RTX 4090
GPUs.

We demonstrate the effectiveness of the Hide (mask gener-
ation) Phase and the Seek (cleaner generation and application)
Phase in sections IV-B and IV-C, respectively. In section
IV-D, we plot the original data sample, together with the
corresponding different-level-masked version of the same data
samples. Such plots illustrate that our masks are capable of
preserving the original visual features on the head of protecting
the privacy of the dataset, and hence enables the regular usage
of the original data sample, such as the usage as a profile
photo.

B. Validation on Effectiveness of Masks

We verify the effectiveness of the masks trained (as de-
scribed in Section III-B) by testing whether the machine
learning model trained on each masked dataset would achieve
the corresponding testing accuracy. Figure 4 demonstrates the
effectiveness of our masks on CIFAR-10, SVHN and CIFAR-
100 datasets. It’s worth noting that an ambiguity of Figure
4 is that it seems like each sub-figure is showing a single
training process, however, this is not the way it is. Instead,
we train each mask in a separate training process, and stop to
save (output) the mask until the testing accuracy of the model
trained on the masked dataset stabilizes at the desired (pre-
selected) level. One example of the sequence of trained masks
for different accuracy levels for the “Cat” class in the CIFAR-
10 dataset is shown in the first and third rows of Figure 6.
We then plot in Figure 4 each level of mask versus the test
accuracy achieved on the corresponding level of the masked
dataset.

It could be observed that with the increased scales of masks,
the testing accuracy of the model trained on the masked dataset
is dropped. However, the rate of such dropping of accuracy is
not constant. In the beginning and at the end of the plots, such
drop rate is smaller, reflecting the smaller accuracy change
with the increase of the mask scales. In the middle part,
however, the drop rate is steep, suggesting that even a small
change of the mask scale could lead to a relatively larger
accuracy drop. Due to such a steep change of the learning
accuracy, occasionally it’s not feasible to find a mask that
stabilizes a learning model at certain accuracy. An example
of such scenario is that in the SVHN dataset, we aren’t able
to get the masks that stabilizes the learning outcome around
70% and 80% (as shown in Figure 5 in SVHN). Note that in
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respectively.

the extensive experiments we have conducted, such scenario
only happens for the SVHN dataset between the 70% and 80%
accuracy range (a.k.a. black-out range), and hence should be
considered as a rare event. Due to the rarity of this scenario,
in practice the issue can be simply by-passed by not including
the related black-out accuracy range in the price table offered
to the data users.

Another interesting fact is that with the increase of the
difficulty/complexity of the dataset, the difficulty to find the
masks that stabilize the learning performance also increases.
This is intuitive as the training on a difficult dataset usually has
higher variance and will be more sensitive to the perturbations.

C. Validation on Effectiveness of Cleaners

We verify the effectiveness of our multi-scale cleaners com-
puted in the Seek Phase (Section III-C). Figure 5 demonstrates
the cleaning results for the CIFAR-10, SVHN, and CIFAR-
100 datasets, respectively (from left to right). The sub-figures
in the top row (sub-figures (a)-(c)) compare the learning
outcome (testing accuracy) between the models trained on the
unlearnable dataset (blue bars) and on the cleaned dataset with
different cleaning level (scale). It could be observed that in

all of the three datasets, our multi-scale cleaners are capable
of recovering (or seeking) the unlearnable dataset to different
levels.

Furthermore, validating the effectiveness of the dataset
cleaners alone is not enough. It is also important for the users
(buyers) to verify that the learning outcome on the cleaned
dataset matches the original desired performance. To this end,
we compare the designed testing accuracy and the achieved
accuracy on the bottom row of Figure 5 (sub-figures (d)-(f)).
The blue curves denote the testing accuracy of the models
trained on the masked datasets, Dy, in different masking level,
and the orange curves demonstrates the testing accuracy of
the models trained on the cleaned datasets, D;C, also at the
corresponding cleaning levels. It could be observed that the
blue and orange curves are very close to each other, indicating
that the learning outcomes of the cleaned datasets is very
similar to the testing accuracy of the masked datasets. Hence,
we complete the validation on the effectiveness of our dataset
cleaners, i.e., it could not only recover the unlearnable dataset,
but also to the levels as they were designed (or per the requests
from the users).
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D. Validation on the Consistency of Visual Patterns

In this subsection, we show that the masked dataset still
preserves the visual patterns of the original dataset. We pick
a sample from each of the CIFAR-10, SVHN and the CIFAR-
100 dataset, and plot the original samples and their corre-
sponding multi-scaled masked versions in Figures 6, 7 and 8,
respectively. It could be seen by human eyes that all masked
versions (although with different masking levels) are capable
of preserving the original visual patterns (i.e., all masked cat
images from the CIFAR-10 dataset are still the same cat, and
same for the number 0 image in the SVHN dataset and the
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Fig. 8. The MSE and SSIM computed between the original data sample
(top left sub-figure), and different levels of masked data samples (all other
sub-figures). The original data sample is picked from class “caccoon” in the
CIFAR-100 Dataset.

caccoon image in the CIFAR-100 dataset).

To empirically verify the observation, we calculate the
Mean Squared Error (MSE) and the Structural Similarity Index
(SSIM) scores between the original sample and each masked
samples, as these two metrics are well-known to measure the
similarities between two images. The MSE and SSIM scores
are listed under the corresponding sub-figure, respectively. It
could be observed that all the MSE scores are very small
(< 10e~3 for all three datasets), indicating that all the masked
data samples are very similar with the original data. It could
also be observed that with the increase of the masking level,
the MSE increases by a small scale. This suggests that stronger
masks does cause a bigger distortion of the original data
sample, but such distortion is too small to be concerned.

Furthermore, the SSIM scores indicate the same observa-
tion. The SSIM scores are all very high (> 0.99 for all three
datasets), indicating that all masked samples resembles the
structural patterns of the original data. And similarly, although
the SSIM score decreases with the increase of mask level,
such decrease is too small to change the visual features of
the original data. And hence we finish the verification that
our masks are capable of preserving the visual patterns of the
original datasets.

V. CONCLUSION

In this paper, we propose a novel Hide-and-Seek data shar-
ing framework that is able to protect the data privacy for data
providers and enables the desired level (defined by the user)
of sharing for the training purposes in the context of machine
learning. Such flexible framework bridges the gap between the
current “either completely share or not share at all” extreme
decisions in the current machine learning field. Following the
Hide-and-Seek framework, the data provider first publishes
the unlearnable (strongest-level-masked) dataset, and sends the
corresponding dataset cleaners only to the users (buyers) who
query with the payment. Upon receiving the dataset cleaner,
the user can apply it on the downloaded unlearnable dataset,
and retrieve the cleaned dataset at the corresponding cleaning
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level. The machine learning task, after being trained on the
cleaned dataset, would achieve the desired level of learning
outcome on the testing dataset.
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