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ABSTRACT

Dynamic trees are a well-studied and fundamental building block
of dynamic graph algorithms dating back to the seminal work of
Sleator and Tarjan [STOC’ 81, (1981), pp. 114-122]. The problem is
to maintain a tree subject to online edge insertions and deletions
while answering queries about the tree, such as the heaviest weight
on a path, etc. In the parallel batch-dynamic setting, the goal is to
process batches of edge updates work efficiently in low (polylog n)
span. Two work-efficient algorithms are known: batch-parallel Eu-
ler Tour Trees by Tseng et al. [ALENEX’19, (2019), pp. 92-106] and
parallel Rake-Compress (RC) Trees by Acar et al. [ESA’20, (2020),
pp. 2:1-2:23]. Both however are randomized and work efficient in
expectation. Several downstream results that use these data struc-
tures (and indeed to the best of our knowledge, all known work-
efficient parallel batch-dynamic graph algorithms) are therefore
also randomized.

In this work, we give the first deterministic work-efficient solu-
tion to the problem. Our algorithm maintains a parallel RC-Tree
on n vertices subject to batches of k edge updates deterministically
in worst-case O(klog(1 + n/k)) work and O(log nloglogk) span
on the Common-CRCW PRAM. We also show how to improve the
span of the randomized algorithm from O(log nlog* n) to O(logn).

Lastly, as a result of our new deterministic algorithm, we also
derandomize several downstream results that make use of paral-
lel batch-dynamic dynamic trees, previously for which the only
efficient solutions were randomized.
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1 INTRODUCTION

The dynamic trees problem dates back to the seminal work of Sleator
and Tarjan [48] on Link-Cut trees. The problem is to maintain a
forest of trees subject to the insertion and deletion of edges, while
answering queries about the forest. Examples of queries include
connectivity (is there a path from u to v), the weight of all vertices
in a specific subtree, and the weight of the heaviest (or lightest)
edge on a path. The latter is a key ingredient in the design of
efficient algorithms for the maximum flow problem [5, 29, 31, 48,
49]. Dynamic trees are also ingredients in algorithms for dynamic
graph connectivity [1, 20, 33, 36, 39] dynamic minimum spanning
trees [9, 20, 33, 34, 36], and minimum cuts [8, 23, 25, 40].

There are a number of efficient (O(log n) time per operation)
dynamic tree algorithms, including Sleator and Tarjan’s Link-Cut
Tree [48], Henzinger and King’s Euler-Tour Trees [33], Frederick-
son’s Topology Trees [20-22], Holm and de Lichtenberg’s Top Trees [6,
35, 50], and Acar et al’s Rake-Compress Trees [2—4]. Most of these
algorithms are sequential and handle single edge updates at a time.

Exceptions are Tseng et al’s Batch-Parallel Euler-Tour Trees [51]
and Acar et al’s Parallel Batch-Dynamic RC-Trees [2]. These algo-
rithms implement batch-dynamic updates, which take a set of k
edges to insert or delete with the goal of doing so in parallel. Both
of these algorithms achieve work-efficient O(k log(1 + n/k)) work,
which matches the sequential algorithms (O(log n) work) for low
values k, and is optimal (O(n) work) for large values of k. Both of
these algorithms, however, are randomized.

Batch-dynamic trees are an important ingredient in several re-
cent breakthrough results in parallel graph algorithms. RC-Trees are
the backbone of the first ever work-efficient parallel algorithm for
minimum cuts [8] and also a key ingredient in the first nearly work-
efficient highly parallel undirected depth-first search algorithm [26].
RC-Trees also underpin the first work-efficient parallel incremental
minimum spanning tree algorithm [9], and batch-dynamic Euler-
tour trees were an ingredient in the first nearly work-efficient
parallel batch-dynamic connectivity algorithm [1].

Other graph problems have also been studied in the parallel
batch-dynamic model, such as dynamic minimum spanning trees [9,
17,18, 45,47, 52], and approximate k-core decomposition [41]. How-
ever, to the best of our knowledge, all work-efficient parallel batch-
dynamic graph algorithms are randomized. Indeed, avoiding ran-
domization seems difficult even for some classic static problems.
Finding a spanning forest, for instance, has a simple O(m)-time se-
quential algorithm, and an O(m) work, O(log n) span randomized
parallel algorithm has been known for twenty years [46], but no de-
terministic equivalent has been discovered. The best deterministic
algorithm requires an additional a(n, m) factor of work [16].
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The closest work to ours is Ghaffari et. al’s parallel undirected
DFS [26] which makes use of RC-Trees and includes a sketch of how
the algorithm could be derandomized, though not work efficiently.

Our results. We design a work-efficient algorithm for the batch-
dynamic trees problem that is deterministic and runs in polylog n
span on the Common-CRCW PRAM.

THEOREM 1.1. There is a deterministic parallel batch-dynamic
algorithm that maintains a balanced Rake-Compress Tree (RC-Tree) of
a bounded-degree forest subject to batches of k edge updates (insertions,
deletions, or both) in O(klog(1 + n/k)) work and O(log nloglog k)
span on the Common-CRCW PRAM. k may vary between batches.

The resulting RC-Tree is amenable to all existing query algorithms
for parallel RC-Trees [2] and hence it can solve batch connectivity
queries, batch subtree queries, batch path queries, and non-local
queries such as nearest marked vertex queries [7].

COROLLARY 1.2. There are deterministic parallel batch-dynamic
algorithms for batches of k queries of:

(1) dynamic forest connectivity,

(2) subtree sums of an associative operation over vertices,

(3) path sums of an associative and invertible operation over edges,
(4) nearest marked vertex,

running in O(k log(1 + n/k)) work and O(logn) span.

As a byproduct of our techniques, we also optimize the randomized
variant of the algorithm and obtain the following improved result,
which improves over the O(log nlog* n) span of Acar et al. [2].

THEOREM 1.3. There is a randomized parallel batch-dynamic al-
gorithm that maintains a balanced Rake-Compress Tree (RC-Tree) of
a bounded-degree forest subject to updates of k edges in O(klog(1+
n/k)) expected work and O(log(n)) span w.h.p.!

Randomized parallel batch-dynamic trees have already been used as
key ingredients in several other parallel batch-dynamic algorithms.
As an additional result, existing algorithms for fully dynamic con-
nectivity [1] and incremental minimum spanning trees [9] can
be derandomized by using our deterministic RC-Tree, assuming
that the underlying graph is ternarized (transformed to constant
degree [20]). Details will be provided in the full version of the paper.

THEOREM 1.4. There is a deterministic parallel batch-dynamic al-
gorithm which, given batches of k edge insertions, deletions, and con-
nectivity queries on a bounded-degree graph on n vertices and m edges,
processes insertions and deletions in O(k lognlog(1+ n/A)a(n, m))
amortized work in O(polylogn) span, and answers all queries in
O(klog(1+ n/k)) work and O(polylog n) span, where A is the aver-
age batch size of all deletion operations.

THEOREM 1.5. There is a deterministic parallel batch-incremental
algorithm which maintains a minimum spanning forest of a bounded-
degree graph on n vertices given batches of k edge insertions in
O(klog(1+ n/k) + kloglogn) work in O(polylog n) span.

'We say that a statement happens with high probability (w.h.p.) in n if for any constant
c, the constants in the statement can be set such that the probability that the event
fails to hold is O(n™¢). The constants themselves are often hidden by big-O notation.
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Overview. Previous implementations of RC-Trees are all based on
applying self-adjusting computation to randomized parallel tree
contraction [2-4], i.e., a static tree contraction algorithm is imple-
mented in a framework that automatically tracks changes to the
input values, and selectively recomputes all procedures that depend
on changed data. In this setting, one has to fix the randomness up-
front so that repeating precisely the same computation will always
result in the same outcome.

The static tree contraction process works by contracting all ver-
tices of degree one (leaves) and a random independent set of degree
two vertices obtained by flipping coins and taking the ones that
flipped heads but their neighbors did not. This process is repeated
in rounds until only a singleton vertex remains. When a new edge
is added to the forest, the contraction must be updated to be con-
sistent with the presence of the new edge. This is efficient if the
new contracted forest does not differ substantially from the original
one, and this is shown to be true in expectation. Intuitively, this is
likely because the random coin flips ensure that a constant fraction
of the vertices of the forest contract in expectation, which rapidly
eliminates the areas of the forest that are affected by the update.
However, the downside is that this technique is difficult to make
deterministic since the random coin flips are what make it unlikely
that an adversary can insert an edge that causes catastrophic (i.e.,
expensive to update) cascading changes.

Our key insight is that to obtain an efficient deterministic algo-
rithm, one must forgo the desire to always obtain the same con-
tracted tree as if the algorithm were ran from scratch, since if the
algorithm is only able to produce a single canonical tree, an ad-
versary can always find an update that maximizes the difference
between the old and new canonical trees. Instead, we only require
that the contraction is always valid and need not correspond to a
particular canonical tree. In essence, we give up history indepen-
dence (the fact that the resulting data structure does not depend
on the order of the updates, only the final structure [3, 43]) which
was paid for by randomization, to obtain determinism.

Our dynamic algorithm is therefore not based on self-adjusting
computation. Instead, our variant of tree contraction determinis-
tically contracts a maximal independent set (MIS) of degree-one-
or-two vertices each round. When an update is made to the forest,
our algorithm identifies the set of affected vertices and then greedily
updates the tree contraction by computing an MIS of the affected
vertices and updating the contraction accordingly. Critically, these
greedy changes may not be the same choices that the algorithm
would have made if running from scratch. The key insights are in
carefully establishing the criteria for vertices being affected such
that the update is correct, while minimizing the number of such
vertices so that it is efficient.

2 PRELIMINARIES

2.1 Model of computation

The PRAM and work-span analysis. We use the PRAM (Parallel
Random Access Machine) model with work-span analysis [11, 37].
In particular we assume an algorithm has access to an unbounded
shared memory and takes sequence of s steps. Each step i performs
w; constant-time operations in parallel (each has access to its index,
[0,...,w;)). The steps are executed one after the other sequentially.
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The work of the algorithm is the total number of operations per-
formed, i.e., 3’5_; wi, and the span is the number of steps s. Any
algorithm with W work and S span can be scheduled on a tradi-
tional p-processor PRAM [19] in O(W/p + S) time [13] and any
p processor PRAM algorithm that takes T time, does O(pT) work
and has O(T) span.

The EREW, CREW and CRCW variants of the PRAM differ in
the assumptions about whether the concurrent operations within a
single step can access the same memory location or not. The EREW
(Exclusive-Read Exclusive-Write) variant allows no concurrent ac-
cess to any location, the CREW (Concurrent-Read Exclusive-Write)
allows concurrent reads but not writes, and the CRCW (Concurrent-
Read Concurrent-Write) allows both concurrent reads and writes.
The CRCW model may be further subdivided by the behaviour of
concurrent writes. The Common-CRCW PRAM permits concurrent
writes but requires that all concurrent writes to the same location
write the same value, else the computation is invalid. The Arbitrary-
CRCW PRAM permits concurrent writes of different values and
specifies that an arbitrary processor’s write succeeds, but the algo-
rithm may make no assumption about which processor succeeds.
Our algorithms use the Common-CRCW model.

We note that the PRAM model can be mapped onto less synchro-
nous models. For example any PRAM algorithm can be mapped
onto the binary-forking model while preserving the work and in-
creasing the span by a factor of O(log n) [12]. It is likely the span
for some of the algorithms in this paper can be improved for the
binary-forking model over this naive simulation.

2.2 Approximate prefix sums and compaction

The prefix sum operation takes an integer sequence [ay, . .., dn-1],
and returns the result [s, s1,...,s,] such that s = 0 and sj4+1 =
si +a; for 0 < i < n. Among many applications, the prefix sum can
be used to compact an array so as to only keep the elements that
satisfy some predicate [10]. Prefix sums, and hence compaction,
can be computed in O(n) work and O(log n) span. Goldberg and
Zwick show how the span can be improved to O(loglog n) for an
approximate varsion of the problem—i.e., one that takes an integer
input sequence [ag, a1, . . ., dp—1], returns the result [sg, s1, ..., sn]
such that s) = 0, sj41 < s;+a; (0 < i < n),ands, < ng—l aj.
This can be used for approximate compaction, where if there are m
elements satisfying the predicate, they will be compacted into an
output array of length O(m) with other slots marked as empty.

LeEmMA 2.1 ([32]). There exists a deterministic Common-CRCW
algorithm for approximate prefix sums and approximate compaction
on an array of n elements in O(n) work and O(loglogn) span.

2.3 Approximate counting sort

We will use an approximate counting sort as a subroutine. An
approximate counting sort takes n integer keys (and possibly asso-
ciated values) in the range [0..m). It returns an array of size O(n)
where the keys are sorted, but possibly with gaps. The gaps are
marked as such. Furthermore for each value in the range, the sort
returns a pointer to a position in the array such that all keys earlier
are less than the value, and all keys at the position or later are
greater or equal to the value. This can be achieved by combining
the counting sort of Cole and Vishkin [15] with the approximate
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prefix sum algorithm of Goldberg and Zwick [32] described above.
This approximate counting sort works in three phases.

(1) Partition the input into chunks of size m, and within each chunk
count the number of entries for each of the m possible values.
This is done sequentially within the chunk but parallel across
chunks. View the output as an m X (n/m) array S.

(2) Flatten S into row-major order (i.e. all the counts for the same
value are contiguous). Now run a single approximate prefix sum
across all the n counts.

(3) View the output again as an m X (n/m) offset array B, and
allocate an output array of length cn (same ¢ as used in the
definition of approximate prefix sums). Now go through each
chunk again (sequentially within chunks and parallel across
them) and use the offset array as the position to start writing
keys of the given value—i.e., B[i, j] gives the start offset for
values i in chunk j.

This results in a valid approximate counting sort. Clearly the output
is of size O(n), and all keys will be sorted (possibly with gaps due
to the approximate prefix sum). The pointers to the start of the
region for each key value i can be found at B[j, 0].

LEMMA 2.2. There exists a deterministic Common-CRCW approxi-
mate counting sort algorithm for n integers in the range [0, m) that
runs in O(n) work and O(m + loglogn) span.

This follows since the work and span for the first and third step are
O(n) and O(m) respectively, and the the cost of the second step is
given by Lemma 2.1.

2.4 Colorings and maximal independent sets

Parallel algorithms for graph coloring and maximal independent
sets are well studied [14, 28, 30, 38, 42]. Our algorithm uses a subrou-
tine that finds a maximal independent set of a collection of chains,
i.e., a set of vertices of degree one or two.

Goldberg and Plotkin [30] give an algorithm for O(log(c) (n))-
coloring? a constant-degree graph in O(c-n) work and O(c) span in
the EREW PRAM model. Given a c-coloring, one can easily obtain
a maximal independent set as follows. Sequentially, for each color,
look at each vertex of that color in parallel. If a vertex of the current
color is not adjacent to a vertex already selected for the independent
set, then select it. This takes O(c - n) work and O(c) span, hence a
constant coloring yields an O(n) work and constant span algorithm.

For any choice of c, the above algorithms do not yield a work-
efficient algorithm for maximal independent set since it is not work
efficient to find a constant coloring, and not work efficient to convert
a non-constant coloring into an independent set. To make it work
efficient, we can borrow a trick from Cole and Vishkin [15]. We first
produce a loglog n coloring in O(1) span, then use an approximate
counting sort to sort the vertices by color, allowing us to perform
the coloring-to-independent-set conversion work efficiently. This
results in an O(n) work, O(loglog n) span algorithm for maximal
independent set in a constant-degree graph.

LEMMA 2.3. There exists a deterministic Common-CRCW algo-
rithm that finds an MIS in a constant-degree graph in O(n) work and
O(loglog n) span.

’The notation log(c) n refers to the repeated/nested logarithm function, i.e., logm n=
log n and log'® n = log(log°™Y n).E.g., log® n = loglogn.
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2.5 Parallel tree contraction

Tree contraction is a procedure for computing functions over trees
in parallel in low span [44]. It involves repeatedly applying rake
and compress operations to the tree while aggregating data specific
to the problem. The rake operation removes a leaf from the tree
and aggregates its data with its parent. The compress operation
replaces a vertex of degree two and its two adjacent edges with a
single edge joining its neighbors, aggregating any data associated
with the vertex and its two adjacent edges.

Rake and compress operations can be applied in parallel as long
as they are applied to an independent set of vertices. Miller and
Reif [44] describe a linear work and O(logn) span randomized
algorithm that performs a set of rounds, each round raking every
leaf and an independent set of degree two vertices by flipping coins.
They show that it takes O(log n) rounds to contract any tree to a
singleton w.h.p. They also describe a deterministic algorithm but
it is not work efficient. Later, Gazit, Miller, and Teng [24] obtain a
work-efficient deterministic algorithm with O(log n) span.

These algorithms are defined for constant-degree trees, so non-
constant-degree trees are handled by converting them into bounded-
degree equivalents, e.g., by ternerization [20].

2.6 Rake-Compress Trees (RC-Trees)

RC-Trees [2, 4, 7] are based on viewing the process of parallel tree
contraction as inducing a clustering. A cluster is a connected subset
of edges and vertices. The base clusters are singletons containing the
individual edges and vertices, so there are n + m base clusters. The
internal (non-base) clusters that arise have the following properties:

(1) The subgraph induced by the vertex subset is connected,

(2) the edge subset contains all of the edges in the subgraph induced
by the vertex subset,

(3) every edge in the edge subset has at least one endpoint in the
vertex subset.

This makes them somewhat of a hybrid of topology trees [20-22]
and top trees [6, 35, 50], which cluster just the vertices or just the
edges respectively. Importantly but somewhat unintuitively, an RC
cluster may contain an edge without containing both endpoints
of that edge. A vertex that is an endpoint of an edge, but is not
contained in the same cluster as that edge is called a boundary
vertex of the cluster containing the edge.

The clusters of the RC-Tree always have at most two boundary
vertices, and hence can be classified as unary clusters, binary clusters,
or nullary clusters. Unary clusters arise from rake operations and
have one boundary vertex. Binary clusters arise from compress
operations and have two boundary vertices. A binary cluster with
boundary vertices u and v always corresponds to an edge (u,v) in
the corresponding round of tree contraction. Binary clusters can
therefore be thought of as “generalized edges” (this notion is also
used by top trees [6]). The path between the two boundary vertices
of a binary cluster (in the original forest) is called its cluster path.

To form a recursive clustering from a tree contraction, we begin
with the base clusters and the uncontracted tree. On each round, for
each vertex v that contracts via rake or compress (which, remember,
form an independent set), we identify the set of clusters that are
adjacent to v (equivalently, all clusters that have v as a boundary
vertex). These clusters are merged into a single cluster consisting
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of the union of their contents. We call v the representative vertex of
the resulting cluster. The boundary vertices of the resulting cluster
are the union of the boundary vertices of the constituents, minus v.

The rake operations always creates unary clusters and the com-
press operation creates binary clusters. When a vertex has no neigh-
bors, it finalizes and creates a nullary cluster representing the root
of its connected component. Since each vertex rakes, compresses,
or finalizes exactly once, there is a one-to-one mapping between
representative vertices of the original tree and internal clusters.

An RC-Tree then encodes this recursive clustering. The leaves of
the RC-Tree are the base edge clusters of the tree, i.e., the singleton
edges and vertices (note that the base cluster for vertex v is always
a direct child of the cluster for which v is the representative, so
omitting it from the RC-Tree loses no information). Internal nodes
of the RC-Tree are clusters formed by tree contraction, such that the
children of a node are the clusters that merged to form it. The root
of the RC-Tree is a cluster representing the entire tree, or connected
component in the case of a disconnected forest.

Queries are facilitated by storing augmented data on each cluster,
which is aggregated from the child clusters at the time of its creation.
Since tree contraction removes a constant fraction of the vertices
at each round, the resulting RC-Tree is balanced, regardless of how
balanced or imbalanced the original tree was. This allows queries
to run in O(log n) time for single queries, or batch queries to run in
O(klog(1+ n/k)) work and O(log n) span [7].

An example of a tree, a recursive clustering, and the correspond-
ing RC-Tree are depicted in Figure 1. The base vertex clusters are
omitted since in practice they can be combined with the internal
cluster that they represent.

3 DETERMINISTIC DYNAMIC CONTRACTION

3.1 The contraction data structure

Our algorithm maintains a contraction data structure, containing:

o for each level of the contraction process, an adjacency list repre-
sentation of the contracted tree,
e the clusters of the RC-Tree.

It records the history of the tree contraction process beginning from
the input forest F as it contracts to a forest of singletons. This is
the heart of the static and dynamic algorithms; the static algorithm
builds it initially and the dynamic algorithm updates it efficiently.

The data structure is organized by levels, each corresponding
with a round of tree contraction. Level 0 is the original forest Fy = F.
Round i of tree contraction produces the forest F; (level i) from
Fi_1. A vertex is live at level i if it has not contracted yet, or dead
otherwise. We say that a vertex contracts in F;_1 (or equivalently,
contracts in round i) if it is live at level i — 1 but not at level i. For
each level in which a vertex is live, the contraction data structure
stores an adjacency list for that vertex. Each entry in a vertex v’s
adjacency list is one of three possible kinds of value:

(1) a pointer to an edge (u,0) € F,

(2) a pointer to a binary cluster for which v is one of the boundary
vertices. If u is the other boundary vertex, this represents an
edge (u,0) € Fj,

(3) a pointer to a unary cluster for which v is the boundary vertex.
This does not represent any edge in the contracted tree.
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(a) An unrooted tree
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(b) A recursive clustering of the tree produced by tree contraction. Clus-
ters produced in earlier rounds are depicted in a darker color.

len | |en] [ao||ew]| || o] [w ]| [ea]|we | [vo] @]

(c) The corresponding RC-Tree. Clusters produced from rakes (and the root cluster) are shown as filled circles, and
clusters produced from compress as rectangles. The base edge clusters (edges of the original tree) are labeled in
lowercase, and the composite clusters are labeled with the uppercase of their representative vertex. Base vertex
clusters are omitted. The shade of a cluster corresponds to its height in the clustering. Lower heights (i.e., its

representative vertex contracted earlier) are darker.

Figure 1: A tree, a clustering, and the corresponding RC-Tree [2].

At level 0 the adjacency list therefore stores pointers to the edges
adjacent to each vertex. At later levels, in a contracted forest, some
of the edges are not edges of F, but are the result of a compress
operation and represent a binary cluster (Case 2), which may con-
tain augmented data (e.g., the sum of the weights in the cluster,
the maximum weight edge on the cluster path, etc, depending on
the application). Additionally, vertices that rake accumulate aug-
mented data inside their resulting unary cluster that needs to be
aggregated when their parent cluster is created (Case 3). Acar et
al. [4] and Anderson [7] describe many examples of augmented
data for various applications.

Clusters contain pointers to their child clusters alongside any
augmented data. Each internal cluster corresponds uniquely to
the vertex that contracted to form it, so counting them plus the
base clusters, the RC-Tree contains exactly 2n + m clusters. It is
convenient to omit the base-vertex clusters, since if the user wishes
to store augmented data on the vertices, this can be stored on the
unique internal cluster for which that vertex is the representative,
leading to a cleaner representation with n + m clusters.

3.2 Static deterministic tree contraction

We build an RC-Tree deterministically using a variant of Miller
and Reif’s tree contraction algorithm. Instead of contracting all
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degree-one vertices (leaves) and an independent set of degree two
vertices, we instead contract any maximal independent set of degree
one and two vertices, i.e., leaves are not all required to contract.
This difference is subtle but critical for the efficiency of the update
algorithm. The reason will become clear during the analysis, but
essentially, not forcing leaves to contract reduces the number of
vertices that need to be reconsidered during an update, since a
vertex that was previously not a leaf becoming a leaf might cause a
chain reaction requiring many more vertices to be updated. Such a
chain reaction is undesirable, and our variant avoids it.

Definition 3.1. We say that a tree contraction is maximal at some
round if the set of vertices that contract form a maximal inde-
pendent set of degree one and two vertices. A tree contraction is
maximal if it is maximal at every round.

Recall that Fy denotes the initial forest and F; for i > 1, the forest
obtained by applying one round of maximal tree contraction to Fj_1.
To obtain a maximal tree contraction of F;, consider in parallel every
vertex of degree one and two. These are the eligible vertices. We find
a maximal independent set of eligible vertices by using Lemma 2.3.
This takes O(|F;|) work and O(loglog n) span. To write down the
vertices of Fi41, we can apply approximate compaction to the vertex
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Figure 2: A vertex v is affected because its neighbor u is af-
fected, and v depends on u contracting in order for the con-
traction to be maximal. In this case u’s degree has increased
to three so it can not contract, so v must contract instead.

set of F;, filtering those which were selected to contract. This also
takes O(|F;|) work and O(loglog n) span [32].

Each vertex writes itself into its neighbors’ adjacency list in
the next level. Since the degree of the tree is constant, this does
not require complex synchronization primitives and can easily
be achieved by writing into a fixed-size array, one slot for each
neighbor. For vertices that do not contract, they can simply copy
their corresponding entry in their neighbors’ adjacency list to the
next level assuming the neighbor is still alive in that round. For
vertices that do contract, they create the corresponding RC cluster
and write a pointer to the cluster into the adjacency list. For example,
if a vertex v with neighbors u and w compresses in round i, it writes
apointer to the binary cluster formed by v (whose boundary vertices
are u and w) into the adjacency lists at level i + 1 of u and w.

To build the RC-Tree clusters, it suffices to observe that when a
vertex v contracts, the contents of its adjacency list are precisely
the child clusters of the resulting cluster. Hence in constant time we
can build the cluster by aggregating the augmented values of the
children and creating a corresponding cluster. If at a round, a vertex
is isolated (has no neighbors), it creates a root (nullary) cluster.

3.3 A deterministic update algorithm

A dynamic update consists of a set of k edges to be added or deleted
(a combination of both is valid). The update begins by modifying
the adjacency lists of the 2k endpoints of the modified edges. Call
this resulting forest F/, to denote the forest after the update (note
that updates are performed in-place since copying the entire forest
would immediately ruin the work bound). For each round i, the
goal of the update algorithm is now to produce F;, an updated tree
contraction for level i, using Fj, F;—1 and F_,. This approach is
similar to the randomized change propagation algorithm [2], but
the details are very different, and the devil is in the details.

Affected vertices. To perform the update efficiently, we define
the notion of an affected vertex. Affected vertices are those that
need to be reprocessed since their state might need to change (from
contracted to not contracted or vice-versa) to keep the invariant that
the tree contraction is always maximal. The subtlety in correctly
defining the affected vertices is that the set must be comprehensive
enough that the algorithm is correct, but also minimal enough that
it is efficient. Having too many affected vertices would be inefficient,
but having too few would be incorrect. This definition strikes the
right balance and achieves the best of both worlds.

Definition 3.2 (Affected). A vertex is affected at level i if any of:
(1) Tt is live in one of F; and F; but not the other,
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Figure 3: Direct affection (two possibilities): A vertex u di-
rectly affects its neighbor v. u is affected at round 0 since
its adjacency list was changed. Since u contracts in Fy and
changes the adjacency list of v at round 1, v becomes affected.
Note that this can happen either when u contracts in Fj (first
example) or when it does not (second example).

Figure 4: Affection by dependence: A vertex u affects its neigh-
bor v in F; by dependence. Even though v’s adjacency list is
the same in both forests, it is affected because it depended
on u to contract in F; for maximality to be satisfied. Since u
can no longer contract in FJ, it is important that v is able to.

(2) it is live in both F; and F; but has different adjacency lists,

(3) it is live in both F; and F}, and still live in Fj4; (i.e., did not
contract in F;), but all of its neighbors in F; that contracted in
F; are affected at level i.

The first two cases of affected vertices are intuitive. If a vertex used
to exist at level i but no longer does, or vice versa, it definitely needs
to be updated in level i + 1. If a vertex has a different adjacency list
than it used to, then it definitely needs to be processed because it
can not possibly contract in the same manner, or may change from
being eligible to ineligible to contract or vice versa.

The third case of affection is more subtle, but is important for
the correctness and efficiency of the algorithm. We call the third
case affection by dependence. Suppose an eligible vertex v doesn’t
contract in F;. Since the contraction forms a maximal independent



Deterministic and Low-Span Work-Efficient Parallel Batch-Dynamic Trees

SPAA 24, June 17-21, 2024, Nantes, France

Algorithm 1 Batch update

Obtain F] from F; by recomputing the adjacency lists of the affected vertices, contracting those vertices in the new MIS

1: procedure BATcHUPDATEFOREST(ET, E7)

2 Create F} from Fy by adding edges in E* and removing edges in E~

3 Determine the affected vertices at level 0 from the endpoints of E¥* U E~

4 for each level i from 1 to logg 5 n do

5 Find an MIS of update-eligible affected vertices in F;_1

6

7 Determine the affected vertices at level i from the result (Definition 3.2)
8 end for

9: end procedure

set, at least one of v’s neighbors must contract. If all such neighbors
are affected at level i, they may no longer contract in F; because
of the update, which would leave v uncontracted and without a
contracting neighbor, violating maximality. Therefore v must also
be considered affected to prevent this scenario. Figure 2 shows an
example where this matters.

Note that by the definition, vertices only become affected because
they have an affected neighbor at the previous or current level. We
call this spreading affection.

Definition 3.3 (Spreading affection). An affected vertex u spreads
too at level i + 1 if v was unaffected at level i and is affected at level
i + 1 because either

(1) visaneighbor of u at level i, such that u is affected and contracts
in round i + 1 in either F; or Fi/’ or

(2) visaneighbor of u in Fi41, such that v does not contract in F41,
but u, which is affected, does.

We call Case (1), spreading directly and Case (2) spreading by depen-
dence. Figure 3 shows two examples of directly spreading affection.
Figure 4 shows an example of spreading affection by dependence.

The algorithm. With the definition of affected vertices, the up-
date algorithm can be summarized as stated in Algorithm 1. The
levels are processed one after the other, but the subroutines that
run on each level are parallel. In the update algorithm, a vertex is
update-eligible if it has degree one or two, and it is not adjacent to
an unaffected vertex that contracts. Line 5 is accomplished using
Lemma 2.3. This finds a maximal independent set of update-eligible
affected vertices in O(k) work and O(loglog k) span.

Line 6 is implemented by looking at each affected vertex in
parallel and updating it to reflect its new behaviour in F;. This
entails writing the corresponding adjacent edges into the adjacency
lists of its neighbors in level i if it did not contract, or writing
the appropriate cluster values if it did. At the same time, for each
contracted vertex, the algorithm computes the augmented value on
the resulting RC cluster from the values of the children.

Line 7 is implemented by looking at each affected vertex at the
previous level and any vertex within distance two of those in par-
allel, then filtering those which do not satisfy the definition of
affected. Note that by the definition of affected, looking at vertices
within distance two is sufficient since at worst, affection can only
spread to neighbors and possibly those neighbors’ uncontracted
neighbors. Using approximate compaction [32], this step takes lin-
ear work in the number of affected vertices and O(loglog n) span.
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In Section 4, we show that the number of affected vertices at each
level is O(k), so this is efficient.

Correctness. We now argue that the algorithm is correct. This con-
sists in proving the invariant that after each update, the contraction
is maximal, i.e., for every level of the tree contraction and every
vertex v of degree one or two, either v contracts or v has at least
one neighbor that contracts.

LEMMA 3.4. After running the update algorithm, the contraction is
still maximal, i.e., the contracted vertices at each level form a maximal
independent set of degree one and two vertices.

ProoF. Our goal is to prove that after an update, every eligible
vertex (vertices of degree one or two) either contracts or is adja-
cent to a vertex that contracts. The proof is by casework based on
whether v is unaffected and contracts or does not contract, or is
affected and update-eligible or not update-eligible. Suppose the tree
contraction was maximal at level i before the update. We will argue
that after the update the contraction is still maximal at level i.

Consider any eligible vertex v € F; that was unaffected at level i
and contracts in Fi’ . Since it was unaffected it exists in F; and it also
contracted in F;. We need to argue that no neighbor of v contracts in
F/. For any unaffected neighbor u, it didn’t contract in F; and hence
still doesn’t contract in F;. If u is an affected neighbor, it is not
considered update-eligible because v is unaffected and contracted
and hence u does not contract. Therefore none of v’s neighbors
contract in F] and v satisfies the invariant.

Now suppose v € F] was eligible and unaffected at level i and
didn’t contract in F]. We need to argue that v has a neighbor in
F! that contracted. Since v is unaffected it exists and also didn’t
contract in F;. Therefore it has a neighbor u € F; that contracted. If
u is unaffected, then u € Fi’ and contracts. If u were affected, then
v would be affected by dependence, but v is unaffected. Therefore
all eligible unaffected vertices v € F; satisfy the invariant.

Consider any eligible affected vertex v € F;.Ifv has an unaffected
contracted neighbor, then v is not update-eligible and hence does
not contract in F l’ , and has a contracted neighbor. Otherwise, v is
update-eligible and participates in the MIS. Since the algorithm finds
amaximal independent set on the update-eligible affected vertices, v
either contracts and has no contracted neighbor, or doesn’t contract
and has a contracted neighbor. Therefore v satisfies the invariant.

Together, we can conclude that every eligible vertex satisfies the
invariant and hence the contraction is maximal. O
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4 ANALYSIS

We start by proving some general and useful lemmas about the con-
traction process, from which the efficiency of the static algorithm
immediately follows, and which will later be used in the analysis
of the update algorithm.

4.1 Round and tree-size bounds

LEmMA 4.1. Consider a (non-singleton vertex) tree T and suppose a
maximal independent set of degree one and two vertices is contracted
via rake and compress contractions to obtain T’. Then

5
T < 217l

Proor. More than half of the vertices in any tree have degree
one or two [53]. A maximal independent set among them is at
least one third of them since every adjacent run of three vertices
must have at least one selected, so at least one sixth of the vertices
contract. Therefore the new tree has at most % as many vertices. O

The lemma also applies to forests since it can simply be applied
independently to each component. Note that singleton vertices fi-
nalize and hence the bound is true for the total size of the forest
including the singletons. Three important corollaries follow that
allow us to bound the cost of various parts of the algorithm. Corol-
lary 4.2 gives the number of rounds required to fully contract a
forest, and Corollary 4.3 gives a bound on the number of rounds
required to shrink a forest to size n/log n. Lastly, Corollary 4.4 gives
a bound on the number of rounds required to shrink a tree to size
k, which is useful in bounding the work of the batched update and
query algorithms.

COROLLARY 4.2. Given a forest on n vertices, maximal tree con-
traction completely contracts a forest of n vertices in logg 5 n rounds.

COROLLARY 4.3. Given a forest on n vertices, after performing
loge 5 log n rounds of maximal tree contraction, the number of vertices
in the resulting forest is at most n/log n.

COROLLARY 4.4. Given a forest on n vertices and any integerk > 1,
after performinglogg /5 (1 + n/k) rounds of maximal tree contraction,
the number of vertices in the resulting forest is at most k.

Proor. By Lemma 4.1, the number of vertices in each round is at
most 5/ 6Ms of the previous round, so the number remaining after
round r is at most n (5/6)". The three corollaries follow. O

4.2 Analysis of the static algorithm

Armed with the lemmas and corollaries of Section 4.1, we can now
analyze the static algorithm.

THEOREM 4.5. The static maximal tree contraction algorithm can
be implemented in O(n) work and O(log nloglogn) span for a forest
of n vertices.

Proor. The work performed at each round is O(|F;l), i.e., the
number of live vertices in the forest at that round. By Lemma 4.1,
the total work is therefore at most

Sal2) =n3(2) <o

i=0 i=0
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The span of the algorithm is O(loglog n) per round to perform the
maximal independent set and approximate compaction operations
by Lemmas 2.3 and 2.1. By Corollary 4.2 there are O(log n) rounds,
hence the total span is O(log nloglogn). O

4.3 Analysis of the update algorithm
We first sketch a summary of the proof then present the full analysis.

Summary. We begin by establishing the criteria for vertices be-
coming affected. Initially, the endpoints of the updated edges and a
small neighborhood around them are affected. We call these the ori-
gin vertices. For each of these vertices, it may spread its affection to
nearby vertices in the next round. Those vertices may subsequently
spread to other nearby vertices in the following round and so on.
As affection spreads, the affected vertices form an affected compo-
nent, a connected set of affected vertices whose affection originated
from a common origin vertex. An affected vertex that is adjacent
to an unaffected vertex is called a frontier vertex. Frontier vertices
are those which are capable of spreading affection. Note that it is
possible that in a given round, a vertex that becomes affected was
adjacent to multiple frontier vertices of different affected compo-
nents, and is subsequently counted by both of them, and might
therefore be double counted in the analysis. This is okay since it
only overestimates the number of affected vertices in the end.

With these definitions established, our results show that each af-
fected component consists of at most two frontier vertices, and that
at most four new vertices can be added to each affected component
in each round. Given these facts, since a constant fraction of the
vertices in any forest must contract in each round, we show that
the size of each affected component shrinks by a constant fraction,
while only growing by a small additive factor. This leads to the
conclusion that each affected component never grows beyond a
constant size, and since there are initially O(k) origin vertices, that
there are never more than O(k) affected vertices in any round. This
fact allows us to establish that the update algorithm is efficient.

The analysis of the update algorithm follows a similar pattern to
the analysis of the randomized change propagation algorithm [2],
though once again with substantial tweaks to the details.

The proofs. We now prove the aforementioned facts.

LEMMA 4.6. Ifv is unaffected at level i, then v contracts in round i
in F if and only if v contracts in round i in F’.

Proor. Unaffected vertices are ignored by the update algorithm,
and hence remain the same before and after an update. O

We now establish that Definition 3.3 indeed encompasses all
possibilities for affection to spread. If a vertex is not affected at
level i but is affected at level i + 1, we say that v becomes affected in
round i, which we prove can happen in just two ways.

LEMMA 4.7. Ifv becomes affected in round i, then one of the fol-
lowing is true:
(1) v has an affected neighbor u at round i which contracted in either
Fj or F]
(2) v does not contract by round i + 1, and has an affected neighbor u
at round i + 1 that contracts in Fiy1.
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Proor. First, since v becomes affected in round i, it is not already
affected at level i. Therefore, due to Lemma 4.6, v does not contract,
otherwise it would do so in both F and F’ and hence be unaffected
at level i + 1. Since v does not contract, v has at least one neighbor,
otherwise it would finalize.

Suppose that (1) is not true, i.e., that v has no affected neighbors
that contract in F; or F] in round i. Then either none of v’s neighbors
contract in F;, or only unaffected neighbors of v contract in F;. By
Lemma 4.6, in either case, v has the same set of neighbors in Fji1
and Fl’ oy Therefore, since v is affected in level i+1, does not contract
in either F; or Fi’ , and has the same neighbors in both, it must be in
Case (3) in the definition of affected. Therefore, v has an affected
neighbor that contracts in Fj;1.

Since —(1) = (2), we have that (1) V (2) is true. O

Our end goal is to bound the number of affected vertices at each
level, since this corresponds to the amount of work required to
update the contraction after an edge update.

Let A’ denote the set of affected vertices at level i.

LEMMA 4.8. For a batch update of size k (insertion or deletion of k
edges), we have |A°| < 6k.

ProoF. An edge changes the adjacency list of its two endpoints.
These two endpoints might contract in the first round, which affects
their uncontracted neighbors by dependence. However, vertices that
contract have degree at most two, so this is at most two additional
vertices per endpoint. Therefore there are up to 6 affected vertices
per edge modification, and hence up to 6k affected vertices. O

Each edge modified at level 0 affects some set of vertices, which
spread to some set of vertices at level 1, which spread to some set
of vertices at level 2 and so on. We will therefore partition the set
of affected vertices into s = |A°| affected components, indicting the
“origin” of the affection. When a vertex u spreads to v, it will add v
to its component on the next level.

More formally, we will construct ﬂi, ﬂ;, e, ﬂé, which form
a partition of A’. We start by arbitrarily partitioning A° into s
singleton sets A, ﬂg, A ﬂg. Given ﬂi, ﬂé, ce ﬂé, we construct
ﬂiﬂ, ﬂé“, o, ﬂé“ such that ﬂ;ﬂ contains the affected vertices
v € A that were either already affected in ﬂ; or were spread

to by a vertex u € AL. Note that it is possible, under the given
definition, for multiple vertices to spread to another, so this may
overcount by duplicating vertices. Vertices are de-duplicated by
only adding them to the affected component that they spread from
via the lowest ID vertex as a tiebreaker.

Definition 4.9 (Frontier). A vertex v is a frontier at level i if v is
affected at level i and a neighbor of v in F; is unaffected at level i.

LEmMA 4.10. Ifv is a frontier vertex at level i, then it is alive in
both F; and F] at level i, and is adjacent to the same set of unaffected
vertices in both.

Proor. If v were dead in both forests it would not be affected
and hence not a frontier vertex. If v were live in one forest but dead
in the other, then all of its neighbors would have a different set of
neighbors in F; and F; (they must be missing v) and hence all of
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them would be affected, so v would have no unaffected neighbors
and hence not be a frontier.

Similarly, consider an unaffected neighbor u of v in either forest.
If u was not adjacent to v in the other forest, it would have a different
set of neighbors and hence be affected. O

If a v spreads affection to a vertex in round i, then by definition
v must be a frontier. Our next goal is to analyze the structure of the
affected sets and show that the number of frontier vertices is small.

LEMMA 4.11. For alli, j, the forest induced by ﬂj. in Fj is a tree.

Proor. When i = 0 the components are isolated vertices which
are trivially trees. For i > 0, the rake and compress operations both
preserve the connectedness of the underlying tree, and Lemma 4.7
shows that affection only spreads to neighboring vertices. O

LEMMA 4.12. ﬂ; has at most two frontiers and |ﬂ§-+1 \ ﬂj.l <4.

Proor. We proceed by induction on i. At level 0, each group
contains one vertex, so it definitely contains at most 2 frontier
vertices. Consider some ﬂ; and suppose it contains one frontier
vertex u, which may spread directly by contracting (Definition 3.3).
If u spreads directly, then it either compresses or rakes in F; or F;.
This means it has degree at most two in F; or Fi’, and by Lemma 4.10,
it is therefore adjacent to at most two unaffected vertices, and hence
may spread to at most these two vertices. Since u contracts, it is no
longer a frontier by Lemma 4.10, but its newly affected neighbors
may become frontiers, so the number of frontiers is at most two.

Suppose u spreads via dependency in round i (Case 2 in Defini-
tion 3.3) in A and contracts in Fj41. Since u contracts in Fjy1, it
has at most two neighbors, and by Lemma 4.10, it is also adjacent
to at most two unaffected vertices, and may spread to at most these
two vertices. If it spreads to one of them, that vertex may become
a frontier and hence there are at most two frontier vertices. If it
spreads to both of them, u is no longer adjacent to any unaffected
vertices and hence is no longer a frontier, so there are still at most
two frontier vertices, and |?lj.+1 \ ﬂ;| <3.

Now consider some A’ that contains two frontier vertices uy, us.
By Lemma 4.11, u; and uy each have at least one affected neighbor.
If either contract, it would no longer be a frontier, and would have
at most one unaffected neighbor which might become affected and
a frontier. Therefore the number of frontiers is preserved when
affection is spread directly.

Lastly, suppose u; or uy spreads via dependency in round i. Since
it would contract in Fjq, it has at most one unaffected neighbor
which might become affected and become a frontier. It would sub-
sequently have no unaffected neighbor and therefore no longer be
a frontier. Therefore the number of frontiers remains at most two
and | A \ﬂ;‘.| <4 o

Now define ﬂ}j = ﬂj. N VIf;, the set of affected vertices from
ﬂj. that are live in F at level i, and similarly define AL ; for F'.

LEmMA 4.13. For every i, j we have

|ﬂ;,j| < 26.
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Proor. Consider the subforest induced by the set of affected
vertices ﬂ}; .. By Lemmas 4.11 and 4.12, this is a tree with two
frontier vertices. The update algorithm finds and contracts a max-
imal independent set of affected degree-one-or-two vertices that
are not adjacent to an unaffected vertex that contracts in F;. There
can be at most two vertices (the frontiers) that are adjacent to an
unaffected vertex, and at most four new affected vertices appear by
Lemma 4.11, so by Lemma 4.1, the size of the new affected set is

. 5 .
\AF | < 4+ (|ﬂ}’j| —2)+2

26 5, .
= Z + g|ﬂF,J|

Since |ﬂgj| = 1, we obtain
(5)1’ ~ 266 ~
6 1-— %

26 «
)
just as desired. O

i+1
<
|AR <
r=0

LEMMA 4.14. Given a batch update of k edges, for every i
|A!| < 312k.

Proor. By Lemma 4.8, there are at most 6k affected components.
At any level, every affected vertex must be live in either F or F/, so

i i i
ﬂj = ﬂF,j ] ﬂF,,j, and hence
6k
i i i -
|All < Z (|71F,j| + |ﬂF,J|) < 6k X 26 X 2 = 312k,
Jj=1
which completes the proof. O

We can conclude that given an update of k edges, the number of
affected vertices at each level of the algorithm is O(k).

Putting it all together. Given the series of lemmas above, we now
have the power to analyze the performance of the update algorithm.

THEOREM 4.15 (UPDATE PERFORMANCE). A batch update consist-
ing of k edge insertions or deletions takes O (klog (1 + n/k)) work
and O(lognloglogk) span.

Proor. The update algorithm performs work proportional to the
number of affected vertices at each level. Consider separately the
work performed processing the levels up to and including level r =
logg/s (1+ n/k). By Lemma 4.14, there are O(k) affected vertices
per level, so the work performed on levels up to including r is

= n
o(kr) = O(klog(l + k))

By Corollary 4.4, after r rounds, there are at most k vertices alive
in Fy or F}. The number of affected vertices is at most the number
of live vertices in either forest, and hence at most 2k. The amount
of affected vertices in all subsequent levels is therefore at most
0 i

5 2k

6 1-3

i=0 6

12k,

and hence the remaining work is O(k). Therefore the total work
across all rounds is at most

o) (klog(l + %)) +0(k) = O(klog(l + %))
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In each round, it takes O(loglogk) span to find a maximal inde-
pendent set of the affected vertices and to perform the approximate
compaction required to filter out the vertices that are no longer
affected in the next round. Therefore, over O(log n) rounds, this
results in O(log nloglogk) span. O

5 A LOW-SPAN RANDOMIZED ALGORITHM

The algorithm we have presented in this paper is somewhat generic.
As presented it makes use of an MIS of affected vertices since this
is convenient for determinism, but one could substitute the MIS
algorithm for any other independent set, provided that it satisfied
the equivalents of Lemma 4.1 (contracting a constant fraction of the
vertices) and Lemma 4.14 (only a small number of affected vertices),
and still obtain a correct and efficient algorithm.

The randomized tree contraction algorithm of Miller and Reif [44]
which is used as the key ingredient in the randomized RC-Tree algo-
rithm [2, 3] indeed satisfies both of these properties (as is required
by the algorithm of Acar et al. [2]), and hence the algorithm pre-
sented in this paper would be suitable for the randomized variant
as well (of course it would no longer be deterministic). The major
upside of the randomized algorithm is that computing the indepen-
dent set takes just O(1) span rather than O(loglog n) span, which
is one of the two span bottlenecks of the algorithm. Instead of guar-
anteeing that the number of vertices eliminated is at least 1/ 6th of
them, it eliminates at least 1/8™ of the vertices w.h.p. [2, 44]

The downside of the original randomized algorithm of Acar et
al. [2] is that it is based on self-adjusting computation and hence it is
difficult to optimize. Our algorithm in this paper on the other hand
is a direct implementation of dynamic tree contraction and hence is
much more amenable to optimizations. The remaining bottleneck
of the randomized algorithm is the span of performing approximate
compaction on each level to eliminate the contracted vertices, which
costs O(log™ n). Here, we present a technique to eliminate this span
overhead. The same techniques could be applied to the deterministic
algorithm, but in that case, the span of deterministically computing
an MIS remains as the bottleneck.

5.1 A lower span static algorithm

The basic static algorithm uses approximate compaction after each
round to filter out the vertices that have contracted. This is impor-
tant, since without this step, every round would take ©(n) work,
for a total of ©(nlog n) work. This leads to the deterministic O(n)
work and O(log nloglog n) span algorithm, or the randomized O(n)
work and O(log nlog* n) span algorithm using randomized approx-
imate compaction [27], which has O(log* n) span w.h.p. We can
improve the span by splitting the algorithm into two phases.

Phase One. Note that the purpose of compaction is to avoid per-
forming wasteful work on dead vertices each round. However, if
the forest being contracted has just O(n/logn) vertices, then a
“wasteful” algorithm which avoids performing compaction takes at
most O(n) work anyway. So, the strategy for phase one is to con-
tract the forest to size O(n/logn), which, by Corollary 4.3 takes at
most O(loglog n) rounds (w.h.p. with the randomized algorithm).
This is essentially the same strategy used by Gazit, Miller, and
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Teng [24]. The work of the first phase is therefore O(n) in expecta-
tion and the span, using randomized approximate compaction, is
just O (loglog nlog™* n) w.h.p.

Phase Two. In the second phase, we run the “wasteful” algorithm,
which is simply the original algorithm but without performing any
compaction. Since the forest begins with O(n/logn) vertices in
this phase, this takes O(n) work in expectation and completes in
O(log n) additional rounds w.h.p. The algorithm no longer needs
to pay for compaction, and hence the span is just O(log n) w.h.p.
Putting these together, the total work of both phases is O(n), and
the span w.h.p. is O (loglog nlog™ n) + O(log n) = O(log n).

5.2 A lower span dynamic algorithm

We optimize the dynamic algorithm similarly to the static algorithm,
by splitting it into three phases this time.

Phase One. The algorithm runs Phase One for logg /7 (1+n/k)
rounds (the 8/7 comes from the randomized independent set which
eliminates 1/8'" of the remaining vertices w.h.p. [2]). Note impor-
tantly that this depends on the batch size k, so the number of rounds
each phase runs is not always the same for each update operation.

Similarly to the optimized static algorithm without concurrent
writes, we attack the problem by splitting the affected vertices into
groups. Specifically, we will group the affected vertices into affected
components based on their origin vertex as defined in Section 4.
There are O(k) affected components, each of which is initially a
singleton defined by an affected vertex at round 0.

In each round, the algorithm processes each affected component
and each affected vertex within in parallel. At the end of the round,
the newly affected vertices are identified for each component. To
tiebreak, and ensure that only one copy of an affected vertex exists,
if multiple vertices spread to the same vertex, only the one with
the lowest identifier adds the newly affected vertex to its compo-
nent. Since the forest has constant degree, the one with the lowest
identifier can be identified in constant time.

Given the set of affected vertices, new and old, we can then filter
each component independently in parallel to remove vertices that
are no longer affected in the next round. The critical insight is
that according to Lemma 4.13 (or its equivalent in the randomized
algorithm, Lemma 23 of [2]), each affected component has constant
size (w.h.p.), so this filtering takes constant work and span w.h.p.

Having to maintain this set of k affected components adds an
additional O(k) work to each round, but since we run Phase One
for only O(log(1 + n/k)) rounds, this is still work efficient.

Phase Two. Using the randomized contraction algorithm, by the
time Phase Two begins, the forest will have contracted to the point
that at most k vertices remain w.h.p. From this point onwards, we
use an algorithm very similar to the static algorithm to complete
the remaining rounds, and thus split into two more phases. First,
we can collect the contents of each of the O(k) affected components
back into a single array of O(k) affected vertices w.h.p. This can be
done in at most O(k) work and O(log k) span w.h.p.

Given the affected vertices, we logically partition them into
k/log k groups of size O(logk) w.h.p. We then run the basic dy-
namic update algorithm for log log k rounds, using a filter algorithm
(not approximate compaction) at each round to remove vertices

257

SPAA 24, June 17-21, 2024, Nantes, France

that are no longer affected. The span of this phase is therefore
O((loglog k)?) w.h.p, and costs at most O (k) additional work w.h.p.

Phase Three. After completing Phase Two, there will be at most
O(k/logk) vertices alive in the forest w.h.p, and hence at most
twice that many affected vertices (affected vertices may be alive
in either the new or old forest). Phase Three simply collects the
remaining affected vertices and performs the same steps as Phase
One. We create up to O(k/logk) singleton affected components,
and then in each round, process each vertex in each component in
parallel, then spread to any newly affected vertices. Each affected
component remains constant size w.h.p. and the work performed
in each round is at most O(k/logk) for O(log k) rounds w.h.p.,
adding to a total of O(k) work. Since each affected component is
constant size w.h.p, maintaining them takes constant time w.h.p.
After O(log k) rounds w.h.p, the forest is fully contracted.

In total, at most O(k log(1 + n/k)) additional work is added, so
the algorithm is still work efficient. The span of Phases One and
Three is constant per round, and hence the total span w.h.p. is

o) (log (1 + %) + (loglog k)2 + log(k)) = O (logn).

6 CONCLUSION

We presented the first deterministic work-efficient parallel algo-
rithm for the batch-dynamic trees problem. We showed that parallel
RC-Trees [2, 4] can be derandomized using a variant of parallel tree
contraction that contracts a maximal independent set of degree one
and two vertices. Our algorithm performs O(k log(1 + n/k)) work
for a batch of k updates and runs in O(log nlog log k) span. We also
improve the span of the randomized variant of the algorithm from
O(log nlog® n) to just O(log n) w.h.p.

Several interesting questions still remain open. Our deterministic
algorithm requires O(log nloglog k) span, while our randomized
variant requires just O(log n). Can we obtain a deterministic algo-
rithm with O(log n) span? It seems unlikely that the exact algorithm
that we present here could be optimized to that point, since that
would imply finding a maximal independent set in O(1) span work
efficiently, and the fastest known algorithms run in O(log* n) span
but are not even work efficient. This doesn’t rule out using other
techniques instead of a maximal independent set, however.

Lastly, it would be interesting to explore which other parallel
dynamic graph problems can be derandomized, either using our
deterministic RC-Trees as an ingredient, or independently.
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