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ABSTRACT

Dynamic trees are a well-studied and fundamental building block

of dynamic graph algorithms dating back to the seminal work of

Sleator and Tarjan [STOC’81, (1981), pp. 114-122]. The problem is

to maintain a tree subject to online edge insertions and deletions

while answering queries about the tree, such as the heaviest weight

on a path, etc. In the parallel batch-dynamic setting, the goal is to

process batches of edge updates work e�ciently in low (polylogĤ)

span. Two work-e�cient algorithms are known: batch-parallel Eu-

ler Tour Trees by Tseng et al. [ALENEX’19, (2019), pp. 92–106] and

parallel Rake-Compress (RC) Trees by Acar et al. [ESA’20, (2020),

pp. 2:1–2:23]. Both however are randomized and work e�cient in

expectation. Several downstream results that use these data struc-

tures (and indeed to the best of our knowledge, all known work-

e�cient parallel batch-dynamic graph algorithms) are therefore

also randomized.

In this work, we give the �rst deterministic work-e�cient solu-

tion to the problem. Our algorithm maintains a parallel RC-Tree

on Ĥ vertices subject to batches of ġ edge updates deterministically

in worst-case ċ (ġ log(1 + Ĥ/ġ)) work and ċ (logĤ log logġ) span

on the Common-CRCW PRAM. We also show how to improve the

span of the randomized algorithm fromċ (logĤ log∗ Ĥ) toċ (logĤ).

Lastly, as a result of our new deterministic algorithm, we also

derandomize several downstream results that make use of paral-

lel batch-dynamic dynamic trees, previously for which the only

e�cient solutions were randomized.
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1 INTRODUCTION

The dynamic trees problem dates back to the seminal work of Sleator

and Tarjan [48] on Link-Cut trees. The problem is to maintain a

forest of trees subject to the insertion and deletion of edges, while

answering queries about the forest. Examples of queries include

connectivity (is there a path from ī to Ĭ), the weight of all vertices

in a speci�c subtree, and the weight of the heaviest (or lightest)

edge on a path. The latter is a key ingredient in the design of

e�cient algorithms for the maximum �ow problem [5, 29, 31, 48,

49]. Dynamic trees are also ingredients in algorithms for dynamic

graph connectivity [1, 20, 33, 36, 39] dynamic minimum spanning

trees [9, 20, 33, 34, 36], and minimum cuts [8, 23, 25, 40].

There are a number of e�cient (ċ (logĤ) time per operation)

dynamic tree algorithms, including Sleator and Tarjan’s Link-Cut

Tree [48], Henzinger and King’s Euler-Tour Trees [33], Frederick-

son’s Topology Trees [20–22], Holm and de Lichtenberg’s Top Trees [6,

35, 50], and Acar et al.’s Rake-Compress Trees [2–4]. Most of these

algorithms are sequential and handle single edge updates at a time.

Exceptions are Tseng et al.’s Batch-Parallel Euler-Tour Trees [51]

and Acar et al.’s Parallel Batch-Dynamic RC-Trees [2]. These algo-

rithms implement batch-dynamic updates, which take a set of ġ

edges to insert or delete with the goal of doing so in parallel. Both

of these algorithms achieve work-e�cient ċ (ġ log(1 + Ĥ/ġ)) work,

which matches the sequential algorithms (ċ (logĤ) work) for low

values ġ , and is optimal (ċ (Ĥ) work) for large values of ġ . Both of

these algorithms, however, are randomized.

Batch-dynamic trees are an important ingredient in several re-

cent breakthrough results in parallel graph algorithms. RC-Trees are

the backbone of the �rst ever work-e�cient parallel algorithm for

minimum cuts [8] and also a key ingredient in the �rst nearly work-

e�cient highly parallel undirected depth-�rst search algorithm [26].

RC-Trees also underpin the �rst work-e�cient parallel incremental

minimum spanning tree algorithm [9], and batch-dynamic Euler-

tour trees were an ingredient in the �rst nearly work-e�cient

parallel batch-dynamic connectivity algorithm [1].

Other graph problems have also been studied in the parallel

batch-dynamic model, such as dynamic minimum spanning trees [9,

17, 18, 45, 47, 52], and approximate ġ-core decomposition [41]. How-

ever, to the best of our knowledge, all work-e�cient parallel batch-

dynamic graph algorithms are randomized. Indeed, avoiding ran-

domization seems di�cult even for some classic static problems.

Finding a spanning forest, for instance, has a simple ċ (ģ)-time se-

quential algorithm, and an ċ (ģ) work, ċ (logĤ) span randomized

parallel algorithm has been known for twenty years [46], but no de-

terministic equivalent has been discovered. The best deterministic

algorithm requires an additional Ă (Ĥ,ģ) factor of work [16].
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The closest work to ours is Gha�ari et. al’s parallel undirected

DFS [26] which makes use of RC-Trees and includes a sketch of how

the algorithm could be derandomized, though not work e�ciently.

Our results. We design a work-e�cient algorithm for the batch-

dynamic trees problem that is deterministic and runs in polylogĤ

span on the Common-CRCW PRAM.

Theorem 1.1. There is a deterministic parallel batch-dynamic

algorithm that maintains a balanced Rake-Compress Tree (RC-Tree) of

a bounded-degree forest subject to batches ofġ edge updates (insertions,

deletions, or both) in ċ (ġ log(1 + Ĥ/ġ)) work and ċ (logĤ log logġ)

span on the Common-CRCW PRAM. ġ may vary between batches.

The resulting RC-Tree is amenable to all existing query algorithms

for parallel RC-Trees [2] and hence it can solve batch connectivity

queries, batch subtree queries, batch path queries, and non-local

queries such as nearest marked vertex queries [7].

Corollary 1.2. There are deterministic parallel batch-dynamic

algorithms for batches of ġ queries of:

(1) dynamic forest connectivity,

(2) subtree sums of an associative operation over vertices,

(3) path sums of an associative and invertible operation over edges,

(4) nearest marked vertex,

running in ċ (ġ log(1 + Ĥ/ġ)) work and ċ (logĤ) span.

As a byproduct of our techniques, we also optimize the randomized

variant of the algorithm and obtain the following improved result,

which improves over the ċ (logĤ log∗ Ĥ) span of Acar et al. [2].

Theorem 1.3. There is a randomized parallel batch-dynamic al-

gorithm that maintains a balanced Rake-Compress Tree (RC-Tree) of

a bounded-degree forest subject to updates of ġ edges in ċ (ġ log(1 +

Ĥ/ġ)) expected work and ċ (log(Ĥ)) span w.h.p.1

Randomized parallel batch-dynamic trees have already been used as

key ingredients in several other parallel batch-dynamic algorithms.

As an additional result, existing algorithms for fully dynamic con-

nectivity [1] and incremental minimum spanning trees [9] can

be derandomized by using our deterministic RC-Tree, assuming

that the underlying graph is ternarized (transformed to constant

degree [20]). Details will be provided in the full version of the paper.

Theorem 1.4. There is a deterministic parallel batch-dynamic al-

gorithm which, given batches of ġ edge insertions, deletions, and con-

nectivity queries on a bounded-degree graph onĤ vertices andģ edges,

processes insertions and deletions in ċ (ġ logĤ log(1 + Ĥ/�)Ă (Ĥ,ģ))

amortized work in ċ (polylogĤ) span, and answers all queries in

ċ (ġ log(1 + Ĥ/ġ)) work andċ (polylogĤ) span, where � is the aver-

age batch size of all deletion operations.

Theorem 1.5. There is a deterministic parallel batch-incremental

algorithm which maintains a minimum spanning forest of a bounded-

degree graph on Ĥ vertices given batches of ġ edge insertions in

ċ (ġ log(1 + Ĥ/ġ) + ġ log logĤ) work in ċ (polylogĤ) span.

1We say that a statement happens with high probability (w.h.p.) in Ĥ if for any constant
ę , the constants in the statement can be set such that the probability that the event
fails to hold isċ (Ĥ−ę ) . The constants themselves are often hidden by big-O notation.

Overview. Previous implementations of RC-Trees are all based on

applying self-adjusting computation to randomized parallel tree

contraction [2–4], i.e., a static tree contraction algorithm is imple-

mented in a framework that automatically tracks changes to the

input values, and selectively recomputes all procedures that depend

on changed data. In this setting, one has to �x the randomness up-

front so that repeating precisely the same computation will always

result in the same outcome.

The static tree contraction process works by contracting all ver-

tices of degree one (leaves) and a random independent set of degree

two vertices obtained by �ipping coins and taking the ones that

�ipped heads but their neighbors did not. This process is repeated

in rounds until only a singleton vertex remains. When a new edge

is added to the forest, the contraction must be updated to be con-

sistent with the presence of the new edge. This is e�cient if the

new contracted forest does not di�er substantially from the original

one, and this is shown to be true in expectation. Intuitively, this is

likely because the random coin �ips ensure that a constant fraction

of the vertices of the forest contract in expectation, which rapidly

eliminates the areas of the forest that are a�ected by the update.

However, the downside is that this technique is di�cult to make

deterministic since the random coin �ips are what make it unlikely

that an adversary can insert an edge that causes catastrophic (i.e.,

expensive to update) cascading changes.

Our key insight is that to obtain an e�cient deterministic algo-

rithm, one must forgo the desire to always obtain the same con-

tracted tree as if the algorithm were ran from scratch, since if the

algorithm is only able to produce a single canonical tree, an ad-

versary can always �nd an update that maximizes the di�erence

between the old and new canonical trees. Instead, we only require

that the contraction is always valid and need not correspond to a

particular canonical tree. In essence, we give up history indepen-

dence (the fact that the resulting data structure does not depend

on the order of the updates, only the �nal structure [3, 43]) which

was paid for by randomization, to obtain determinism.

Our dynamic algorithm is therefore not based on self-adjusting

computation. Instead, our variant of tree contraction determinis-

tically contracts a maximal independent set (MIS) of degree-one-

or-two vertices each round. When an update is made to the forest,

our algorithm identi�es the set of a�ected vertices and then greedily

updates the tree contraction by computing an MIS of the a�ected

vertices and updating the contraction accordingly. Critically, these

greedy changes may not be the same choices that the algorithm

would have made if running from scratch. The key insights are in

carefully establishing the criteria for vertices being a�ected such

that the update is correct, while minimizing the number of such

vertices so that it is e�cient.

2 PRELIMINARIES

2.1 Model of computation

The PRAM and work-span analysis. We use the PRAM (Parallel

Random Access Machine) model with work-span analysis [11, 37].

In particular we assume an algorithm has access to an unbounded

shared memory and takes sequence of ĩ steps. Each step ğ performs

ĭğ constant-time operations in parallel (each has access to its index,

[0, . . . ,ĭğ )). The steps are executed one after the other sequentially.



Deterministic and Low-Span Work-E�icient Parallel Batch-Dynamic Trees SPAA ’24, June 17–21, 2024, Nantes, France

The work of the algorithm is the total number of operations per-

formed, i.e.,
∑ĩ
ğ=1ĭğ , and the span is the number of steps ĩ . Any

algorithm withē work and ď span can be scheduled on a tradi-

tional Ħ-processor PRAM [19] in ċ (ē /Ħ + ď) time [13] and any

Ħ processor PRAM algorithm that takes Đ time, does ċ (ĦĐ ) work

and has ċ (Đ ) span.

The EREW, CREW and CRCW variants of the PRAM di�er in

the assumptions about whether the concurrent operations within a

single step can access the same memory location or not. The EREW

(Exclusive-Read Exclusive-Write) variant allows no concurrent ac-

cess to any location, the CREW (Concurrent-Read Exclusive-Write)

allows concurrent reads but not writes, and the CRCW (Concurrent-

Read Concurrent-Write) allows both concurrent reads and writes.

The CRCW model may be further subdivided by the behaviour of

concurrent writes. The Common-CRCW PRAM permits concurrent

writes but requires that all concurrent writes to the same location

write the same value, else the computation is invalid. The Arbitrary-

CRCW PRAM permits concurrent writes of di�erent values and

speci�es that an arbitrary processor’s write succeeds, but the algo-

rithm may make no assumption about which processor succeeds.

Our algorithms use the Common-CRCW model.

We note that the PRAM model can be mapped onto less synchro-

nous models. For example any PRAM algorithm can be mapped

onto the binary-forking model while preserving the work and in-

creasing the span by a factor of ċ (logĤ) [12]. It is likely the span

for some of the algorithms in this paper can be improved for the

binary-forking model over this naive simulation.

2.2 Approximate pre�x sums and compaction

The pre�x sum operation takes an integer sequence [ė0, . . . , ėĤ−1],

and returns the result [ĩ0, ĩ1, . . . , ĩĤ] such that ĩ0 = 0 and ĩğ+1 =

ĩğ + ėğ for 0 f ğ < Ĥ. Among many applications, the pre�x sum can

be used to compact an array so as to only keep the elements that

satisfy some predicate [10]. Pre�x sums, and hence compaction,

can be computed in ċ (Ĥ) work and ċ (logĤ) span. Goldberg and

Zwick show how the span can be improved to ċ (log logĤ) for an

approximate varsion of the problem—i.e., one that takes an integer

input sequence [ė0, ė1, . . . , ėĤ−1], returns the result [ĩ0, ĩ1, . . . , ĩĤ]

such that ĩ0 = 0, ĩğ+1 f ĩğ + ėğ (0 f ğ < Ĥ), and ĩĤ f ę
∑Ĥ−1
0 ėğ .

This can be used for approximate compaction, where if there areģ

elements satisfying the predicate, they will be compacted into an

output array of length ċ (ģ) with other slots marked as empty.

Lemma 2.1 ([32]). There exists a deterministic Common-CRCW

algorithm for approximate pre�x sums and approximate compaction

on an array of Ĥ elements in ċ (Ĥ) work and ċ (log logĤ) span.

2.3 Approximate counting sort

We will use an approximate counting sort as a subroutine. An

approximate counting sort takes Ĥ integer keys (and possibly asso-

ciated values) in the range [0..ģ). It returns an array of size ċ (Ĥ)

where the keys are sorted, but possibly with gaps. The gaps are

marked as such. Furthermore for each value in the range, the sort

returns a pointer to a position in the array such that all keys earlier

are less than the value, and all keys at the position or later are

greater or equal to the value. This can be achieved by combining

the counting sort of Cole and Vishkin [15] with the approximate

pre�x sum algorithm of Goldberg and Zwick [32] described above.

This approximate counting sort works in three phases.

(1) Partition the input into chunks of sizeģ, and within each chunk

count the number of entries for each of theģ possible values.

This is done sequentially within the chunk but parallel across

chunks. View the output as anģ × (Ĥ/ģ) array ď .

(2) Flatten ď into row-major order (i.e. all the counts for the same

value are contiguous). Now run a single approximate pre�x sum

across all the Ĥ counts.

(3) View the output again as an ģ × (Ĥ/ģ) o�set array þ, and

allocate an output array of length ęĤ (same ę as used in the

de�nition of approximate pre�x sums). Now go through each

chunk again (sequentially within chunks and parallel across

them) and use the o�set array as the position to start writing

keys of the given value—i.e., þ [ğ, Ġ] gives the start o�set for

values ğ in chunk Ġ .

This results in a valid approximate counting sort. Clearly the output

is of size ċ (Ĥ), and all keys will be sorted (possibly with gaps due

to the approximate pre�x sum). The pointers to the start of the

region for each key value ğ can be found at þ [ğ, 0].

Lemma 2.2. There exists a deterministic Common-CRCW approxi-

mate counting sort algorithm for Ĥ integers in the range [0,ģ) that

runs in ċ (Ĥ) work and ċ (ģ + log logĤ) span.

This follows since the work and span for the �rst and third step are

ċ (Ĥ) and ċ (ģ) respectively, and the the cost of the second step is

given by Lemma 2.1.

2.4 Colorings and maximal independent sets

Parallel algorithms for graph coloring and maximal independent

sets are well studied [14, 28, 30, 38, 42]. Our algorithm uses a subrou-

tine that �nds a maximal independent set of a collection of chains,

i.e., a set of vertices of degree one or two.

Goldberg and Plotkin [30] give an algorithm for ċ (log(ę ) (Ĥ))-

coloring2 a constant-degree graph inċ (ę ·Ĥ) work andċ (ę) span in

the EREW PRAM model. Given a ę-coloring, one can easily obtain

a maximal independent set as follows. Sequentially, for each color,

look at each vertex of that color in parallel. If a vertex of the current

color is not adjacent to a vertex already selected for the independent

set, then select it. This takes ċ (ę · Ĥ) work and ċ (ę) span, hence a

constant coloring yields anċ (Ĥ) work and constant span algorithm.

For any choice of ę , the above algorithms do not yield a work-

e�cient algorithm for maximal independent set since it is not work

e�cient to �nd a constant coloring, and notwork e�cient to convert

a non-constant coloring into an independent set. To make it work

e�cient, we can borrow a trick from Cole and Vishkin [15]. We �rst

produce a log logĤ coloring inċ (1) span, then use an approximate

counting sort to sort the vertices by color, allowing us to perform

the coloring-to-independent-set conversion work e�ciently. This

results in an ċ (Ĥ) work, ċ (log logĤ) span algorithm for maximal

independent set in a constant-degree graph.

Lemma 2.3. There exists a deterministic Common-CRCW algo-

rithm that �nds an MIS in a constant-degree graph inċ (Ĥ) work and

ċ (log logĤ) span.

2The notation log(ę ) Ĥ refers to the repeated/nested logarithm function, i.e., log(1) Ĥ =

logĤ and log(ę ) Ĥ = log(log(ę−1) Ĥ) . E.g., log(2) Ĥ = log logĤ.
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2.5 Parallel tree contraction

Tree contraction is a procedure for computing functions over trees

in parallel in low span [44]. It involves repeatedly applying rake

and compress operations to the tree while aggregating data speci�c

to the problem. The rake operation removes a leaf from the tree

and aggregates its data with its parent. The compress operation

replaces a vertex of degree two and its two adjacent edges with a

single edge joining its neighbors, aggregating any data associated

with the vertex and its two adjacent edges.

Rake and compress operations can be applied in parallel as long

as they are applied to an independent set of vertices. Miller and

Reif [44] describe a linear work and ċ (logĤ) span randomized

algorithm that performs a set of rounds, each round raking every

leaf and an independent set of degree two vertices by �ipping coins.

They show that it takes ċ (logĤ) rounds to contract any tree to a

singleton w.h.p. They also describe a deterministic algorithm but

it is not work e�cient. Later, Gazit, Miller, and Teng [24] obtain a

work-e�cient deterministic algorithm with ċ (logĤ) span.

These algorithms are de�ned for constant-degree trees, so non-

constant-degree trees are handled by converting them into bounded-

degree equivalents, e.g., by ternerization [20].

2.6 Rake-Compress Trees (RC-Trees)

RC-Trees [2, 4, 7] are based on viewing the process of parallel tree

contraction as inducing a clustering. A cluster is a connected subset

of edges and vertices. The base clusters are singletons containing the

individual edges and vertices, so there are Ĥ +ģ base clusters. The

internal (non-base) clusters that arise have the following properties:

(1) The subgraph induced by the vertex subset is connected,

(2) the edge subset contains all of the edges in the subgraph induced

by the vertex subset,

(3) every edge in the edge subset has at least one endpoint in the

vertex subset.

This makes them somewhat of a hybrid of topology trees [20–22]

and top trees [6, 35, 50], which cluster just the vertices or just the

edges respectively. Importantly but somewhat unintuitively, an RC

cluster may contain an edge without containing both endpoints

of that edge. A vertex that is an endpoint of an edge, but is not

contained in the same cluster as that edge is called a boundary

vertex of the cluster containing the edge.

The clusters of the RC-Tree always have at most two boundary

vertices, and hence can be classi�ed as unary clusters, binary clusters,

or nullary clusters. Unary clusters arise from rake operations and

have one boundary vertex. Binary clusters arise from compress

operations and have two boundary vertices. A binary cluster with

boundary vertices ī and Ĭ always corresponds to an edge (ī, Ĭ) in

the corresponding round of tree contraction. Binary clusters can

therefore be thought of as “generalized edges” (this notion is also

used by top trees [6]). The path between the two boundary vertices

of a binary cluster (in the original forest) is called its cluster path.

To form a recursive clustering from a tree contraction, we begin

with the base clusters and the uncontracted tree. On each round, for

each vertex Ĭ that contracts via rake or compress (which, remember,

form an independent set), we identify the set of clusters that are

adjacent to Ĭ (equivalently, all clusters that have Ĭ as a boundary

vertex). These clusters are merged into a single cluster consisting

of the union of their contents. We call Ĭ the representative vertex of

the resulting cluster. The boundary vertices of the resulting cluster

are the union of the boundary vertices of the constituents, minus Ĭ .

The rake operations always creates unary clusters and the com-

press operation creates binary clusters. When a vertex has no neigh-

bors, it �nalizes and creates a nullary cluster representing the root

of its connected component. Since each vertex rakes, compresses,

or �nalizes exactly once, there is a one-to-one mapping between

representative vertices of the original tree and internal clusters.

An RC-Tree then encodes this recursive clustering. The leaves of

the RC-Tree are the base edge clusters of the tree, i.e., the singleton

edges and vertices (note that the base cluster for vertex Ĭ is always

a direct child of the cluster for which Ĭ is the representative, so

omitting it from the RC-Tree loses no information). Internal nodes

of the RC-Tree are clusters formed by tree contraction, such that the

children of a node are the clusters that merged to form it. The root

of the RC-Tree is a cluster representing the entire tree, or connected

component in the case of a disconnected forest.

Queries are facilitated by storing augmented data on each cluster,

which is aggregated from the child clusters at the time of its creation.

Since tree contraction removes a constant fraction of the vertices

at each round, the resulting RC-Tree is balanced, regardless of how

balanced or imbalanced the original tree was. This allows queries

to run inċ (logĤ) time for single queries, or batch queries to run in

ċ (ġ log(1 + Ĥ/ġ)) work and ċ (logĤ) span [7].

An example of a tree, a recursive clustering, and the correspond-

ing RC-Tree are depicted in Figure 1. The base vertex clusters are

omitted since in practice they can be combined with the internal

cluster that they represent.

3 DETERMINISTIC DYNAMIC CONTRACTION

3.1 The contraction data structure

Our algorithm maintains a contraction data structure, containing:

• for each level of the contraction process, an adjacency list repre-

sentation of the contracted tree,

• the clusters of the RC-Tree.

It records the history of the tree contraction process beginning from

the input forest Ă as it contracts to a forest of singletons. This is

the heart of the static and dynamic algorithms; the static algorithm

builds it initially and the dynamic algorithm updates it e�ciently.

The data structure is organized by levels, each corresponding

with a round of tree contraction. Level 0 is the original forest Ă0 = Ă .

Round ğ of tree contraction produces the forest Ăğ (level ğ) from

Ăğ−1. A vertex is live at level ğ if it has not contracted yet, or dead

otherwise. We say that a vertex contracts in Ăğ−1 (or equivalently,

contracts in round ğ) if it is live at level ğ − 1 but not at level ğ . For

each level in which a vertex is live, the contraction data structure

stores an adjacency list for that vertex. Each entry in a vertex Ĭ ’s

adjacency list is one of three possible kinds of value:

(1) a pointer to an edge (ī, Ĭ) ∈ Ă ,

(2) a pointer to a binary cluster for which Ĭ is one of the boundary

vertices. If ī is the other boundary vertex, this represents an

edge (ī, Ĭ) ∈ Ăğ ,

(3) a pointer to a unary cluster for which Ĭ is the boundary vertex.

This does not represent any edge in the contracted tree.
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(a) An unrooted tree

(b) A recursive clustering of the tree produced by tree contraction. Clus-

ters produced in earlier rounds are depicted in a darker color.

J

(c) The corresponding RC-Tree. Clusters produced from rakes (and the root cluster) are shown as �lled circles, and

clusters produced from compress as rectangles. The base edge clusters (edges of the original tree) are labeled in

lowercase, and the composite clusters are labeled with the uppercase of their representative vertex. Base vertex

clusters are omitted. The shade of a cluster corresponds to its height in the clustering. Lower heights (i.e., its

representative vertex contracted earlier) are darker.

Figure 1: A tree, a clustering, and the corresponding RC-Tree [2].

At level 0 the adjacency list therefore stores pointers to the edges

adjacent to each vertex. At later levels, in a contracted forest, some

of the edges are not edges of Ă , but are the result of a compress

operation and represent a binary cluster (Case 2), which may con-

tain augmented data (e.g., the sum of the weights in the cluster,

the maximum weight edge on the cluster path, etc, depending on

the application). Additionally, vertices that rake accumulate aug-

mented data inside their resulting unary cluster that needs to be

aggregated when their parent cluster is created (Case 3). Acar et

al. [4] and Anderson [7] describe many examples of augmented

data for various applications.

Clusters contain pointers to their child clusters alongside any

augmented data. Each internal cluster corresponds uniquely to

the vertex that contracted to form it, so counting them plus the

base clusters, the RC-Tree contains exactly 2Ĥ +ģ clusters. It is

convenient to omit the base-vertex clusters, since if the user wishes

to store augmented data on the vertices, this can be stored on the

unique internal cluster for which that vertex is the representative,

leading to a cleaner representation with Ĥ +ģ clusters.

3.2 Static deterministic tree contraction

We build an RC-Tree deterministically using a variant of Miller

and Reif’s tree contraction algorithm. Instead of contracting all

degree-one vertices (leaves) and an independent set of degree two

vertices, we instead contract any maximal independent set of degree

one and two vertices, i.e., leaves are not all required to contract.

This di�erence is subtle but critical for the e�ciency of the update

algorithm. The reason will become clear during the analysis, but

essentially, not forcing leaves to contract reduces the number of

vertices that need to be reconsidered during an update, since a

vertex that was previously not a leaf becoming a leaf might cause a

chain reaction requiring many more vertices to be updated. Such a

chain reaction is undesirable, and our variant avoids it.

De�nition 3.1. We say that a tree contraction is maximal at some

round if the set of vertices that contract form a maximal inde-

pendent set of degree one and two vertices. A tree contraction is

maximal if it is maximal at every round.

Recall that Ă0 denotes the initial forest and Ăğ for ğ g 1, the forest

obtained by applying one round of maximal tree contraction to Ăğ−1.

To obtain a maximal tree contraction of Ăğ , consider in parallel every

vertex of degree one and two. These are the eligible vertices. We �nd

a maximal independent set of eligible vertices by using Lemma 2.3.

This takes ċ ( |Ăğ |) work and ċ (log logĤ) span. To write down the

vertices of Ăğ+1, we can apply approximate compaction to the vertex



SPAA ’24, June 17–21, 2024, Nantes, France Daniel Anderson and Guy E. Blelloch

Figure 2: A vertex Ĭ is a�ected because its neighbor ī is af-

fected, and Ĭ depends on ī contracting in order for the con-

traction to be maximal. In this case ī’s degree has increased

to three so it can not contract, so Ĭ must contract instead.

set of Ăğ , �ltering those which were selected to contract. This also

takes ċ ( |Ăğ |) work and ċ (log logĤ) span [32].

Each vertex writes itself into its neighbors’ adjacency list in

the next level. Since the degree of the tree is constant, this does

not require complex synchronization primitives and can easily

be achieved by writing into a �xed-size array, one slot for each

neighbor. For vertices that do not contract, they can simply copy

their corresponding entry in their neighbors’ adjacency list to the

next level assuming the neighbor is still alive in that round. For

vertices that do contract, they create the corresponding RC cluster

andwrite a pointer to the cluster into the adjacency list. For example,

if a vertex Ĭ with neighborsī andĭ compresses in round ğ , it writes

a pointer to the binary cluster formed by Ĭ (whose boundary vertices

are ī andĭ ) into the adjacency lists at level ğ + 1 of ī andĭ .

To build the RC-Tree clusters, it su�ces to observe that when a

vertex Ĭ contracts, the contents of its adjacency list are precisely

the child clusters of the resulting cluster. Hence in constant time we

can build the cluster by aggregating the augmented values of the

children and creating a corresponding cluster. If at a round, a vertex

is isolated (has no neighbors), it creates a root (nullary) cluster.

3.3 A deterministic update algorithm

A dynamic update consists of a set of ġ edges to be added or deleted

(a combination of both is valid). The update begins by modifying

the adjacency lists of the 2ġ endpoints of the modi�ed edges. Call

this resulting forest Ă ′0, to denote the forest after the update (note

that updates are performed in-place since copying the entire forest

would immediately ruin the work bound). For each round ğ , the

goal of the update algorithm is now to produce Ă ′ğ , an updated tree

contraction for level ğ , using Ăğ , Ăğ−1 and Ă ′ğ−1. This approach is

similar to the randomized change propagation algorithm [2], but

the details are very di�erent, and the devil is in the details.

A�ected vertices. To perform the update e�ciently, we de�ne

the notion of an a�ected vertex. A�ected vertices are those that

need to be reprocessed since their state might need to change (from

contracted to not contracted or vice-versa) to keep the invariant that

the tree contraction is always maximal. The subtlety in correctly

de�ning the a�ected vertices is that the set must be comprehensive

enough that the algorithm is correct, but also minimal enough that

it is e�cient. Having too many a�ected vertices would be ine�cient,

but having too few would be incorrect. This de�nition strikes the

right balance and achieves the best of both worlds.

De�nition 3.2 (A�ected). A vertex is a�ected at level ğ if any of:

(1) It is live in one of Ăğ and Ă ′ğ but not the other,

Figure 3: Direct a�ection (two possibilities): A vertex ī di-

rectly a�ects its neighbor Ĭ . ī is a�ected at round 0 since

its adjacency list was changed. Since ī contracts in Ă0 and

changes the adjacency list of Ĭ at round 1, Ĭ becomes a�ected.

Note that this can happen either when ī contracts in Ă ′0 (�rst

example) or when it does not (second example).

Figure 4: A�ection by dependence: A vertexī a�ects its neigh-

bor Ĭ in Ă1 by dependence. Even though Ĭ ’s adjacency list is

the same in both forests, it is a�ected because it depended

on ī to contract in Ă1 for maximality to be satis�ed. Since ī

can no longer contract in Ă ′1, it is important that Ĭ is able to.

(2) it is live in both Ăğ and Ă ′ğ but has di�erent adjacency lists,

(3) it is live in both Ăğ and Ă ′ğ , and still live in Ăğ+1 (i.e., did not

contract in Ăğ ), but all of its neighbors in Ăğ that contracted in

Ăğ are a�ected at level ğ .

The �rst two cases of a�ected vertices are intuitive. If a vertex used

to exist at level ğ but no longer does, or vice versa, it de�nitely needs

to be updated in level ğ + 1. If a vertex has a di�erent adjacency list

than it used to, then it de�nitely needs to be processed because it

can not possibly contract in the same manner, or may change from

being eligible to ineligible to contract or vice versa.

The third case of a�ection is more subtle, but is important for

the correctness and e�ciency of the algorithm. We call the third

case a�ection by dependence. Suppose an eligible vertex Ĭ doesn’t

contract in Ăğ . Since the contraction forms a maximal independent
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Algorithm 1 Batch update

1: procedure BatchUpdateForest(ā+, ā−)

2: Create Ă ′0 from Ă0 by adding edges in ā+ and removing edges in ā−

3: Determine the a�ected vertices at level 0 from the endpoints of ā+ ∪ ā−

4: for each level ğ from 1 to log6/5 Ĥ do

5: Find an MIS of update-eligible a�ected vertices in Ăğ−1
6: Obtain Ă ′ğ from Ăğ by recomputing the adjacency lists of the a�ected vertices, contracting those vertices in the new MIS

7: Determine the a�ected vertices at level ğ from the result (De�nition 3.2)

8: end for

9: end procedure

set, at least one of Ĭ ’s neighbors must contract. If all such neighbors

are a�ected at level ğ , they may no longer contract in Ă ′ğ because

of the update, which would leave Ĭ uncontracted and without a

contracting neighbor, violating maximality. Therefore Ĭ must also

be considered a�ected to prevent this scenario. Figure 2 shows an

example where this matters.

Note that by the de�nition, vertices only become a�ected because

they have an a�ected neighbor at the previous or current level. We

call this spreading a�ection.

De�nition 3.3 (Spreading a�ection). An a�ected vertex ī spreads

to Ĭ at level ğ + 1 if Ĭ was una�ected at level ğ and is a�ected at level

ğ + 1 because either

(1) Ĭ is a neighbor ofī at level ğ , such thatī is a�ected and contracts

in round ğ + 1 in either Ăğ or Ă
′
ğ , or

(2) Ĭ is a neighbor of ī in Ăğ+1, such that Ĭ does not contract in Ăğ+1,

but ī, which is a�ected, does.

We call Case (1), spreading directly and Case (2) spreading by depen-

dence. Figure 3 shows two examples of directly spreading a�ection.

Figure 4 shows an example of spreading a�ection by dependence.

The algorithm. With the de�nition of a�ected vertices, the up-

date algorithm can be summarized as stated in Algorithm 1. The

levels are processed one after the other, but the subroutines that

run on each level are parallel. In the update algorithm, a vertex is

update-eligible if it has degree one or two, and it is not adjacent to

an una�ected vertex that contracts. Line 5 is accomplished using

Lemma 2.3. This �nds a maximal independent set of update-eligible

a�ected vertices in ċ (ġ) work and ċ (log logġ) span.

Line 6 is implemented by looking at each a�ected vertex in

parallel and updating it to re�ect its new behaviour in Ă ′ğ . This

entails writing the corresponding adjacent edges into the adjacency

lists of its neighbors in level ğ if it did not contract, or writing

the appropriate cluster values if it did. At the same time, for each

contracted vertex, the algorithm computes the augmented value on

the resulting RC cluster from the values of the children.

Line 7 is implemented by looking at each a�ected vertex at the

previous level and any vertex within distance two of those in par-

allel, then �ltering those which do not satisfy the de�nition of

a�ected. Note that by the de�nition of a�ected, looking at vertices

within distance two is su�cient since at worst, a�ection can only

spread to neighbors and possibly those neighbors’ uncontracted

neighbors. Using approximate compaction [32], this step takes lin-

ear work in the number of a�ected vertices and ċ (log logĤ) span.

In Section 4, we show that the number of a�ected vertices at each

level is ċ (ġ), so this is e�cient.

Correctness. We now argue that the algorithm is correct. This con-

sists in proving the invariant that after each update, the contraction

is maximal, i.e., for every level of the tree contraction and every

vertex Ĭ of degree one or two, either Ĭ contracts or Ĭ has at least

one neighbor that contracts.

Lemma 3.4. After running the update algorithm, the contraction is

still maximal, i.e., the contracted vertices at each level form a maximal

independent set of degree one and two vertices.

Proof. Our goal is to prove that after an update, every eligible

vertex (vertices of degree one or two) either contracts or is adja-

cent to a vertex that contracts. The proof is by casework based on

whether Ĭ is una�ected and contracts or does not contract, or is

a�ected and update-eligible or not update-eligible. Suppose the tree

contraction was maximal at level ğ before the update. We will argue

that after the update the contraction is still maximal at level ğ .

Consider any eligible vertex Ĭ ∈ Ă ′ğ that was una�ected at level ğ

and contracts in Ă ′ğ . Since it was una�ected it exists in Ăğ and it also

contracted in Ăğ . We need to argue that no neighbor of Ĭ contracts in

Ă ′ğ . For any una�ected neighbor ī, it didn’t contract in Ăğ and hence

still doesn’t contract in Ă ′ğ . If ī is an a�ected neighbor, it is not

considered update-eligible because Ĭ is una�ected and contracted

and hence ī does not contract. Therefore none of Ĭ ’s neighbors

contract in Ă ′ğ and Ĭ satis�es the invariant.

Now suppose Ĭ ∈ Ă ′ğ was eligible and una�ected at level ğ and

didn’t contract in Ă ′ğ . We need to argue that Ĭ has a neighbor in

Ă ′ğ that contracted. Since Ĭ is una�ected it exists and also didn’t

contract in Ăğ . Therefore it has a neighbor ī ∈ Ăğ that contracted. If

ī is una�ected, then ī ∈ Ă ′ğ and contracts. If ī were a�ected, then

Ĭ would be a�ected by dependence, but Ĭ is una�ected. Therefore

all eligible una�ected vertices Ĭ ∈ Ă ′ğ satisfy the invariant.

Consider any eligible a�ected vertex Ĭ ∈ Ă ′ğ . If Ĭ has an una�ected

contracted neighbor, then Ĭ is not update-eligible and hence does

not contract in Ă ′ğ , and has a contracted neighbor. Otherwise, Ĭ is

update-eligible and participates in theMIS. Since the algorithm�nds

amaximal independent set on the update-eligible a�ected vertices, Ĭ

either contracts and has no contracted neighbor, or doesn’t contract

and has a contracted neighbor. Therefore Ĭ satis�es the invariant.

Together, we can conclude that every eligible vertex satis�es the

invariant and hence the contraction is maximal. □
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4 ANALYSIS

We start by proving some general and useful lemmas about the con-

traction process, from which the e�ciency of the static algorithm

immediately follows, and which will later be used in the analysis

of the update algorithm.

4.1 Round and tree-size bounds

Lemma 4.1. Consider a (non-singleton vertex) treeĐ and suppose a

maximal independent set of degree one and two vertices is contracted

via rake and compress contractions to obtain Đ ′. Then

|Đ ′ | f
5

6
|Đ |

Proof. More than half of the vertices in any tree have degree

one or two [53]. A maximal independent set among them is at

least one third of them since every adjacent run of three vertices

must have at least one selected, so at least one sixth of the vertices

contract. Therefore the new tree has at most 5
6 as many vertices. □

The lemma also applies to forests since it can simply be applied

independently to each component. Note that singleton vertices �-

nalize and hence the bound is true for the total size of the forest

including the singletons. Three important corollaries follow that

allow us to bound the cost of various parts of the algorithm. Corol-

lary 4.2 gives the number of rounds required to fully contract a

forest, and Corollary 4.3 gives a bound on the number of rounds

required to shrink a forest to size Ĥ/logĤ. Lastly, Corollary 4.4 gives

a bound on the number of rounds required to shrink a tree to size

ġ , which is useful in bounding the work of the batched update and

query algorithms.

Corollary 4.2. Given a forest on Ĥ vertices, maximal tree con-

traction completely contracts a forest of Ĥ vertices in log6/5 Ĥ rounds.

Corollary 4.3. Given a forest on Ĥ vertices, after performing

log6/5 logĤ rounds of maximal tree contraction, the number of vertices

in the resulting forest is at most Ĥ/logĤ.

Corollary 4.4. Given a forest on Ĥ vertices and any integer ġ g 1,

after performing log6/5 (1 + Ĥ/ġ) rounds of maximal tree contraction,

the number of vertices in the resulting forest is at most ġ .

Proof. By Lemma 4.1, the number of vertices in each round is at

most 5/6ths of the previous round, so the number remaining after

round Ĩ is at most Ĥ (5/6)Ĩ . The three corollaries follow. □

4.2 Analysis of the static algorithm

Armed with the lemmas and corollaries of Section 4.1, we can now

analyze the static algorithm.

Theorem 4.5. The static maximal tree contraction algorithm can

be implemented inċ (Ĥ) work andċ (logĤ log logĤ) span for a forest

of Ĥ vertices.

Proof. The work performed at each round is ċ ( |Ăğ |), i.e., the

number of live vertices in the forest at that round. By Lemma 4.1,

the total work is therefore at most
∞
∑

ğ=0

Ĥ

(

5

6

)ğ

= Ĥ

∞
∑

ğ=0

(

5

6

)ğ

= 6Ĥ.

The span of the algorithm is ċ (log logĤ) per round to perform the

maximal independent set and approximate compaction operations

by Lemmas 2.3 and 2.1. By Corollary 4.2 there are ċ (logĤ) rounds,

hence the total span is ċ (logĤ log logĤ). □

4.3 Analysis of the update algorithm

We �rst sketch a summary of the proof then present the full analysis.

Summary. We begin by establishing the criteria for vertices be-

coming a�ected. Initially, the endpoints of the updated edges and a

small neighborhood around them are a�ected. We call these the ori-

gin vertices. For each of these vertices, it may spread its a�ection to

nearby vertices in the next round. Those vertices may subsequently

spread to other nearby vertices in the following round and so on.

As a�ection spreads, the a�ected vertices form an a�ected compo-

nent, a connected set of a�ected vertices whose a�ection originated

from a common origin vertex. An a�ected vertex that is adjacent

to an una�ected vertex is called a frontier vertex. Frontier vertices

are those which are capable of spreading a�ection. Note that it is

possible that in a given round, a vertex that becomes a�ected was

adjacent to multiple frontier vertices of di�erent a�ected compo-

nents, and is subsequently counted by both of them, and might

therefore be double counted in the analysis. This is okay since it

only overestimates the number of a�ected vertices in the end.

With these de�nitions established, our results show that each af-

fected component consists of at most two frontier vertices, and that

at most four new vertices can be added to each a�ected component

in each round. Given these facts, since a constant fraction of the

vertices in any forest must contract in each round, we show that

the size of each a�ected component shrinks by a constant fraction,

while only growing by a small additive factor. This leads to the

conclusion that each a�ected component never grows beyond a

constant size, and since there are initially ċ (ġ) origin vertices, that

there are never more thanċ (ġ) a�ected vertices in any round. This

fact allows us to establish that the update algorithm is e�cient.

The analysis of the update algorithm follows a similar pattern to

the analysis of the randomized change propagation algorithm [2],

though once again with substantial tweaks to the details.

The proofs. We now prove the aforementioned facts.

Lemma 4.6. If Ĭ is una�ected at level ğ , then Ĭ contracts in round ğ

in Ă if and only if Ĭ contracts in round ğ in Ă ′.

Proof. Una�ected vertices are ignored by the update algorithm,

and hence remain the same before and after an update. □

We now establish that De�nition 3.3 indeed encompasses all

possibilities for a�ection to spread. If a vertex is not a�ected at

level ğ but is a�ected at level ğ + 1, we say that Ĭ becomes a�ected in

round ğ , which we prove can happen in just two ways.

Lemma 4.7. If Ĭ becomes a�ected in round ğ , then one of the fol-

lowing is true:

(1) Ĭ has an a�ected neighbor ī at round ğ which contracted in either

Ăğ or Ă
′
ğ

(2) Ĭ does not contract by round ğ + 1, and has an a�ected neighbor ī

at round ğ + 1 that contracts in Ăğ+1.
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Proof. First, since Ĭ becomes a�ected in round ğ , it is not already

a�ected at level ğ . Therefore, due to Lemma 4.6, Ĭ does not contract,

otherwise it would do so in both Ă and Ă ′ and hence be una�ected

at level ğ + 1. Since Ĭ does not contract, Ĭ has at least one neighbor,

otherwise it would �nalize.

Suppose that (1) is not true, i.e., that Ĭ has no a�ected neighbors

that contract in Ăğ or Ă
′
ğ in round ğ . Then either none of Ĭ ’s neighbors

contract in Ăğ , or only una�ected neighbors of Ĭ contract in Ăğ . By

Lemma 4.6, in either case, Ĭ has the same set of neighbors in Ăğ+1
and Ă ′ğ+1. Therefore, since Ĭ is a�ected in level ğ+1, does not contract

in either Ăğ or Ă
′
ğ , and has the same neighbors in both, it must be in

Case (3) in the de�nition of a�ected. Therefore, Ĭ has an a�ected

neighbor that contracts in Ăğ+1.

Since ¬(1) ⇒ (2), we have that (1) ( (2) is true. □

Our end goal is to bound the number of a�ected vertices at each

level, since this corresponds to the amount of work required to

update the contraction after an edge update.

Let Ağ denote the set of a�ected vertices at level ğ .

Lemma 4.8. For a batch update of size ġ (insertion or deletion of ġ

edges), we have |A0 | f 6ġ .

Proof. An edge changes the adjacency list of its two endpoints.

These two endpoints might contract in the �rst round, which a�ects

their uncontracted neighbors by dependence. However, vertices that

contract have degree at most two, so this is at most two additional

vertices per endpoint. Therefore there are up to 6 a�ected vertices

per edge modi�cation, and hence up to 6ġ a�ected vertices. □

Each edge modi�ed at level 0 a�ects some set of vertices, which

spread to some set of vertices at level 1, which spread to some set

of vertices at level 2 and so on. We will therefore partition the set

of a�ected vertices into ĩ = |A0 | a�ected components, indicting the

“origin” of the a�ection. When a vertex ī spreads to Ĭ , it will add Ĭ

to its component on the next level.

More formally, we will construct Ağ
1,A

ğ
2, . . . ,A

ğ
ĩ , which form

a partition of Ağ . We start by arbitrarily partitioning A0 into ĩ

singleton setsA0
1,A

0
2, . . . ,A

0
ĩ . GivenA

ğ
1,A

ğ
2, . . . ,A

ğ
ĩ , we construct

Ağ+1
1 ,Ağ+1

2 , . . . ,Ağ+1
ĩ such that Ağ+1

Ġ
contains the a�ected vertices

Ĭ ∈ ýğ+1 that were either already a�ected in Ağ
Ġ
or were spread

to by a vertex ī ∈ Ağ
Ġ . Note that it is possible, under the given

de�nition, for multiple vertices to spread to another, so this may

overcount by duplicating vertices. Vertices are de-duplicated by

only adding them to the a�ected component that they spread from

via the lowest ID vertex as a tiebreaker.

De�nition 4.9 (Frontier). A vertex Ĭ is a frontier at level ğ if Ĭ is

a�ected at level ğ and a neighbor of Ĭ in Ăğ is una�ected at level ğ .

Lemma 4.10. If Ĭ is a frontier vertex at level ğ , then it is alive in

both Ăğ and Ă
′
ğ at level ğ , and is adjacent to the same set of una�ected

vertices in both.

Proof. If Ĭ were dead in both forests it would not be a�ected

and hence not a frontier vertex. If Ĭ were live in one forest but dead

in the other, then all of its neighbors would have a di�erent set of

neighbors in Ăğ and Ă ′ğ (they must be missing Ĭ) and hence all of

them would be a�ected, so Ĭ would have no una�ected neighbors

and hence not be a frontier.

Similarly, consider an una�ected neighbor ī of Ĭ in either forest.

Ifī was not adjacent to Ĭ in the other forest, it would have a di�erent

set of neighbors and hence be a�ected. □

If a Ĭ spreads a�ection to a vertex in round ğ , then by de�nition

Ĭ must be a frontier. Our next goal is to analyze the structure of the

a�ected sets and show that the number of frontier vertices is small.

Lemma 4.11. For all ğ, Ġ , the forest induced by Ağ
Ġ
in Ăğ is a tree.

Proof. When ğ = 0 the components are isolated vertices which

are trivially trees. For ğ > 0, the rake and compress operations both

preserve the connectedness of the underlying tree, and Lemma 4.7

shows that a�ection only spreads to neighboring vertices. □

Lemma 4.12. Ağ
Ġ
has at most two frontiers and |Ağ+1

Ġ
\ Ağ

Ġ
| f 4.

Proof. We proceed by induction on ğ . At level 0, each group

contains one vertex, so it de�nitely contains at most 2 frontier

vertices. Consider some Ağ
Ġ
and suppose it contains one frontier

vertex ī, which may spread directly by contracting (De�nition 3.3).

If ī spreads directly, then it either compresses or rakes in Ăğ or Ă
′
ğ .

This means it has degree at most two in Ăğ or Ă
′
ğ , and by Lemma 4.10,

it is therefore adjacent to at most two una�ected vertices, and hence

may spread to at most these two vertices. Since ī contracts, it is no

longer a frontier by Lemma 4.10, but its newly a�ected neighbors

may become frontiers, so the number of frontiers is at most two.

Suppose ī spreads via dependency in round ğ (Case 2 in De�ni-

tion 3.3) in Ağ+1
Ġ

and contracts in Ăğ+1. Since ī contracts in Ăğ+1, it

has at most two neighbors, and by Lemma 4.10, it is also adjacent

to at most two una�ected vertices, and may spread to at most these

two vertices. If it spreads to one of them, that vertex may become

a frontier and hence there are at most two frontier vertices. If it

spreads to both of them, ī is no longer adjacent to any una�ected

vertices and hence is no longer a frontier, so there are still at most

two frontier vertices, and |Ağ+1
Ġ

\ Ağ
Ġ
| f 3.

Now consider someAğ
Ġ
that contains two frontier vertices ī1, ī2.

By Lemma 4.11, ī1 and ī2 each have at least one a�ected neighbor.

If either contract, it would no longer be a frontier, and would have

at most one una�ected neighbor which might become a�ected and

a frontier. Therefore the number of frontiers is preserved when

a�ection is spread directly.

Lastly, supposeī1 orī2 spreads via dependency in round ğ . Since

it would contract in Ăğ+1, it has at most one una�ected neighbor

which might become a�ected and become a frontier. It would sub-

sequently have no una�ected neighbor and therefore no longer be

a frontier. Therefore the number of frontiers remains at most two

and |Ağ+1
Ġ

\ Ağ
Ġ
| f 4. □

Now de�ne Ağ
Ă ,Ġ

= Ağ
Ġ
∩ Ē ğ

Ă
, the set of a�ected vertices from

Ağ
Ġ
that are live in Ă at level ğ , and similarly de�ne Ağ

Ă ′, Ġ
for Ă ′.

Lemma 4.13. For every ğ, Ġ we have

|Ağ
Ă ,Ġ | f 26.
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Proof. Consider the subforest induced by the set of a�ected

vertices Ağ
Ă , Ġ

. By Lemmas 4.11 and 4.12, this is a tree with two

frontier vertices. The update algorithm �nds and contracts a max-

imal independent set of a�ected degree-one-or-two vertices that

are not adjacent to an una�ected vertex that contracts in Ăğ . There

can be at most two vertices (the frontiers) that are adjacent to an

una�ected vertex, and at most four new a�ected vertices appear by

Lemma 4.11, so by Lemma 4.1, the size of the new a�ected set is

|Ağ+1
Ă,Ġ | f 4 +

5

6

(

|Ağ
Ă , Ġ | − 2

)

+ 2

=

26

6
+
5

6
|Ağ

Ă ,Ġ |.

Since |A0
Ă,Ġ

| = 1, we obtain

|Ağ+1
Ă,Ġ | f

26

6

∞
∑

Ĩ=0

(

5

6

)Ĩ

=

26
6

1 − 5
6

=

26
6
1
6

= 26,

just as desired. □

Lemma 4.14. Given a batch update of ġ edges, for every ğ

|Ağ | f 312ġ.

Proof. By Lemma 4.8, there are at most 6ġ a�ected components.

At any level, every a�ected vertex must be live in either Ă or Ă ′, so

Ağ
Ġ
= Ağ

Ă ,Ġ
∪ Ağ

Ă ′, Ġ
, and hence

|Ağ | f

6ġ
∑

Ġ=1

(

|Ağ
Ă , Ġ | + |Ağ

Ă ′, Ġ |
)

f 6ġ × 26 × 2 = 312ġ,

which completes the proof. □

We can conclude that given an update of ġ edges, the number of

a�ected vertices at each level of the algorithm is ċ (ġ).

Pu�ing it all together. Given the series of lemmas above, we now

have the power to analyze the performance of the update algorithm.

Theorem 4.15 (Update performance). A batch update consist-

ing of ġ edge insertions or deletions takes ċ (ġ log (1 + Ĥ/ġ)) work

and ċ (logĤ log logġ) span.

Proof. The update algorithm performs work proportional to the

number of a�ected vertices at each level. Consider separately the

work performed processing the levels up to and including level Ĩ =

log6/5 (1 + Ĥ/ġ). By Lemma 4.14, there are ċ (ġ) a�ected vertices

per level, so the work performed on levels up to including Ĩ is

ċ (ġĨ ) = ċ
(

ġ log
(

1 + Ĥ
ġ

))

.

By Corollary 4.4, after Ĩ rounds, there are at most ġ vertices alive

in ĂĨ or Ă
′
Ĩ . The number of a�ected vertices is at most the number

of live vertices in either forest, and hence at most 2ġ . The amount

of a�ected vertices in all subsequent levels is therefore at most

∞
∑

ğ=0

(

5

6

)ğ

2ġ =

2ġ

1 − 5
6

= 12ġ,

and hence the remaining work is ċ (ġ). Therefore the total work

across all rounds is at most

ċ
(

ġ log
(

1 + Ĥ
ġ

))

+ċ (ġ) = ċ
(

ġ log
(

1 + Ĥ
ġ

))

.

In each round, it takes ċ (log logġ) span to �nd a maximal inde-

pendent set of the a�ected vertices and to perform the approximate

compaction required to �lter out the vertices that are no longer

a�ected in the next round. Therefore, over ċ (logĤ) rounds, this

results in ċ (logĤ log logġ) span. □

5 A LOW-SPAN RANDOMIZED ALGORITHM

The algorithm we have presented in this paper is somewhat generic.

As presented it makes use of an MIS of a�ected vertices since this

is convenient for determinism, but one could substitute the MIS

algorithm for any other independent set, provided that it satis�ed

the equivalents of Lemma 4.1 (contracting a constant fraction of the

vertices) and Lemma 4.14 (only a small number of a�ected vertices),

and still obtain a correct and e�cient algorithm.

The randomized tree contraction algorithm ofMiller and Reif [44]

which is used as the key ingredient in the randomized RC-Tree algo-

rithm [2, 3] indeed satis�es both of these properties (as is required

by the algorithm of Acar et al. [2]), and hence the algorithm pre-

sented in this paper would be suitable for the randomized variant

as well (of course it would no longer be deterministic). The major

upside of the randomized algorithm is that computing the indepen-

dent set takes just ċ (1) span rather than ċ (log logĤ) span, which

is one of the two span bottlenecks of the algorithm. Instead of guar-

anteeing that the number of vertices eliminated is at least 1/6th of

them, it eliminates at least 1/8th of the vertices w.h.p. [2, 44]

The downside of the original randomized algorithm of Acar et

al. [2] is that it is based on self-adjusting computation and hence it is

di�cult to optimize. Our algorithm in this paper on the other hand

is a direct implementation of dynamic tree contraction and hence is

much more amenable to optimizations. The remaining bottleneck

of the randomized algorithm is the span of performing approximate

compaction on each level to eliminate the contracted vertices, which

costsċ (log∗ Ĥ). Here, we present a technique to eliminate this span

overhead. The same techniques could be applied to the deterministic

algorithm, but in that case, the span of deterministically computing

an MIS remains as the bottleneck.

5.1 A lower span static algorithm

The basic static algorithm uses approximate compaction after each

round to �lter out the vertices that have contracted. This is impor-

tant, since without this step, every round would take Θ(Ĥ) work,

for a total of Θ(Ĥ logĤ) work. This leads to the deterministic ċ (Ĥ)

work andċ (logĤ log logĤ) span algorithm, or the randomizedċ (Ĥ)

work andċ (logĤ log∗ Ĥ) span algorithm using randomized approx-

imate compaction [27], which has ċ (log∗ Ĥ) span w.h.p. We can

improve the span by splitting the algorithm into two phases.

Phase One. Note that the purpose of compaction is to avoid per-

forming wasteful work on dead vertices each round. However, if

the forest being contracted has just ċ (Ĥ/logĤ) vertices, then a

“wasteful” algorithm which avoids performing compaction takes at

most ċ (Ĥ) work anyway. So, the strategy for phase one is to con-

tract the forest to size ċ (Ĥ/logĤ), which, by Corollary 4.3 takes at

most ċ (log logĤ) rounds (w.h.p. with the randomized algorithm).

This is essentially the same strategy used by Gazit, Miller, and
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Teng [24]. The work of the �rst phase is therefore ċ (Ĥ) in expecta-

tion and the span, using randomized approximate compaction, is

just ċ (log logĤ log∗ Ĥ) w.h.p.

Phase Two. In the second phase, we run the “wasteful” algorithm,

which is simply the original algorithm but without performing any

compaction. Since the forest begins with ċ (Ĥ/logĤ) vertices in

this phase, this takes ċ (Ĥ) work in expectation and completes in

ċ (logĤ) additional rounds w.h.p. The algorithm no longer needs

to pay for compaction, and hence the span is just ċ (logĤ) w.h.p.

Putting these together, the total work of both phases is ċ (Ĥ), and

the span w.h.p. is ċ (log logĤ log∗ Ĥ) +ċ (logĤ) = ċ (logĤ) .

5.2 A lower span dynamic algorithm

We optimize the dynamic algorithm similarly to the static algorithm,

by splitting it into three phases this time.

Phase One. The algorithm runs Phase One for log8/7 (1 + Ĥ/ġ)

rounds (the 8/7 comes from the randomized independent set which

eliminates 1/8th of the remaining vertices w.h.p. [2]). Note impor-

tantly that this depends on the batch size ġ , so the number of rounds

each phase runs is not always the same for each update operation.

Similarly to the optimized static algorithm without concurrent

writes, we attack the problem by splitting the a�ected vertices into

groups. Speci�cally, we will group the a�ected vertices into a�ected

components based on their origin vertex as de�ned in Section 4.

There are ċ (ġ) a�ected components, each of which is initially a

singleton de�ned by an a�ected vertex at round 0.

In each round, the algorithm processes each a�ected component

and each a�ected vertex within in parallel. At the end of the round,

the newly a�ected vertices are identi�ed for each component. To

tiebreak, and ensure that only one copy of an a�ected vertex exists,

if multiple vertices spread to the same vertex, only the one with

the lowest identi�er adds the newly a�ected vertex to its compo-

nent. Since the forest has constant degree, the one with the lowest

identi�er can be identi�ed in constant time.

Given the set of a�ected vertices, new and old, we can then �lter

each component independently in parallel to remove vertices that

are no longer a�ected in the next round. The critical insight is

that according to Lemma 4.13 (or its equivalent in the randomized

algorithm, Lemma 23 of [2]), each a�ected component has constant

size (w.h.p.), so this �ltering takes constant work and span w.h.p.

Having to maintain this set of ġ a�ected components adds an

additional ċ (ġ) work to each round, but since we run Phase One

for only ċ (log(1 + Ĥ/ġ)) rounds, this is still work e�cient.

Phase Two. Using the randomized contraction algorithm, by the

time Phase Two begins, the forest will have contracted to the point

that at most ġ vertices remain w.h.p. From this point onwards, we

use an algorithm very similar to the static algorithm to complete

the remaining rounds, and thus split into two more phases. First,

we can collect the contents of each of theċ (ġ) a�ected components

back into a single array ofċ (ġ) a�ected vertices w.h.p. This can be

done in at most ċ (ġ) work and ċ (logġ) span w.h.p.

Given the a�ected vertices, we logically partition them into

ġ/logġ groups of size ċ (logġ) w.h.p. We then run the basic dy-

namic update algorithm for log logġ rounds, using a �lter algorithm

(not approximate compaction) at each round to remove vertices

that are no longer a�ected. The span of this phase is therefore

ċ ((log logġ)2) w.h.p, and costs at mostċ (ġ) additional work w.h.p.

Phase Three. After completing Phase Two, there will be at most

ċ (ġ/logġ) vertices alive in the forest w.h.p, and hence at most

twice that many a�ected vertices (a�ected vertices may be alive

in either the new or old forest). Phase Three simply collects the

remaining a�ected vertices and performs the same steps as Phase

One. We create up to ċ (ġ/logġ) singleton a�ected components,

and then in each round, process each vertex in each component in

parallel, then spread to any newly a�ected vertices. Each a�ected

component remains constant size w.h.p. and the work performed

in each round is at most ċ (ġ/logġ) for ċ (logġ) rounds w.h.p.,

adding to a total of ċ (ġ) work. Since each a�ected component is

constant size w.h.p, maintaining them takes constant time w.h.p.

After ċ (logġ) rounds w.h.p, the forest is fully contracted.

In total, at most ċ (ġ log(1 + Ĥ/ġ)) additional work is added, so

the algorithm is still work e�cient. The span of Phases One and

Three is constant per round, and hence the total span w.h.p. is

ċ
(

log
(

1 +
Ĥ

ġ

)

+ (log logġ)2 + log(ġ)
)

= ċ (logĤ) .

6 CONCLUSION

We presented the �rst deterministic work-e�cient parallel algo-

rithm for the batch-dynamic trees problem.We showed that parallel

RC-Trees [2, 4] can be derandomized using a variant of parallel tree

contraction that contracts a maximal independent set of degree one

and two vertices. Our algorithm performs ċ (ġ log(1 + Ĥ/ġ)) work

for a batch of ġ updates and runs inċ (logĤ log logġ) span. We also

improve the span of the randomized variant of the algorithm from

ċ (logĤ log∗ Ĥ) to just ċ (logĤ) w.h.p.

Several interesting questions still remain open. Our deterministic

algorithm requires ċ (logĤ log logġ) span, while our randomized

variant requires just ċ (logĤ). Can we obtain a deterministic algo-

rithmwithċ (logĤ) span? It seems unlikely that the exact algorithm

that we present here could be optimized to that point, since that

would imply �nding a maximal independent set in ċ (1) span work

e�ciently, and the fastest known algorithms run in ċ (log∗ Ĥ) span

but are not even work e�cient. This doesn’t rule out using other

techniques instead of a maximal independent set, however.

Lastly, it would be interesting to explore which other parallel

dynamic graph problems can be derandomized, either using our

deterministic RC-Trees as an ingredient, or independently.

ACKNOWLEDGMENTS

We thank the reviewers for their feedback and for spotting a bug

in an earlier version. This work was supported by the National

Science Foundation grants CCF-2119352 and CCF-1919223.



SPAA ’24, June 17–21, 2024, Nantes, France Daniel Anderson and Guy E. Blelloch

REFERENCES
[1] Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. 2019.

Parallel batch-dynamic graph connectivity. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[2] Umut A Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam
Westrick. 2020. Parallel Batch-dynamic Trees via Change Propagation. In Euro-
pean Symposium on Algorithms (ESA).

[3] Umut A Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Mav-
erick Woo. 2004. Dynamizing static algorithms, with applications to dynamic
trees and history independence. In ACM-SIAM Symposium on Discrete Algorithms
(SODA).

[4] Umut A Acar, Guy E Blelloch, and Jorge L Vittes. 2005. An experimental analysis
of change propagation in dynamic trees. In Algorithm Engineering and Experi-
ments (ALENEX).

[5] Ravindra K Ahuja, James B Orlin, and Robert E Tarjan. 1989. Improved time
bounds for the maximum �ow problem. SIAM J. on Computing 18, 5 (1989),
939–954.

[6] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2005.
Maintaining information in fully dynamic trees with top trees. ACM Trans.
Algorithms (TALG) 1, 2 (2005), 243–264.

[7] Daniel Anderson. 2023. Parallel Batch-Dynamic Algorithms. Ph. D. Dissertation.
Department of Computer Science, Carnegie Mellon University.

[8] Daniel Anderson and Guy E Blelloch. 2021. Parallel Minimum Cuts in

ċ (ģ log2 Ĥ) Work and Low Depth. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

[9] Daniel Anderson, Guy E Blelloch, and Kanat Tangwongsan. 2020. Work-E�cient
Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-
WindowModel. InACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[10] Guy E. Blelloch. 1993. Pre�x Sums and Their Applications. In Synthesis of Parallel
Algorithms, John Reif (Ed.). Morgan Kaufmann.

[11] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3
(March 1996).

[12] Guy E. Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel
algorithms in the binary-forking model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[13] Richard P Brent. 1974. The parallel evaluation of general arithmetic expressions.
J. ACM 21, 2 (1974), 201–206.

[14] Richard Cole and Uzi Vishkin. 1986. Approximate and exact parallel schedul-
ing with applications to list, tree and graph problems. In IEEE Symposium on
Foundations of Computer Science (FOCS).

[15] Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing with applications
to optimal parallel list ranking. Information and Control 70, 1 (1986), 32–53.

[16] Richard Cole and Uzi Vishkin. 1991. Approximate parallel scheduling. II. Appli-
cations to logarithmic-time optimal parallel graph algorithms. Information and
computation 92, 1 (1991), 1–47.

[17] Paolo Ferragina and Fabrizio Luccio. 1994. Batch dynamic algorithms for two
graph problems. In International Conference on Parallel Architectures and Lan-
guages Europe.

[18] Paolo Ferragina and Fabrizio Luccio. 1996. Three techniques for parallel mainte-
nance of a minimum spanning tree under batch of updates. Parallel processing
letters 6, 02 (1996), 213–222.

[19] Steven Fortune and James Wyllie. 1978. Parallelism in random access machines.
In ACM Symposium on Theory of Computing (STOC).

[20] Greg N Frederickson. 1985. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. on Computing 14, 4 (1985), 781–798.

[21] Greg N Frederickson. 1997. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. SIAM J. on Computing 26, 2 (1997),
484–538.

[22] Greg N Frederickson. 1997. A data structure for dynamically maintaining rooted
trees. J. Algorithms 24, 1 (1997), 37–65.

[23] Paweł Gawrychowski, Shay Mozes, and Oren Weimann. 2020. Minimum Cut

inċ (ģ log2 Ĥ) Time. In Intl. Colloq. on Automata, Languages and Programming
(ICALP).

[24] Hillel Gazit, Gary L Miller, and Shang-Hua Teng. 1988. Optimal tree contraction
in the EREW model. In Concurrent Computations. Springer, 139–156.

[25] Barbara Geissmann and Lukas Gianinazzi. 2018. Parallel minimum cuts in near-
linear work and low depth. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[26] Mohsen Gha�ari, Christoph Grunau, and Jiahao Qu. 2023. Nearly Work-E�cient
Parallel DFS in Undirected Graphs. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

[27] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant
time parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS).

[28] Andrew Goldberg, Serge Plotkin, and Gregory Shannon. 1987. Parallel symmetry-
breaking in sparse graphs. In ACM Symposium on Theory of Computing (STOC).

[29] Andrew V Goldberg, Michael D Grigoriadis, and Robert E Tarjan. 1991. Use of
dynamic trees in a network simplex algorithm for the maximum �ow problem.
Mathematical Programming 50, 1 (1991), 277–290.

[30] Andrew V Goldberg and Serge A Plotkin. 1987. Parallel (�+ 1)-coloring of
constant-degree graphs. Inf. Process. Lett. 25, 4 (1987), 241–245.

[31] Andrew V Goldberg and Robert E Tarjan. 1988. A new approach to the maximum-
�ow problem. Journal of the ACM (JACM) 35, 4 (1988), 921–940.

[32] Tal Goldberg and Uri Zwick. 1995. Optimal deterministic approximate parallel
pre�x sums and their applications. In Proceedings of the Third Israel Symposium
on the Theory of Computing and Systems.

[33] Monika Rauch Henzinger and Valerie King. 1995. Randomized dynamic graph
algorithms with polylogarithmic time per operation. In ACM Symposium on
Theory of Computing (STOC). ACM.

[34] Monika R Henzinger and Valerie King. 2001. Maintaining minimum spanning
forests in dynamic graphs. SIAM J. on Computing 31, 2 (2001), 364–374.

[35] Jacob Holm and Kristian de Lichtenberg. 1998. Top-trees and dynamic graph
algorithms. Master’s thesis. Citeseer.

[36] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723–760.

[37] J. JaJa. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.
[38] Hermann Jung and Kurt Mehlhorn. 1988. Parallel algorithms for computing

maximal independent sets in trees and for updating minimum spanning trees.
Inf. Process. Lett. 27, 5 (1988), 227–236.

[39] Bruce M Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph connec-
tivity in polylogarithmic worst case time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA).

[40] David R Karger. 2000. Minimum cuts in near-linear time. J. ACM 47, 1 (2000),
46–76.

[41] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun.
2022. Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related
Graph Problems.

[42] Michael Luby. 1985. A simple parallel algorithm for the maximal independent
set problem. In ACM Symposium on Theory of Computing (STOC).

[43] Daniele Micciancio. 1997. Oblivious data structures: applications to cryptography.
In ACM Symposium on Theory of Computing (STOC).

[44] Gary L. Miller and John H. Reif. 1985. Parallel Tree Contraction and Its Applica-
tion. In IEEE Symposium on Foundations of Computer Science (FOCS). IEEE.

[45] Shaunak Pawagi and Owen Kaser. 1993. Optimal parallel algorithms for multiple
updates of minimum spanning trees. Algorithmica 9, 4 (1993), 357–381.

[46] Seth Pettie and Vijaya Ramachandran. 2002. A randomized time-work optimal
parallel algorithm for �nding a minimum spanning forest. SIAM J. on Computing
31, 6 (2002), 1879–1895.

[47] Xiaojun Shen and Weifa Liang. 1993. A parallel algorithm for multiple edge up-
dates of minimum spanning trees. In International Parallel Processing Symposium
(IPPS).

[48] Daniel D Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic
trees. J. Comput. Syst. Sci. 26, 3 (1983), 362–391.

[49] Robert E Tarjan. 1997. Dynamic trees as search trees via euler tours, applied to the
network simplex algorithm. Mathematical Programming 78, 2 (1997), 169–177.

[50] Robert E Tarjan and Renato F Werneck. 2005. Self-adjusting top trees. In ACM-
SIAM Symposium on Discrete Algorithms (SODA).

[51] Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. 2019. Batch-parallel eu-
ler tour trees. In 2019 Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 92–106.

[52] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-Dynamic
Minimum Spanning Forest and the E�ciency of Dynamic Agglomerative Graph
Clustering. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[53] Renato F Werneck. 2006. Design and analysis of data structures for dynamic trees.
Ph. D. Dissertation. Princeton University.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Model of computation
	2.2 Approximate prefix sums and compaction
	2.3 Approximate counting sort
	2.4 Colorings and maximal independent sets
	2.5 Parallel tree contraction
	2.6 Rake-Compress Trees (RC-Trees)

	3 Deterministic Dynamic Contraction
	3.1 The contraction data structure
	3.2 Static deterministic tree contraction
	3.3 A deterministic update algorithm

	4 Analysis
	4.1 Round and tree-size bounds
	4.2 Analysis of the static algorithm
	4.3 Analysis of the update algorithm

	5 A low-span randomized algorithm
	5.1 A lower span static algorithm
	5.2 A lower span dynamic algorithm

	6 Conclusion
	References

