

Sub-1 Volt Class AB Amplifier With Low Noise, Ultra Low Power, High-Speed, Using Winner-Take-All

Ali Far

ali.t.far@ieee.org

Abstract — The proposed circuit utilizes a method to lower the output noise (V_{ONOISE}) of an amplifier by band-pass filtering it, while the amplifier's speed is increased by dynamically boosting its operating current when the amplifier's inputs (V_{IN}) receive a large transient signal. This amplifier uses a winner-take-all (WTA) circuit that detects un-equilibrium at V_{IN} , upon which the amplifier's bias current and its dynamic response are boosted. The WTA has a symmetric structure and operates in current mode that enhances the amplifier's dynamic response during boost on and off conditions, and facilitates operations at low power supply voltage (V_{DD}). The boost signals that WTA initiates, feed a summing and floating current source (FCS) that also have a complementary and symmetric structure, which accommodates rail-to-rail (RR) dynamic biasing and improves V_{DD} transient and noise rejection. Monte Carlo (MC) and worst case (WC) simulations are performed, indicating the following specifications as attainable: large-signal settling time (t_s) $\sim 1\mu s$, current consumption (I_{DD}) $\sim 85\text{nA}$, V_{DD} under 1 volt (V), V_{ONOISE} at 1KHz $\sim 75\mu\text{V}/\sqrt{\text{Hz}}$, gain (A_V) $\sim 98\text{dB}$, unity gain frequency (f_U) $\sim 70\text{kHz}$, phase margin (PM) ~ 80 degrees, PSRR $\sim 115\text{dB}$, CMRR $\sim 145\text{dB}$. Amplifier rough area $\sim 45\mu\text{m}/\text{side}$ in $0.18\mu\text{m}$ CMOS.

Keywords — sub 1 volt, subthreshold, batteryless, energy harvesting, smart dust, biometrics, wireless sensor array, self powered, winner-take-all, maximum-current-select, low noise, rail-to-rail, speed boost, dynamic biasing, ultra low power, high speed, class AB amplifier, low power supply, ultra low current.

I. INTRODUCTION

In order to lower the noise at the output (V_{OUT}) of an ultra-low-power CMOS amplifier, the disclosure in [1] proposed a method to band-pass the amplifier (with a large capacitor, C_s) at its high-impedance node in order to filter out the output noise (V_{ONOISE}). Then, the operating current of this slowed (band-passed) amplifier is dynamically boosted such that its slew-rate (SR) and settling time (τ_s) are re-invigorated, when the V_{IN} is subjected to an un-equilibrium. To this end, a subthreshold input-output rail-to-rail (RR) standard folded cascode amplifier (FCTA) is proposed here utilizing a WTA (or a 'maximum'-current-selector) that detects when V_{IN} is unequalized, and initiates boost on-off signals [1-3]. The proposed WTA runs in current mode and is triggered on 'maximum' current selection, which sharpens the boost on-off response time, around the cycles when V_{IN} is imbalanced. Boost on-off signals feed the boost currents onto the amplifier's summing and floating current source (FCS) stages, having a complementary structure like WTA, which accommodates RR dynamic biasing with improved power supply transient and noise rejection [4-6]. The amplifier's specifications are summarized in Table I.

TABLE I: SPECIFICATION COMPARISON

Typical Specs	[2]	This work	Figure
Area (μm^2)	$\sim 180^2$	$\sim 45^2$	21
I_{DD} (nA)	500	86	2,3,6
Large signal $t_{S+/-}$ (μs)	5	1	12 to 20
Minimum V_{DD} (V) at boost on	0.9	1	6
V_{ONOISE} 1kHz ($\mu\text{V}/\sqrt{\text{Hz}}$)	10	75	7
$ \text{PSRR} $ (dB)	85/80	115	10
$ \text{CMRR} $ (dB)	125	145	11
Transient Peak I_{DD} (μA)	520	25	14 to 20
Min. R_L ($\text{k}\Omega$)	2	100	9
Max. C_L (pF)	1000	100	13
A_V (dB)	85	98	8,9
f_U (kHz)	20	70	8,9
ϕ_M ($^\circ$)	75	80	8,9

II. 'WINNER-TAKE-ALL' AND 'SUMMATION & FLOATING CURRENT SOURCE' CIRCUITS

Figure 1. is the schematic of the proposed circuit. The lower half RR 'winner-take-all' (WTA_N), or maximum-current-select (MXCS_N), in concert with the 'sum & float current source' (FCS_N) circuits are described, setting aside non-idealities (e.g., mismatch). The discussions on WTA_N and FCN_N also apply to their symmetric counterparts, WTA_P and FCN_P.

During steady-state phase (or 'boost-off' phase), V_{IN} is in balance. Here, the quiescent currents (I_Q) in P_{w1} and P_{w2} are equal, which feed N_{w4} and N_{w5} (i.e., inputs of WTA_N). Accordingly, $V_{GS_{NW7}} = V_{GS_{NW8}}$, and $I_{NW7} = I_{NW8}$. As such, $I_{NW7} + I_{NW8} = I_Q$ is fed onto P_{w9}. But here, in the steady state phase, P_{w9} is kept off by I_{Pw15} pulling up V_{GS_{PW9}} and reducing it. Thus, the 'boost-off' current is near zero with $I_{Pw17} = n \times I_{Pw9} \approx 0$. Also note that in steady state, with $I_{Pw9} = I_{Pw10} = 0$, then $I_{Pw16} = I_Q$ feeds N_{w6} that is mirrored onto N_{w4,5} which receive the equalized I_{Pw1} and I_{Pw2}. Thus in 'boost-off' phase, only I_{Pw18} = I_Q together with (the complementary side) I_{Nw18} = I_Q supply current to the FCS_N. The I_{Pw18} feeds N_{f1} and N_{f2} with I_Q that biases N_{f3} while I_{Nw18} supplies I_Q to P_{f1} and P_{f2} that biases P_{f3}. Sum of the floating currents, $I_{Nf3} + I_{Pf3} = 2I_Q$, bias N_{f4,5} and P_{f4,5} that set steady-state current in FCTA's bias network, N_{f4-8} and P_{f4-8}.

When V_{in} is imbalanced, after receiving a large transient signal, then the WTA and FCS circuits process the 'boost-on' signal, which boosts FCTA's current and here is how. Let's take the WTA_N transient case when $I_{Pw1} \gg I_{Pw2}$ (e.g., $I_{Pw1} \approx 2I_Q$ and $I_{Pw2} \approx 0$) which lifts V_{GS_{NW13}} (shutting it off), causing I_{Pw11} to lift V_{GS_{NW7}} and raise I_{Nw7}. Conversely, when $I_{Pw1} \gg I_{Pw2}$ in transient, then I_{Nw5} (through N_{w14}) lowers

$V_{GS_{NW8}}$, which reduces I_{NW8} . The transient sum of $I_{NW7} + I_{NW8}$ is dominated here by N_{w7} that can spike to $\leq 3I_Q$, which provides P_{w9} with the scaled up ($\times n$) boost current in P_{w17} . In the 'boost-on' transient phase: $I_{Pw15} + I_{Pw9} = I_{NW7} + I_{NW8} \leq 3I_Q$ (where $I_{NW8} \approx 0$); $I_{Pw10} + I_{Pw16} = I_{NW6} \leq 3I_Q$; and $I_{Pw1} + I_{Pw11,13} = I_{NW4} \leq 3I_Q$. Thus, in 'boost-on' phase, with $I_{Pw1} \gg I_{Pw2}$ and considering $I_{NW5} \approx I_{NW6} \leq 3I_Q (> I_{Pw12,14} = I_Q)$, then N_{w14} pulls down on the $V_{GS_{NW8}}$ and keeps N_{w8} off. As stated earlier, while in 'boost-on' phase, $I_{Pw11} = I_Q$ holds-up the voltage lift on $V_{GS_{NW7}}$. While 'boost-on' lasts, voltage lift on $V_{GS_{NW7}}$ is sustained, considering $I_{NW4} \leq 3I_Q$ and $I_{Pw1} \approx 2I_Q$ which causes $I_{NW4} - I_{Pw1} = I_{NW13} \leq I_Q$, when $I_{Pw11} = I_Q$. A similar current 'boost-on' mechanism would be in play for the complementary side WTA_p , which supplies the boosted current through FCS into the FCTA bias network. For the FCS_N half of the circuit, a transient 'boost-on' current spike $\leq [I_{Pw17} + I_{Pw18}] \sim [3(n \times I_Q) + I_Q]$ is channeled onto N_{f1} and N_{f2} . Similarly, on the FCS_p side, a complementary and symmetric transient 'boost-on' current spike $\leq [I_{NW17} + I_{NW18}] \sim [3(n \times I_Q) + I_Q]$ is channeled onto P_{f1} and P_{f2} . Therefore, a sum of currents $\leq [2I_Q (3n + 1)]$ would bias N_{f3} and P_{f3} , which establishes the 'boost-on' transient current for the FCTA bias network (N_{f4-8} , and P_{f4-8}). This boosted current (that is symmetric) feeds the FCTA's common source amplifier (CSA) stage (P_{a1-3} , N_{a1-3}), the common gate amplifier (CGA), the current mirror stage (N_{a4-7} , P_{a4-7}), as well as the FCTA's floating current source stage (N_{a8-9} , P_{a8-9}). The proposed embodiment, speeds up the dynamic

response of band-passed amplifier (with the large C_S), and thus equipping the FCTA to low-pass the noise in steady-state, and have a fast dynamic response in the transient phases [1-2].

In summary, some of the merits of the proposed circuit are: First, the WTA operates as a 'maximum-current-selector' (MXCS) running in current mode, which helps speed. Second, and qualitatively speaking, the alternative approaches disclosed in [1-3] that utilizes minimum-current-circuit, triggers the 'boost on-off' signals upon appearance or disappearance of a 'minimum' current (i.e., smaller). The proposed circuit triggers the 'boost on-off' signal upon appearance or disappearance of a 'maximum' current (i.e., larger). As such, the proposed circuit, detects a V_{in} imbalance with larger currents, which is in part responsible for WTA enhanced response time compared to [1-2]. Third, the WTA 'boost-on' signal can be initiated rapidly, which boost the FCTA's slew rate faster, in compliance with the method proposed in [2-3]. This is because the spiked currents in N_{w7} or N_{w8} can pull down on diode connected P_{w9} faster due to the $Gate_{Pw9}$'s impedance declining while the transient current is rising ($1/gm \propto 1/I$). Conversely, when the 'boost-off' phase is initiated, the current decay rate is slower than the current spike rate, which would enhance the FCTA's τ_S , again in accordance with the method proposed in [1-2]. This is because, upon arrival of steady state, bulk of the current $N_{w7,8}$ (in the case of WTA_N , for example) is supplied by P_{w15} , which diminishes the current in the diode connected P_{w9} , thus increasing its impedance $1/gm_{Pw9}$ as I_{Pw9} decays towards zero. Considering the scaled up (and the Miller equivalent) capacitance at the gate terminal of P_{w17} and the rising $1/gm_{Pw9}$ impedance,

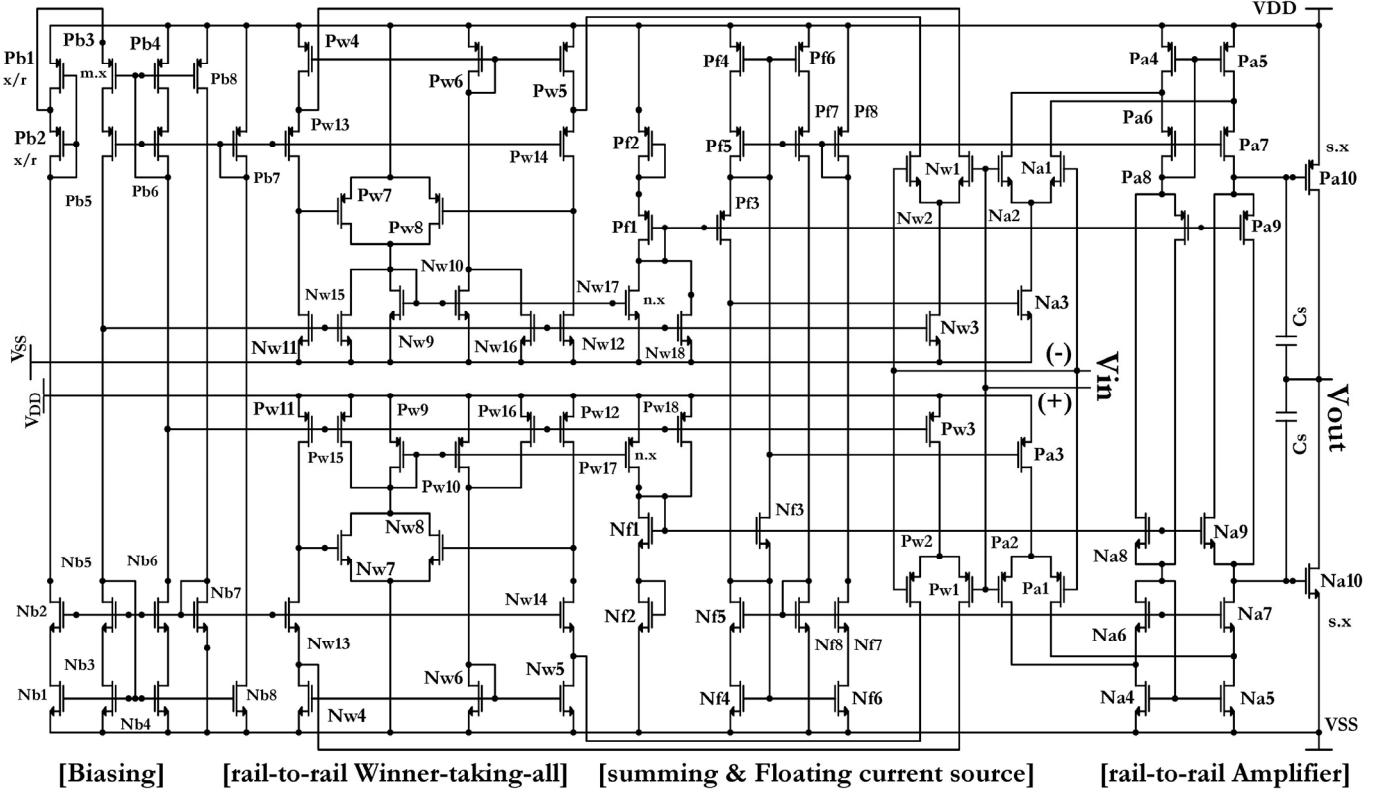


Figure 1. Amplifier Circuit schematic (patents pending[1])

THE SIMULATION RESULTS AND FIGURES

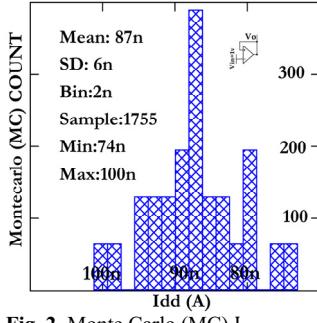


Fig. 2. Monte Carlo (MC) I_{DD}

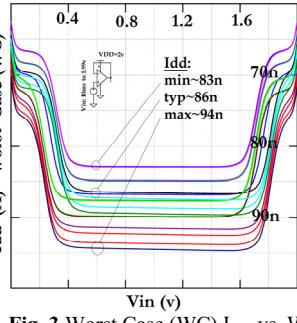


Fig. 3. Worst Case (WC) I_{DD} vs. V_{IN}

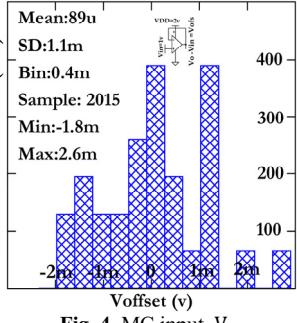


Fig. 4. MC input V_{OFS}

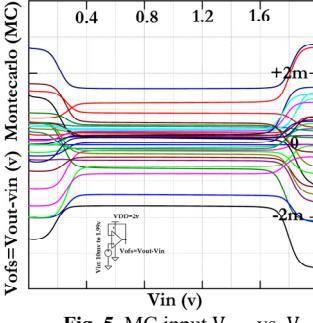


Fig. 5 MC input V_{OFS} vs. V_{IN}

Fig. 6. WC min. V_{DD} vs. I_{DD} vs. V_{OFS}

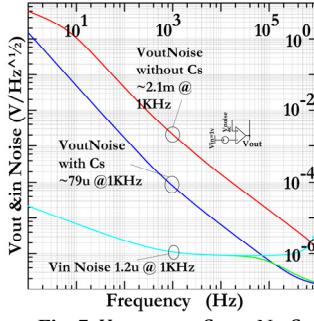


Fig. 7. $V_{OONOISE}$ vs. C_S vs. No C_S

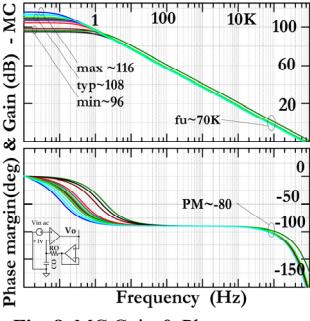


Fig. 8. MC Gain & Phase response

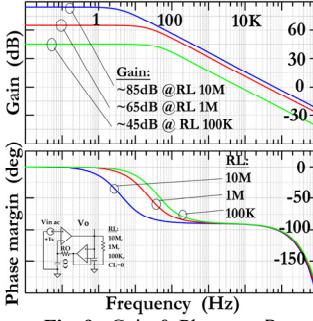


Fig. 9. Gain & Phase vs. R_L

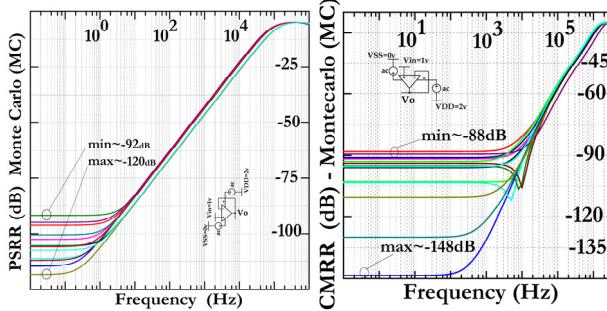


Fig. 10. MC PSRR response

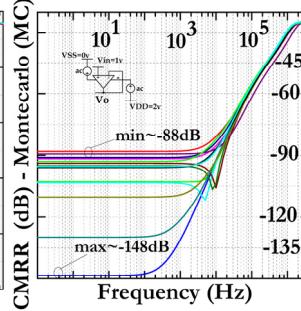


Fig. 11. MC CMRR response

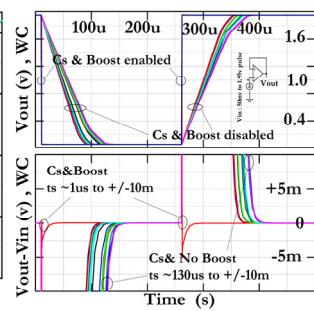


Fig. 12. WC speed with & without Boost

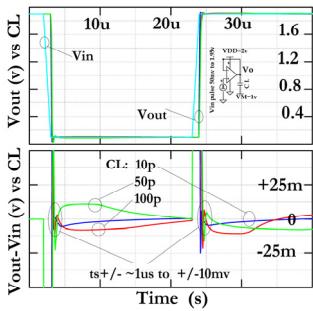


Fig. 13. Settling time (τ_s) vs. C_L

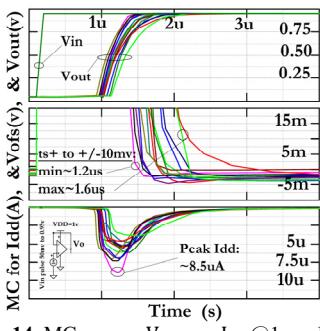


Fig. 14. MC τ_{s+} vs. V_{OFS} vs. $I_{DD}@1V$

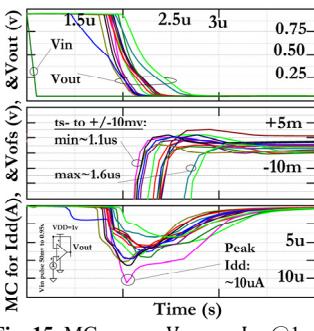


Fig. 15. MC τ_{s-} vs. V_{OFS} vs. $I_{DD}@1V$

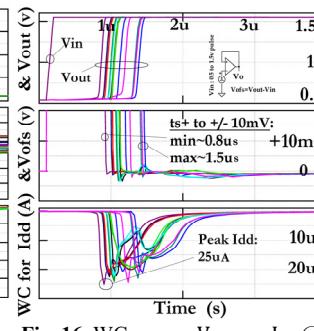


Fig. 16. WC τ_{s+} vs. V_{OFS} vs. $I_{DD}@2V$

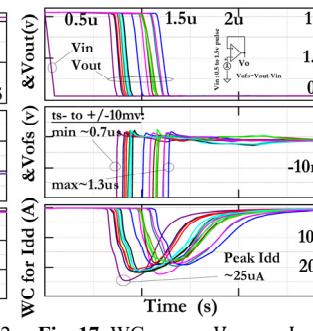


Fig. 17. WC τ_{s-} vs. V_{OFS} vs. $I_{DD}@2V$

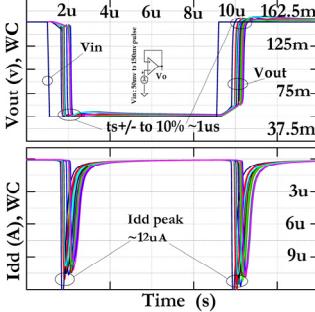


Fig. 18. WC $\tau_{s+/-}$ vs. I_{DD} @ $V_{in} \geq V_{SS}$

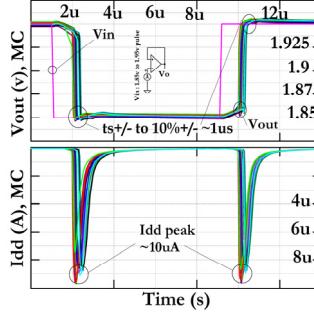


Fig. 19. MC $\tau_{s+/-}$ vs. I_{DD} @ $V_{in} \leq V_{DD}$

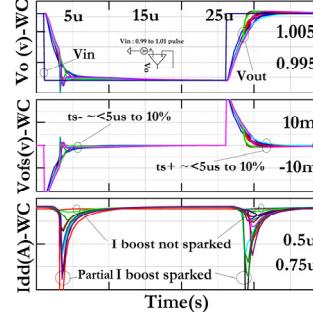
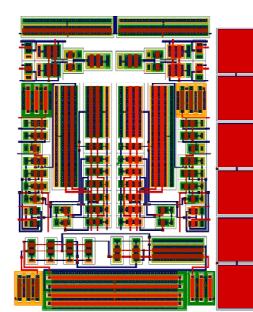



Fig. 20. MC τ_{s+} vs. V_{OFS} vs. $I_{DD}@V_{IN,small}$

a slower decay current towards zero is initiated at the "boost-off" phase (providing the FCTA with more current above its quiescent $2I_Q$ while V_{out} is settling). Thus, τ_s is sped up. Fourth, FCS plus WTA operate rail-to-rail (RR). For example, when V_{IN} nears V_{DD} and P_{w1-3} shuts off, then $P_{w9,17}$ remain off, which inhibits WTA_N from initiating a false 'boost-on' current. Here, concurrently WTA_P continues monitoring V_{IN} for imbalances even near V_{DD} and furnishing N_{w17} with the 'boost-on' current, through P_{f3} and onto N_{f4-5} and its complementary counter-part P_{f4-5} . Fifth, the proposed WTA can work with minimum V_{DD} of $V_{GS} + 2V_{DSon}$, thus not restricting FCTA's minimum V_{DD} . Sixth, there is flexibility to speed up SR and τ_s by raising WTA's I_Q through for example P_{w1-3} and P_{w11-12} . Seventh, the transient peak current is a multiple of $I_Q \propto f(\mu_P, V_T)$ where μ_P is PMOS mobility, and V_T is thermal voltage. As such, boost-on peak (band) current can be contained by design.

III. SIMULATIONS RESULTS

WC and MC are performed utilizing equivalent device models in BSIM3v3.1 for MOSIS 0.18 μ m CMOS. Table I is specifications comparisons. Figure 2 is I_{DD} MC histogram $74nA < I_{DD} < 100nA$. Figure 3 is WC for I_{DD} vs. V_{IN} showing $83nA < I_{DD} < 94nA$, except for near the rails when one input pair (to FCTA and WTA) shuts off. Figure 4 is input offset voltage (V_{OFS}) MC histogram indicating $-1.8mV < V_{OFS} < +2.6mV$. Figure 5 is MC for input V_{OFS} vs. V_{IN} , where PMOS-NMOS mismatches, highlighted near the rails, would manifest as distortion. Figure 6 is WC for minimum $V_{DD} \sim 0.8V$ via monitoring both input V_{OFS} and I_{DD} . Figure 7 demonstrates a 27 time improvement in output noise, V_{Onoise} , at $\sim 79\mu V/\sqrt{Hz}$ at 1KHz with the band-pass capacitor (C_S) versus $\sim 2.1mV/\sqrt{Hz}$ without C_S . Figure 8 is MC AC response denoting $96dB < Gain < 116dB$ with typical DC gain $A_V \approx 108dB$, $f_u \approx 70kHz$, and $\varphi \approx 80^\circ$. Figure 9 is AC response vs. R_L indicating A_V/R_L of $85dB/10M\Omega$, $65dB/1M\Omega$, and $45dB/0.1M\Omega$. Figure 10 is MC for PSRR showing $-92dB < PSRR < -120dB$. Figure 11 is MC for CMRR showing $-88dB < CMRR < -148dB$. Figure 12 is the WC τ_s to $\pm 10mV$, or $\tau_{s\mp}$, which depicts a 100X to 130X speed enhancement. Here, $100\mu s < \tau_{s\mp} < 130\mu s$ with the boost circuit disabled, and $\tau_{s\mp} \sim 1\mu s$ with boost circuit enabled. Figure 13 is $\tau_{s\mp} \sim 1\mu s$ vs. C_L $10pF < C_L < 100pF$ with a 50mV to 1.95V step at V_{IN-pp} . Figure 14 and 15 are MC, for $V_{DD} = 1V$, applying a 0.95V step at V_{IN-pp} , which indicates $1.2\mu s < \tau_{s\mp} < 1.6\mu s$, and dynamic (transient) $I_{DD-peak} < 10\mu A$, which vanishes in $\sim 2\mu s$. Figure 16 and 17 are WC, for $V_{DD} = 2V$, applying a 1V step at V_{IN-pp} , which shows $0.7\mu s < \tau_{s\mp} < 1.5\mu s$, and dynamic (transient) $I_{DD-peak} < 25\mu A$, which vanishes also in $\sim 2\mu s$. Figure 18 is WC $\tau_{s\mp} \sim 1\mu s$ after applying a 50mV to 150mV step at V_{IN-pp} , indicating $I_{DD-peak} < 12\mu A$ dynamic boosting even near V_{SS} . Figure 19 is MC $\tau_{s\mp} \sim 1\mu s$ after applying a 1.85V to 1.95V step at V_{IN-pp} , indicating dynamic $I_{DD-peak} < 10\mu A$ boosting also near V_{DD} .

The transition zone (gray-zone) between application of a small signal applied at V_{IN} (i.e., no boost current spark or only a partial spark thus slower τ_s) vs. large signal applied at V_{IN} , which is captured in Figure 20. Here is WC $\tau_{s\mp} < 5\mu s$ after applying a $0.99V \rightarrow 1.01V$ step at V_{IN-pp} , with dynamic current $0 < I_{DD-peak} < 0.8\mu A$. Figure 21 is an approximate layout and the rough cell size is $\sim (45\mu m)^2$.

IV. CONCLUSION

Prior art disclosed a method to dynamically increase the bias current and speed of a ultra low current amplifier, whose output noise is reduced by band-passing it (e.g., using a large C_S at the FCTA gain node). This embodiment improves the amplifier's performance by utilizing a rail-to-rail, low V_{DD} , WTA (or maximum-current-selector), that runs fast in current mode, to detect a V_{IN} imbalance upon which the amplifier's bias current and speed are boosted dynamically. The complementary and symmetric structure of the WTA and FCS facilitates rail-to-rail dynamic biasing and improves V_{DD} noise and jitter rejections.

ACKNOWLEDGMENT

My gratitude to Professor Shahriar Mirabbasi at University of British Columbia for his review and comments.

REFERENCES

- [1] A. T. Far, "ultra low power high-performance amplifier", U.S. patent pending Ser. No. 15/451,334
- [2] A. Far, " Low Noise Rail-To-Rail Amplifier Runs Fast at Ultra Low Currents And Targets Energy Harvesting," *2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)*, Ixtapa, 2017,
- [3] A. T. Far, "Class AB Amplifier With Noise Reduction, Speed Boost, Gain Enhancement, and Ultra Low Power," *2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS)*, Puerto Vallarta, 2018,
- [4] E. Seevinck and R. J. Wiegerink, "Generalized translinear circuit principle," in *IEEE Journal of Solid-State Circuits*, vol. 26, no. 8, pp. 1098-1102, Aug 1991
- [5] Y. Tsuruya *et al.*, "A nano-watt power CMOS amplifier with adaptive biasing for power-aware analog LSIs," *ESSCIRC (ESSCIRC)*, 2012 Proceedings of the, Bordeaux, 2012, pp. 69-72
- [6] Allen P.E. , "Analog integrated circuit design", 1st. Ed., John Wiley & Sons, New York, 1997

Ali Far received his B.S. in EECS from UC Berkeley; and MSEE, MBA, Juris Doctor in Law, and M.A. in Psychology, all from Santa Clara University. He is working on his M.A. in Philosophy at SFSU. He has more than 20 years of analog IC design experience in Silicon valley where he worked at Plantronics, PMI (ADI), MPS (MaxLinear), MVT (Creative Labs), and TelCom (Microchip) where he was Vice President of Design. He has 10 years of technology investment banking experience in Wall Street, where he worked at Prudential Securities, Galleon, and Spherix where he was Technology Analyst. Ali has published a dozen papers in IEEE, has 14 patents and some pending in the area of analog ICs, and is currently researching ultra low power analog for energy harvesting.