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Abstract Fiducial inference is applied to nonparametric g-modeling in the discrete case. We propose a

computationally efficient algorithm to sample from the fiducial distribution and use the generated samples

to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial

distribution and perform extensive simulations in various scenarios. The proposed approach gives rise to good

statistical performance in terms of the mean squared error of point estimators and coverage of confidence

intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site

being malignant using gastric adenocarcinoma data with 844 patients.
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1 Introduction

Efron [13, 14] and Narasimhan and Efron [38] studied the following important problem: an unknown

distribution function F (θ) yields unobservable realizations Θ1,Θ2, . . . ,Θn, and each Θi produces an

observable value Xi according to a known probability mechanism. The goal is to estimate the unknown

distribution function from the observed data. In this paper, we aim to provide a generalized fiducial

solution to the same problem in the case where Xi given Θi follows a discrete distribution that has the

known probability mass function gi and the distribution function Gi. Following [14], we use the term

“deconvolution” here, as the marginal distribution of Xi admits the following form; see also [14, (6)] and

[38, (7)]: ∫
gi(xi|θi)dFi(θi). (1.1)

Efron [14] proposed an empirical Bayes deconvolution approach to estimating the distribution of Θ

from the observed sample {Xi, i = 1, . . . , n}, where the only requirement is a known specification of
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the distribution for Xi given Θi. The empirical Bayes deconvolution, since its development, has seen

tremendous success in many scientific applications, including causal inference [29], single-cell analysis [53],

cancer study [23,48], clinical trials [46,47], and many other fields [8]. Moreover, for classic Bayesian data

analysis, as noted in [41, p. 19] and [22], a single distribution prior may sometimes be unsuitable and hence

the prior choice is dubious. Efron’s empirical Bayes deconvolution would be one of the alternatives since

the obtained estimator of the distribution of Θ can be used as a prior distribution to produce posterior

approximations [38]. The discrete deconvolution problem is common in practice, e.g., the famous missing

species problem is an example of the Poisson deconvolution, and many studies in gene expression analysis

use the Poisson or negative binomial distribution [40,45].

Fiducial inference can be traced back to Fisher [18, 19], who introduced the concept as a potential

replacement for the Bayesian posterior distribution. Hannig et al. [25, 26] showed that fiducial

distributions can be related to empirical Bayes methods, which are widely used in large-scale parallel

inference problems [12,15,16]. Efron [11] pointed out that objective Bayes theories also have connections

with fiducial inference. Other fiducial-related approaches include Dempster-Shafer theory [7, 9, 27, 36],

inferential models [32–35], confidence distributions [28, 43, 44, 49, 55–57], and higher-order likelihood

expansions and implied data-dependent priors [20, 21].

We propose a novel fiducial approach to modeling the distribution function F of Θ nonparametrically.

In particular, we propose a computationally efficient algorithm to sample from the generalized fiducial

distribution (GFD) (i.e., a distribution on a set of distribution functions) and use the generated samples

to construct statistical procedures. The pointwise median of the GFD is used as a point estimate, and

appropriate quantiles of the GFD evaluated at a given point provide pointwise confidence intervals. We

also study the theoretical properties of the fiducial distribution. Extensive simulations in various scenarios

show that the proposed fiducial approach is a good alternative to existing methods such as Efron’s g-

modeling. We apply the proposed fiducial approach to intestinal surgery data to estimate the probability

of each satellite site being malignant for the patient; see [14] for the empirical Bayes approach. The

resulting fiducial estimate of the distribution function reflects the observed patterns of raw data.

The rest of this paper is organized as follows. In Section 2, we present the mathematical framework

for the fiducial approach to the nonparametric deconvolution problem. In Section 3, we establish an

asymptotic theory, which verifies the frequentist validity of the proposed fiducial approach. Extensive

simulation studies are presented in Section 4. We also illustrate our method using intestinal surgery data

in Section 5. The paper concludes with a discussion of future work in Section 6. Some needed technical

results are provided in the appendix.

2 Methodology

2.1 Data-generating equation

In this subsection, we first explain the definition of a GFD and then demonstrate how to apply it to the

deconvolution problem. We start by expressing the relationship between the data Xi and the parameter

Θi using

Xi = G−1
i (Ui,Θi), Θi = F−1(Wi), i = 1, . . . , n, (2.1)

where Ui and Wi are independent and identically distributed (i.i.d.) Unif(0, 1), Gi(·, θi) are known

distribution functions of discrete random variables supported on integers, Gi are defined and non-

increasing in θi ∈ S ⊂ R for all i, and F is the unknown distribution function with the support in

the interval S. We are interested in estimating the unknown distribution function F (θ).

Recall that F−1(w) = inf{θ : F (θ) � w} [3, p. 54], and F−1(w) = θ if and only if F (θ) � w > F (θ− ε)

for all ε > 0. We define G∗
i (xi, ui) = sup{θ : Gi(xi, θ) � ui} with the usual understanding that sup ∅ is

smaller than all the elements of S.
Remark 2.1. To facilitate a better understanding, we provide two examples for G∗

i (xi, ui) here. If

X follows a binomial distribution, Gi is the cumulative distribution function (CDF) of the binomial



Cui Y F et al. Sci China Math 3

distribution with the number of trials mi, and G∗
i (xi, ui) is the (1− ui) quantile of Beta(xi +1,mi − xi);

if X follows a Poisson distribution, Gi is the CDF of the Poisson distribution, and G∗
i (xi, ui) is the (1−ui)

quantile of Gamma(xi + 1, 1).

If Gi(·, θi) is continuous in θi, G
∗
i (xi, ui) is the solution (in θi) to the equation Gi(xi, θi) = ui. Recall

that the observed data points xi are integers.

Lemma 2.2. xi = G−1
i (ui, θi) if and only if G∗

i (xi − 1, ui) < θi � G∗
i (xi, ui).

Combining G∗
i (xi − 1, ui) < θi � G∗

i (xi, ui) and F (θi − ε) < wi � F (θi) for all ε, consequently, we see

that the inverse of the data-generating equation (2.1) is

Qx(u,w) = {F : F (G∗
i (xi − 1, ui)) < wi � F (G∗

i (xi, ui)), i = 1, . . . , n}. (2.2)

Remark 2.3. Note that given x, u and w, Qx(u,w) is a set of CDFs.

Lemma 2.4. Qx(u,w) �= ∅ if and only if u and w satisfy the condition that

whenever G∗
i (xi, ui) � G∗

j (xj − 1, uj), then wi < wj. (2.3)

A GFD is obtained by inverting the data-generating equation, and Hannig et al. [26] proposed a

general definition of the GFD. However, in order to simplify the presentation, we use an earlier, less

general version from [25]. These two definitions are equivalent for the models considered here. Suppose

that (U�,W �) are uniformly distributed on the set {(u�,w�) : Qx(u
�,w�) �= ∅}. A GFD is then the

distribution of any element of the random set Qx(U�,W �), where the closure is in the weak topology on

the space of probability measures on S and the element is selected so that it is measurable, i.e., a random

distribution function on S. Given the observed data (x1, . . . , xn), we define the random functions FU

and FL as, for each θ ∈ S and (U�,W �),

FU (θ) ≡ min{W �
i for all i such that θ < G∗

i (xi − 1, U�
i )}

and

FL(θ) ≡ max{W �
i for all i such that θ � G∗

i (xi, U
�
i )},

where min ∅ = 1 and max ∅ = 0. These functions are clearly non-decreasing and right-continuous.

Note that if Qx(U
�,W �) �= ∅, Portmanteau’s theorem [1] and (2.2) imply that a distribution function

F ∈ Qx(U�,W �) if and only if FL(θ) � F (θ) � FU (θ) for all θ ∈ S. Thus the functions FU and FL

will be called the upper and lower fiducial bounds throughout. A sample from FU and FL can be used

to perform estimation and inference for the unknown distribution function F (θ) in the same way that

posterior samples are used in the Bayesian context. We generate the realizations of FU and FL by a

novel Gibbs sampler in the next section.

2.2 Gibbs sampling and GFD-based inference

We need to generate (U�,W �) from the standard uniform distribution on a set described by (2.3), which

is achieved using a Gibbs sampler. For each fixed i, denote random vectors with the i-th observation

removed by (U�
[−i],W

�
[−i]). If (U�,W �) satisfy the constraint (2.3), so do (U�

[−i],W
�
[−i]). The proposed

Gibbs sampler is based on the conditional distribution of

(U�
i ,W

�
i ) | U�

[−i],W
�
[−i], (2.4)

which is a bivariate uniform distribution on a set A, a disjoint union of small rectangles. The

beginnings and ends of the rectangles’ bases are the neighboring points in the set
⋃

j �=i{G∗
i (xi, U

�
j ),

G∗
i (xi−1, U�

j )}, while the corresponding location and height on the vertical axis are determined by (2.3).

Details are described in Algorithm 1, and a visualization of the rectangles is shown in Figure 1. Each

marginal conditional distribution is supported on the entire S, and therefore we expect the proposed

Gibbs sampler to mix well.
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Algorithm 1 Pseudo algorithm for the fiducial Gibbs sampler

Input: Dataset, e.g., (mi, xi), i = 1, . . . , n for binomial data,

starting vectors u and w of length n,

nMCMC, nburn, and the vector θgrid of length ngrid.

1 for i = 1 to n do

2 θL[i] = G∗
i (xi − 1,u[i]), θU [i] = G∗

i (xi,u[i]);

3 end

4 Run the Gibbs sampler using the initial values u, w, θL and θU ;

5 for j = 1 to nburn + nMCMC do

6 for i = 1 to n do

7 u0 = u[−i], w0 = w[−i], θ0
L = θL[−i], θ0

U = θU [−i];

8 upre
L = Gi(xi,θ

0
L), u

pre
U = Gi(xi − 1,θ0

U );

9 Sort upre = (upre
L ,upre

U , 0, 1), denoted by usort;

10 Sort (w0, 1(n− 1), 1, 0) according to the order of upre, denoted by w�
U ,

11 where 1(n− 1) is a vector with elements 1 of length n− 1;

12 Sort (0(n− 1),w0, 1, 0) according to the order of upre, denoted by w�
L,

13 where 0(n− 1) is a vector with elements 0 of length n− 1;

14 wpre
U = cummin(w�

U ), wpre
L = rev(cummax(rev(w�

L)));

15 Take the component-wise difference of usort, denoted by udiff;

16 for k = 1 to 2n− 1 do

17 wdiff[k] = wpre
U [k]−wpre

L [k + 1];

18 end

19 Sample i� ∈ {1, . . . , 2n− 1} with probability ∝ udiff ·wdiff;

20 Sample a and b from independent Unif(0, 1), and set

21 u = usort[i�] + udiff[i�] · a, w = wpre
U [i�]−wdiff[i�] · b,

22 θL = G∗
i (xi − 1, u), θU = G∗

i (xi, u),

23 u[i] = u, w[i] = w, θL[i] = θL, θU [i] = θU ;

24 end

25 Generate n i.i.d. Unif(0, 1) and sort them according to the order of w, denoted by w∗. Replace w with w∗, i.e.,
w = w∗;

26 end

27 Evaluate the upper and lower bounds on a grid of values θgrid for each Markov chain Monte Carlo (MCMC) sample

after burn-in, indexed by l;

28 for j = 1 to ngrid do

29 FL
l (θgrid[j]) = max(w[θU � θgrid[j]]);

30 FU
l (θgrid[j]) = min(w[θL � θgrid[j]]);

31 end

32 return The fiducial samples FU
l and FL

l evaluated on θgrid.
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Figure 1 A visualization of rectangles in Algorithm 1 for the final step of the Gibbs sampler (j = nburn +nMCMC, i = n)

for the toy example described in Subsection 2.3. The last (Un,Wn) was generated from the gray area, with the rectangles

indicated by black lines. Each panel represents a different starting value

The proposed Gibbs sampler needs starting points, and we consider two potential initializations. The

first starts with randomly generated (U�,W �) from independent Unif(0, 1) and reorders W � so that the

constraint (2.3) is satisfied. The second starts with a deterministic Θ, e.g., p =
∑n

i=1 xi∑n
i=1 mi

for binomial data

Xi ∼ Bin(mi, p) and λ =
∑n

i=1 xi

n for Poisson data Xi ∼ Poi(λ). As these two starting points are very

different, they can be used to monitor convergence. To streamline our presentation, in Sections 4 and 5,
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we present numerical results using the first initialization.

Algorithm 1 outputs two distribution functions necessary for constructing the proposed mixture and

conservative confidence intervals. In the rest of this paper, we denote Monte Carlo realizations of the

lower and upper fiducial bounds by FL
l and FU

l , respectively, where l = 1, . . . , nMCMC, with nMCMC

being the number of fiducial samples.

We propose to use the median of the 2nMCMC samples {FL
l (θ), FU

l (θ), l = 1, . . . , nMCMC} as a

point estimator of the distribution function F (θ). We construct two types of pointwise confidence

intervals, conservative and mixture, using appropriate quantiles of fiducial samples [25]. In particular,

the 95% conservative confidence interval is formed by taking the empirical 0.025 quantile of {FL
l (θ), l =

1, . . . , nMCMC} as the lower limit and the empirical 0.975 quantile of {FU
l (θ), l = 1, . . . , nMCMC} as the

upper limit. The lower and upper limits of the 95% mixture confidence interval are formed by taking the

empirical 0.025 and 0.975 quantiles of {FL
l (θ), FU

l (θ), l = 1, . . . , nMCMC}, respectively.

2.3 Further illustration with a simulated dataset

To streamline our presentation, we take the binomial case as our running example in the following, i.e.,

the observed data are (mi, xi), and Xi ∼ Bin(mi, Pi), i = 1, . . . , n, where Pi ∈ S = [0, 1] plays the role of

Θi. We also provide the details of the proposed approach and some examples of the Poisson data in the

appendix.

We present a toy example to demonstrate the proposed fiducial approach. Suppose that F ∼ Beta(5, 5).

The number of trials is mi = 20, i = 1, . . . , n. The sample size of the simulated binomial data is n = 20.

The fiducial estimates are based on 10,000 iterations after 1,000 burn-in iterations.

(a) and (b) in Figure 2 present the last MCMC sample of the lower fiducial bound FL
l (p) (in the blue

line) and upper fiducial bound FU
l (p) (in the red line) for the two starting points, respectively. As the

fiducial distribution reflects the uncertainty, we do not expect every single fiducial curve to be close to the

true CDF (in the black line). Furthermore, (a) and (b) in Figure 3 present the mixture confidence interval

(with the blue line for the lower limit and the red line for the upper limit) and conservative confidence

interval (with the cyan line for the lower limit and the magenta line for the upper limit), computed from

the MCMC sample for the two starting points, respectively. In addition, we plot the point estimates of

the proposed approach along with Efron’s g-modeling. The brown curve is the fiducial point estimate

F̂ (p). The dashed curve is the point estimate of F (p) for Efron’s g-modeling without bias correction.

Efron’s confidence intervals with bias correction look almost the same as without correction, and thus

are omitted in the figures. As can be seen, the proposed fiducial point estimator and confidence intervals

capture the shape of the true CDF pretty well.
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Figure 2 (Color online) The last MCMC sample from the GFD, with each panel corresponding to a different starting

point. The blue curve is a realization of the lower fiducial bound FL(p), the red curve is a realization of the upper fiducial

bound FU (p), and the black curve is the true F (p)
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Figure 3 (Color online) Point estimates and 95% confidence intervals (CIs) for F (p) given a fixed simulated dataset, with

each panel corresponding to a different starting point of the MCMC chain. The orange curve is the fiducial point estimate
̂F (p). The dashed curve is the point estimate of F (p) for Efron’s g-modeling. The black curve is the true F (p). The blue

and red curves are the lower and upper limits of mixture CIs, respectively. The cyan and magenta curves are the lower and

upper limits of conservative CIs, respectively

3 Theoretical results

Recall that the GFD is a data-dependent distribution, which is defined for every fixed dataset x. It

can be made into a random measure in the same way as one defines the usual conditional distribution,

by plugging random variables X into the observed dataset. In this section, we study the asymptotic

behavior of this random measure for Xi ∼ Bin(mi, Pi) when the rate of mi is much faster than n, i.e.,

the following assumption holds.

Assumption 3.1. limn→∞ n4(log n)1+ε/(mini=1,...,n mi) = 0 for any ε > 0.

We provide a central limit theorem for FL(p). The proof of Theorem 3.2 is deferred to the appendix.

A similar result holds for FU (p).

Theorem 3.2. Suppose that the true CDF F is absolutely continuous with a bounded density. Based

on Assumption 3.1,

n1/2{FL(·)− F̂n(·)} → BF (·) (3.1)

in distribution on Skorokhod space D[0, 1] in probability, where

F̂n(s) ≡ 1

n

n∑
i=1

I[Pi � s] (3.2)

is the oracle empirical CDF constructed from the unobserved Pi, which were used to generate the observed

Xi, i = 1, . . . , n, and BF (·) is a mean-zero Gaussian process with covariance

cov(BF (s), BF (t)) = F (t ∧ s)− F (t)F (s).

Notice that the stochastic process on the left-hand side of (3.1) is naturally in D[0, 1], the space of

functions on [0, 1] that are right-continuous and have left limits. Distances on D[0, 1] are measured using

Skorokhod’s metric, which makes it into a Polish space [1]. To understand the mode of convergence used

here, note that there are two sources of randomness present. One is from the fiducial distribution itself,

which is derived from each fixed data set. The other is the usual randomness of the data. Thus, (3.1)

can be interpreted as

ρ(n1/2{FL(·)− F̂n(·)}, BF (·)) pr→ 0, (3.3)

where ρ is any metric metrizing weak convergence of probability measures on the Polish space D[0, 1], e.g.,

the Lévy-Prokhorov or Dudley metric [50]. The distribution of n1/2{FL(·)− F̂n(·)} in the argument of ρ

is the fiducial distribution, induced by the randomness of (U�,W �) with the data Xi and Pi being fixed.
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Consequently, the left-hand side of (3.3) is a function of Xi and Pi, and the convergence in probability

is based on the distribution of the data.

Theorem 3.2 establishes a Bernstein-von Mises theorem for the fiducial distribution under Assump-

tion 3.1, which implies that the confidence intervals described in Section 2 have asymptotically correct

coverage. Moreover, Theorem 3.2 provides a sufficient condition for n1/2-estimability of the binomial

probability parameter’s distribution function. While Assumption 3.1 is pretty stringent, it does not seem

likely that one can establish a unified asymptotic property of the proposed fiducial approach under a

general scheme. This is best seen by the fact that in the binomial case, if mi’s are uniformly bounded,

there is not enough information in the data to consistently estimate the underlying distribution function

of P .

Interestingly, looking at the fiducial solution reveals an interesting connection to a different statistical

problem [6]. Recall that the quantities Pi, i = 1, . . . , n are only known to be inside random intervals

(G∗
i (xi − 1, U�

i ), G
∗
i (xi, U

�
i )]. Therefore, the statistical problem we study here bears similarities to non-

parametric estimation under Turnbull’s general censoring scheme [10,52], in which case there is no unified

theory of the nonparametric maximum likelihood estimator, but properties are investigated under various

special and challenging cases such as n1/2-convergence for right-censored data [2], and n1/3-convergence

for current status data [24].

Remark 3.3. Suppose mi ≡ m. Notice that

pr(F ∈ Qx(U
∗,W ∗)) ∝

n∏
i=1

[ ∫ 1

0

(
m

xi

)
pxi(1− p)m−xidF (p)

]

is proportional to the nonparametric likelihood function. A simple calculation shows that maximizing

the scaled fiducial probability in its limit provides exactly the underlying true CDF. Detailed derivations

and further discussions of this observation are provided in the appendix.

4 Numerical experiments

We perform simulation studies to compare the frequentist properties of the proposed fiducial confidence

intervals with Efron’s g-modeling [14, 17], the nonparametric bootstrap, and a nonparametric Bayesian

approach [42]. In each scenario, we first generate pi, i = 1, . . . , n from the distribution function F . Then

we draw Xi from the binomial distribution Bin(mi, pi), where mi is described in Subsection 4.1. The

simulations are replicated 500 times in each scenario.

For the proposed method as well as other existing methods, we choose the grid p = 0.01, 0.02, . . . , 0.99

following [38]. The fiducial estimates are based on 2,000 iterations of the Gibbs sampler after 500 burn-in

iterations. Efron’s g-modeling is implemented using the R package deconvolveR [17]. We use the default

value of 5 for the degree of the splines. We consider the regularization strategy with the default value

c0 = 1. For the nonparametric bootstrap, we first obtain the maximum likelihood estimates p̂i = xi/mi.

We then construct the empirical CDF as the point estimator and used B = 1,000 bootstrap samples

of p̂i to construct confidence intervals. We also consider a fully Bayesian approach, i.e., the Dirichlet

process mixture of Beta-binomial distributions, which gives more flexibility than a Beta-binomial model

[41, p. 19]. Default values for the prior parameters in the R package dirichletprocess [42] are used.

The Bayesian estimates are based on 2,000 MCMC samples after 500 burn-in iterations.

4.1 Simulation settings

We start with the following two scenarios with mi being the same across individuals.

Scenario 1. We consider the same setting as Subsection 2.3. Let Θ ∼ Beta(5, 5), and the number of

trials is mi = 20, i = 1, . . . , n. The sample size n of the simulated binomial data is set to 50.

Scenario 2. Let Θ ∼ 0.5Beta(10, 30) + 0.5Beta(30, 10), and the number of trials is mi = 20, i =

1, . . . , n. The sample size n of the simulated binomial data is set to 50.
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Next, we consider three complex settings from [58].

Scenario 3 (Beta density). Let Θ ∼ Beta(8, 8), and mi’s are integers sampled uniformly between 100

and 200. The sample size n of the simulated binomial data equals 100.

Scenario 4 (A multimodal distribution). Let Θ ∼ 0.5Beta(60, 10) + 0.5Beta(10, 60), and the number

of trials is mi = 100, i = 1, . . . , n. The sample size n of the simulated binomial data equals 100.

Scenario 5 (Truncated exponential). Let Θ ∼ Exp(8) truncated at 1, and the number of trials is

mi = 100, i = 1, . . . , n. The sample size n of the simulated binomial data equals 200.

4.2 Numerical results

In this subsection, we first compare the mean squared errors (MSEs) of different methods for estimating

F (p) in the five scenarios. The numerical results for

p = 0.15, 0.25, 0.50, 0.75, 0.85

in each scenario are presented in Table 1. We see that the MSEs of the proposed fiducial point estimates

are as good as, and sometimes smaller than, those of competing methods.

Next, we present the coverage and average length of confidence intervals for various methods in Tables 2

and 3. Table 2 summarizes the coverage of 95% confidence intervals of various methods, and Table 3

Table 1 MSE (×10−4) of point estimates for F (p) in each scenario

Scenario p F g bc BP BA

1
0.15 5 40 39 17 1

0.25 20 49 48 69 10

0.50 51 47 48 71 78

0.75 18 22 21 16 10

0.85 5 13 12 4 1

2
0.15 41 149 149 145 9

0.25 39 17 18 66 101

0.50 49 32 33 54 53

0.75 37 18 19 50 88

0.95 46 86 84 33 12

3
0.15 0.14 8.45 8.16 0.15 0.04

0.25 2.57 14.89 14.41 2.87 1.39

0.50 22.85 26.94 27.04 24.68 21.92

0.75 2.54 5.03 4.81 2.80 1.34

0.85 0.16 1.46 1.38 0.15 0.05

4
0.15 22 49 49 23 27

0.25 27 34 33 26 25

0.50 25 24 25 26 26

0.75 26 36 35 27 25

0.85 20 52 52 26 25

5
0.15 11 10 10 11 10∗

0.25 6 10 10 6 6∗

0.50 1 5 4 1 1∗

0.75 0.13 1.84 1.66 0.12 0.10∗

0.85 0.05 0.76 0.68 0.05 0.04∗

∗ The Bayesian results in Scenario 5 are reported based on 489 replications as 11 runs fail due to an error in the R package

dirichletprocess.
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summarizes the average length of these confidence intervals. “F” denotes the fiducial point estimates; “M”

denotes the mixture GFD confidence intervals; “C” denotes the conservative GFD confidence intervals;

“g” denotes Efron’s g-modeling without bias correction; “bc” denotes Efron’s g-modeling with bias

correction; “BP” denotes the bootstrap method; “BA” denotes the Bayesian method.

For point estimators, overall, the proposed fiducial method and the Bayesian method outperform other

methods. The performances of the proposed estimator and the Bayesian estimator are comparable,

with the former outperforming the latter for medium values of p in Scenarios 1 and 2 and the latter

outperforming the former for small and large values of p in Scenarios 1–3. For uncertainty quantification,

we see that the GFD confidence intervals maintain or exceed the nominal coverage everywhere, while other

methods often have coverage problems. In particular, Efron’s confidence intervals and nonparametric

bootstrap have substantial coverage problems close to the boundary, while the Bayesian method

consistently underestimates the uncertainty, resulting in credible intervals that are too narrow.

It is not surprising that the GFD confidence intervals are often longer than other methods as the

GFD approach aims to provide a conservative way to quantify uncertainty. As expected, the mean

length of mixture GFD confidence intervals is slightly shorter than conservative GFD confidence intervals.

A potential reason for the fiducial approach outperforming Efron’s g-modeling in terms of coverage is

that Efron’s g-modeling relies on an exponential family parametric model and the proposed fiducial

approach is nonparametric. Therefore, the proposed method is demonstrably robust to certain model

mis-specifications, e.g., when the true model does not belong to an exponential family.

Table 2 Coverage (in percent) of 95% CIs for F (p) in each scenario

Scenario p M C g bc BP BA

1
0.15 99 100 25 27 74 88

0.25 99 100 80 82 65 83

0.50 100 100 94 94 91 84

0.75 100 100 96 96 92 83

0.85 100 100 90 91 54 89

2
0.15 98 99 1 1 27 97

0.25 100 100 98 98 90 86

0.50 98 98 96 96 97 45

0.75 100 100 96 96 85 87

0.85 97 99 31 31 79 97

3
0.15 100 100 4 5 13 28

0.25 99 99 69 71 86 28

0.50 99 99 89 89 96 27

0.75 98 99 97 97 87 32

0.85 99 100 97 98 12 31

4
0.15 99 100 48 49 95 59

0.25 95 97 89 90 93 12

0.50 95 96 93 93 95 6

0.75 95 95 89 89 93 9

0.85 99 99 75 75 91 59

5
0.15 99 99 95 95 93 18∗

0.25 97 98 95 95 93 21∗

0.50 98 98 98 98 89 20∗

0.75 98 99 100 100 36 20∗

0.85 99 100 100 100 17 11∗

∗ The Bayesian results in Scenario 5 are reported based on 489 replications as 11 runs fail due to an error in the R package

dirichletprocess
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Table 3 Mean length (×10−3) of 95% CIs for F (p) in each scenario

Scenario p M C g bc BP BA

1
0.15 123 139 101 101 84 28

0.25 220 241 171 171 172 95

0.50 426 465 246 246 272 279

0.75 217 239 154 154 128 89

0.85 121 137 82 81 42 28

2
0.15 243 266 66 66 185 101

0.25 357 390 162 162 251 311

0.50 305 330 206 206 275 90

0.75 352 385 166 166 226 301

0.85 245 268 143 143 133 107

3
0.15 35 42 46 46 4 2

0.25 77 84 81 81 51 10

0.50 243 259 168 168 195 33

0.75 78 86 65 65 51 10

0.85 35 42 27 26 4 2

4
0.15 240 259 125 125 179 101

0.25 201 213 191 191 195 16

0.50 193 202 188 188 196 0.02

0.75 201 213 198 198 195 16

0.85 240 259 178 178 173 98

5
0.15 160 171 125 125 126 18∗

0.25 115 124 114 114 94 13∗

0.50 45 50 74 73 35 6∗

0.75 20 24 37 36 7 1∗

0.85 17 20 23 22 3 1∗

∗ The Bayesian results in Scenario 5 are reported based on 489 replications as 11 runs fail due to an error in the R package

dirichletprocess

5 Intestinal surgery data

In this section, we consider an intestinal surgery study on gastric adenocarcinoma involving n = 844

cancer patients [23]. Resection of the primary tumor with appropriate dissection of surrounding lymph

nodes is the foundation of curative care. In addition to the primary tumor, surgeons also remove satellite

nodes for later testing. Efron’s deconvolution is used to estimate the prior distribution of the probability

of one satellite being malignant in this study [23].

The dataset consists of pairs (mi, Xi), i = 1, . . . , n, where mi’s are the numbers of satellites removed,

and Xi’s are the numbers of these satellites found to be malignant. mi’s vary from 1 to 69. Among all the

cases, 322 have Xi = 0. For the rest of them, Xi/mi has an approximate Unif(0, 1) distribution [14]. We

are interested in estimating the distribution function of the probability of one satellite being malignant.

Following the model proposed in [14], we assume a binomial model, i.e., Xi ∼ Bin(mi, Pi), where Pi is

the i-th patient’s probability of any satellite being malignant.

We compare the proposed mixture and conservative GFD confidence intervals to Efron’s with and

without bias correction, the bootstrap method, and the fully Bayesian approach. For all the methods,

we use the grid [0.01, 0.02, . . . , 0.99] for the discretization of p. The fiducial and Bayesian estimates are

based on 10,000 iterations after 1,000 burn-in iterations. Other tuning parameters for each method are

chosen in the same way as Section 4.

The overall shapes of bootstrap and Bayesian confidence intervals are similar to the fiducial ones

but much narrower. We provide bootstrap and Bayesian point estimates and 95% confidence intervals
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Figure 4 (Color online) Estimated CDF (dashed line) and 95% CIs for F (p) of the GFD and Efron’s g-modeling.

The red and orange curves are mixture and conservative confidence intervals, respectively. The blue curve is Efron’s

confidence intervals without bias correction. Efron’s confidence intervals with bias correction look almost the same as

without correction, and thus are omitted

in the appendix. Figure 4 shows the point estimates and 95% confidence intervals of the distribution

function F for the proposed GFD approach and Efron’s g-modeling. Overall, the GFD confidence interval

is more conservative. The GFD confidence intervals cover Efron’s almost everywhere.

For the proposed fiducial approach, there is a large mode for the upper fiducial confidence interval

near p = 0, which coincides with the fact that about 38% of the Xi’s are 0 in the surgery data. However,

the Bayesian method and Efron’s g-modeling seem to quantify the uncertainty of this proportion to be

lower. One exception is the nonparametric bootstrap, which estimates the point mass at zero to be 0.38

with a 95% confidence interval of (0.35, 0.41). We note that this might be overestimated as Xi = 0 may

correspond to a non-zero probability p, especially when mi is small.

Moreover, the generalized fiducial confidence intervals provide us a unimodal density, while Efron’s

gives a bimodal density. We believe that the fiducial, bootstrap, and nonparametric Bayesian answers

are more in line with Efron’s observation that for those Xi �= 0 in the surgery data, Xi/mi has an

approximate Unif(0, 1) distribution [14].

6 Discussion

In this paper, we propose a prior-free approach to a nonparametric deconvolution problem and obtain

valid point estimates and confidence intervals. This is accomplished through a novel algorithm to sample

from the GFD. The median of the GFD is used as the point estimate, and appropriate quantiles of

the GFD evaluated at a given p provide pointwise confidence intervals. We also study the theoretical

properties of the fiducial distribution. Extensive simulations show that the proposed fiducial approach

is a good alternative to existing methods such as Efron’s g-modeling. We apply the proposed fiducial

approach to intestinal surgery data to estimate the probability of each satellite site being malignant for

patients.

We conclude by listing some open research problems as follows:

1. The proposed fiducial method seems to be a powerful nonparametric approach. It would be
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interesting to implement it inside other statistical procedures, such as tree or random forest models,

to include covariates [54].

2. This paper focuses on discrete data. The proposed approach can be extended to continuous

data, such as Normal(Θ, 1), where Θ follows a distribution function F . This part is currently under

investigation.

3. As we can see in simulations, the GFD approach is sometimes over-conservative. It could be

possible to consider a different choice of fiducial samples, such as log-interpolation [4] or monotonic spline

interpolation [5, 51].

4. The asymptotic distribution results in Section 3 only hold under Assumption 3.1. Investigating

non-n1/2-convergence should be a fruitful avenue of future research.

5. It should be possible to use the GFD in conjunction with various functional norms to construct

simultaneous confidence bands [4, 31,37].
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Appendix A Proofs

Proof of Lemma 2.2. Recall the definition of G−1
i (ui, θi) = inf{xi : Gi(xi, θi) � ui}. So xi =

G−1
i (ui, θi) if and only if Gi(xi, θi) � ui > Gi(xi − ε, θi) for all ε > 0. Then by the definition of

G∗
i , it is further equivalent to G∗

i (xi − 1, ui) < θi � G∗
i (xi, ui).

Proof of Lemma 2.4. Sufficiency. If Qx(u,w) �= ∅ and G∗
i (xi, ui) � G∗

j (xj − 1, uj), then we know that

wi � F (G∗
i (xi, ui)) � F (G∗

j (xj − 1, uj)) < wj .

Necessity. We prove it by contradiction. If Qx(u,w) is empty, then there must exist indices i and j

such that (G∗
j (xj − 1, uj), G

∗
j (xj , uj)] is strictly larger than (G∗

i (xi − 1, ui), G
∗
i (xi, ui)] but wi � wj . This

contradicts the condition that whenever G∗
i (xi, ui) � G∗

j (xj − 1, uj), then wi < wj .

We present a Bernstein-von Mises theorem for the fiducial distribution associated with the empirical

distribution function. This result can be viewed either as a special case (without censoring) of [4], or as

a particular case of the exchangeably weighted bootstrap in [39].

Corollary A.1. Assume the conditions of Theorem 3.2. We have

n1/2{F̃ (·)− F̂n(·)} → {1− F (·)}B(γ(·))

in distribution on Skorokhod space D[0, 1] in probability, where B is the Brownian motion,

γ(t) =

∫ t

0

f(s)

[1− F (s)]2
ds =

F (t)

1− F (t)
,

F̂n is the oracle empirical distribution function defined in (3.2), and F̃ is the oracle fiducial distribution

based on the unobserved P1, . . . , Pn,

F̃ (s) =

n∑
i=0

I[P(i) � s < P(i+1)]W
∗
(i), (A.1)

where P(0) ≡ 0, P(n+1) ≡ 1, W ∗
(i) are uniform order statistics, and W ∗

(0) ≡ 0.

Proof. Notice (A.1) is the lower fiducial distribution FL in [4] when there is no censoring. By [4,

Theorem 2], we essentially need to check its assumptions 1–3. Assumption 1 is satisfied with π(p) =

1−F (p); Assumption 2 is satisfied as we assume that the true CDF is absolutely continuous; Assumption 3

is satisfied as ∫ p

0

gn(s)∑n
i=1 I(Pi � s)

d

[ n∑
i=1

I(Pi � s)

]
→

∫ p

0

f(s)

[1− F (s)]2
ds

for any p such that 1− F (p) > 0 and any sequence of functions gn → 1
1−F uniformly.

Lemma A.2. Assume the conditions of Theorem 3.2. Suppose that Xi ∼ Bin(mi, Pi), where Pi’s are

the unobserved i.i.d. random variables with the distribution function F . We have

min
i,j∈{0,...,n}

{
Xi

mi
− Xj

mj

}
� O

(
1

n2(log n)
√

ε/2

)
(A.2)

for any ε > 0 with a probability converging to 1.
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Proof. We first show that the unobserved Pi = F−1(Wi) are well separated. Straightforward calculation

with uniform order statistics shows that

pr

(
min

i∈{0,...,n}
{W(i+1) −W(i)} >

t

n(n+ 1)

)
�

(
1− t

n

)n

for any t > 0, where W(0) ≡ 0 and W(n+1) ≡ 1. Therefore,

min
i∈{0,...,n}

{P(i+1) − P(i)} � O

(
1

n2(log n)
√

ε/2

)

with a probability converging to 1, where P(0) ≡ 0 and P(n+1) ≡ 1. Furthermore, by the following

Bernstein inequality for X ∼ Bin(m,P ), we see that

pr(|X −mP | � t) � 2 exp

{
− t2

2[mP (1− P ) + t/3]

}
,

where t > 0. Taking t ∼ O( m

n2(logn)
√

ε/2
), we have

min
i,j∈{0,...,n}

{
Xi

mi
− Xj

mj

}
� O

(
1

n2(log n)
√

ε/2

)

with a probability converging to 1 because limn→∞ n4(log n)1+ε/mi = 0 for any m = mi, given by

Assumption 3.1.

Lemma A.3. Given data satisfying (A.2), if (U�,W �) are uniformly distributed on the set {(u�,w�) :

Qx(u
�,w�) �= ∅}, we have

pr{(G∗
i (xi − 1, U�

i ), G
∗
i (xi, U

�
i )] ∩ (G∗

j (xj − 1, U�
j ), G

∗
j (xj , U

�
j )] �= ∅ for some i �= j} → 0. (A.3)

Proof. Let Ũi be i.i.d. U(0, 1), and define

Li = G∗
i (xi − 1, Ũi) ∼ Beta(xi,mi − xi + 1)

and

Ri = G∗
i (xi, Ũi) ∼ Beta(xi + 1,mi − xi).

Recall that the proposed Algorithm 1 can be regarded as an importance sampling method in the following

way: if there is one k-intersection (i.e., k+1 intervals share one common area) in {(Li, Ri], i = 1, . . . , n},
the corresponding W ∗ have (k + 1)! possible permutations. So we essentially need to show that

n−1∑
k=1

(k + 1)! qk → 0

as n → 0, where qk is defined as the probability of {(Li, Ri], i = 1, . . . , n} having one or more k-

intersections, and W ∗
i1

< · · · < W ∗
ik+1

(i.e., i1, . . . , ik+1 are indices of intervals that intersect).

We start with a one-intersection between the i-th and j-th intervals, i.e., (Li, Ri) ∩ (Lj , Rj) �= ∅,
which is equivalent to L1 � R2 and L2 � R1. Without loss of generality, we focus on L1 � R2 as

pr(A1 ∩ A2) � min{pr(A1), pr(A2)}. For a random variable Y ∼ Beta(α, β), let μ = E[Y ] = α
α+β . By

[30, Theorem 2.1], Y is sub-Gaussian with the variance proxy parameter Σ ≡ 1
4(α+β+1) . Hence by the

definition of the sub-Gaussian random variable, for any c, t ∈ R, pr(Y − μ � t) � exp{− t2

2Σ}.
Note that

pr(L1 � R2) = pr(R2 − L1 � 0), (A.4)

where L1 is sub-Gaussian with mean x1/(m1+1) and variance Σ1 = 1/(m1+2), and R2 is sub-Gaussian

with mean (x2+1)/(m2+1) and variance Σ2 = 1/(m2+2). Therefore, (A.4) equals pr(Z � x1/(m1+1)

− (x2 +1)/(m2 +1)), where Z is sub-Gaussian with mean 0 and variance ΣZ = 1/(m1 +2)+1/(m2 +2).
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Then we further have that (A.4) equals

pr{Z � x1/(m1 + 1)− (x2 + 1)/(m2 + 1)} � exp

{
− T 2

2ΣZ

}
� exp{−m̃T 2},

where m̃ = mini=1,...,n mi and T = x1/(m1 + 1)− (x2 + 1)/(m2 + 1).

Thus, the probability of a single intersection 2! q1 is bounded by

2!

(
n

2

)
exp[−m̃T 2] � exp{c1 log n− c2(log n)

1+ε/2}

for any ε > 0 and some constants c1 and c2. We note that the coefficient
(
n
2

)
refers to the number of

possible pairs.

Next, we consider the case of k-intersections. We only need to consider the two intervals corresponding

to the two farthest Pi among the k intervals. Thus, the probability of existing k-intersections (k + 1)! qk
is bounded by

(k + 1)!

(
n

k

)
exp

{
− m̃

[
O

(
k

n2(log n)
√

ε/2

)]2}

� exp{c1(k log n+ k log k)− c2k
2(log n)1+ε/2}

for any ε > 0 and some constants c1 and c2. Because
∑n−1

k=1(k + 1)! qk → 0, we conclude that (A.3)

holds.

Proof of Theorem 3.2. Recall that the data-generating equation is

Xi = G−1
i (Ui, Pi), Pi = F−1(Wi), (A.5)

where Gi is the CDF of the binomial distribution.

By Corollary A.1, we define

F̃L(s) ≡
n∑

i=0

I[GU
(i) � s < GU

(i+1)]W
∗
(i)

and

F̃U (s) ≡
n∑

i=0

I[GL
(i) � s < GL

(i+1)]W
∗
(i+1),

where GU
(1), . . . , G

U
(n) are order statistics of {G∗

i (xi, U
�
i ), i = 1, . . . , n}, GL

(1), . . . , G
L
(n) are order statistics

of {G∗
i (xi − 1, U�

i ), i = 1, . . . , n}, GU
(0) ≡ 0, GU

(n+1) ≡ 1, GL
(0) ≡ 0, GL

(n+1) ≡ 1, and W ∗
(n+1) ≡ 1. Note that

F̃L and F̃U can be regarded as lower and upper bounds of FL and FU , respectively.

In order to obtain n1/2{FL(·)− F̂n(·)} → {1−F (·)}B(γ(·)) in distribution in probability, it is enough

to show that sups n
1/2|F̃ (s)− FL(s)| → 0 in probability, which is implied by

sup
s

n1/2{F̃U (s)− F̃L(s)} → 0 (A.6)

in probability. In order to show (A.6), one essentially needs to show that for any ε > 0,

pr
(
sup
s

n1/2{F̃U (s)− F̃L(s)} > ε
)
→ 0.

By Lemma A.3, there is no intersection between

(G∗
i (xi − 1, U�

i ), G
∗
i (xi, U

�
i )], i = 1, . . . , n

with a probability converging to 1.
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Thus, we have

pr
(
sup
s

n1/2{F̃U (s)− F̃L(s)} > ε
)
�

n∑
i=0

pr

(
W ∗

(i+1) −W ∗
(i) >

ε

n1/2

)

= (n+ 1)pr

(
Beta(1, n) >

ε

n1/2

)

= (n+ 1)

(
1− ε

n1/2

)n

→ 0.

Therefore, we have

n1/2{FL(·)− F̂n(·)} → {1− F (·)}B(γ(·))
in distribution in probability. Note that for any t < s,

cov[{1− F (s)}B(γ(s)), {1− F (t)}B(γ(t))] = γ(t){1− F (s)}{1− F (t)} = F (t){1− F (s)},

which completes the proof.

Appendix B Remarks on binomial and Poisson data

In the following two theorems for binomial and Poisson data, respectively, we show implications of the

fact that pr(F ∈ Qx(U
∗,W ∗)) is proportional to the nonparametric likelihood function. In particular,

maximizing the scaled fiducial probability in its limit provides exactly the underlying true CDF.

Theorem B.1. Suppose that Θi ≡ Pi and Xi | Pi ∼ Bin(m,Pi). Maximizing

lim
n→∞[cnpr(F ∈ Qx(U

�,W �))]1/n

leads to a CDF matching the first m moments of the true F (p), where cn is the normalizing constant.

Proof. Recall the data-generating equation (A.5), where Gi is the CDF of the binomial distribution.

The fiducial probability is

pr(F ∈ Qx(U
�,W �)) ∝

n∏
i=1

[ ∫ 1

0

(
m

xi

)
pxi(1− p)m−xidF (p)

]

= exp

{ n∑
i=1

log

(
EF

[(
m

xi

)
pxi(1− p)m−xi

])}

= exp

{
nm log(EF [P

m]) + nm−1 log

(
EF

[(
m

m− 1

)
Pm−1(1− P )

])
+ · · ·

+ n0 log(EF [(1− P )m])

}
,

where nk is the number of samples with Xi = k, and EF refers to the expectation with respect to F that

is evaluated. Thus, as n goes to infinity,

[cnpr(F ∈ Qx(U
�,W �))]1/n

→ exp

{
E[Pm] log(EF [P

m]) + E

[(
m

m− 1

)
Pm−1(1− P )

]
log

(
EF

[(
m

m− 1

)
Pm−1(1− P )

])

+ · · ·+ E[(1− P )m] log(EF [(1− P )m])

}
, (B.1)

where cn is the normalizing constant, and E refers to the expectation with respect to the true distribution

function that generates data. By the method of Lagrange multipliers,

H(x) =
∑
i

yi log xi subject to
∑
i

xi = 1,
∑
i

yi = 1
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is maximized with respect to x by setting xk = yk, k ∈ R
+. Maximizing (B.1) gives

E[Pm] = EF [P
m],

E[Pm−1(1− P )] = EF [P
m−1(1− P )],

...

E[(1− P )m] = EF [(1− P )m].

The above equations are restrictions on the first m moments of P , which completes the proof.

Theorem B.2. Suppose that Θi ≡ Λi and Xi | Λi ∼ Poi(Λi). Maximizing

lim
n→∞[cnpr(F ∈ Qx(U

�,W �))]1/n

leads to true F (λ) almost surely, where cn is the normalizing constant.

Proof. Recall the data-generating equation Xi = G−1
i (Ui,Λi), Λi = F−1(Wi), where Gi is the CDF of

the Poisson distribution. The fiducial probability is

pr(F ∈ Qx(U
�,W �))

∝
n∏

i=1

∫ ∞

0

λxi exp{−λ}
xi!

dF (λ)

=

{
EF [exp(−Λ)]

0!

}n0
{
EF [Λ exp(−Λ)]

1!

}n1

· · ·
{
EF [Λ

k exp(−Λ)]

k!

}nk

· · ·

= exp

{
n

[
n0

n
log

EF [exp(−Λ)]

0!
+

n1

n
log

EF [Λ exp(−Λ)]

1!
+ · · ·+ nk

n
log

EF [Λ
k exp(−Λ)]

k!
+ · · ·

]}
,

where nk is the number of samples with Xi = k, and EF refers to the expectation with respect to F that

is evaluated. Thus, as n goes to infinity,

[cnpr(F ∈ Qx(U
�,W �))]1/n

→ exp

{
E[exp(−Λ)]

0!
log

EF [exp(−Λ)]

0!
+

E[Λ exp(−Λ)]

1!
log

EF [Λ exp(−Λ)]

1!
+ · · ·

+
E[Λk exp(−Λ)]

k!
log

EF [Λ
k exp(−Λ)]

k!
+ · · ·

}
, (B.2)

where cn is the normalizing constant, and E refers to the expectation with respect to the true distribution

function that generates data. By the method of Lagrange multipliers, maximizing (B.2) gives

E[Λk exp(−Λ)]

k!
=

EF [Λ
k exp(−Λ)]

k!
, k ∈ R

+.

The above equations essentially impose restrictions on all the derivatives of the Laplace transform at

1. The fact that the Laplace transform is analytic in the region of absolute convergence implies the

uniqueness of the distribution, which completes the proof.


