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A B S T R A C T

The distributed nature of federated learning (FL) renders the learning process susceptible to model poisoning
attacks, whereby local workers in FL report fabricated and false local training outcomes to the FL server with
the intention to compromise/degrade the global model, or even derail the global learning process so that it
can no longer converge. Existing defense mechanisms typically consider the falsified local updates as outliers
that reside far away from the mean update, and attempt to counter against such model poisoning attacks by
detecting and eliminating those outliers in the reported local training updates. These methods do not perform
well when the data of different workers are non-I.I.D. and/or when there are multiple colluding attackers,
under which an outlier update is not always a falsified update, and vice versa. In this paper, we propose a
novel defense mechanism, MinVar, to counter the model poisoning attacks in FL from a drastically different
perspective. Instead of detecting and eliminating outlier local updates from the global model aggregation,
MinVar takes all local updates but assigns different weights to them in the global model aggregation. MinVar
decides the optimal weights by formulating and solving an optimization problem in each iteration of the
learning process, which aims to suppress the contribution of those falsified (i.e., malicious) updates while
still retaining the contribution of those honest/truthful updates. Based on the sparsity observation in most
deep neural networks, a data sampling technique is further proposed to reduce the computation complexity
of MinVar while preserving its defense performance. Extensive experiments are conducted on both the MNIST
and CIFAR-10 datasets, and the results verify the effectiveness of the proposed MinVar defense model.

1. Introduction

Federated Learning (FL) is known to be vulnerable to model poi-
soning attacks. This is due to the distributed nature of the FL: the
convergence and global training outcome of FL is determined by the
local training outcome of every individual worker that participates in
the FL in each iteration. Because workers are only sharing their local
training outcomes (model parameters or gradients) in FL, the truthful-
ness of each worker’s local data, and consequently the truthfulness and
correctness of the local training outcomes that are being reported to the
global model aggregation process, is hard to be guaranteed. Therefore,
defense methods that are able to filter out the suspicious local updates
to protect the overall FL are highly desirable.

Most existing model-poisoning defense mechanisms such as [1–5]
rely on the assumption that a falsified local training update is an outlier
that resides far away from the mean update (the distance in this case
can be defined as, e.g., the cosine similarity between the updates). As
a result, these defense mechanisms try to counter against the model
poisoning attacks by detecting and eliminating those outliers in the
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reported local training updates from the global model aggregation, as
illustrated in Fig. 1(a). These methods perform well when the data at
each worker are I.I.D., but will have limited performance when the
data of different workers are non-I.I.D., whereby an outlier update is
not always a falsified update, and vice versa. Eliminating an outlying
but truthful update in this case is a mistake, which will degrade the
generalization of the global model.

Similar issue also arises when there are multiple colluding at-
tackers that coordinate their training outcome reports to manipulate
the outlier-detection process. For example, a set of coordinated false
updates could well bias the centroid of the whole population of updates.
As a result, a truthful update that is not an outlier in the attack-free
case may now become an outlier and hence be (mistakenly) eliminated
from the aggregation. Similarly, a false update that could have been
identified as an outlier in the absence of colluding attackers may
now be considered as an inlier, and hence is (mistakenly) admitted to
participate in the aggregation. It is clear that existing defense methods
will fail in either case.
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Fig. 1. The local updates utilized for FedAvg on the global server in three scenarios. (a) FedAvg with statistical (existing) defense methods that draw a boundary (blue circle)
based on mean and standard deviation and kick out all the outside updates, (b) FedAvg with MinVar defense that minimize the variance between all local updates, and assign
small weights to suspicious workers (attackers), and (c) Regular FedAvg with No defense. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Keeping the above weaknesses of the outlier-elimination-based meth-
ods in mind, in this paper we propose a novel defense mechanism,
MinVar, to combat model poisoning attacks in FL from a drastically
different perspective. Instead of detecting and eliminating outlier local
updates from the model aggregation, MinVar takes all local updates
but assigns different weights to them in the model aggregation. MinVar
decides the optimal weights by formulating and solving an optimization
problem in each iteration with the objective of minimizing the variance
of the weighted local updates. The optimization formulation takes as
input the local updates from all workers, and calculates the optimal
aggregation weights for these workers. The weighted local updates are
then aggregated to update the global model.

As will be clear shortly, the weight assignment by MinVar is distance
related. Intuitively, under MinVar, an outlying local update is still con-
sidered being suspicious, and hence would be assigned a smaller weight
(as shown in Section 5). This will allow this outlying local update
to participate in the model aggregation, but at a diluted/discounted
contribution. Such a ‘‘soft’’ filtering method well compensates the
weaknesses of the ‘‘hard’’ filtering (i.e., admit/reject) adopted in ex-
isting defense mechanisms. Specifically, in the non-I.I.D.-data scenario,
an honest worker that has a very different local dataset will still be
able to contribute positively to the global model. On the other hand, in
the colluding-attacker case, as long as the attackers are still minorities
(i.e., the number of attackers is relatively small when compared with
that of the honest workers), the false updates from attackers that
are meant to bias the centroid of the whole population of updates
will increase the variance of the population. The weight assignment
by MinVar will tend to counter/suppress the influence of these false
updates, since the objective function pursued by MinVar is to minimize
the variance of the updates after they are weighted. The above main
idea of MinVar is illustrated in Fig. 1(b), where it can be seen that
with the optimized aggregation weights, the weighted local updates are
condensed while the original layout (shown in 1(c)) is still preserved.

The main contribution of this work includes the following three
folds:

• A novel defense mechanism, MinVar, is proposed to counter
against model-poisoning attacks in FL. MinVar does not require
the calculation and detection of outliers, and therefore is appli-
cable to both I.I.D. and non-I.I.D. dataset cases. To the best of
our knowledge, MinVar is the first defense mechanism in the
literature that considers/counters the model poisoning attacks in
FL in the non-I.I.D. case.
• We analyze the time complexity of MinVar and propose a sam-
pling technique to reduce its complexity based on the sparsity
observation in most (deep) neural networks. We show that the
proposed MinVar algorithm that runs on the sub-samples achieves
comparable performance to that run on the full local updates,
while the computation time required to solve the optimization

problem formulated by MinVar is proportional to the sample rate
(i.e., percentage sampled).
• We evaluate the performance of MinVar and the proposed sam-
pling technique by comparing with existing defense methods, via
extensive FL experiments over various datasets. The results show
that our proposed algorithm achieves significantly better defense
effects than its counterparts, especially for the cases that there
are multiple colluding attackers and/or the local data of workers
is non-I.I.D.

The rest of the paper is organized as follows. The existing attack
and defense methods for federated learning are reviewed in Section 2.
We describe the model definition, more specifically, the backbone
federated learning framework used, and the attack models targeted in
Section 3. We explain the details of the proposed MinVar method, and
analyze the time complexity of original and the sub-sampled version
of MinVar in Section 4. The performance evaluation of MinVar, in
comparison with other existing methods are shown in Section 5, and
finally we conclude our paper in Section 6.

2. Related works

2.1. Poisoning attacks in federated learning

Federated learning is known to be vulnerable due to its nature of
crowd-sourcing the datasets by local workers and aggregation by the
server. In general, the poisoning attacks in FL can be classified into two
categories, the data poisoning attack, where an adversary focuses on
manipulating the dataset to infect the gradients to be uploaded to the
server, and model poisoning attack, where the adversary manipulates
the uploaded model (parameters and gradients) to infect the training
of the FL.

The data poisoning attacks could be further divided into two groups:
the dirty label attacks and the clean label attacks. Dirty label attacks
involves the change of the label, and consists of the label flipping
attacks and backdoor attacks. [6,7] are the representative works of the
label flipping attack where the attacker changes the labels of a subset of
the training data, causing the model to learn from mislabeled examples.
Another type of the dirty label attacks is the backdoor attack [8,9],
where the attacker insert a trigger as a feature into existing data
samples, and then set the label in correspondence with the trigger,
leading to the wrong prediction of the attacker-selected label once such
trigger is presented in the input. The clean label attacks can be further
divided into the clean label backdoor attack (with trigger), and the
trigger-less attack. The former is similar to the dirty label backdoor
attack except that the attacker cannot modify the label of the data
samples [10–12]. The trigger-less attack [13–15], on the other hand,
disrupts the feature space of the targeted class by injecting well-crafted
poisoned data samples.
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In model poisoning attacks, in contrast to the data poisoning attack,
an adversary can directly manipulate the gradients to be uploaded in
order to inject poisoned neurons into the global model. The model poi-
soning attacks could be further divided into three categories based on
the attackers goals: the backdoor attack, the model update attack, and
the privacy attack. In backdoor attacks, the adversary injects the pre-
defined backdoor trigger (and/or Trojan) into the model, causing the
model to make incorrect predictions when the trigger is present. Such
poisoning parameters (or gradients) could be achieved by weight ma-
nipulation [16], bit-wise flipping [17], and solving a local optimization
problem [18–20]. The model update attack exploits the vulnerabilities
in the model update or the fine-tuning process, where the attacker
inject the malicious parameters/gradients into the model, leading to the
performance degradation of partial or entire model. The model update
attack could be further divided into two groups based on the way they
obtain the poisoning parameters. [21,22] belongs to the first group, in
which the attacker formulates and solves a local optimization problem
where the solution is the poisoning parameters. The second group trains
a separate local helper model based on the information downloaded
from the server (which contains other worker’s training outcome), and
generate the poisoned parameters based on other workers’ training
outcome [23,24]. In the privacy attack, the adversary manipulates the
parameters to gain private information about other participants. Such
privacy attack includes the membership inference attack [25,26] which
goal is to determine whether certain data samples exist in the target
worker’s dataset, and label distribution inference attack which tries to
infer other workers’ training labels [27,28].

2.2. Defenses (robust aggregation) mechanisms in federated learning

With the development of the aforementioned attack models, several
defense (or robust aggregation) methods were proposed to counter
those attack models. Krum and Multi-Krum [1] selects the workers
gradients to be aggregated based on the intuition that poisoned work-
ers’ gradients should reside far away from the honest ones. Trimmed
Mean [2] aggregates each dimension of the input gradients separately
by sorting each dimension first, and then removing the Ā largest and
smallest values and only aggregate the rest. Unliked the intuition from
Krum and Multi-Krum, Bulyan [3] shows that the gradients from an
adversary may be close to the benign ones, but obtain a very large value
for a certain dimension, and thus prevent the overall convergence of
the entire federated learning. Based on such observation, the authors
propose Bulyan defense, which requires a lot more number of honest
peers to enforce enough ‘‘goodness’’ in the aggregated parameters.
Median [4] is another statistical defense method which aggregates the
median of each dimension. Rather than considering the similarities
of magnitude like the above methods, Adaptive Federated average
(AFA) [29] takes the multi-dimensional directions into consideration
by comparing the Cosine Similarity and discards the ones that are out
of bound.

We consider the above defense models as statistics-based ‘‘hard’’
filtering defense methods as they all compute a decision boundary and
completely eliminate those outside the boundary. We argue that such
defense methods won’t work well when the data distribution for each
individual workers is non-I.I.D., since it could eliminate a worker who
has seemingly irregular, but true data samples that reflect its temporal
and spatial information.

Several recent defense methods [30–33] also considered the non-
I.I.D. scenarios in FL. Mini-FL [30] proposes a novel framework that
consider the non-I.I.D. case by first partitioning the gradients into
groups based on a grouping feature such as IP address, timestamp
and user ID (which are also regarded as the causes of the non-I.I.D.
characteristic of the FL training data). After that, since the gradi-
ents within the same group are considered statistically similar, the
existing I.I.D. defense methods (such as Krum, Median, . . . ,etc.) could

be applied within each group to eliminate the outliers (potential at-
tackers). Finally, the remaining gradients are weighted based on the
group population and are aggregated on the server. Sageflow [31]
and FLTrust [33] both require the server to collect a clean validation
dataset used as the ‘‘root of trust’’ (or reference) for the local model
updates, and then based on the distance from the reference, each local
update is assigned a corresponding weight (or score) used for the global
aggregation. However, the effectiveness of both algorithms depend on
whether the data distribution of the validation dataset resembles the FL
training dataset. If the validation dataset collected by the server shares
similar distribution as the FL training dataset, then both algorithm can
successfully defend against the attackers. Such a requirement is hard to
meet in real applications as the data distribution of the entire training
dataset is most likely unknown due to the distributed nature of FL.
ShieldFL [32] proposes the defense in FL from the privacy-preserving
perspective. The server decides the weight of each encrypted local
model updates by calculating the cosine similarity score, and perform
the weighted aggregation on the server.

In this paper, we present MinVar, a ‘‘soft’’ filtering defense model
considering the non-I.I.D. scenario that takes all local gradients, but
with different weights, where the weights specify how trustworthy
each worker is. Unlike the existing defense methods that consider the
non-I.I.D. case, our algorithm does not require an additional step of
gradients grouping, or the prior knowledge of the overall data distribu-
tion. Our algorithm also address the scenario where there are multiple
attackers (i.e., the Byzantine attack), and show that we achieve higher
defense capacity (i.e., we are able to defend against more attackers)
than the existing defense methods.

3. Model definition

3.1. Federated learning

There are several variations of FL, and in this paper, we consider the
most general scenario, the parameter server model [34]. The FL system
contains one server, which is responsible for maintaining the global
parameters denoted as ĕglobal, and Ą collaborators (also referred to as
workers or peers in the following text) with worker IDs {0, 1, 2,& , Ą−1}.
There exists a communication protocol that allows the collaborators to
share the training information through local gradients upload (to the
server) and global parameters download (from the server). All workers
had agreed in advance on the machine learning task to collaborate and
to use the same local training architecture. In this paper, we assume
the training architecture is (deep) neural networks for its outstanding
performance in many machine learning tasks. Each peer maintains its
own private dataset, which will not be shared with other peers due to
privacy and security concerns.

The federated learning process starts by the initialization at iteration
(or epoch) 0, where the global server and the local workers corre-
spondingly set their model parameters ĕ0

global
* R

Ă , and ĕ0
ÿ

* R
Ă ,

where ÿ denotes the worker ID. After that, the training is performed
iteratively. More specifically, at iteration Ċ, each worker starts training
by first downloading and replacing all (or partial) local parameters
with the global parameters from the server. Such download and replace
procedure can be expressed as ĕĊ

ÿ
± ĕĊ−1

global
, where ĕĊ−1

global
is the global

parameters maintained on the server at the end of iteration Ċ − 1.
Then, each worker performs local training, and uploads the full local
training gradients (also referred to as local updates in the following
text), denoted as ąĊ

ÿ
* R

Ă , to the server. The server collects the local
updates from all workers in epoch Ċ, and performs the FedAvg algorithm
to update the global parameters as:

ĕĊ
global

= ĕĊ−1
global

− ÿ
1

Ą

Ą1

ÿ

ąĊ
ÿ

(1)

where ÿ denotes the learning rate. And thus, one iteration is said to be
finished.
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3.2. Attack model

We consider an attack model similar to the one proposed in [35].
The attackers are assumed to have full access to the compromised
workers, i.e., the attacker is able to modify the worker’s dataset and
the local training outcome reported over the communication link with
the server. In each iteration, the attacker(s) upload fabricated re-
port(s) (also referred as attack vectors in following texts), inline with
the distribution of the true training outcome in order to elude from
detection. Assume there are ă colluded attackers, whose worker ID
ÿ * {ÿąăĆĈąăÿĉăĂē ąĈāăĈĉ}. In each iteration Ċ, the attackers start
by regular local training like the honest workers, and obtain the true
local training gradients ąĊ

ÿ
. After that, the attackers’ local gradients are

shared within the colluded group, and the mean and standard deviation
of the shared local gradients are calculated, denoted as ą

Ċ, and ÿ
Ċ.

Then, each element of the attack vector ąĊ
ÿ
, denoted as ąĊ

ÿĀ
, where

0 d Ā d Ă denotes the dimension ID, is computed by ąĊ
ÿĀ

= ąĊ
Ā
+ ĐÿĊ

Ā
,

where ąĊ
Ā
and ÿĊ

Ā
are the Āth elements of ąĊ and ÿ

Ċ, respectively, and
Đ can be regarded as the scale of the attack. Such attack vector is
distributed to each attacker to be uploaded to the server, pretended
as the true local updates, and aims to derail the global convergence of
the federated learning system. The authors in [35] draw such Đ from
the Cumulative Standard Normal Distribution, and use the maximum Đ

found. In contrast with their method, we employ a range of scales (Đ
values) that covers/includes their ĐăÿĎ. Such a treatment allows us to
evaluate the effectiveness of the proposed MinVar defense mechanism
under different attack strengths, including those that have attack scales
greater than ĐăÿĎ.

It is obvious that the above method requires the existence of at least
two attackers in order to calculate the mean and standard deviation
vectors ą

Ċ and ÿ
Ċ. For the special case that there is only a single

attacker, we tweak the above attack mechanism as follows: Instead of
computing the mean and standard deviation vectors over the attackers
(i.e., over ă), the mean and standard deviation of the attacker, which
are two scalars, say ąĊ and ÿĊ, are computed over the elements of the
attacker’s local gradients (there are Ă of them). The attack vector is then
created by generating a Ă-dimension random vector whose Ă elements
are drawn respectively from a Gaussian distribution of mean ąĊ and
standard deviation ĐÿĊ. Such a method is able to generate an attack
vector that conforms with the distribution of the true gradients of the
attacker, and thus preserves the essence of the attack strategy for the
more general multi-attacker case.

4. MinVar defense method

4.1. General design of MinVar

We argue that the regular FedAvg algorithm with equally assigned
weights to each worker, i.e., 1

Ą
, in Eq. (1) is not capable of effectively

capturing or learning the temporal and spatial information contained
in the local updates, especially when the data at each source are non-
I.I.D. Furthermore, when there are attackers, simply averaging the local
updates from the honest workers and the suspicious vectors uploaded
by adversaries could lead to the failure of convergence in many cases.

Inspired by the fact mentioned previously that large variance makes
federated learning vulnerable, and meanwhile embracing the ineffective-
equal-weight in FedAvg, our defense method aims to evaluate the
uploaded information (could be true local gradients from honest peers
or attack vectors from adversaries) from each worker, and assign
each of them an aggregation weight based on the evaluation results.
Regarding each of the uploaded vector as a data sample, we train an
online regression model with the objective that minimizes the variance
between all uploaded information. Denote

• ąĊ
ÿĀ
to be the element at the Āth dimension of local update (ąĊ

ÿ
),

• ą
Ċ
Ā
to be the mean of all local updates (ąĊ

ÿ
) at the Āth dimension

over all the workers, and
• ℎĊ

ÿ
to be the weight assigned to each local update (ąĊ

ÿ
) from worker

ÿ.

Our objective function is to find the best Ć at each iteration Ċ that

minimize
Ć

Ă1

Ā

Ą1

ÿ

(ℎÿ ç ąÿĀ − ąĀ )
2,where ąĀ =

1Ą

ÿ
(ℎÿ ç ąÿĀ )

Ą
(2)

We can simplify Eq. (2) as

minimize
Ć

Ă1

Ā

Ą1

ÿ

(ℎ2
ÿ
ç ą2

ÿĀ
+

(
1Ą

ÿ
ℎÿ ç ąÿĀ )

2

Ą2
− 2ℎÿ ç ąÿĀ ç ąĀ ). (3)

Considering the real application of the federated learning scenario, an
equality and an inequality constraints are added to Eq. (3), where we
enforce all the weights to be greater than 0, and sum to 1. We also add
an Ĉ2 normalization term to avoid the potential weight domination
problem, i.e., say 1 is assigned to one worker and 0s are assigned to
the rest. With the constraints and the normalization term added, we
can formulate the following MinVar optimization problem:

minimize
Ć

Ă1

Ā

Ą1

ÿ

(ℎ2
ÿ
ç ą2

ÿĀ
+

(
1Ą

ÿ
ℎÿ ç ąÿĀ )

2

Ą2
− 2ℎÿ ç ąÿĀ ç ąĀ ) + Ą‖Ć‖2

s.t.
Ą1

ÿ

ℎÿ = 1,

ℎÿ e 0.

(4)

where Ą is the normalization coefficient. This problem can be solved
by Quadratic Programming, and we employ the cvxnp [36] package to
perform the optimization.

With the solution to Eq. (4), we can rewrite Eq. (1), the aggregation
phase on the server as

ĕĊ
global

= ĕĊ−1
global

− ÿ

Ą1

ÿ

ℎĊ
ÿ
ç ąĊ

ÿ
(5)

where by having ℎĊ
ÿ
for each individual local updates at each itera-

tion, the FL system is now able to capture the temporal and spatial
information obtained in each local dataset, and defend against up to
the state-of-the-art-defined maximum attackers. The proposed MinVar
defense method could be summarized as Algorithm 1.

Algorithm 1 MinVar: Variance-Minimization Defense

1: for t=0 ... end of FL training iterations do
2: Collect local updates: {ąĊ

0
, ąĊ

1
, ąĊ

2
, ..., ąĊ

Ą−1
}

3: Solve the optimization problem in Eq. (4) and get ĆĊ ∶

{ℎĊ
0
, ℎĊ

1
, ℎĊ

2
, ..., ℎĊ

Ą−1
}

4: Perform global aggregation according to Eq. (5)
5: end for

Our intuition in trying to minimize the variance of the weighted
local updates comes from the observation that larger variance over
local updates makes FL more vulnerable, as it allows larger high-
dimensional space for an attacker to fabricate feasible attack vectors
that reside further away from the mean than some honest workers,
but closer to the mean than other honest workers. For example, in
Fig. 1(c), some of the attack vectors (yellow dots) are closer to the
mean than some of the honest workers (blue dots) are, especially at
the bottom left areas. Such attack vectors skew the true mean to a new,
incorrect position, and could lead to the failure of FL convergence [35].
Minimizing the overall variance between the weighted local updates
before aggregation will shrink the feasible spaces for the above attack
vectors, and therefore enhance the security of FL.

4.2. Complexity analysis and reduction

It is worth noting that the necessity to learn a regression model (or
solve a quadratic problem) at each iteration of FL could introduce a
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Algorithm 2 MinVar Defense with Sub-Sampling

Require: Ĉ, the percentage to be sampled
1: for t=0 ... end of FL training iterations do
2: Uniformly random sample Ĉ% dimensions.
3: for each ÿ * {ē ąĈāăĈąĀ} do
4: �ąĊ

ÿ
= ąĊ

ÿ
[indices of Ĉ]

5: end for
6: Collect local updates: {�ąĊ

0
, �ąĊ

1
, �ąĊ

2
, ..., �ąĊ

Ą−1
}

7: Continue with line 3 of Algorithm 1
8: end for

delay, and such delay could increase enormously with the size up of
the local gradients (depended on the training architecture). It has been
studied that gradient-based methods can achieve the time complexity of
ý(ā) to solve a general quadratic problem for each solving iteration [37,
38], where ā denotes the computational cost for one iteration.

To ensure the scalability and the low computational cost of our
MinVar defense mechanism, we implement the sub-sampling technique
prior to the training of the regression model. In each FL iteration,
instead of calculating the corresponding aggregation weights (ℎÿ) for
each worker using the entire local updates (ąÿ), we randomly sample a
partition of the local updates, denoted as �ąÿ and utilize the sub-samples
to compute the aggregation weights, i.e., replace ąÿĀ by �ąÿĀ in Eq. (4).
Algorithm 2 describes the MinVar algorithm with the sub-sampling
technique applied. The intuition behind such sub-sampling procedure
is the fact that most large-scale (deep) neural networks are sparse and
with many zero-value parameters. We show that such sub-sampling
method won’t affect the preciseness of the learned weights (Ć) from the
proposed defense mechanism in Section 5.4, in contrast to the weights
learned by full gradients.

As mentioned previously, the time overhead of the original MinVar
algorithm for each iteration can be approximated as ý(ā). It’s worth
noting that ā is largely dependent on the number of samples utilized in
one epoch. For example, for a quadratic problem where the Stochastic
Gradient Descent method [39] obtains the complexity of ý(ā) in one
iteration, vanilla gradient descent method could take ý(Čā), where Č

denotes the total number of samples utilized for computation in each
iteration [37]. Similarly, in our case, by sub-sampling the local updates
which formulates a smaller-scale quadratic problem, the delay could
be reduced to ý(Ĉ% ç ā) for each solving iteration, where Ĉ% denotes
the percentage sampled from the full local updates. Our experiments
confirms such speed up in Section 5.4.

5. Experiments

5.1. Dataset and experimental setup

We test our proposed MinVar defense method on the classification
tasks with the MNIST [40] and the CIFAR10 [41] datasets. For each
dataset, we model the non-I.I.D data distribution on workers using the
Dirichlet distribution with beta=0.5, where not only the total number
of samples, but also the number of samples in each class are differently
distributed for each worker. Both the single-attacker scenario, where
among Ą peers, there exists only one attacker (ă = 1), and the multiple-
attackers scenarios, where there exists up to ă = +Ą∕2,−1 attackers are
considered and implemented in the experiments.

5.2. Validation for single-attacker defense

Figs. 2 and 3 demonstrates the performance of our MinVar defense
method when the variance-based attack is injected on the MNIST
and CIFAR10 datasets, respectively. In each figure, the subfigures
(a), (b) and (c) represent different settings where Ą = 10, 15, and
20, respectively. These figures show that under all studied cases, the

proposed MinVar method successfully defends against such attacks by
saving the FL system under attack from not converging at all to the
optimal convergence point (around 95% for MNIST and around 60%
for CIFAR10).

In comparison with the existing Bulyan defense method (shown in
orange bars), it can be seen that MinVar outperforms Bulyan by up to
56% in MNIST and saves the diverged FL on CIFAR10. We also found
that the FL system with Bulyan defense implemented actually harms
the overall accuracy when there is no attacker (i.e., when the attack
scale is 0) as shown in Fig. 2 on MNIST, and same observation could
be made in Fig. 3 on the CIFAR10 dataset. This can be caused by the
fact that Bulyan was not designed for non-I.I.D. scenarios. It suffers
from misclassifying the honest peers with different dataset as attackers,
and therefore kicks them out, leading to the degradation the global
accuracy. Furthermore, comparing Figs. 2 and 3, it can be seen that
with the increased difficulty of dataset, the performance of Bulyan is
worse, since more false alarms could be generated.

As the main idea of our MinVar defense is to learn how some of
the local updates differ from others, and assign corresponding weights
to each, we also show the heatmap of the weights learned in each
scenarios. Notice that our MinVar is implemented at each epoch during
the training, but for simplicity, only the weights learned at the last
epoch are shown in Figs. 4 and 5. It is demonstrated that the worker
(peer) with ID 2 was given near-zero weights when an attack truly exists
(scales 50–200 on the x-axis), which corresponds to our pre-defined
attacker ID.

5.3. Validation for multiple-attacker defense

The experiments for the multi-attacker scenarios are also imple-
mented and shown in Figs. 6 and 7. The Ď-axis depicts the attack scales
0 − 10, where 0 specifies the attack-free scenario. Similar observations
can be made that our MinVar mechanism can successfully defend the
federated learning system when there exist multiple attackers. It can
also be seen that our MinVar method is capable of defending against
more attackers than the Bulyan defense method, which is proposed to
only defend up to ă d

1

4
(Ą−3) attackers, while MinVar can defend up to

ă d +Ą∕2,−1 attackers. With such requirement, besides the difficulties
of the task and dimensionality of the model as previously discussed,
Bulyan’s performance is also largely dependent on the ratio of attackers
to total workers (ratio of m:n). When such ratio is small, Bulyan does
show the some defending functionality by saving the FL system from
divergence to, say about 58% on MNIST as shown in Fig. 6(c) and (e),
but with a more difficult task, its improvement could be disregarded as
shown in Fig. 7.

Another interesting found is that when the scales of the attack are
small, i.e., in our case when scale = 1 and 2, our MinVar defense
method still works very well w.r.t. the attack and the Bulyan defense
method, however, they are not as well as when the scales are large (4–
9). This is especially true when the maximum number of attackers is
reached (in 20p9 A, and 15p7 A scenarios, where ă = +Ą∕2,− 1). Such
found may be a bit against intuition, but it does make sense in our
scenario. When the attack scale is small, according to the attack model
described in Section 3.2, the attack vectors injected won’t differ much
from the true gradients from the variance/standard deviation point of
view, and hence lead to the difficulties of differentiating the attackers
from the honest workers, especially when the number of attackers is
just 1 less than the number of honest workers. However, it’s not a
necessary concern, as our defense method is still able to pick out the
suspicious workers and protect the overall federated learning system in
such cases.

Figs. 8 and 9 show the learned weights (Ć) distribution among each
peers for the multiple attackers scenarios, and similar observations
could be made that the pre-assigned attackers are all given near-zero
weights, i.e., the white horizontal stripes.
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Fig. 2. The performance of MinVar on MNIST when there exists only one attacker in (a) 10 workers, (b) 15 workers, and (c) 20 workers scenarios.

Fig. 3. The performance of MinVar on CIFAR10 when there exists only one attacker in (a) 10 workers, (b) 15 workers, and (c) 20 workers scenarios.

Fig. 4. The heatmap that shows the learned weights(Ą) on MNIST when there’s only one attacker in the (a) 10 workers, (b) 15 workers, and (c) 20 workers scenarios.

In the previous experiments we compared MinVar with Bulyan, the

state-of-the-art defense method for I.I.D. scenarios. Here we compare

MinVar with the concatenation of Mini-FL and Bulyan (or Mini-Bulyan)

and the concatenation of Mini-FL and Krum (or Mini-Krum). The reason

that we choose Mini-Bulyan and Mini-Krum as counterparts comes in

two folds: (1) the Mini-FL framework, combined with any existing I.I.D.

defense algorithm (e.g. Krum, Median, Bulyan, . . . etc.), is the newest

defense algorithm that consider the non-I.I.D. scenario in FL, and (2)

Krum and Bulyan are the state-of-the-art defense algorithms in the I.I.D.

scenarios.

Instead of repeating a full-range experiments on the two datasets
in both single and multiple attackers scenario, we consider a represen-
tative scenario with Ą = 20 and ă = 5 on the MNIST dataset, as the
same setting is also considered in the original paper [30] that proposed
the Mini-FL framework. Fig. 10 demonstrates the defense effectiveness
of Mini-Bulyan, Mini-Krum and our proposed MinVar algorithms. It
could be observed that MinVar outperforms the Mini-Bulyan under
all the attack scales, and achieves significantly better defense results
than Mini-Krum when the attack scale is large (MinVar and Mini-
Krum present comparable defense effectiveness when the attack scale
is small). Such results could be caused by a vulnerability of the Mini-
FL pre-processing framework. The Mini-FL approach aims to cluster
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Fig. 5. The heatmap that shows the learned weights(Ą) on CIFAR10 when there’s only one attacker in the (a) 10 workers, (b) 15 workers, and (c) 20 workers scenarios.

Fig. 6. Defense performance on MNIST when there’s are (a) 5 and (b) 9 attackers among 20 workers; (c) 4 and (d) 7 attackers among 15 workers, and (e) 3 and (f) 4 attackers
among 10 workers.

‘‘similar’’ workers’ gradients into the same group, and eliminates the
outliers in each group by applying the existing I.I.D.-oriented defense
methods. During this process, it is highly possible that several similar
attackers get clustered into one group. In such case, applying the I.I.D.
defense (such as Krum and Bulyan) won’t eliminate many of them (if
any). When the attack scale is small, eliminating a few attackers may
be able to decrease the amount of poisoned gradients injected to the
global server in every iteration, leading to the successful defense as in
Mini-Krum for scales 0–6. But when the attack scale is large, instead of
being suppressed as in the MinVar algorithm, the poisoned gradients
will still participate the global model aggregation directly, leading to
the failure of FL.

5.4. Validation for the effectiveness of sub-sampling

We take sub-samples of the entire gradients for each local updates
and compare the weights (Ć) learned from such sub-samples with the

weights learned from the full local updates. 10%, 30%, and 50% of the

entire gradients are sampled in the selection of beginning, middle and

last training epochs, and the corresponding weights (Ć) learned by our

MinVar defense algorithm are shown in Fig. 11. It is suggested that

the weights learned by the sub-samples only differ within a very small

ranges from the weights trained from the full local updates. And there-

fore, such small difference of the weights learned from sub-sampling

could be disregarded.

We measure the time consumed in each training iteration of the

regression model (or the solving iteration of the quadratic problem) in

correspondence to the percentage sampled from the full gradients. The

result is shown in Fig. 12. Consider the time complexity of the quadratic

problem that takes full gradients (100% in Fig. 12) as ý(ā), it can be

seen that the time consumed by the sub-samples are proportional to

the percentage (%) sampled. Such observation confirms our analysis of

speed up in Section 4.2.
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Fig. 7. Defense performance on CIFAR10 when there’s are (a) 5 and (b) 9 attackers among 20 workers; (c) 4 and (d) 7 attackers among 15 workers, and (e) 3 and (f) 4 attackers
among 10 workers.

Fig. 8. The heatmap that shows the learned weights (Ą) on MNIST when there’s are (a) 5 and (b) 9 attackers among the 20 workers; (c) 4 and (d) 7 attackers among the
15 workers, and (e) 3 and (f) 4 attackers among the 10 workers. The number of attackers are picked to disclose the roughly percentage of attackers among the entire worker
population.
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Fig. 9. The heatmap that shows the learned weights (Ą) on CIFAR10 when there’s are (a) 5 and (b) 9 attackers among the 20 workers; (c) 4 and (d) 7 attackers among the 15
workers, and (e) 3 and (f) 4 attackers among the 10 workers.

Fig. 10. Defense on MNIST with Ą = 20, ă = 5.

6. Conclusion

In this paper, we propose a novel defense (robust aggregation)
method in federated learning from the variance-minimization approach.
The uploaded gradients are utilized as data samples to train a regression
model with the objective of minimizing the variance between all local
updates, and the regression model outputs the aggregation weights for
each local updates. By assigning the learned weights to each worker,
our method is capable of ensuring the robust aggregation of non-I.I.D.
distributed FL tasks, and meanwhile by assigning close-to-zero weights
to suspicious uploaded vectors from potential attackers, our MinVar
defense method can minimize the effect of suspicious adversaries with
low time consumption.
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Fig. 11. The comparisons between the weights learned by the sub-samples and learned by full gradients in (a) starting epoch 0, (b) middle epoch 50, and (c) ending epoch 99.
The Ď-axis represent the number of % sampled from the full gradients.

Fig. 12. The time in seconds taken to run the MinVar algorithm on different sub-samples of the full parameters (sub-samples are differentiated by the sampling percentage to the
full parameters) in each iteration.
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