Journal of Information Security and Applications 82 (2024) 103739

journal homepage: www.elsevier.com/locate/jisa

Contents lists available at ScienceDirect

Journal of Information Security and Applications

INFORMATION

AND APPLICATIONS

Attack-model-agnostic defense against model poisonings in distributed

learning™

Hairuo Xu, Tao Shu *

Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, United States

ARTICLE INFO ABSTRACT

Keywords:
Distributed/federated learning
Attack-model-agnostic defense
Heritage factor

Threat and detection models

The distributed nature of distributed learning renders the learning process susceptible to model poisoning
attacks. Most existing countermeasures are designed based on a presumed attack model, and can only perform
under the presumed attack model. However, in reality a distributed learning system typically does not have
the luxury of knowing the attack model it is going to be actually facing in its operation when the learning

system is deployed, thus constituting a zero-day vulnerability of the system that has been largely overlooked
so far. In this paper, we study the attack-model-agnostic defense mechanisms for distributed learning, which
are capable of countering a wide-spectrum of model poisoning attacks without relying on assumptions of the
specific attack model, and hence alleviating the zero-day vulnerability of the system. Extensive experiments
are performed to verify the effectiveness of the proposed defense.

1. Introduction

In recent years we have witnessed the initial success of machine-
learning-based Artificial Intelligence (AI) in many application domains,
such as image processing [1,2], natural language processing [3,4],
autonomous driving [5,6], gaming [7-9], medical science [10-12] and
public safety [13].

Encouraged by this initial success, the size of learning is being
scaled up, so as to make a trained model more generalizable and
applicable to wider scopes. This is achieved by increasing not only the
total volume of data used to train the model, but also the number of
independent sources that collect the data under different spatial and
temporal scenarios and contribute them for model training. For exam-
ple, the medical imaging records from multiple independent medical
institutions can be garnered to train a disease diagnosis model that
is more accurate than what can be achieved by using data from any
one institution alone [14]. In line with this momentum, distributed
machine learning technology has received a lot of interests recently. A
distributed machine learning algorithm allows each source to first train
an individual model (a.k.a. child model) just based on its own dataset,
and then utilize the training result from all child models to construct
a generalized model. As such, distributed machine learning enjoys the
highly desirable benefit of data privacy, because it only requires the
sharing of child model’s training outcome (i.e., training parameters
or gradients), rather than a direct disclosure of data across different

sources. In addition, the training over different data sources can be
parallelized and crowd-sourced to a cluster of machines, and therefore
parallelism and high-speed is another benefit provided by distributed
machine learning.

While distributed machine learning provides many nice features,
researchers are concerned about its security problems, especially its
vulnerability to model poisoning attacks. In particular, because the
validity of the final learning outcome depends on the correctness of
every child model and as the learning has a distributed structure, an at-
tacker may simply compromise a subset of the data sources and tamper
the training of their child models to compromise the final generalized
model. Similar damage may also be caused when some data sources
are malicious, injecting false child model parameters (or gradients) into
the distributed learning process. Even worse, the iterative structure of
many distributed machine learning algorithms allow the injected false
model parameters to propagate among both global and child models,
eventually affecting the validity of both the generalized model and all
child models. In light of these threats, the countermeasures that allow
the model server to check the validity (or the likelihood of being valid)
of the shared local training outcome, and to eliminate the suspicious
workers is extremely important, as it provides the guarantee for the
convergence and the quality of the final global model in the distributed
learning process.

A preliminary version of this paper has been presented at IEEE International Conference on Ubiquitous Intelligence and Computing (UIC) 2022 (Xu and Shu,

2022).
* Corresponding author.
E-mail address: tshu@auburn.edu (T. Shu).

https://doi.org/10.1016/j.jisa.2024.103739

2214-2126/© 2024 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
mailto:tshu@auburn.edu
https://doi.org/10.1016/j.jisa.2024.103739

H. Xu and T. Shu

Most existing countermeasures in distributed learning are designed
based on a presumed attack model, and present their defense capabil-
ities under that presumed attack model. However, when facing attack
models different from the one that they were designed against, these
countermeasures achieve limited defense effectiveness. For example,
the defense methods described in [15,16] are aiming to defense the
targeted attack models that insert a backdoor to mis-classify a certain
label. However, when facing an untargeted attack that aims to distort
the global convergence, such targeted attack defense methods very
often achieve poor performance.

In reality, however, when a distributed learning system is being
deployed, it typically does not have the luxury of knowing the attack
models that will actually be launched against it in its operation, thus
constituting a zero-day vulnerability for the distributed learning system.
Pre-stacking up a variety of countermeasures during the deployment
of the learning system, each of which is designed specifically for a
particular attack model that is anticipated to occur to the underlying
system - a method commonly adopted by the software engineering
industry to counter viruses, is not a feasible solution for learning
systems because the countermeasures against different attack models
are typically not compatible with each other. Therefore, when a new
distributed learning system is being deployed, it is critical to embed in
the system a wide-spectrum counter-attack defense mechanism, which
operation relies on little assumptions of the attack model (i.e., being
attack model agnostic), and thus is able to counter a wide range of
possible attacks. Such a defense mechanism will give the learning
system an effective first line of defense when the system is born,
alleviating the zero-day vulnerability of the system.

In this paper, focusing on the general category of model poisoning
attacks, we study the attack-model-agnostic defense mechanisms in dis-
tributed machine learning by exploring several main-stream untargeted
attack countermeasures such as Krum [17] and AFA [18], and targeted
attack countermeasures such label flipping attack and backdoor attack
defenses. We also propose two new attack-model-agnostic countermea-
sures to defend against general model poisoning attacks in distributed
learning: the Drop-one, and Structural Similarity (SSIM) detection. We
evaluate these detection methods against several main stream untar-
geted and targeted attack models, and compare their effectiveness
under different attack settings. A preliminary version of this paper
has been accepted by the IEEE International Conference on Ubiquitous
Intelligence and Computing (UIC) 2022 [19]. Our contributions include
the following three folds:

» Targeting the general category of model poisoning attacks, we
propose two novel attack-model-agnostic defense methods for
distributed learning: Drop-One and SSIM detection. It is worth
noting that in contrast to the existing detection methods that
compute the decision boundary based on the snapshot of the
training outcome in current iteration, the SSIM method considers
the trace of training outcomes in a sequence of iterations (i.e., the
current and the past K iterations). For better detection accuracy,
SSIM regards the gradients from each epoch as a series of vectors,
and finds out the most suspicious gradients by exploiting historic
information.

We propose a new metric, the Heritage Factor, to measure and
study the false parameter propagation between child models in
different iterations of distributed learning. Such a metric also
enables us to characterize the impact of attack injected initially
into a single child model on the validity of the final generalized
model.

We conduct extensive model poisoning attack experiments over
both the MNIST and CIFAR-10 datasets under a wide range of
attack models, and observe that the magnitude of the injected
attack vector is the dominant factor for the effectiveness of the at-
tack regardless of the attack model. Based on this observation, we
verify through extensive experiments the effectiveness of the pro-
posed attack-model-agnostic countermeasure mechanisms over a

Journal of Information Security and Applications 82 (2024) 103739

wide range of attack magnitudes. In addition to the UIC version,
we also evaluate the performance of the attack-model-agnostic
defense methods, including the Krum, AFA, DropOne, SSIM, PCA-
cluster defense, and an attack-specific defense, the CRFL defense
method in distributed learning scenarios under both untargeted
attack including the random noise attack, gradient ascent attack,
and the targeted attacks including the label flipping attack and
the backdoor attacks. Our extensive experiments confirms our
observation that the attack-model-agnostic defense methods can
indeed serve as a first line of defense that alleviate the zero-day
vulnerability of the system.

To the best of our knowledge, our work is the first to systemati-
cally study the attack-model-agnostic countermeasures against model
poisonings in distributed learning systems.

2. Related works
2.1. Poisoning attacks

Distributed learning is vulnerable to poisoning attacks. According to
the goal of the attackers, the poisoning attacks can be divided into two
categories, the targeted attacks that aims to reduce the accuracy on a
given class, as described in [20,21], and the untargeted attack, whose
goal is to prevent the distributed learning system from converging
to its optimal solution as described in [22-25]. We believe that the
untargeted attacks that threat the entire learning system has severe
consequences than targeted attacks, therefore, we focus on the defense
mechanisms against the untargeted attacks in this paper.

2.2. Defense methods

Based on the potential attack models, the defense method could
also be divided into two categories. The targeted defense proposed
in [15,16] were based on the prior knowledge of the attack models.
And more generally, Krum and Multi-Krum [17], AFA [18], Trimmed-
Mean [24], Median [26] and Bulyan [27] are proposed to counter the
untargeted attacks in distributed learning systems.

These untargeted defense methods could be categorized into two
groups. The first group include Krum, Multi-Krum and AFA, which
consider each of the gradient (local update) as a whole part and try to
recognize the outlying ones. Particularly, Krum regards the gradients
that are closest to its n — m — 2 neighboring gradients in the Euclidean
norm space as honest (where n, m are the total number of workers, and
the upper bound of the adversaries, respectively), and only allow these
gradients to be aggregated by the server. Multi-Krum utilizes Krum to
select ¢ gradients such that n — ¢ > 2 m + 2, and then takes the average
of the selected ¢ gradients to update the server. AFA computes the
cosine-similarities among the gradients, and eliminate the ones with
the out-of-bound cosine similarity scores.

The second group include Trimmed-Mean, Median and Bulyan,
which consider the gradients from a dimension-wise perspective. For
each dimension of gradients, Trimmed-Mean removes the g largest
and smallest values, and takes the average of the rest to update that
dimension. Median updates the server by the result of computing the
median of the gradients in each dimension. And Bulyan can be seen as a
mixture of Multi-Krum and Trimmed-Mean, as it first selects 6 gradients
as Multi-Krum, and then perform Trimmed-Mean on the selected set.

It is worth noting that most of these methods compute the deci-
sion boundary based on the snapshot of the gradients in the current
iteration, the SSIM proposed in this paper utilize the current and the
historical gradients to differentiate the suspicious collaborators from
the honest ones.

H. Xu and T. Shu

Global Server

Local Gradients

Uploads]

f
o

Global Parameter
Download

!
e00

I;ﬁ%=j Local Models

9
o
9

o

!
©

N
g

Q

Ese (88 ... (e
-— - -— - - -— -
Private Data Private Data Private Data
% % s

Fig. 1. High-level system architecture.

3. Model description and problem formulation
3.1. Overview

Fig. 1 illustrates the high-level architecture of our distributed learn-
ing system. It is an abstract example of the parameter server [28]
system. The system contains one server, which is responsible for main-
taining the global parameters, and N collaborators (also referred to as
workers in the following text). There exists a communication protocol
that allows the collaborators to share the training information through
local gradients upload and global parameters download. In the follow-
ing, we describe the role and tasks of each components: the parameter
server and the collaborators in details.

3.2. Local training

Assume that there are N workers, all of which have agreed in
advance upon the same learning objective and training model ar-
chitecture. For simplicity, but without loss of generality, we choose
the classification task as our objective, and neural network as our
training architecture in this paper. Each worker maintains their own
private dataset. These dataset should not be shared as they may contain
sensitive information.

Each worker i maintains a local set of its neural network pa-
rameters, denoted as w;'(. The worker starts training by downloading,
and replacing all local parameters with the global parameters from
the server. After that, the worker trains locally for one local epoch
with Stochastic Gradient Descent optimization [29]. In this epoch, the
worker should train on all the local data, instead of certain mini-
batches. This single-epoch training produces a set of gradients, denoted
as gl
g =W~ W, @
where gL denotes worker i’s true local gradients trained with SGD at
epoch k, and w; denotes the local weights (parameters) of worker i
at epoch k after the local training. The worker will then upload the
gradients g;c to the parameter server, and wait until the next iteration.

All the other workers will perform the same process of downloading
and replacing the local parameters by the global parameters from the
server, train locally for one epoch, stop and upload the gradients to the
server. It is worth noting that such procedure is done simultaneously,
as each worker has its own local model which is capable of training in-
dependently. The iteration continues until all the workers have trained

Journal of Information Security and Applications 82 (2024) 103739

locally for one epoch and uploaded their gradients to the server. The
server will update the global parameters with the gradients received
according to an aggregation rule, and then the next iteration starts,
where each worker will download the updated global server and train
locally for the second epoch.

3.3. Parameter server

The parameter server maintains the global parameters, denoted by
global
w, .In each iteration, the server receives a set of gradient vectors,
one from each worker, and updates the global parameters by the
following FedAvg [30] aggregation equation:

N
global ___global i
W, =W,_, +r]~2‘g;C 2)
i=1

where 7 denotes the learning rate, k — 1 and k denote the iteration
number, and gj(denotes the local gradients upload by worker i at epoch
k. As shown in Fig. 1, the parameter update on the server completes the
current iteration, and the next iteration starts.

3.4. Model-poisoning attack models

As will be clear shortly in Section 4, we explore a full array of the
attack models, including the untargeted attacks such as random noise
attack, gradient ascent attack; and the targeted attacks such as label
flipping attack and backdoor attacks. While different attack models
obtain different attacking strategies, in general, the essence of all these
attack methods could be summarized as injecting an attack vector
into/replacing the real local updates (or local training gradients) that
is uploaded to the global server for aggregation.

In light of the above commonality shared by all model-poisoning
attack methods, we formulate the general form of attack mechanisms
by adding an attack vector into the local gradients, i.e.,

g =g te 3

where gN;c denotes the poisoned local update to be uploaded to the
server, € denotes the attack vector, and g;'c denotes the true gradients.
However, note that in many cases the attacker could just upload e,
whereby g/ is simply set to be a zero vector.

Under the above general form of attack models, we propose a new
metric, the heritage factor, to characterize how much a reported local
update deviates from its true local training outcome. In particular, we
rewrite Eq. (3) as follows:

g =rg+tl-p-e ©)

where we define 0 < p < 1 to be the heritage factor, which reflects
the following insight on model-poisoning attacks: If there exists no
attacker, the distributed learning system could help each of the col-
laborators (workers) to learn a more generalized model and converge
faster [31,32]. Intuitively, such collaborative learning procedure could
be seen as an inheritance. The prior workers (or the workers from
previous iterations) train their local models, and upload the gradients
to the server, where such gradients could be regarded as the “legacies”.
These “legacies” are then aggregated by the parameter server, and
“inherited” by the later workers (or the workers in later iterations)
during the global parameters download as “heritage”. In this paper,
we assume that all honest workers are uploading their “legacies” 100%,
but an attack would only upload a part of its “legacy”, supplemented
as another part by an attack vector e. The heritage factor p just
characterizes how much “legacy” is contained in a local update, or
equivalently, the percentage of the true gradients that will be uploaded
and inherited.

When p is 1, no attack vector is injected to the true local gradients,
and the so-called attacker is not performing any attacking activities.
On the other extreme, when p is 0, the entire uploaded vector would

H. Xu and T. Shu

Heritage Factor vs Accuracy

100 A
80 A
>
v
© 60
=
g 40 w5 epochs
10 epochs
20 A w20 epochs

0.00 0.25 0.50 0.75 1.00
Heritage Factor

Fig. 2. Heritage factor evaluation: the correlation between the heritage factor and the
performance of the overall distributed learning system.

be the attack vector. We evaluate the impact of the heritage factor
to the overall distributed learning system shown in Fig. 2, and the
experimental results validate our analysis above.

In particular, from the figure it can be observed that the perfor-
mance of the honest workers has a positive correlation with the heritage
factor. On one hand, if the heritage factor is 1, i.e., all workers are
sharing their local updates without any mask, then the overall system
is converging very quickly to the optimal solution. However, sharing
the local updates directly could be risky, as it could lead to the leakage
of their local training dataset, and therefore causing a privacy problem.
On the other extreme, having the heritage factor of 0 would prevent
the entire distributed learning system from converging, as all the local
updates are completely hidden, which violates the original intention of
distributed learning. In practice, we aim to choose the proper heritage
factor that will not only protect the worker’s privacy, but also enforce
the original purpose of the collaboration of the distributed learning.

3.5. Problem definition

In this paper, we aim to develop attack-model-agnostic defense
methods that are capable of filtering out poisoned local updates at the
server, so that these updates will not participate in the model aggre-
gation and hence are prevented from infecting/poisoning subsequent
local model training. In general, the proposed defense methods could
be seen as a black-box function that takes all local updates in one
iteration as input, and produces a binary vector where each element
denotes whether the corresponding local update would be included in
the global server’s aggregation. In our future work, the output of such
a function could be improved to include a confidence score (ranging
between 0 and 1) for each local update that indicates the weight of the
update in the server’s aggregation, so that a “soft” filtering technique,
where the global server will take the weighted sum of all local updates
multiplying their corresponding weights (or confidence score), instead
of the “hard” filtering provided by our current binary vector output,
in which the global server eliminates certain local updates completely,
becomes feasible. However, such a “soft” filtering is out of the scope
of this paper, and here we will only focus on the binary vector output
and hard filtering.

In particular, an attack-model-agnostic defense method can be sym-
bolically represented as the following function,

(g 8.8 D =h. ®)

where f denotes the filtering function, [g}.g?, ..., g] denotes the list
of uploaded local updates from all workers in iteration k, and the
output b is a binary vector in which each element indicates whether
the corresponding local update is accepted or rejected in the global
aggregation. As will be clear shortly in Section 4, by exploiting the
commonality of model-poisoning attacks along different directions, we
will propose a variety of realizations for function f (i.e., a variety of
attack-model-agnostic defense mechanisms) in Section 5.

Journal of Information Security and Applications 82 (2024) 103739

4. Commonality presented by model-poisoning attacks

Our goal is to develop attack-model-agnostic defense mechanisms
that are able to counter a wide spectrum of model-poisoning attacks.
To this end, such a defense mechanism must target/exploit certain
common features that are presented by all these model-poisoning at-
tacks. Following this logic, in this section we make observation on the
behavior of a wide range of representative model-poisoning attacks,
with the intention to identify the common features presented by them
when their attacks are successful. These observed common features will
lead to our subsequent development of attack-model-agnostic defense
mechanisms, as elaborated in Section 5.

4.1. Single attacker

Similar to the honest workers, the attacker has access to its own
private data, and the communication channel with the server. In order
to take advantage of other collaborators’ training efforts, the attacker
download the global parameters once. That is the only time that the
attacker will perform parameters downloading, and that particular set
of global parameters downloaded will be the last set of “pure” global
parameters, as it contains the training information from the honest
workers and has not been polluted yet.

After the initial download of global parameters, the attacker solely
trains on its own data. When it’s the attacker’s turn to upload, the at-
tacker fabricates a vector resembling the features of the true gradients,
and uploads it to the server. We consider the following two categories
of model poisoning attack, the untargeted attack, including the random
noise attack and the gradient ascent attack; and the targeted attack, in-
cluding the label flipping attack and the backdoor attack. We elaborate
their strategies in fabricating the poisoning vectors below.

4.1.1. Random Noise Attack (RNA)

The random noise attack fabricates the poisoning vector by ran-
domly generating a vector according to Normal distribution. With its
own local dataset, the attacker approximates the y and 62 of the local
gradients from its first round of local training. After that, following the
Normal distribution, the attacker randomly generates the attack vector
and upload it to the global server as

g =e~ N u o). ©)

where € is uploaded to the parameter server as the true gradients, and
¢ denotes the attack magnitude. In experiments, we observe the impact
of attack magnitude on the distributed learning system by changing ¢.

4.1.2. Gradient Ascent Attack (GAA)

Gradient ascent attack fabricates the poisoning vector by first cre-
ating a temporary model. Then, the attacker downloads the global
parameters into the temporary model, and perform gradient ascent
(negative gradient descent) optimization. The resulting gradients, serv-
ing as the poisoning vector, will be uploaded to the server. Similar
to Eq. (1), the gradients is computed by subtracting the parameters
downloaded from the parameters after gradient ascent training in
current epoch, i.e.,

g =e=w—w_,. @

global

+; that was

where wj(fl is equivalent to the global parameters w
downloaded to the temporary model.

It is worth noting that the fabricated ascending gradients is calcu-
lated not w.r.t. the attacker’s local parameters but the global parame-
ters from the previous epoch. Such strategy would enhance the attack
strength since the global parameters is an aggregation of local updates
from all workers, and the ascending gradients calculated from those

would have the higher potential of impacting all workers. In contrast,

H. Xu and T. Shu

Journal of Information Security and Applications 82 (2024) 103739

Single-Attacker attack

(a)rna

(b) gaa

Accuracy

&
o

300 900 1500 2100 2700 300 900 1500

2100 2700

(c) Ifa

(d) bkd

— 20p
— 30p

15 45 75 105 135 1 12 24 36 48

Scale

Fig. 3. Performance results of N =20 (blue) and N = 30 (orange), under (a) random noise attack, (b) gradient ascent attack, (c) label flipping attack and (d) backdoor attack.
The x-axis denotes the magnitude/scale calculated as the multiples of the true gradients. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

the ascending gradients calculated based on the attacker’s own param-
eters would lead to less impact on other workers due to the potential
difference with other worker’s parameters and data distribution.

In order to compare the gradient ascent attack with the random
noise attack method, in some of our experiments, we multiply the fabri-
cated attack vector calculated with the corresponding attack magnitude
in the random noise attack. With this subtle change in experiments, the
gradient ascent attack can be considered as a special case of the random
noise attack, in which the injected random attack vector is the carefully
computed to include the ascending gradients.

4.1.3. Label Flipping Attack (LFA)

The label flipping attack is one of the targeted attack models whose
goal is to degrade the classification performance of data examples from
a certain class, and such class is referred to as the attack target. In our
case, since we use the classification task to demonstrate the attack and
defense effectiveness, the label flipping attacker’s goal is to destroy the
recognition of a specific class. The attacker first pick the target class,
say class 7 of the MNIST dataset, and change part (or all) of their labels
to 1. After that, the attacker trains its local model with the polluted
local dataset, and uploads the resulting gradients to the global server.
Notice that although the primary goal is to destroy the recognition of
the target class, it is possible that it could also impact the performance
of other classes, or even the overall tasks as well.

4.1.4. Backdoor attack (BKD)

The backdoor attack also belongs to the targeted attack category. In
this paper, we take the strategy from backdoor paper [20], and add a
little modification. This paper explains the usage of semantic features,
for example, the green car, of the car with strips, and their attack was
focused on the data with such specific features. However, since we are
using the MNIST and CIFAR-10 dataset for simulation, it is difficult to
manually specify the features of the data, and therefore, in this paper,
our backdoor attack method is tweaked as following. The attacker first
add a patch to the target local data at the bottom right corner, and
then change the label of the target data to another. The attacker will
then upload the local gradients trained on the polluted dataset to the
parameter server. Similar to the label flipping attack described earlier,
the backdoor attack also focuses on a specific class, and may or may
not affect the overall distributed learning system.

4.2. Colluded multiple attackers

In this subsection, we inject the distributed attacking flavor into
the previously-described single-attacker models. It is assumed that
all the attackers know the identity of other attackers and can share
information with others under the condition of not revealing their own
data.

Compared to the random noise attack in the single-attacker sce-
nario, collaborative random noise attack can be seen as multiple at-
tackers working together towards the same attacking goal. With a fixed
overall magnitude of the attack vectors, the group of attackers will
collaborate to produce multiple attack vectors, pretending to be the
true gradients. Denote the magnitude of the overall attack vector as
¢, and denote the number of attackers as N,, The attack vector that
each attacker will generate is:

g =~ N u o), ®

Such collaborative attack strategy ensures the consistency of the overall
attack magnitude, while assigning the task of computing a sub-attack
to individual attackers.

In Colluded Gradient Ascent Attack, each attacker computes the
global ascending gradients, and upload (part of) the ascending gradi-
ents to the server. In this case, it is expected that the final aggregated
ascending vector would be more generalized and has a higher attack
success rate as it is now not computed solely on one worker’s local
data.

Similarly, in the Colluded Label Flipping Attack and the Backdoor
Attack, the attackers had agreed in advance on the source and target.
They will then perform the polluted label injection or backdoor patch
injection, local training, and finally upload the falsely trained gradients
to the server.

4.3. Evaluation and observation of the attacks

4.3.1. Single-attacker case

Experiments are conducted simulating the scenario where among
all the collaborators, only one of them is the attacker. We simulate
such scenario with four different attack methods: two untargeted:
random noise attack, gradient ascent attack, and two targeted: label
flipping attack and backdoor attack. Fig. 3 demonstrates the correlation
between the magnitude (scale) of the attacking vector versus the overall
distributed learning system.

For the two untargeted attack methods demonstrated in Fig. 3(a)
and (b), an observation could be made that the overall system accuracy
is inversely proportional with the scale of the injected attack. When the
injected attack is large enough, the overall system could not converge.
Furthermore, by comparing these two sub-graphs, it is suggested that
under the same attack magnitude, the gradient ascent attack results in
a stronger impact on the distributed learning system. Such phenomena
is quite intuitive, as the gradient ascent attack is attacking towards
the negative training (or negative gradient descent) direction while the
random noise attack could be seen as attacking towards the random
directions.

In contrast, the two targeted attacks shown in Fig. 3(c) and (d)
obtain the same commonality that the larger the magnitude is, the

H. Xu and T. Shu

Journal of Information Security and Applications 82 (2024) 103739

Multiple-Attacker attack

(a)rna (b) gaa
70
60

50

Accuracy
B
o

(c) Ifa (d) bkd

—— 20p 20%
20p 33%
—— 20p <50%
—— 30p20%
—— 30p33%
30p <50%

300 900 1500 2100 2700 300 900 1500

2100 2700
Scale

300 900 1500 2100 2700 1 12 24 36 48

Fig. 4. Performance results of N =20 and N =30, in which different percentages (20%, 33% and <50%) of them are attackers, respectively.

worse accuracy it achieves. However, in comparison with the untar-
geted attacks, these two targeted attacks requires less attack magnitude
to penetrate the overall distributed learning system due to the fact that
these two algorithms are well-designed to attack a certain target. For
the untargeted attacks, in our case, it requires the magnitude of >900
in order to diverge the system, while having the magnitude of only
>75, and >30 could fail the learning in the label flipping attack, and
backdoor attack, respectively.

4.3.2. Multiple-attacker case

Fig. 4 demonstrates the simulation results when there are 20 and
30 collaborators and among which 20%, 33% and <50% of them are
attackers, respectively. In the multiple-attackers scenario, the attackers
share the overall attack magnitude. An observation could be made that
the more attackers there are among all workers, the worse the overall
performance of the distributed learning is. Such observation is common
for all four attack methods, although sub-graphs (b) and (c) does not
seem to follow, this is due to the fact that the attack magnitude in this
figure is too large for them to handle. Same experiments on a smaller
magnitude could be found in the Appendix where such pattern does
appear.

After the evaluation and analysis of the full array of attack models
elaborated above, we make the observation that a sufficiently large
attack magnitude (typically at least ten times of that of the true update,
as evidenced in our experiment results) is the common and dominant
factor in deciding whether an attack could successfully penetrate the
distributed learning system, regardless of the exact attack model. And
therefore, in the following section, we propose the attack-agnostic
defense methods to counter such a dominant factor.

5. Attack-agnostic defense methods

In this section, attack-model-agnostic defense mechanisms are de-
veloped by exploiting the observed fact that the magnitude of a model-
poisoning attack vector, regardless of the specific attack models, has
to be many times greater than that of a regular local update in order
to make the attack successful. Such a big magnitude will make the
poisoned update an outlier among all local updates reported to the
server. As such, certain statistical metric may be defined and then used
to filter out these outliers, with the intention to exclude those poisoned
updates from the server’s model aggregation. In the following, several
such statistical metrics are proposed and used for this purpose, leading
to several attack-model-agnostic defense methods.

In particular, we first propose two novel defense methods: the
DropOne method, and the SSIM (Structural Similarity) method. We
then look into two existing defense methods, Krum and AFA (cosine
similarity), which were originally proposed to counter the untargeted
attacks. We analyze these two algorithms, and explore their suitability
to counter targeted attacks, so as to adapt them to attack-model-
agnostic defenses (i.e., applicable to both targeted and untargeted
attacks). Finally, we also present a PCA-based defense algorithm that

was originally designed to counter the label flipping attack (a targeted
attack model). We argue that such a PCA-based method may also
be adapted for attack-model-agnostic defense. The performance of all
proposed defenses are subsequently evaluated in Section 6 under the
full set of attack models defined in Section 3.

5.1. Drop One Detection

As the name suggest, the Drop One Detection method is applicable
when there is only one attacker, but in reality, such defense method
could be applied multiple times to achieve the desired defense results.
The Drop One Defense starts with putting the uploaded gradients into
groups. Denote the set of collaborators as C, where |C| = N. We
generate N groups, and each group contains N — 1 uploaded gradients,
that is, each group contains all but the gradients from the worker who
has the same ID as the group ID. More specifically, group j contains
the set of uploaded gradients {g;'c |VieC,i#j}

After the grouping, the standard deviation of each group is cal-
culated, and compared with other groups’. The group, in which the
standard deviation is the smallest, is regarded as the group in which
the attacker’s gradients vector is dropped. The intuition is that the large
magnitude, which is the dominant factor of attacks methods, would
naturally increase the group’s variance, and therefore, the group of
local updates with the smallest standard deviation (or square root of the
variance) can be thought of as the group which has the attack vector
dropped.

5.2. Series Structural Similarity

The Structural Similarity (SSIM) was first proposed in [33] aiming
to find the images that contain the best human perceptual information
after the same amount of Mean Squared Error (MSE) distortion. From
the perspective of computer vision, the Structural Similarity measures
the luminance, contrast, and the temporal and spatial correlations of
pixels in an image. In our scenario, comparing images is out of our
scope, instead, our goal is to find out the outliers from a set of uploaded
gradients vectors.

As the collaborators had all agreed on the local training architecture
and the training objectives, if there exists no attacks, the gradients up-
loaded from each of the collaborators will contain common underlying
structures that lead to global convergence. Therefore, by considering
the uploaded gradients at each epoch as the structural information of
the overall distributed learning system, we present the SSIM defense
mechanism. Denote the series of uploaded vectors of worker i by T’
= {g|.g).....g/}, where the 1,2,...,k represents the epochs number.
The SSIM defense method computes the structural similarity score [33]
to analyzes the trace of each worker’s local updates and find out the
suspicious workers. The intuition is that the SSIM score calculated
between the reference and the attack vector (with large magnitudes)
would be smaller, in contrast, an honest worker will have a larger SSIM
score with the reference.

H. Xu and T. Shu

A subtle change is made because of the fact that the ground truth
(or the “original reference image” in computer vision) does not exist
in the case of distributed learning, and therefore multiple references
are randomly chosen and the SSIM scores are computed according to
each reference. The majority vote is taken from all references and the
suspicious collaborator(s) are eliminated.

5.3. Gaussian Detection (Krum)

The Krum detection method is proposed in [17] based on the
assumption that all gradients should follow the Gaussian distribution,
and that attackers/outliers should reside far away from honest col-
laborators. As previously denoted, the collection of all the uploaded
vectors at epoch k is [g}(, gi,..., g;]. The Krum defense starts by
calculating the gradients mean g, and the standard deviation o,.. Then,
for each uploaded vector, its distances to the mean is calculated, and
is represented by the multiples of standard deviation o, as

9;(= (g;‘(- ﬂk)/o'k)

A larger ¢} indicates a larger distance from the mean, and the cor-
responding uploader is more suspicious. Define the outlier threshold
SGaussian 11 €poch k to be the (1 — &) percentile of the Gaussian distri-
bution of zero mean and O'z variance, where « is a small and given
probability that defines the outliers. Then if 6] > 8g,yssian» its uploader
i is regarded as an attacker. The threshold used is observed from the
experiments to obtain the best accuracy.

The Gaussian Detection method focuses more on the gradients
vectors’ magnitude, as the calculation of mean and standard deviation
ignores the high-dimension direction of gradient vectors. Such focus
on the magnitude is directly aiming on the commonality of the attack
methods observed in the previous section, and therefore, achieves the
best and most robust defense results as shown in Section 6.

5.4. Cosine similarity detection (AFA)

AFA [18] considers the Cosine Similarity between the uploaded vec-
tors. Instead of considering the magnitude of uploaded gradients like
Krum, AFA is developed under the intuition that the attackers/outliers’
high dimensional gradient direction are different from those from
honest workers, which instead may be pointing towards the global con-
vergence point. AFA starts by computing the mean u of all the uploaded
vectors. Then, the cosine similarity score between each uploaded vector
and the mean are computed as

. n i
g H Zj:lgkj T H

i . - n i2 n 2.
AR

Originally, a smaller cosine similarity score indicates the less similarity
from the mean, and the corresponding collaborator who obtain a small
score is more suspicious. However, when there exists a large-magnitude
attack vector, it would modify the original mean vector and drag it
closer to the attack vector itself. Even with such mean-dragging issue,
we can still filter out the attack vector based on the fact that the cosine
similarity score between the mean and attack vector will often differ
from those calculated between the mean and the honest worker’s local
updates.

cos(f) = (10)

5.5. PCA-based label flipping attack defense [34]

The PCA-based label flipping attack defense algorithm aims to
counter the attackers in Distributed/Federated learning by first collect-
ing all gradients for the common Neural Networks’ output layer on a
specific class label (say label 1). After that, PCA is performed on all
gradients for dimension reduction, and we cluster the results into two
groups, where one of them is regarded as the attacker group, and their

Journal of Information Security and Applications 82 (2024) 103739

local updates are ignored. Such procedure is executed for each possible
output label, and thus completes the defense for label flipping attack.

Although this defense method was originally proposed to counter
against the label flipping attack, we argue that such model actually
falls into the category of attack-model-agnostic defense methods, as it
is focusing on the structure of the training model from the perspective
of learning task, instead of a certain attack model. Particularly, PCA
is known to extract the underlying features in a group, and in which
the magnitude of the local updates could also be considered as one
of the principle components. Therefore, the clustering after the PCA
would separate the local updates with different magnitudes (and other
features) into different groups, and hence achieve our defensive goal.
We will show that such PCA-based defense algorithm can also counter
against other attacks in Section 6 to prove our analysis that this really
is an attack-agnostic defense model.

6. Evaluation
6.1. Dataset and setup

We conduct extensive experiments using both the MNIST [35] and
CIFAR-10 [36] datasets to verify the effectiveness and generalizabil-
ity of our proposed attack-model-agnostic defense mechanisms. The
MNIST dataset contains 60,000 black and white hand-written digit
images in the training set, and 10,000 in the testing set. The CIFAR-10
dataset consists of 50,000 3 channel RGB object images in the training
set, and 10,000 in the testing set. We implement the distributed learn-
ing framework with one parameter server and multiple local workers,
each maintains the same neural networks architecture. The training
data are shuffled and separated randomly into each worker.

We use PyTorch [37], version 1.13.1, with the help of Numpy and
Torchvison packages, to implement our algorithms. We set the global
and local learning rate n to 0.01, and batch size to 64. Cross Entropy
is implemented as the loss function and Stochastic Gradient Descent is
adopted as the optimizer. We conduct our experiments on Tesla P100
GPUs, and all of our test results shown below are the averages of 50
runs.

6.2. Defense evaluation on MNIST

In this section, we perform extensive experiments of our defense
methods under different scenarios. We separate the defense results into
three subsections, where each one explores a potential changing factor
in reality.

6.2.1. Validation of the attack-model-agnostic property of the defenses

We have tested all aforementioned defense methods against a vari-
ety of attack models as defined in Section 3, including both untargeted
and targeted attacks. It could be observed in Fig. 5 that all of the
defense: Krum, Afa (cosine similarity), DropOne, Ssim, and the PCA-
based methods are capable of defending against the random noise
attack (rna), gradient ascent attack (gaa), label flipping attack (lfa),
and backdoor attack (bkd). Such observation validates our analysis in
Section 5 that these defense algorithms really are attack-model agnostic
(i.e., their effectiveness do not rely on a specific attack model, but
provide a wide-spectrum defense for most kinds of attack methods).
The same observation can also be made under all other tested attack
settings, as shown in Figs. 6-10.

6.2.2. Defense w.r.t. the attack magnitude
From Figs. 3-4, it can be observed that the magnitude of the injected
attack vector is the dominant factor in deciding the ultimate attack

H. Xu and T. Shu

Journal of Information Security and Applications 82 (2024) 103739

Attack-Agnostic defense w.r.t. scale 20 workers

(a) ra (b) gaa

o

0

Accuracy
B fo2] o]
o o o

[N
o

1500 2100 2700

krum
s cosine
dropone
ssim
0

1500 2100 2700
Scale

(c) Ifa (d) bkd

1500 2100 2700 1500 2100 2700

Fig. 5. Performance results of N = 20, single attacker, under four different attack methods (a) random noise attack, (b) gradient ascent attack, (c) label flipping attack, and (d)
backdoor attack; with six different defense method applied: Krum, AFA (cosine), DropOne, SSIM (structural Similarity), PCA, and CRFL respectively.

Attack-Agnostic defense w.r.t. scale 30 workers

(a) rna (b) gaa
1

o

0

Accuracy
[+2] o
o

N
o

n
o

1500 2100 2700 300

0
. | it T

1500 2100 2700
Scale

(c) Ifa (d) bkd

krum
cosine

dropone
ssim
pca

1500 2100 2700 1500 2100 2700

Fig. 6. Performance results of N = 30, single attacker, under four attacks and six defense methods, respectively.

effectiveness, regardless of the attack models. Therefore, in this sub-
section, we will focus on this dominant factor and perform our defense
over a wide range of attack magnitudes on the four representative
attack methods.

Figs. 5 and 6 illustrate the defense performance of the six defense
methods. The x-axis represents the scale of the attack, and y-axis
records the overall accuracy of the distributed learning system with
single attacker after the corresponding defense mechanism is applied.
Both figures suggest that the attack-model-agnostic defense methods:
Krum, AFA, DropOne, Structural-Similarity, and PCA are able to defend
against the tested four attack models. We also compare such attack-
agnostic defenses with a representative attack-model-focused defense
method, the CRFL (certified Robust FL against backdoor attack) model,
and the result confirms our analysis earlier that the defense model
proposed aiming to defend against one particular attack model often
perform badly when facing other kind of attacks. Furthermore, the
CRFL method is only able to defense against one backdoor attack
model [20], when we test it with another backdoor attack method
by tweaking [20] and adding a backdoor patch to the training sam-
ples described in Section 4.1.4, such defense stopped working. This
observation again validates the existing limitation of attack-model-
focused defense method, and in contrast proves the necessity of the
attack-model-agnostic defense methods.

In this paper, although we are emphasizing the need of the attack-
model-agnostic defense methods, each of such defense method also has
their limitations. For example, both Figs. 5 and 6 suggest that the AFA
(cosine similarity) and the Dropone method do not work as well as
other defense methods such as Krum and Structural Similarity, and with
the increment number of workers, such performance gap becomes more
obvious.

6.2.3. Defense w.r.t. N (number of total workers)
In this subsection, we explore the correlation between the perfor-
mance of the defense methods with respect to the total number of

workers (N) under the fixed scenario of single attacker and attack
magnitude. Figs. 7 and 8 illustrate our test results. The x-axis represents
the total number of workers N, and the y-axis records the testing
accuracy of the distributed learning algorithm. It is observed that other
than the CRFL defense method (non-attack-agnostic) which does not
work in any of the scenario, all the other attack-model-agnostic defense
methods are able to defend against the four attacks. The best attack-
model-agnostic defense methods in this scenario are Krum, SSIM, and
PCA, as they are able to protect the distributed learning system and
enforce it to converge to the original, attacker-free scenario’s accuracy.

For the AFA and DropOne detection methods, it can be observed
that, under a fixed number of attackers (in this case, there is only
one attacker), the distributed learning system with more collaborative
workers suffers more from the attack, no matter what the exact attack
model is. Such observation may be against intuition at first, as the
common thinking is that the more honest workers there are, the more
correct references there are, and hence it is easier to differentiate the
attackers. However, both the AFA and DropOne defense methods rely
heavily on the statistics of the uploaded gradients, and therefore, if one
attacker obtains a very large distance from the honest ones, it is highly
possible that the attacker-uploaded gradients could drag the overall
mean and standard deviation towards its direction, and consequently,
forcing the defense methods to eliminate the honest workers instead.
With more number of workers, it is highly likely that more honest
workers are eliminated at each round of aggregation, leading to the
observation described above.

6.2.4. Defense w.r.t. multiple colluding attackers

In this subsection, we evaluate the performance of the attack-model-
agnostic defense methods under the scenarios of multiple attackers.
As Fig. 4 suggests that while there exists multiple colluding attackers,
the distributed learning system suffers more, therefore, obtaining the
capability of defending against the multiple colluding attack is beyond
important.

H. Xu and T. Shu Journal of Information Security and Applications 82 (2024) 103739

Attack-Agnostic defense w.r.t. n (#workers) scale: 900

N
o

(a) rna (b) gaa (c) Ifa (d) bkd
100
= krum
> d
o' 60 . cosine
55“ s dropone
Q . ssim
O 40
< W= pca
. crfl
, [I f | ' | [[I i B III“I
30 20 10 30 20 10 30 20 10 30 20 10

N (total #workers)

Fig. 7. Performance results of N = 20, single attacker with attack scale 900 with four attacks and six defense methods, respectively.

Attack-Agnostic defense w.r.t. n (#workers) scale: 1500
(c) Ifa (d) bkd
0

 krum

cosine

dropone

ssim

pca

m crfl

I TR UKL MO0 MR DA AR MR DRERS DM DORESS DONH,
30 20 10 30 20 10 30 20 10 30 20 10

N (total #workers)

(a) rna (b) gaa

Accuracy
[+2] L] 8
o o

S
(=)
a

()
o

Fig. 8. Performance results of N =20, single attacker with attack scale 1500 with four attacks and six defense methods, respectively.

Attack-Agnostic defense w.r.t. scale 20 workers

IN]
o

m crfl
Ll

<50%

(a)rma (b) gaa (c) Ifa (d) bkd
100
. Ill
g 60 == krum
© mms cosine
| =
< 40 . ssim
, n Nilla alha i KA B o KREEn HNRNe a i

20% 33% <50% 20% 33% <50% 20% 33% <50% 20% 33%

attacker %

Fig. 9. Performance results of N = 20, different percentage of attackers with set attack magnitude with four attacks and six defense methods respectively.

Attack-Agnostic defense w.r.t. scale 30 workers

(a)rna (b) gaa (c) Ifa (d) bkd
100
80 I I
g 60 —‘-krum
8 W= cosine
2 40 == pca
== ssim
m crfl
20 I
Dk Bl Rl O DOHR R, AR AR HRR RERS AR DARN

20% 33% <50% 20% 33% <50% 20% 33% <50% 20% 33% <50%

attacker %

Fig. 10. Performance results of N = 30, different percentage of attackers with set attack magnitude with four attacks and six defense methods respectively.

The essential setup of this experiments is the same as the one
from Fig. 4, where among N workers, 20%, 33%, and <50% of them
are attackers. And the experiments are conducted with a set scale of
900. Figs. 9 and 10 illustrates our evaluation results where the x-axis

represents the percentage of number of attackers to the total number
of workers (i.e., m/N), and the y-axis records the performance of the
overall distributed learning system. It can be seen that most attack-
model-agnostic defense methods are still able to perform the defending

H. Xu and T. Shu

Journal of Information Security and Applications 82 (2024) 103739

Single-Attacker Attack

(a) rna (b) gaa

Accuracy

10

480 540 600 660 720 10 30 50 70 20 40 50 60 70 80

(c) Ifa (d) bkd

120 200 250 300 350

Scale

Fig. 11. Performance results of N =20 workers, under (a) random noise attack, (b) gradient ascent attack, (c) label flipping attack and (d) backdoor attack on CIFAR-10 dataset.
The x-axis denotes the magnitude/scale calculated as the multiples of the true gradients.

Attack-Agnostic defense w.r.t. scale 20 workers

a)rna

(a)
|I ||
540 6

(b) gaa

Accuracy
n w B w0 (=2 ~
o o o o o o

-
o

480 00 660 720

. pca
m crfl
10 30 50 70 90 50 60 70 80 90 150 200 250 300 350

(c) Ifa (d) bkd

krum
cosine
dropone

ssim

Scale

Fig. 12. Performance results of N = 20, single attacker, under four different attack methods (a) random noise attack, (b) gradient ascent attack, (c) label flipping attack, and (d)
backdoor attack; with six different defense method applied: Krum, AFA (cosine), DropOne, SSIM (structural Similarity), PCA, and CRFL respectively on CIFAR-10 dataset.

functionality, however, we see that the AFA (cosine similarity) has
the worst performance among all scenarios. Particularly, AFA failed to
defend against the random noise attack in most cases. This could be due
to the fact that random noise attack aims to attack at random directions,
and having multiple random-directional gradients largely confuses the
AFA defense which is mostly based on the angular distance between
one gradient and the mean gradients vector.

Another observation is that when the number of attackers (m) is
large, the SSIM defense method does not work as well either. This is
because of the fact that SSIM randomly selects a certain percentage
of workers’ gradients as “reference”, and then eliminate the workers
with the worst SSIM score. When the attacker percentage is <50%,
there is almost half attacker and half honest worker in the reference
pool, making it difficult to differentiate the attackers from the honest
workers.

6.3. Defense evaluation on CIFAR-10

In order to show that our proposed attack-model-agnostic defense
mechanisms are also applicable on other dataset, in this subsection, we
present our experimental results on CIFAR-10. In particular, we con-
sider the scenario of defense w.r.t. the attack magnitude, which is the
common and dominant factor of whether an attack could successfully
penetrate the distributed learning system, as discussed at the end of
Section 4.3.2. The other two experimental settings could be regarded
as special cases of the selected defense w.r.t. attack magnitude scenario,
where the scenario with the variable N (total number of workers) can
be seen as introducing more honest workers to leverage the effect of
an existing attack, and the scenario with the variable m (the number
of colluding adversaries) can be seen as multiple colluding attackers
sharing the total attack workload of a given attack magnitude.

The results of these experiments are shown in Figs. 11 and 12. It can
be observed in Fig. 11 that when there is no defense, the distributed

10

learning framework hardly survives any attack model, especially when
the attack scale is large. The results in Fig. 12 verify again (as ver-
ified in our results based on MNIST dataset) that all the proposed
attack-model-agnostic defense methods: Krum, Afa (cosine similarity),
DropOne, Ssim, and the PCA-based methods are capable of defending
against a variety of different attack models including the random noise
attack (rna), gradient ascent attack (gaa), label flipping attack (lfa),
and backdoor attack (bkd). These new experiments indicate that our
proposed wide-spectrum defense mechanisms are also effective on dif-
ferent dataset other than MNIST, and hence verify the generalizability
of these mechanisms.

7. Conclusion

In this paper, we study the attack-model-agnostic countermeasures
in distributed learning system based on the fact that it is unrealistic
to gain knowledge on the attack models that would be launched prior
to the deployment of the distributed learning system. We introduced
multiple existing threat and detection models, and propose the Drop-
one and Structural Similarity (SSIM) defense methods that analyze both
the current and historic gradients to depict the attackers for poisoning
attacks in distributed learning. A new concept, the Heritage Factor is
presented that characterizes the false parameter propagation between
the child models in different iterations of distributed learning. Such
definition also enables us to measure how “helpful” that one collab-
orator is to other collaborators and to the system. We verify through
extensive experiments the effectiveness of the proposed attack-model-
agnostic countermeasures over a wide range of attack models. To the
best of our knowledge, our work is the first to systematically study the
attack-model-agnostic countermeasures in distributed machine learning
system. Although the verification of the effectiveness of the proposed
method is based on existing attack techniques (this is what it has to be),
we expect that our proposed attack-model-agnostic defense mechanism

H. Xu and T. Shu

Multiple-Attacker attack

(a) gaa (b) Ifa

100
B0 = 20p 20%
- W= 20p 33%
g 60 mmm 20p <50%
3 == 30p 20%
£ 40 = 30p 33%
== 30p <50%

20
. 0 lakin Dot aoe LTI

3 9 15 21 27 3 9 15 21 27

Scale

Fig. A.13. Evaluation of multiple attackers for (a) gradient ascent attack, and (b) label
flipping attack.

is capable of defending against most of the future attack algorithms that
take the approach of injecting a large-scale poisoning local updates into
the server, just like the commonality shared by those existing attack
models verified in our experiments.

CRediT authorship contribution statement

Hairuo Xu: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Writing — original draft, Writing — review &
editing. Tao Shu: Funding acquisition, Supervision, Writing — original
draft, Writing — review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Tao Shu reports financial support was provided by US National Science
Foundation. Hairuo Xu reports financial support was provided by US
National Science Foundation.

Data availability
Data will be made available on request.
Acknowledgments

This work is supported in part by the United States National Science
Foundation (NSF) under grants CNS-2308761 and CNS-2006998. Any
opinions, findings, conclusions, or recommendations expressed in this
paper are those of the author(s) and do not necessarily reflect the views
of NSF.

Appendix. Multiple attackers evaluation with smaller magnitudes
for GAA and LFA

This appendix aims to demonstrate the extended experiments we did
for the LFA and GAA attacker under the multiple attackers scenarios,
and Fig. A.13. We want to emphasize the pattern that more colluding
attackers would definitely lead to worst performance of the distributed
learning systems, which was not obvious enough in Fig. 4(b) and (c)
because the attack magnitudes was too large so that even small number
of attackers could sabotage the entire learning system.

References

[1] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Commun ACM 2017;60(6):84-90.

11

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Journal of Information Security and Applications 82 (2024) 103739

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. IEEE; 2009, p. 248-55.

Lagler K, Schindelegger M, Bohm J, Krasnd H, Nilsson T. GPT2: Empirical
slant delay model for radio space geodetic techniques. Geophys Res Lett
2013;40(6):1069-73.

Floridi L, Chiriatti M. GPT-3: Its nature, scope, limits, and consequences. Minds
Mach 2020;30(4):681-94.

Niknam S, Dhillon HS, Reed JH. Federated learning for wireless communications:
Motivation, opportunities, and challenges. IEEE Commun Mag 2020;58(6):46-51.
Du Z, Wu C, Yoshinaga T, Yau K-LA, Ji Y, Li J. Federated learning for vehicular
internet of things: Recent advances and open issues. IEEE Open J Comput Soc
2020;1:45-61.

Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, Makhzani A,
Kiittler H, Agapiou J, Schrittwieser J, et al. Starcraft ii: A new challenge for
reinforcement learning. 2017, arXiv preprint arXiv:1708.04782.

Lanctot M, Zambaldi V, Gruslys A, Lazaridou A, Tuyls K, Pérolat J, Silver D,
Graepel T. A unified game-theoretic approach to multiagent reinforcement
learning. Adv Neural Inf Process Syst 2017;30.

Wang F-Y, Zhang JJ, Zheng X, Wang X, Yuan Y, Dai X, Zhang J, Yang L.
Where does alphago go: From church-turing thesis to alphago thesis and beyond.
IEEE/CAA J Autom Sin 2016;3(2):113-20.

Wang Y, Bhattacharya T, Jiang Y, Qin X, Wang Y, Liu Y, Saykin AJ, Chen L. A
novel deep learning method for predictive modeling of microbiome data. Brief
Bioinform 2021;22(3):bbaa073.

Wang Y, Jiang Y, Yao B, Huang K, Liu Y, Wang Y, Qin X, Saykin AJ,
Chen L. WEVar: a novel statistical learning framework for predicting noncoding
regulatory variants. Brief Bioinform 2021;22(6):bbab189.

Wang Y, Zhao H, Sciabola S, Wang W. cMolGPT: A conditional generative pre-
trained transformer for target-specific de novo molecular generation. Molecules
2023;28(11):4430.

Anwar MZ, Kaleem Z, Jamalipour A. Machine learning inspired sound-based
amateur drone detection for public safety applications. IEEE Trans Veh Technol
2019;68(3):2526-34. http://dx.doi.org/10.1109/TVT.2019.2893615.

Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, Rosen B, Rubin DL,
Kalpathy-Cramer J. Distributed deep learning networks among institutions for
medical imaging. J Am Med Inform Assoc 2018;25(8):945-54.

Nguyen TD, Rieger P, Chen H, Yalame H, Mollering H, Fereidooni H, Marchal S,
Miettinen M, Mirhoseini A, Zeitouni S, Koushanfar F, Sadeghi A-R, Schneider T.
FLAME: Taming backdoors in federated learning. In: 31st USENIX security
symposium. USeNIX security 22, Boston, MA; 2022, p. 1415-32.

Wu C, Yang X, Zhu S, Mitra P. Mitigating backdoor attacks in federated learning.
2020, arXiv preprint arXiv:2011.01767.

Blanchard P, Mhamdi EME, Guerraoui R, Stainer J. Byzantine-tolerant machine
learning. 2017, arXiv preprint arXiv:1703.02757.

Muiloz-Gonzélez L, Biggio B, Demontis A, Paudice A, Wongrassamee V, Lupu EC,
Roli F. Towards poisoning of deep learning algorithms with back-gradient
optimization. In: Proceedings of the 10th ACM workshop on artificial intelligence
and security. 2017, p. 27-38.

Xu H, Shu T. Attack-model-agnostic defense against model poisonings in dis-
tributed learning. In: UIC 2022: 19th IEEE international conference on ubiquitous
intelligence and computing, Haikou, Hainan, China, December 15-18. IEEE;
2022.

Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated
learning. In: International conference on artificial intelligence and statistics.
PMLR; 2020, p. 2938-48.

Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning
through an adversarial lens. In: International conference on machine learning.
PMLR; 2019, p. 634-43.

Fang M, Cao X, Jia J, Gong N. Local model poisoning attacks to {Byzantine-
robust} federated learning. In: 29th USENIX security symposium. USeNIX security
20, 2020, p. 1605-22.

Baruch G, Baruch M, Goldberg Y. A little is enough: Circumventing defenses for
distributed learning. Adv Neural Inf Process Syst 2019;32.

Xie C, Koyejo O, Gupta I. Generalized byzantine-tolerant sgd. 2018, arXiv
preprint arXiv:1802.10116.

Mabhloujifar S, Mahmoody M, Mohammed A. Universal multi-party poisoning
attacks. In: International conference on machine learning. PMLR; 2019, p.
4274-83.

Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: To-
wards optimal statistical rates. In: International conference on machine learning.
PMLR; 2018, p. 5650-9.

El El Mhamdi M, Guerraoui R, Rouault S. The hidden vulnerability of distributed
learning in byzantium. 2018, arXiv e-prints, arXiv—-1802.

Li M, Zhou L, Yang Z, Li A, Xia F, Andersen DG, Smola A. Parameter server for
distributed machine learning. In: Big learning NIPS workshop. Vol. 6, 2013, p.
2.

Bottou L. Large-scale machine learning with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010. Springer; 2010, p. 177-86.

http://refhub.elsevier.com/S2214-2126(24)00042-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb3
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb3
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb3
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb3
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb3
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb6
http://arxiv.org/abs/1708.04782
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb8
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb8
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb8
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb8
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb8
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb12
http://dx.doi.org/10.1109/TVT.2019.2893615
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb15
http://arxiv.org/abs/2011.01767
http://arxiv.org/abs/1703.02757
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb21
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb21
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb21
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb21
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb21
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb22
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb22
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb22
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb22
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb22
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb23
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb23
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb23
http://arxiv.org/abs/1802.10116
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb28
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb28
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb28
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb28
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb28
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb29

H. Xu and T. Shu

[30]

[31]

[32]

[33]

McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-
efficient learning of deep networks from decentralized data. In: Artificial
intelligence and statistics. PMLR; 2017, p. 1273-82.

Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC conference on computer and communications security. ACM;
2015, p. 1310-21.

Recht B, Re C, Wright S, Niu F. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In: Advances in neural information processing
systems. 2011, p. 693-701.

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, et al. Image quality assess-
ment: from error visibility to structural similarity. IEEE Trans Image Process
2004;13(4):600-12.

12

[34]

[35]

[36]

[37]

Journal of Information Security and Applications 82 (2024) 103739

Tolpegin V, Truex S, Gursoy ME, Liu L. Data poisoning attacks against federated
learning systems. In: Computer security-ESORICs 2020: 25th European sympo-
sium on research in computer security, ESORICs 2020, Guildford, UK, September
14-18, 2020, proceedings, part i 25. Springer; 2020, p. 480-501.

LeCun Y, Cortes C, Burges C. MNIST handwritten digit database. Vol. 2, AT&T
Labs; 2010, p. 18, [Online]. Available: http://yann.lecun.com/exdb/mnist.
Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny
images. 2009.

Paszke A, Gross S, Chintala S, Chanan G. Pytorch: Tensors and dynamic neural
networks in python with strong gpu acceleration. In: PyTorch: Tensors and
dynamic neural networks in Python with strong GPU acceleration. Vol. 6, 2017.

http://refhub.elsevier.com/S2214-2126(24)00042-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb34
http://yann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00042-5/sb37

	Attack-model-agnostic defense against model poisonings in distributed learning
	Introduction
	Related Works
	Poisoning Attacks
	Defense Methods

	Model Description and Problem Formulation
	Overview
	Local training
	Parameter server
	Model-Poisoning Attack Models
	Problem Definition

	Commonality Presented by Model-Poisoning Attacks
	Single Attacker
	Random Noise Attack (RNA)
	Gradient Ascent Attack (GAA)
	Label Flipping Attack (LFA)
	Backdoor Attack (BKD)

	Colluded Multiple Attackers
	Evaluation and Observation of the Attacks
	Single-attacker case
	Multiple-attacker case

	Attack-Agnostic Defense Methods
	Drop One Detection
	Series Structural Similarity
	Gaussian Detection (Krum)
	Cosine Similarity Detection (AFA)
	PCA-based Label Flipping Attack Defense tolpegin2020data

	Evaluation
	Dataset and setup
	Defense Evaluation on MNIST
	Validation of the attack-model-agnostic property of the defenses
	Defense w.r.t. the attack magnitude
	Defense w.r.t. N (number of total workers)
	Defense w.r.t. multiple colluding attackers

	Defense Evaluation on CIFAR-10
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability

	Acknowledgments
	Appendix. Multiple Attackers Evaluation with Smaller Magnitudes for GAA and LFA
	References

