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Abstract

Recent work has shown how to augment any CAS-based
concurrent data structure to support taking a snapshot of the
current memory state. Taking the snapshot, as well as loads
and CAS (Compare and Swap) operations, take constant
time. Importantly, such snapshotting can be used to easily
implement linearizable queries, such as range queries, over
any part of a data structure.

In this paper, we make two significant improvements over
this approach. The first improvement removes a subtle and
hard to reason about restriction that was needed to avoid a
level of indirection on pointers. We introduce an approach,
which we refer to as indirection-on-need, that removes the
restriction, but yet almost always avoids indirection. The
second improvement is to efficiently support snapshotting
with lock-free locks. This requires supporting an idempotent
CAS. We show a particularly simple solution to the problem
that leverages the data structures used for snapshotting.

Based on these ideas we implemented an easy-to-use C++
library, VERLIB, centered around a versioned pointer type.
The library works with lock (standard or lock-free) and CAS
based algorithms, or any combination. Converting existing
concurrent data-structures to use the library takes minimal
effort. We present results for experiments that use VERLIB to
convert state-of-the-art data structures for ordered maps (a
B-tree), radix-ordered maps (an ART-tree), and unordered
maps (an optimized hash table) to be snapshottable. The
snapshottable versions perform almost as well as the original
versions and far outperform any previous implementations
that support atomic range queries.
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rent algorithms.
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1 Introduction

The ability to query a concurrent data structure atomically
across multiple locations has many applications, such as
searching for all keys within a range. Supporting such multi-
point queries has therefore garnered significant interest over
the past decade [1, 2, 4, 6, 14, 16, 18, 27, 28, 37, 45, 47, 51,
62, 64]. Multi-point queries can be supported with atomic
snapshots of the memory state. Recent work [62] (hence-
forth the WBB+ approach) has shown how to efficiently
support such snapshots for concurrent data structures that
use loads and compare-and-swaps (CASs) on shared memory.
The approach uses version lists [53] and maintains all the
(asymptotic) time bounds on data structures it is applied to.
It is reported to be efficient in practice [62] outperforming
prior methods.

In this paper, we make two significant improvements over
the WBB+ approach, one that avoids a subtle restriction on
how pointers are used that is needed to avoid a level of indi-
rection, and the second is to support multiversioning with
lock-free locks [8]. The first is difficult because of sharing
of meta-data on objects being pointed to, and the second
because previous technique for lock-free locks did not sup-
port a CAS operation while CAS is at the heart of the WBB+
approach. Furthermore, we abstract the ideas into a simple
library interface for supporting snapshotting, almost always
without indirection, and for easily combining the approach
with lock-free locks.

Avoiding indirection with multiversioning is critical for
performance since it can avoid an extra cache miss on every
access.! The difficulty of avoiding indirection in a general
and lock-free manner is inherent to almost all concurrent
approaches that are based on version lists. In particular a
version list maintains a historic list of values stored at a loca-
tion, and each link in the list (version) contains the value and
two pieces of meta-data, a timestamp of when that value was
written, and a pointer to the previous version (see Figure 1a).
Accessing even the most recent value therefore requires first
reading the head of the list and then indirectly the value
itself. Storing the most recent value directly is difficult in a
lock-free setting because of the need to update the version
(value, timestamp and previous pointer) atomically.

Leveraging earlier work on a specific concurrent binary
tree data structure [28], WBB+ suggest an alternative to get
around this problem when values are always pointers, which

10ur experiments show up to a factor of two improvement by avoiding
indirection.
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Versi‘on List

<—|prev| =5 | val |<—|prev| t=7| val | <-|prev| t=0| val |
(a) indirect

|prev| t=3| k=4 | left |right| |prev| t=8| k=8 | left |right|

|prev| t=5| k=6 | left |right |1?—|preth=?| k=5 | left |right|

(b) direct

Figure 1. Avoiding indirection in a binary tree by putting
version links on the node being pointed to. Structures in
orange are tree nodes, with key k, and in green are version
links where prev means previous and t is the timestamp. The
problem with removing indirection is sharing. For example,
the nodes with k = 4 and k = 8 both point to the node
with k = 5, and seem to need different timestamps and prev
pointers. In this case, it is OK and the timestamp 7 with prev
pointing to k = 6 is correct since (t = 0) < (t =7) < (¢ = 8).

is to store the meta-data on the object being pointed to. How-
ever this means, in general, an object cannot over time have
two different pointers point to it since then the meta-data
could be different for each (see Figure 1b). They show, how-
ever, that in some cases this sharing is not problematic and
define a property, called recorded-once, which limits the use
of pointers to avoid improper sharing of meta-data. WBB+
point out that any data structure can be converted into a
recorded-once form. Unfortunately, the recorded-once re-
quirement is subtle and many algorithms require non-trivial
changes to make them recorded-once, often requiring ex-
tra copying. All the experiments they reported were for
recorded-once variants of data structures.”

Our first contribution is greatly simplifying avoiding in-
direction by supplying an interface for snapshotted (multi-
versioned) pointers that does not require the recorded-once
condition. The approach avoids indirection in most cases,
and when indirection is added, gets rid of it quickly via a
shortcut. This is all done under the hood and is invisible to
the user. The key ideas here are (1) a light-weight check for
when it is safe to avoid indirection, which is possible in the
majority of cases, and (2) detection of when indirection is no
longer needed and safe removal of indirection at that time.
We refer to this approach as indirection-on-need.

The second improvement we make is with respect to using
locks, and in particular lock-free locks (i.e., implementations

2The changes were small, but subtle, requiring an expert to make them.
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of locks that guarantee progress even if processes stall or fail).
The idea of a lock-free lock is to have processes help each
other run the critical sections when they need a lock that
is taken. The idea dates back 30+ years [5, 60] but has only
been made practical recently [8]. The recent work has shown
that lock-free locks can far outperform standard locks when
a machine is oversubscribed—i.e., more software threads than
hardware threads.

The difficulty with lock-free locks is that when helping,
multiple processes can be running the same code, but the
code needs to appear as if it ran exactly once: referred to
as idempotence [15, 21]. Recent research has shown how to
implement idempotence cheaply [8], but the approach does
not support an idempotent CAS. CAS is difficult because it is
hard to tell if a CAS succeeded or not since it could have failed
either due to another process running the same instance of
a critical section, in which case, if any one succeeds, they
should all succeed, or due to a different instance. It is known,
theoretically, how to implement an idempotent CAS [3, 10],
but with significant practical cost and requiring a double-
word-width CAS.

In this paper we show, perhaps surprisingly, that in con-
junction with multiversioning an idempotent CAS can be
implemented at almost no additional cost and in a simple
manner. In particular the method for timestamping in the
WBB+ approach can be overloaded to keep track of who
succeeded on the CAS allowing all helpers to see the same
result. The approach only requires a single-word CAS.

Based on these ideas we have developed and implemented
an easy-to-use C++ library called veErLIiB. The library re-
volves around a versioned pointer type, which can be used
for both lock-based and CAS-based concurrent data struc-
tures, as well any combination. As with atomic locations in
many programming languages, the versioned pointer sup-
ports atomic loads, stores, and CASes. The user can convert
their existing concurrent data structure to use VERLIB with
only a couple changes: (1) replacing atomic locations holding
pointers that need to be part of the snapshotted state with
versioned pointers, and (2) inheriting a “versioned” class into
any objects pointed to by such pointers. Then the user can
wrap a collection of loads in a with_snapshot and all the
loads will see an atomic view—i.e., the state of the versioned
pointers at some fixed point in time.

Once a concurrent data structure is modified to use VERLIB,
compiler flags can be set to run it either with or without mul-
tiversioning, and either with lock-free versions of the locks
or standard versions. If used without multiversioning, then
loads within a with_snapshot are not atomic. The library
also supports different timestamping techniques, including
both hardware timestamping and software approaches.

We have converted several state-of-the-art concurrent
data structures to use this approach, including a doubly
linked list, a hash table, an adaptive radix tree (ART) [40], and
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a B-tree. All but the hash table are taken from the FLocK li-
brary® [8], and the hash table uses array bucket copying [20].
We believe our baseline implementations are the fastest or
competitive with the fastest current implementations for
sorted lists, sorted sets, radix-sorted sets and unsorted-sets.
In the paper, we present several experimental results compar-
ing the different data structures, with the different settings of
the flags mentioned above, and under a variety of workloads.
The workloads include various mixes of updates (inserts
and deletes), finds, range queries, and multi-finds. We also
vary the data structure sizes and the skewness of the key
distribution using a Zipfian distribution. We then compare
performance to some existing data structures that directly
support range queries.

The experiments demonstrate several points. They show
that the cost of versioning is typically small. They show that
indirection-on-need is much more efficient than using indi-
rection, while not requiring changes to algorithms to make
them recorded-once. They show that combining multiver-
sioning with lock-free locks is efficient, performing much
better than standard locks when oversubscribed. And they
show that software approaches to timestamping are almost
as good as hardware timestamps.

The contributions of the paper include:

e A new indirection-on-need approach for version lists
that mostly avoids indirection, while not requiring that
objects are only recorded-once.

o Efficient and full support of versioned pointers inside
of both blocking and lock-free locks. This includes a
new mechanism to support an idempotent CAS.

e A easy-to-use portable library, VERLIB, for adding ver-
sioning to existing or new concurrent data structures.

o The first B-tree we know of that is lock-free and ver-
sioned. It is also significantly faster than previous data
structures that support linearizable range queries.

e First versioned radix tree, whether lock-free or not.

o A collection of experiments demonstrating the various
tradeoffs of our approaches including the first compar-
ison we know that compares a variety of timestamping
approaches.

2 Related Work

Multiversioning using version lists dates back to the 70s [53]
and is often used for efficiently supporting read-only trans-
actions in databases [11, 17, 22, 25, 30, 38, 41, 46, 48—50, 52—
54, 66]. None of this database work considers multiversioning
concurrent data structures, and only one [30] is lock-free
and it sequentializes commits.

More recent work has considered efficient multi-point
read-only operations in the context of concurrent data struc-
tures. These techniques most often support atomic single
point updates and atomic multi-point queries and are mostly

3A library for lock-free locks
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data structure specific. Range queries on ordered sets (maps)
have been studied extensively. Brown and Avni [16] gave
an obstruction-free range query for k-ary search trees. Avni,
Shavit and Suissa [4] described how to support range queries
on skip lists. Basin et al. [6] described a concurrent imple-
mentation of a key-value map that supports range queries.
Fatourou, Papavasileiou and Ruppert [28] gave a persistent
implementation of a binary search tree with wait-free range
queries. The last two both use version list. Winblad, Sagonas
and Jonsson [64] also gave a concurrent binary search tree
that supports range queries.

Researchers have also taken steps towards the design of
general techniques for supporting multi-point queries that
can be applied to classes of data structures. Petrank and Tim-
nat [51] described how to add a non-blocking scan operation
to non-blocking data structures such as linked lists and skip
lists that implement a set abstract data type; scan returns the
state of the entire data structure. Updates and scan opera-
tions must coordinate carefully using auxiliary snap collector
objects. Agarwal et al. [1] discussed what properties a data
structure must have in order for this technique to be applied.
Chatterjee [18] adapted Petrank and Timnat’s algorithm to
support range queries. Arbel-Raviv and Brown [2] described
how to implement range queries for concurrent set data
structures that use epoch-based memory reclamation.

As described in Section 4, WBB+ describe a general ap-
proach to support snapshots for any concurrent algorithm
that uses cases and loads to access shared memory. It intro-
duces the idea of set-stamp helping. Nelson-Slivon, Hassan
and Palmiery [45] describe a technique for supporting range
queries on a variety of ordered data structures (e.g. linked list,
skip list and binary search tree). Kobus and Kokociriski, and
Wojciechowski describe a linked-list data structure that sup-
ports arbitrary snapshots well as atomic batch updates [37].
Sheffi, Ramalhete and Petrank present lock-free data struc-
tures supporting linearizable range queries that also bound
memory usage by aborting long-lived queries that force the
system to hold onto too many old versions [57]. All these
use version lists and the last one also uses set-stamp helping.

Several works have studied removing a level of indirection
in transactional memory systems, where the main purpose is
to avoid extra cache misses. Harris et. al. [32] reduce the two
levels of indirection required by DSTM [35] to one in the
common case when there is no ongoing transaction involv-
ing a location. Marathe et. al. [43] improve this to one level in
all cases. Both approaches are obstruction-free. The Cicada
system [41] completely removes indirection in certain cases,
but requires locks. Furthermore it can only avoid indirection
for the first value written to a location (we do not have this
restriction). None of these system store the meta-data on the
target of a pointer, and hence none have to deal with the
issue of sharing meta-data when there are multiple point-
ers to an object, which we need to handle. Shortcutting of
indirection is also supported by Cicada. Again this is only
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// a versioned pointer to object of type T
struct versioned_ptr<T> {
versioned_ptr(T v); // constructor with value v
T load(); // read the value
void store(T v); // store a new value
bool cas(T old_v, T new_v); }; // compare and swap

// inherited in objects pointed to by versioned pointers
struct versioned;

[ I e N I N

9 | // function f applied on an atomic snapshot
// where R is the return type of f
R with_snapshot(F f);

// The following is only needed for lock-free locks
T* flck::New<T>(args); // idempotent memory allocation
void flck::Retire<T>(Tx);

T flck::with_epoch(F f);

| struct flck::atomic<T>; ‘

struct flck:lock {
T try_lock<F> (F f); // f is critical section returning type T
T with_lock<F> (F f); }

Algorithm 2. The vERLIB interface. C++ template declara-
tions for F and T left out.

under a lock. We note that the Cicada approach does have
the advantage that it works for arbitrary values while ours
is just for pointers.

The idea of lock-free locks was introduced by Turek, Shasha
and Prakash [60] and independently by Barnes [5]. Both ap-
proaches use helping and allow arbitrary nesting of locks,
and, as long as there are no lock cycles, ensure that the
code runs in a lock-free manner—i.e. that the system will
make progress for any schedule. The approaches were widely
considered to be impractical due to their approach to idem-
potence, requiring effectively a context switch on every read
and write. Therefore, most lock-free data-structures have
instead used custom approaches for helping [9, 23, 26, 29, 31,
34, 56, 61, 65]. Ben-David, Blelloch and Wei [8] developed
a much more efficient approach to idempotence, outlined
in Section 4. We know of no work prior to this paper that
combines lock-free locks and multiversioning.

Researchers have studied reducing the memory required
by multiversioning [9, 13, 42, 57, 63]. In this paper, we use a
simple epoch based collector, but we expect these approaches
can also be applied.

3 VERLIB

Here we present the rather minimal VERLIB interface. Al-
though presented and implemented in C++, it should not be
hard to embed the ideas in libraries for other programming
languages. Our implementation is available in the following
repository: https://github.com/cmuparlay/verlib.

The interface is listed in Figure 2. It consists of two classes:

e A versioned_ptr<T> class which is used to store ver-
sioned pointers to objects of type T.

e A versioned class that must be inherited by every
type T that is used in a versioned_ptr<T>. It has no
user accessible fields.

The library also supports the function: with_snapshot(f),
which takes a thunk (i.e. a function without arguments) f and
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runs it such that all calls to 1oad() on a versioned pointer
return values at a fixed point in the linearized order of up-
dates which falls between the invocation and response of the
with_snapshot. In other words, the loads in f on versioned
pointers appear as if they ran on a snapshot of memory. The
with_snapshot(f) function returns the value returned by f.
If the structure is to be used with lock-free locks (not
required) then it must use FLock locks, meaning that all
std: :atomic<T> types (i.e. mutable shared locations hold-
ing values of type T) must be replaced with flck: :atomic,
and any code that allocates or frees within a lock must use the
FLOCK idempotent memory management routines. Note that
if not using lock-free locks, any safe memory reclamation
scheme can be used. Currently VERLIB implements a store
with a load-and-cas. This means that concurrent stores and
CASes to the same location will not necessarily linearize.

Cost Bounds. In the following discussion, the term “steps”
refers to the number of machine instructions executed. The
store and cas operations each take a constant number of
steps.? The load operation outside a with_snapshot takes
a constant number of steps, and inside, the number of steps
is at most proportional to the number of store and cas
operations on the same versioned pointer that are concurrent
with the containing with_snapshot. The overhead of the
with_snapshot is a constant additive number of steps, and
if using opTTS (one of our timestamping schemes) then the
thunk f in a with_snapshot(f) might be run twice.

3.1 vERLIB Example: Doubly Linked List

As an example of how to use the interface, we present the
code for a doubly-linked sorted lists [8] that supports snap-
shots. In addition to insertions, deletions and finds, the snap-
shots allow for atomic range queries and any other queries
involving a snapshot of the state of the list. We present
the code for insertions and range queries in Algorithm 3.
Usages of the VERLIB library are marked in red. The code
supports lock-free locks using FLock, but could also use
standard locks, in which case all the code in blue can be re-
placed with generic versions (e.g., std: :mutex: : try_lock,
std: :atomic and any safe memory reclamation scheme).
Each node of the list holds a key and value, previous and
next pointers, and a flag indicating whether the node has
been removed. The versioned_ptr on (line 3) indicates that
the next pointer should be versioned (since it is used in an
atomic snapshot). The versioned class needs to be inherited
for any class X that is used as versioned_ptr<X> (line 1).
The range implements an atomic range query from key
k1 (inclusive) to key k2 (exclusive). It finds the first key
greater or equal to k1 using find_node, and then continues
traversing the list while pushing keys onto result until

4If used with FLock’s lock-free locks and because of the way it avoids ABA
with tagging, in the infrequent event that the tags run out, then the store
and cas can take longer.
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1 | struct node : verlib::versioned, flck:lock {

2 Key k; Value v;

3 verlib::versioned_ptr<node> next;

4 flck::atomic<node*> prev; // not versioned

5 flck::atomic<bool> removed; }; // not versioned
6 | nodex find_node(nodex head, Key k) {

7 node* cur = (head->next).load();

8 while (k > cur->k) cur = (cur->next).load();

9 return cur; }

10 | std::vector<Key> range(node* head, Key k1, Key k2) {
11 return verlib::with_snapshot([=] {

12 std: :vector<Key> result;

13 node* cur = find_node(head, k1);

14 while (cur->k < k2) {

15 result.push_back(cur->k);

16 cur = (cur->next).load(); 3}

17 return result; }); }

18 | bool insert(nodex head, Key k, Value v) {

19 return flck::with_epoch([=] {

20 while (true) {

21 nodex next = find_node(head, k);

22 if (next->k == k) return false; // already there
23 nodex prev = (next->prev).load();

24 if (prev->k < k && prev->try_lock([=] {

25 if (prev->removed.load() || // validate
26 (prev->next).load() != next)

27 return false; // try again

28 node* cur = flck::New<node>(k,v,next,prev,false);
29 prev->next.store(cur); // splice in

30 next->prev.store(cur);

31 return true;}))

32 return true;}});} // success

Algorithm 3. Using VERLIB for a sorted doubly-linked list
with atomic range queries. Uses of VERLIB are marked in red.
Uses of rFLock lock-free locks are marked in blue and, if us-
ing standard locks, can be replaced with standard C++ locks,
std::atomic and any safe memory reclamation scheme.
Code for find and remove can be found in the full version
of the paper.

finding a key greater or equal to k2. We assume the list has
a sentinel infinite key at the end. The with_snapshot takes
as its only argument a thunk f (lambda with no argument)®
and runs it such that all its loads see an atomic view of the
memory state (i.e. of all versioned pointers). The range query
will therefore be atomic (i.e., linearizable with updates). Note
that only the next pointer needs to be versioned since only
it is followed in the query.

The insert searches for the first node next with a key
greater or equal to k and tries to acquire a lock on its previous
node (prev). If the lock is successfully acquired, prev has
not been removed, and prev->next still points to next, the
algorithm allocates a new node and splices it in. Otherwise it
makes another attempt by repeating in the while loop. The
lck->try_lock(f) from the rLock library attempts to take
the lock and if successful runs the thunk f. It returns true if
successful and the thunk returned true.

4 Background on WBB+

Here we review the WBB+ approach for snapshotting [62]
since we build on it. The approach is designed to support

5In C++ “[=] { body }” creates a lambda with no arguments where the
free variables of the body are captured by value.
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struct versioned {};

1

2 | struct ver_link { // Alink in a version list

3 std::atomic<long> time_stamp;

4 ver_linkx prev_version;

5 void*x value; };

6 | // Timestamps

7 | std::atomic<long> global_stamp;

8 | const long tbd = -1; // to be determined stamp
9 | thread_local long local_stamp = -1;

10 | void take_snapshot() { // increment and return old timestamp
11 long stamp = global_stamp.load();

12 global_stamp.primcas(stamp,stamp+1);

13 return stamp;}

14 | template <typename F> // Run f on a snapshot

15 | auto with_snapshot(F f) {

16 local_stamp = take_snapshot(); // set local_stamp

17 auto r = f(); local_stamp = -1; return r;}

18 | template <typename V> // Versioned pointer type

19 | struct versioned_ptr {

20 std::atomic<ver_link*> v;

21 ver_linkx set_stamp(ver_linkx ptr) {

22 if(ptr->time_stamp.load() == thd)

23 ptr->time_stamp.primcas(tbd, global_stamp.load());
24 return ptr;}

25 Vx read_snapshot(long timestamp) {

26 ver_linkx head = set_stamp(v.load());

27 while (head->time_stamp.load() > timestamp)

28 head = head->prev_version;

29 return (V*) head->value; }

30 bool primcas(Vx old_v, Vx new_v) {

31 return v.primcas(old_v, new_v); }

32 | public:

33 versioned_ptr(Vx ptr) : v(New<ver_link>(zero, nullptr, ptr}) {3}
34 ~versioned_ptr() { Retire<ver_link>(v.load()); }

35 V* load() {

36 if (local_stamp != -1) return read_snapshot(local_stamp);
37 else return (Vx) set_stamp(v.load())->value;}

38 bool cas(Vx old_v, V* new_v) {

39 ver_linkx old_1 = set_stamp(v.load());

40 if (old_v != old_l->value) return false;

41 if (old_v == new_v) return true;

42 ver_linkx new_l = New<ver_link>(tbd, old_1l, new_v);
43 if (primcas(old_1l, new_1)) {

44 set_stamp(new_1);

45 Retire<ver_link>(old_1);

46 return true; }

47 set_stamp(v.load());

48 Retire<ver_link>(new_1);

49 return false; }

50 void store(Vx new_v) {cas(load(), new_v);}

51 |} // end versioned_ptr

Algorithm 4. The VERLIB interface supported using the
WBB+ approach with indirection.

taking atomic snapshots of the state of the memory of con-
current algorithms. The approach can be applied to any con-
current algorithm that accesses shared memory through
locations supporting loads and compare-and-swaps (CASs).
Stores can be implemented with a load and then CAS. To
support snapshots, the user replaces all locations they want
to included in a snapshot with “versioned” locations®. Ver-
sioned locations support a read_snapshot operation that,
given a snapshot handle, returns the value of that location for
that snapshot. The interface then supplies a take_snapshot

®The authors refer to them as CAS objects and versioned CAS (vCAS)
objects.
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operation that returns a handle to a snapshot of the state of
all versioned locations.

The approach is implemented using version lists. It keeps
a global timestamp and each versioned location keeps a re-
verse time-ordered list of all the successful CAS operations
applied to it. A versioned location points to the head of its
list. Each link in the list contains a value, a timestamp and
a previous pointer (Figure 1a). In the following discussion
we use PRIMCAS to indicate a machine-level CAS and cas
to indicate a user level CAS on a versioned location. The
complete C++ code for the approach, modified to support
the VERLIB interface, is given in Algorithm 4.

The cas operation appends a new version onto the front
of the version list by allocating a new version link (Line 42),
pointing its previous pointer to the current version, and us-
ing a PRIMCAS to try to install it in the head pointer (Line 43).
If there are concurrent cAs operations only one will succeed.
The tricky part is installing the timestamp on the link. In-
stalling the stamp before or after the PrRiMcAs can lead to
incorrect results. To fix this, WBB+ introduce a technique,
which we will refer to as set-stamp helping, that has all op-
erations help set the timestamp at the head of a version list.
This technique is a simplification over previous solutions that
use double-compare-single-swap [2]. The set-stamp helping
approach is implemented by initially setting the new ver-
sion’s timestamp to a special TBD (to be determined) value
(Line 42). It then links in this new version with a PRIMCAS.
If successful, it sets the new version’s timestamp by read-
ing the current global timestamp and using a PRIMCAS to
update the new version’s timestamp from TBD (Line 47). To
ensure the timestamp for the previous version is set, before
appending the new version, the cas operation also helps set
the previous version’s timestamp (Line 39). Any reads or
readSnapshots also help set the timestamp if they encounter
a TBD. A readSnapshot is implemented by following the ver-
sion list of the object to the first link with a timestamp at or
earlier than the one requested (Line 27). The take_snapshot
operation simply increments the global timestamp returning
the old one (Line 10).

The time for read, cas and takeSnapshot is constant. There-
fore the asymptotic time of a concurrent algorithm is not
affected by using a versioned location. The time for a read-
Snapshot is at most proportional to the number of cas oper-
ations on the location between when the takeSnapshot was
applied and the readSnapshot is called on that timestamp
(i.e. the depth of the desired version in the version list).

The with_snapshot is simply a wrapper function that
calls take_snapshot and stores the resulting snapshot han-
dle in a thread local variable called 1ocal_stamp. Note that
in this code, the structure versioned is empty. Fields will
be added to support indirection-on-need.

The WBB+ approach as just described, and in the code,
requires a level of indirection through a version link to read
each location. The WBB+ paper describes an optimization
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that avoids the indirection. The idea is to store the timestamp
and the pointer to the previous version directly in each data
structure object—i.e. the objects a location points to, such as
a node of a tree or linked list. The versioned location then
points directly to the object instead of indirectly through a
version link (Figure 1b). The problem is that two pointers
to the same location will share the timestamp and previous
version data. WBB+ observed that such sharing is safe if the
data structure is recorded-once—meaning that each pointer
can only be used as the new field of a cAs at most once [62].
Any data structure can be converted so that all objects are
recorded-once, but this conversion is often non-trivial and
can cause extra cost. Our goal is to remove the restriction.

5 Indirection-on-need

In this section, we introduce a new mechanism, which we
call indirection-on-need, for avoiding the level of indirection
added by the baseline WBB+ approach. As in the WBB+
approach, we augment each data structure object with addi-
tional fields to store version list meta-data which consists of
a timestamp field and a pointer to the previous version (see
Figure 1b). This can be done through our library by inherit-
ing from the vp: versioned class (e.g. Line 1 of Algorithm 3).
Our mechanism differs from the one in WBB+ in two main
ways. First, when a versioned pointer is written to, our li-
brary automatically determines if indirection can be avoided
and does so whenever possible. Second, we show that any
indirection that is added is only needed temporary and our
library automatically removes it when it is no longer needed.

For the first contribution, we identify two cases where
indirection can be avoided. Suppose O is a newly allocated
object and we wish to change a versioned pointer vp to point
to it for the first time. In this case, our library sees that the
two meta-data fields of O are unused and initializes them to
store version list meta-data for vp (Lines 45 and 48 of Algo-
rithm 5). Then it changes vp to point directly to O (Line 49).
For this to work, we make one reasonable restriction, which
is that when an object O is allocated by a process, a versioned
pointer to it must be written using a store or cas before any
other process can see it—i.e., no side channels can be used to
communicate the pointer to O. This is to avoid races among
processes each trying to be the first to write a pointer to a
newly allocated object.

In the second case, even if O is not a newly allocated
object and its meta-data fields were already set by another
versioned pointer, we can still initialize a new versioned
pointer vp to point directly to O. This is because O is the
oldest version in vp’s version list, so it just needs to contain
enough information to indicate this. In particular, we just
need to make sure any read_snapshot operation (Line 25)
on vp never tries to follow O’s prev_version pointer. This
is the case because O’s timestamp was set before vp was
initialized, so any call to read_snapshot on vp will have
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1 | struct versioned {

2 std: :atomic<long> timestamp;

3 ver_link* prev_version;

4 versioned(ver_link* prev) : // constructor

5 timestamp(tbd), prev_version(prev) {3} };

6 | struct ver_link : versioned {

7 voidx value;

8 ver_link(ver_link* prev, void* value) : // constructor
9 versioned(prev), value(value) {3} };

10 | template <typename V>

11 | struct versioned_ptr {

12 std::atomic<ver_link*> v;

13 // adds/strips/tests bit of pointer to mark as indirect
14 ver_linkx add_indirect(ver_link* ptr);

15 ver_linkx strip_indirect(ver_linkx ptr);

16 bool is_indirect(ver_link* ptr);

17 static Vx get_value(versioned* ptr) {

18 if (!is_indirect(ptr)) return (Vx) ptr;

19 return (Vx) ((ver_link*) strip_indirect(ptr))->value; }
20 void shortcut(ver_link*x ptr) {

21 ver_link* ptr_ = strip_indirect(ptr)

22 if (ptr_->timestamp.load() <= done_stamp)

23 if (v.compare_exchange_strong(ptr, (ver_link*) ptr_->value)
24 Retire<ver_link>(ptr_); }

25 Vx read_snapshot(ver_linkx head, long timestamp) {

26 while (strip_indirect(head)->timestamp.load() > timestamp)
27 head = strip_indirect(head)->prev_version;

28 return get_value(head); }

29 | public:

30 versioned_ptr(V* ptr) : v((ver_linkx) ptr) {

31 if (ptr != nullptr && ptr->timestamp.load() == tbd)
32 ptr->timestamp = zero_stamp; }

33 Vx load() {

34 ver_link* head = v.load();

35 shortcut(set_stamp(strip_indirect(head)));

36 if (local_stamp != -1)

37 return read_snapshot(head, local_stamp);

38 else return get_value(head); }

39 bool cas(Vx exp, V*x ptr) {

40 ver_link* old_v = v.load();

41 if (exp == ptr) return true;

42 if (get_value(old_v) != exp) return false;

43 set_stamp(old_v);

44 ver_linkx new_v = (ver_linkx) ptr;

45 bool indirect = (ptr==null || ptr->timestamp.load() != tbd);
46 if (indirect)

47 new_v = add_indirect(New<ver_link>(old_v, new_v));
48 else ptr->prev_version = old_v;

49 bool succeeded = primcas(old_v, new_v);

50 if (!succeeded && is_indirect(old_v)) {

51 old_v = ((ver_linkx) strip_indirect(old_v))->value;
52 succeeded = primcas(old_v, new_v); 3}

53 if (succeeded) {

54 set_stamp(new_v);

55 if (is_indirect(old_v))

56 Retire<ver_link>(strip_indirect(old_v));

57 if (indirect) shortcut(new_v);

58 return true; }

59 if (indirect) Retire<ver_link>(strip_indirect(new_v));
60 set_stamp(v.load());

61 return false; }

62 |3} // end versioned_ptr

Algorithm 5. The vERLIB interface implemented using
indirection-on-need. Variables and functions unchanged
from Figure 4 are omitted.

timestamp greater than or equal to O’s timestamp. Therefore,
the read_snapshot will never traverse past O and it will
treat O as if it was the end of the version list. Therefore, it is
safe to not add any indirection when initializing versioned
pointers, effectively allowing multiple versioned pointers to
share the same meta-data.

206

PPoPP ’24, March 2-6, 2024, Edinburgh, United Kingdom

If neither of the previous two cases hold when writing
to a versioned pointer, then we create a ver_link object
as before and have the versioned pointer point indirectly
to O via this ver_link. Our library steals a bit from the
pointer to distinguish between direct and indirect versioned
pointers. See the cas operation in Algorithm 5 for the full
implementation of this approach.

This approach is very effective in practice because in many
commonly used concurrent data structures [26, 33, 44], indi-
rection is only added when deleting a node since inserts al-
ways write newly allocated nodes. Furthermore, each update
operation usually only performs a small number of pointer
swings and most of the writes are initialization writes, which
do not add any indirection with this approach. However, the
indirect version links added by deletes eventually build up,
and we need an efficient strategy for shortcutting them out.

Shortcutting. To identify indirect ver_links that can be
safely shortcutted out, the idea is to make use of the memory
reclamation scheme. Memory reclamation is essentially the
problem of determining when an object or a version link is
safe to deallocate. If a versioned pointer is stored indirectly,
and all of the versions in its version list are safe to deallocate
except the current one, then it is safe to shortcut out the
version list by storing the versioned pointer directly. This is
done by the shortcut procedure in Algorithm 5.

In the discussion that follows, we will assume a shared
done_stamp is maintained that is guaranteed at all times to
be no greater than the minimum of the local_stamps of
any ongoing with_snapshots as well as the global stamp.
This ensures that no current or future read_snapshot will
ask for a version older than done_stamp. In the full version
of the paper, we describe how to maintain the done_stamp
with epoch-based memory reclamation (EBR).

Since all ongoing with_snapshots have timestamps no
less than done_stamp (by assumption) we can determine if a
version list is no longer needed by checking if the timestamp
of the current version is no more than done_stamp. This
check is performed by the shortcut function (Line 22). If
the check passes, then no ongoing or future with_snapshot
will access any of the old versions from this list, so it safely
shortcuts out the version link ol (line 23). This causes the
versioned pointer vp to point directly to some object O. Ef-
fectively, this sets O as the tail of vp’s version list. One com-
plication is that v/ might have a different timestamp than O.
We can show that O’s timestamp must be strictly less than
ol’s timestamp because an indirect ver_link is only created
if O’s timestamp is already set. Since all active and future
with_snapshots have timestamp greater than or equal to
ol’s timestamp, none of them can distinguish between O’s
timestamp and vl’s timestamp, so it is safe to use O’s times-
tamp instead. Shortcutting is another situation that results in
multiple versioned pointers safely sharing the same version
list meta-data.
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The shortcut function is called each time an indirect
versioned pointer is loaded and also at the end of each store
and cas. If there are no concurrent with_snapshots, then
store/cas will immediately shortcut out any indirect nodes
that it creates, in which case indirect nodes are only reachable
for a brief moment of time. Shortcutting adds an additional
write to each store/cas, but we see in our experiments that
the benefits almost always outweigh the cost.

This shortcutting technique requires us to make some
additional changes to the versioned pointer’s cas operation.
The primcas on Line 49 can fail not only because another
cas succeeded, but also because an indirect ver_link got
shortcutted out. In the latter case, the value of the versioned
pointer did not change, so we need to retry the primcas on
Line 52. Another subtlety is that the cas needs to know if
it overwrote an indirect pointer and is thus responsible for
retiring it. This check and the subsequent retire is done on
Line 59.

6 Snapshots with Locks-free-Locks
The WBB+ approach to snapshotting works for lock-based

code, as does the indirection-on-need approach just described.

At the end of the section we describe a slightly more effi-
cient version of store that is specialized for the case where
there are no write-write races. This is typically true when
using locks. The WBB+ approach, however, does not work
with the lock-free lock technique of Ben-David, Blelloch and
Wei (8] (FLock). This is because FLock does not allow CAS
to be used inside a lock-free lock’s critical section and CAS
is crucial for the WBB+ approach. In this section, we cover
how to combine snapshots and lock-free locks, including a
technique for implementing an idempotent CAS that is safe
to use with lock-free locks, optimizations to maintaining
timestamps, and a specialized implementation of store.

In the FLOCK approach, alock request takes two arguments:
the requested lock and a thunk containing the critical code to
run when the lock is acquired. A thunk is a closure containing
both the code pointer to the critical section and the values
of captured free variables. When a process acquires a lock,
it leaves a pointer to the thunk on the lock so others can
help run it. When attempting to acquire a lock that is already
locked, the process will help run the thunk stored on the
lock and help reset the lock back to the unlocked state.

The difficult part is helping since multiple threads might
be running the same thunk concurrently, which semanti-
cally should only run once. FLOCK ensures code is idempo-
tent, guaranteeing it appears as if it ran exactly once. The
library-based approach replaces operations on shared mem-
ory (loads, stores, cams’, allocation, and deallocation) with
idempotent versions. It uses a log for each thunk, and en-
sures that (1) for all loads the original thunk and all helpers
read the same value, (2) for all stores and cams only the first

7A limited form of cas that does not return whether it succeeded.
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1 | struct versioned {

2 flck::atomic<long> timestamp; ...} // idempotent link stamp
3 .

4 | std::atomic<long> global_stamp; // non-idempotent global stamp
5 -

6 | struct versioned_ptr {

7 flck::atomic<ver_link*> v; // idempotent pointer

8 .

9 ver_linkx set_stamp(ver_linkx ptr) {

10 long new_s = global_stamp.load(); //not idempotent

11 ptr->time_stamp.cas_nonidempotent(tbd, new_s);

12 return ptr;3}

14 void shortcut(ver_linkx ptr) {

15 ver_linkx ptr_ = strip_indrct(ptr)

16 if (ptr_->timestamp.load() <= done_stamp)

17 if (v.cas_nonidempotent(ptr, (ver_linkx) ptr_->value))
18 Retire_nonidempotent<ver_link>(ptr_); }

20 bool primcas(Vx old_v, Vx new_v) {

21 v.cam(old_v, new_v)

22 return (v.load()==new_v ||

23 new_v->time_stamp.load() != thd);}

24 -

25 void store_norace(Vx ptr) {

26 ver_linkx old_v = v.load();

27 ver_link* new_v = (ver_linkx) ptr;

28 bool indirect = (ptr==null || ptr->timestamp.load() != tbhd);
29 if (indirect) new_v = add_indrct(New<ver_link>(old_v, new_v))
30 else ptr->prev_version = old_v;

31 if (is_indrct(old_v) && primcas(old_v, new_v))

32 Retire<ver_link>(strip_indrct(old_v));

33 else v.store(new_v);

34 if (indirect) shortcut(new_v);}

35 |} // end versioned_ptr

Algorithm 6. Combining snapshotting with lock-free-locks.
Only changes from Figure 5 are shown.

among the original and helpers will have an effect, and (3)
memory allocations and deallocations happen once.

Importantly, the approach does not support a general cas
since it is difficult to determine, in a general and idempotent
way, if a cAs succeeded. Using a cam followed by a load to
check for success does not work since another cam could
succeed between the two operations, making it appear that
the first failed. It is possible to implement an idempotent
cas using a double-word wide regular cas [10], but this is
impractical since it would require that all versioned pointers
be maintained as double words. Furthermore, the approach
is also quite complicated.

Here we describe a simple technique to implement an
idempotent cas that works within the FLock framework
when used with snapshotting. The code is shown in Figure 6
with the redefinition of primcas. The code is deceptively
simple, and the correctness a somewhat subtle. The imple-
mentation relies on the fact that when updating a pointer
with a versioned cas, the timestamp of the new version is
initially set to TBD, and before it is updated again, it must
be set to a real timestamp. This means that a versioned cas
succeeded if and only if either the value in the location is
the same as the new value of the cas, or the timestamp was
set (i.e., the conditions on Lines 22 and 23). This is shown
more formally by the following theorem.
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Theorem 6.1. The primcas on Line 20 of Algorithm 6 and
as used on Lines 49 and 52 of Algorithm 5 implements a lin-
earizable cas.

Proof. In the following, we will use Line x.y to indicate Line
y of Algorithm x. We first note that two concurrent primcass
must have different new values since they both just allocated
new objects on Line 5.47. Therefore, if the caM on Line 6.21
failed, then the check on Line 6.22 will always fail since no
concurrent primcas can be writing the same value. Now
consider two concurrent cas operations and for now just
the first primcas on Line 5.49. Without loss of generality
assume the cam (Line 6.21) of the first cas linearizes first
and succeeds. If the cam of the second cas linearizes after
the first cas runs the check on Line 6.22, then the first cas
passes the check and correctly reports success. However, if
the cam of the second cas succeeds and linearizes before the
first runs the check, then the first will fail the check. This is
exactly the problem with trying to implement a cas with a
caM then load to check. But, in this case, for the second cas
to succeed on its cAM, it must have loaded the result of the
first cam into old_v on Line 5.40. Hence, the first PRIMCAS
properly reports success or failure. A similar argument can
be made for the second primcas on Line 5.52 but here the
old_v is from Line 5.51. However, in this case the timestamp
on old_v must be set since it is an indirect value. O

There is a second problem we found with using lock-free
locks with snapshotting. The problem is that using idempo-
tent operations when accessing timestamps causes a signifi-
cant bottleneck. This is because the timestamp is heavily con-
tended. We show that although using a non-idempotent load
and cAMm to update the timestamp can lead to non-idempotent
execution (different helpers on the same thunk can see dif-
ferent timestamps), this does not effect correctness. We can
therefore use a non-idempotent atomic for the global times-
tamp (Line 4) and also non-idempotent cas in set_stamp
(Line 11) . Note that the timestamp within each version link
(Line 2) needs to be idempotent since the load on Line 28
needs to be idempotent. The use of non-idempotent global
timestamps is justified with the following theorem along
with the fact that with lock-free locks, helpers run in the
same epoch as the original [62]. The proof is in the full ver-
sion of the paper.

Theorem 6.2. Any call to set_stamp on Line 9 of Algo-
rithm 6 can be repeated any number of times by helper opera-
tions without affecting the correctness of versioning.

Another similar optimization can be made to use a non-
idempotent cas and a non-idempotent Retire for shortcutting
(Lines 17-18). This is safe since shortcutting is a “helping”
step anyway (many processes might be attempting a shortcut
at the same time and it has to appear to happen once), so it
is already idempotent.
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Finally we show how to directly implement store on
Lines 25-34, which avoids several steps that would have been
required if a 1load and cas were instead used to implement
the store. However, this version assumes there are no write-
write races—i.e., that locks prevent two processes storing
to the same location concurrently. We therefore refer to it
as store_norace. The code for this direct store is less than
half as many lines as for the cas.

7 Optimistic Timestamps

One of the bottlenecks of multiversioning is incrementing
the shared global timestamp. For this reason, there has been
significant work on reducing the cost of maintaining times-
tamps [11, 24, 36, 41, 55, 59, 62, 67]. On x86-based machines,
the RDTSC instruction implements a hardware timestamp
that is synchronous across cores [36, 55]. This, however, is
not portable, and manufacturers are not guaranteeing the
clock will be synchronous across processing nodes in future
platforms. We present a software optimistic timestamping
technique called opTTS which simplifies the low contention
version-clock proposed in TL2 [24]. Our variant never incre-
ments the timestamp during updates and only sometimes
increments for queries.

The opTTS technique first runs each query optimistically
and only increments the global timestamp if the optimistic
execution aborts. Specifically the execution only needs to
abort if the query comes across a timestamp equal to its own.
The approach runs the query at most twice since the second
run is guaranteed to see a consistent snapshot.

The code for the approach is given in Algorithm 7. It uses
the global_stamp defined in Algorithm 4. The approach
modifies read_snapshot so that after locating the version
with the largest timestamp less than or equal to the current lo-
cal stamp, it checks if that stamp is equal to the current stamp
(Line 5). If so, and if running optimistically, it sets the abort
flag. The approach then modifies the with_snapshot(f) so
that it first runs the query f without incrementing the stamp
(Line 11). It then checks if the query aborted and, if so, in-
crements the stamp and reruns (Line 15). The second run is
guaranteed to produce a linearizable return value because it
is essentially the same as the old with_snapshot implemen-
tation in Algorithm 4. Note that this technique requires f to
be safe to run twice. This is a natural requirement since f is
a read-only query on the data structure. As an optimization,
queries passed to with_snapshot can periodically check the
abort flag and finish early if they see it set.

8 Experimental Evaluation

We apply VERLIB to several concurrent set data structures to
add support for linearizable range queries and groups of k
find operations that act atomically (multi-finds). Our goal is
to (1) measure the overhead VERLIB adds to the original data
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‘thread_local bool aborted, optimistic;

void increment_timestamp(long stamp) {
global_stamp.primcas(stamp, stamp+1);}

1
2
3
4 |// add after Line 27 of Algorithm 5, in read_snapshot

5 |if (strip_indirect(head)->time_stamp.load() == timestamp)
6 aborted = optimistic;

7

8

template <typename F>

auto optimistic_with_snapshot(F f) {

9 local_stamp = global_stamp;

aborted = false; optimistic = true;

auto r = f(); // run optimistically

if (aborted) { // rerun with incremented
aborted = false; optimistic = false;
increment_global_stamp(local_stamp);
r=f0; 3}

local_stamp = -1; return r; }

stamp if aborted

Algorithm 7. Optimistic Timestamping.

structure, (2) measure the improvements from indirection-
on-need with and without shortcutting, and (3) compare
with state-of-the-art concurrent set data structures. We also
compare different timestamping approaches described below.

Setup. Our experiments ran on a 64-core Amazon Web Ser-
vice c6i-metal instance with 2x Intel(R) Xeon(R) Platinum
8375C (32 cores, 2.9GHz and 54MB L3 cache each), and 256GB
memory. Each core is 2-way hyperthreaded, giving 128 hy-
perthreads. We used numactl -i all, evenly spreading the
memory pages across the sockets in a round-robin fashion.
The machine runs Ubuntu 22.04.1 LTS. The C++ code was
compiled with g++ 11 with -03. For memory allocation in
all of our C++ experiments, we used the ParlayLib [12] allo-
cator, which is built on top of Jemalloc. Memory is reclaimed
using epoch-based reclamation. For Java, we used OpenJDK
19.0.1 with flags -server, -Xms50G and -Xmx50G. We report
the average of 3 runs, each of 5 seconds. For Java, we also
pre-ran 3 runs to warm up the JVM.

Data Structures. We report on four data structures im-
plemented in C++ with VERLIB: a B-tree (btree), an adap-
tive radix tree (arttree), a doubly-linked list (d1ist), and a
hashtable. For the first three, we used existing data struc-
tures from the FLock library [7] and applied the modifica-
tions described in Section 3. These three are lock based and
can be run in either blocking or lock-free mode using FLock
or VERLIB. The doubly-linked list code is given in Section 3.1.
The hash table is a cas based implementation that maintains
an array per bucket and copies the array on update [20]. We
set the number of buckets equal to the initial size of the data
structure rounded up to the nearest power of two for fast
hashing. The btree has internal nodes that hold between
4 and 22 child pointers. As in the original arttree [40], the
arttree is byte-based and has three types of internal nodes.
For all four data structures, we implemented multi-finds,
wrapping them in a with_snapshot. For the three ordered
set structures we also implemented range queries.

All of the original data structures required recording more
than once. However, the only place the btree recorded a
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node more than once was at the root, so we created a strictly
recorded-once version to compare to, but not for the others.

We compare these VERLIB data structures with several
state-of-the-art concurrent set data structures: LFCA [64],
Jiffy [37], EpochBST [2], BundledSkiplist [45], BundledC-
itrus [45], LSKN-arttree [39, 40], SB-abtree [58]. The first
three are lock-free and all except the last two support lin-
earizable range queries. LSKN-arttree is a concurrent radix
tree and the others are comparison based ordered set data
structures. We used implementations by the original authors
for all these data structures. We made a small change to the
LSKN-arttree because it originally only supported key-value
pairs that fit in 63-bits. Our VERLIB arttree supports arbitrary
key-value types by storing them at a level of indirection
and we modified LSKN-arttree to do this as well for a fair
comparison. We use the C++ version of most data structures
to be consistent with our implementations. For LFCA and
Jiffy, we were unable to find a reliable C++ implementation
and had to use the Java implementation instead.

Workloads. In our experiments, we vary the following pa-
rameters: (a) data structure size (denoted by n), (b) operation
mix, (c) size of range queries (denoted by s), (d) number of
threads, and (e) the distribution from which keys are drawn.
In most experiments, we initialize each data structure with
n = 10M keys by running a mix of inserts and deletes on
an initially empty data structure. This size was chosen to
make sure the datasturcture does not fit in L3 cache. For
linked lists, we instead use n = 1000 as the default size. In
the timed portion of the code, each thread performs a mix of
operations, consisting of inserts and deletes (done in equal
numbers), as well as either finds, range queries or multi-
finds. We use a universe U of 2n distinct, uniform random
64-bit keys. Keys for all operations (including initialization)
are drawn randomly from U, which ensures that the size
of the data structure remains approximately n throughout
the experiment. Keys are drawn from Zipfian distribution
with parameter ranging from 0 (uniform distribution) to .99
(highly skewed). The Zipfian distribution is used in the YCSB
benchmark [19] to model real world access patterns. Our
range queries search for all keys in the range [a, b] where a is
drawn from U as before and b is chosen so that the expected
number of keys in the range is s.

Timestamps. We experimented with several different tech-
niques for maintaining the global timestamp. Firstly, we
use hardware timestamping with the RDTSC instruction on
x86 [36, 55] (HWTS), which is supported by the machine we
use. This is generally the fastest in our experiments, but not
always. We also use a traditional timestamp increment on
updates [53] (UPDATETS), as well as an increment on snap-
shotted queries [62] (QUERYTS). Our implementation of these
include a tuned delay to reduce contention. We implemented
the optimized timestamping scheme from TL2 [24] (T12-TS),
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Figure 8. Comparing different versioned pointer implementations. Unless otherwise specified, the workload consists of
128 threads performing 20% updates and 80% multi-finds of size 16, with keys drawn from the uniform distribution. The default
size for lists is 1000 and for all other data structure is 10M. d1ist(10x) indicates that its throughput was scaled up by 10x.

$1000 5

2 3 —=— updateTS % 10000 = g —=— LFCA

T 750 queryTS :’>; * =4 —— Jiffy

;‘31 TL2TS & 7500 Z s —»— EpochBST

§ 500 . optTS 2 co00 K 23 —e— BundledSkiplist

o 250 — hwTS 5 3 BundledCitrus

§ —~— NoStamp 5 2500 :CZZ 4— VerlibBtreeOptTS

g 0 =1 2, —*— VerlibBtreeHWTS

= 0 50 100 g 0 §_ 4— VerlibBtreeQueryTS
Update Percentage 24 28 21z ple Q205 oags plzple o2

Figure 9. Comparing different timestamp
implementations when applied to our
versioned hashtable, initialized with 10M
keys. Keys are drawn from an uniform dis-
tribution and each run uses 128 threads.

which reduces the number of increments. Finally we imple-
mented our own simpler variant of the TL2 approach (opTTS)
described in Section 7.

8.1 Results

Indirection-on-need. Figure 8 compares the performance
of the versioned pointer algorithms presented in this pa-
per. Indirect represents the algorithm from Section 6 with-
out the indirection-on-need optimization, NoShortcut uses
indirection-on-need but without shortcutting, and IndOnNeed
uses shortcutting and is the default implementation in VER-
L1B. We also implemented a variant of versioned pointers,
called RecOnce, which never uses indirect nodes and only
works for recorded-once data structures (as with the WBB+
experiments). We applied this to our recorded-once variant
of btree. All these variants use lock-free locks and hardware
timestamping (HwTS). To measure the overhead of versioned
pointers, we also show the original non-versioned data struc-
ture (Non-versioned) in the graphs. Multi-finds on this data
structure are not linearizable (each find can linearize at its
own point).

Overall, across the wide variety of workloads and data
structures shown in Figure 8, the overhead of applying ver-
sioned pointers (with all optimizations) to a Non-versioned
data structure is generally low. It is higher on lists since every-
thing fits in cache and traversing a list is very cheap—hence
the cost of the extra checks is more significant. For arttree,

Range query size
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Figure 10. Range queries. Comparing various data structures supporting
linearizable range queries. Run with 100 threads: 5 update threads, 95 range
query threads, keys drawn from uniform distribution, 10M data structure size

indirection-on-need improves the performance of Indirect
versioned pointers by almost 2x on the left side of Figure 8c.
The shortcutting optimization also consistently helps on
these data structures, especially for read mostly workloads,
although not as much as initially removing indirection. For
btree, IndOnNeed versioned pointers achieves essentially the
same performance as RecOnce, while not requiring the data
structure to be recorded-once. Overall, indirection avoidance
is more important for larger data structure that do not fit in
cache and for read-heavy workloads.

In Figure 8d, we vary the amount of contention by drawing
keys from the zipfian distribution and varying its parameter.
The relative performance of the versioned pointer implemen-
tations generally stayed the same across all contention levels,
although at high contention shortcutting no longer helps.

The remaining experiments use IndOnNeed as the default

implementation of versioned pointers.
Timestamps. Figure 9 compares the five timestamp tech-
niques: QUERYTS, UPDATETS, HWTS, oPTTS and T12-TS. As a
baseline, it also compares with No-Stamp, which never in-
crements the global timestamp, resulting in non-linearizable
snapshots. We applied all six to our lock-free versioned
hashtable. In this experiment, the update rate varies from
0-100% with all other operations being multi-finds of size 16.
To the best of our knowledge this is the first apples-to-apples
comparison among a wide range of timestamp techniques.
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Figure 11. Scalability. Comparing various arttree and btree
implementations. Solid lines used for data structures that
support linearizable range queries, dotted lines used other-
wise. Run with 10M keys, 5% updates, 95% lookups, and keys
drawn from Zipfian distribution (parameter .99). The dotted
vertical line indicates the number of cores on our machine.

Across these experiments, HWTS tends to perform the
fastest because our machine supports a very light-weight
rdtsc instruction for reading the hardware clock. Optimistic
timestamp (opTTS) achieves almost the same performance
as HWTS, indicating that optimistic executions of multi-find
often succeed without having to increment the global times-
tamp. opTTS is slightly faster than TL2-TS due to being
simpler and more optimized for this setting with just read-
only transactions. QUERYTS and UPDATETS perform poorly
in multi-point query heavy and update heavy workloads,
respectively, due to high contention when incrementing the
timestamp. opTTS outperforms HWTS at high update rates
because it does almost no work.

Direct Stores. Section 6 described how to replace a load-
then-cas with a store, avoiding some checks and updates.
We ran experiments with and without this optimization. On
workloads with 50% updates we saw up to a 8% improve-
ment in performance (e.g., on B-trees with 100K keys and
uniform distribution). On workloads with 5% updates the
improvement was negligible, as might be expected since the
optimization only affects the performance of updates.

Range query. Figure 10 compares our versioned btrees
with state-of-the-art data structures supporting linearizable
range queries. Updates and especially range queries on our
versioned B-trees are significantly faster because of the in-
creased cache locality due to the large fanout at internal
nodes and the batching of keys in each leaf. Out of the other
range queriable data structures, only LFCA and VcasChro-
maticTree store a batch of keys in each leaf, but internal
nodes still only have fanout 2. Developing a general and
easy-to-apply library allowed us to apply versioning to faster
baseline data structures than those used in previous work.

Scalability. Figure 11 measures the scalability of our ver-
sioned arttree and btree up to oversubscription. The previous
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arttree | btree | hash | dlist | SB | LSKN
Non-versioned 57.2 44.0 40.7 41.0 67 53
Versioned 69.3 45.1 | 54.6 57.0

Figure 12. Space. Bytes per entry upon initializing with
10 million entries. Includes the size of the key-value pair
(16 bytes), the node meta-data (e.g., size, type, pointers),
the versioning meta-data (next pointer and timestamp) and
allocator overhead. SB = SB-abtree and LSKN = LSKN-arttree.

experiments were run with VERLIB in lock-free mode, and
these graphs also show its performance in blocking mode.
Consistent with previous experiments on lock-free locks [8],
blocking mode tends to be slightly faster before oversub-
scription, but drops severely in performance after oversub-
scription. This motivates the importance of supporting both
versioning and lock-free locks.

We also plot the performance of LSKN-arttree and SB-
abtree, which are state-of-the-art concurrent radix trees and
B-trees, respectively. They both use blocking locks, so they
also slow down after oversubscription. Our VERLIB arttrees
and btrees perform competitively with these data structures
while also being lock-free and supporting linearizable range
queries. When oversubscribed, the performance of SB-abtree
does not degrade as much as our blocking btree. We believe
this is because the SB-abtree takes finer grained locks at the
leaves, instead of at the parent.

Space. Figure 12 gives some numbers for space in terms
of bytes per entry. The space overhead for versioning is
particularly small for btrees since each node is large (up
to 512 bytes), and the versioning metadata (next pointer
and timestamp) is only needed once per node. The other
structures have smaller nodes and hence the space overhead
for the metadata is larger.

9 Conclusion

In conclusion, we present an efficient implementation of
concurrent versioned pointers that is compatible with both
blocking and lock-free locks and is optimized to avoid indi-
rection whenever possible. It is significantly easier to apply
than previous work on versioned CAS objects [62], which
requires the user to often modify their data structure in non-
trivial ways to get good performance. We wrap these ideas
in a VERLIB library and apply it to several data structures to
support linearizable range queries. Experiments show that
these data structures are significantly faster than existing
concurrent, range queriable data structures.
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A Artifact Evaluation Appendix
A.1 Abstract

This artifact contains the source code and scripts to repro-
duce all the graphs in Section 8. For an up-to-date version
of the VERLIB library, please visit our repository on GitHub
https://github.com/cmuparlay/verlib.

A.2 Artifact check-list (meta-information)

e Algorithm: The vERLIB data structures described in
Section 8.

e Program: microbenchmarks

e Compilation: g++11, OpenJDK 19.0.1

¢ Run-time environment: Ubuntu 22.04.1 LTS

e Hardware: Multi-core machine, preferably with at
least 64 logical cores

e Output: Graphs from Section 8 as pdf files.

e Experiments workflow: One script for compiling
the experiments and one script for generating all the
graphs.

¢ Disk space required (approximately): 2 GB

e Time needed to prepare workflow: approximately
5 minutes

e Time needed to complete experiments: approxi-
mately 4 hours

e Publicly available: yes

e Code licenses: MIT License

A.3 Description

A.3.1 How delivered. The artifact is available on Zenodo
https://zenodo.org/records/10447617.

A.3.2 Hardware dependencies. To accurately reproduce
our experimental results, a multi-core machine with at least
64 logical cores is recommended.

A.3.3 Software dependencies. Our artifact is expected
to run correctly under a variety of Linux x86_64 distribu-
tions. For scalable memory allocation in C++, we used je-
malloc 5.2.1 (https://github.com/jemalloc/jemalloc/releases/
download/5.2.1/jemalloc-5.2.1.tar.bz2) as well as the Par-
layLib memory allocator, which is included with the artifact.
Our scripts for running experiments and drawing graphs
require a Python 3 installation with mathplotlib. We used
the numactl command to evenly interleave memory across
the NUMA nodes.

A.3.4 Data sets. None.

A.4 Installation

Source code can be complied by running bash compile_all.sh.

A.5 Experiment workflow

After compiling, run . /generate_graphs_from_paper.sh
to generate all the graphs and store them in a graphs direc-
tory.
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A.6 Evaluation and expected results

On a machine with 128 logical cores, the results should be
very similar to those reported in this paper. For machines
with different numbers of cores, we recommend using the
following settings to reproduce the general shape of our
graphs (where X is the number of logical cores):

e Scalability experiments should be run with [1, X/2, X,
1.5X, 2.5X, 3X] threads
o All other experiments should be run with X threads.

A.7 Experiment customization

For instructions on how to customize the number of threads,
workload, and data structure size in each experiment, please
see the README file included in the artifact.

A.8 Notes

None.

A.9 Methodology
Submission, reviewing and badging methodology:

e https://ctuning.org/ae/submission-20190109.html
e https://ctuning.org/ae/reviewing-20190109.html

e https://www.acm.org/publications/policies/artifact-review-

badging
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