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Abstract. Sea ice surface patterns encode more information than can be represented solely by the ice fraction. The aim of
this paper is thus to establish the importance of using a broader set of surface characterization metrics, and to identify a
minimal set of such metrics that may be useful for representing sea-ice in Earth System Models. Large-eddy simulations of the
atmospheric boundary layer over various idealized sea ice surface patterns, with equivalent ice fraction and average floe area,
demonstrate that the spatial organization of ice and water can play a crucial role in determining boundary-layer structure. Thus,
different methods to quantify heterogeneity in categorical lattice spatial data, such as those done in landscape ecology and
Geographic Information System (GIS) studies, are used here on a set of high-resolution, recently-declassified sea ice surface
images. It is found that, in conjunction with ice fraction, the patch density (representing the fragmentation of the surface), the
splitting index (representing the variability in patch size), and perimeter-area fractal dimension (representing the tortuosity of
the interface) are all required to describe the two-dimensional pattern exhibited by a sea ice surface. Furthermore, for surfaces
with anisotropic patterns, the orientation of the surface relative to the mean wind is needed. Furthermore, scaling laws are
derived for these relevant landscape metrics to estimate them from aggregated spatial sea ice surface data at any resolution.
The methods used and results gained from this study are a first step towards further development of methods to quantify the

variability of non-binary surfaces, and for parameterizing mixed ice-water surfaces in coarse geophysical models.

1 Introduction

The polar sea ice surface, a sensitive indicator of global climate change, shows persistent biases in coarse-resolution Earth
System Model (ESMs) (Liu et al., 2022; Casagrande et al., 2023; Myksvoll et al., 2023). Among other causes, these biases
result from the inability of ESMs to resolve the fine-scale spatial variability of sea ice, and the resulting exchanges with the
ocean below (Ramudu et al., 2018) and atmosphere aloft (Bates et al., 2006; Esau, 2007). The effect of this subgrid scale sea
ice variability is typically parameterized in climate models using the ice fraction, f;, to determine surface-atmosphere fluxes
for an equivalent surface that would produce the same grid-cell averaged exchanges as the ice-water mixture. Usually, either
an equivalent homogeneous surface or mosaic flux aggregation are used (Bou-Zeid et al., 2020), but both yield an average flux
weighted by the ice and water fractions that is inaccurate as it does not account for the impact of surface heterogeneity on the

dynamics of the lower atmosphere and the nonlinear interactions with the air flow above the ice and water (de Vrese et al.,
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2016). This incomplete representation of sea ice surface and boundary-layer structure then results in errors in the turbulent
exchanges of heat, moisture, and momentum across polar sea ice surface (Nilsson et al., 2001; Bourassa et al., 2013; Taylor
et al., 2018). The dynamics and secondary circulations below the first vertical grid cell level in climate models are particularly
under-resolved, and they have a direct impact on air-surfaces exchanges; it thus are imperative to understand how these features
influence fluxes (Mahrt, 2000; Essery et al., 2003; de Vrese et al., 2016). These gaps in representing fine scale dynamics and
fluxes propagate to the projection of future changes in the Arctic climate system and resulting surface energy budget (Persson
et al., 2002; Miller et al., 2017). which may be one reason why climate model ensembles consistently underpredict Arctic sea
ice sensitivity to surface temperature warming. This underprediction has persisted throughout the last three Intergovernmental
Panel on Climate Change (IPCC) model development cycles (Stroeve et al., 2007; Rosenblum and Eisenman, 2016, 2017; Notz
and Community, 2020). The resulting uncertainty in climate models’ ability to predict sea ice future evolution hinders effective
action and decision-making; therefore, improving these models is more imperative now than ever (Notz and Stroeve, 2018;
Docquier and Koenigk, 2021).

The fringe zone that separates densely consolidated sea ice from the open ocean is known as the marginal ice zone (MIZ)
(Dumont, 2022). In the MIZ, the sizes and organization of sea ice floes and water are influenced by winds, sea currents, waves,
and material ice properties (Wang et al., 2016; Ren et al., 2021; Herman et al., 2021; Hwang and Wang, 2022). What makes
this region unique is that the near-surface air temperatures may fall in between the surface temperatures of the sea ice and
water, resulting in abrupt spatial transitions between stabilizing and destabilizing surface buoyancy fluxes. Such transitions
produce drastically different turbulence-mean non-equilibrium dynamics and time scales (as show for comparable land-water
transitions by Allouche et al. (2021)), all affecting the surface-atmosphere exchanges between the air, water, and sea ice. The
ice fraction f; in the MIZ is between 15% and 80% (Strong et al., 2017); however, any region of fractured sea ice gives rise to
these abrupt transitions. It is precisely in these regions where the linear weighted averaged approaches described above will be
most inadequate, and where the surface transitions will play a key role in the dynamics. Thus, it is important to devise better
methods to quantify the heterogeneity of a surface, characterize its patterns, and represent this information in coarse-resolution
ESMs to better represent the polar environment.

To that end, the complex geometric patterns formed by sea ice floes need to be analyzed. Larger floes will have proportionally
more of an effect on the surface-atmosphere fluxes, but smaller floes, with more frequent transitions, will exacerbate the non-
linearity of the exchange processes. These surface-atmosphere fluxes impart a large effect on the atmospheric boundary layer
(ABL) overlaying the marginal ice zone (MIZ-ABL). As a thought experiment, consider an ice-water surface with a very fine
checkerboard pattern, and a sea ice fraction of f; = 0.5; this configuration will lead to statistically-homogeneous ice floes that
are locally variable at the surface, but are effectively homogeneous in regards to the MIZ-ABL where turbulence will rapidly
mix their small-scale signatures (Brutsaert, 2005; Mahrt, 2000; Bou-Zeid et al., 2004). However, two large patches of sea ice
and water (meso-« heterogeneity, see Bou-Zeid et al. (2020)), also with a sea ice fraction of f; = 0.5, will develop a large
circulation closer to that of a sea breeze due to the abrupt transition between two large homogeneous surfaces (Porson et al.,
2007; Crosman and Horel, 2010; Allouche et al., 2023). The dynamics and thermodynamics in this MIZ-ABL system, and
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the surface exchange therein, will thus be quite different over these two patterns even if the some key surface properties, e.g.
temperature and roughness, are identical (Bou-Zeid et al., 2007).

Given its importance and the challenges outlined above, previous work has attempted to quantify the heterogeneity of
sea ice surfaces (Wenta and Herman, 2018, 2019; Michaelis et al., 2020; Horvat, 2021; Dumont, 2022) utilizing surface and
meteorological properties such as sea ice fraction, geostrophic velocity, lead width, or floe size distribution. However, the small-
scale patterns in the MIZ, especially as the resolution is increased, require broader and more versatile methods of heterogeneity
characterization (e.g., Mandelbrot (1967)). In addition, the computational grid of even the highest-resolution numerical models
cannot resolve all the spatial features in the MIZ. One thus needs to consider how to represent surface characteristics in
model grids that can be thought of as lattice-type spatial structures, defined by Cressie (1993). Observational data of MIZ ice
patterns also have a finite resolution and are thus comparable to lattice data, which then allows one to utilize different metrics
specifically defined for lattice surfaces that offer ways to characterize the heterogeneity patterns of these surfaces. In this paper,
we examine approaches for this quantification commonly used in landscape ecology, a field that has generated a multitude of
ways to study lattice spatial data (Li and Reynolds, 1994, 1995; Pickett and Cadenasso, 1995).

Studies in landscape ecology have previously searched for an optimal independent group of metrics to be used in under-
standing the heterogeneity of lattice surfaces. Riitters et al. (1995) used a multivariate factor analysis to suggest six groups
of metrics, including image texture, average pact compaction, and average patch shape. Cushman et al. (2008) used principal
component analysis to suggest seven broad metrics at the landscape level, including contagion, large patch dominance, and
proximity (see Table 9 in that study). For the two-dimensional binary sea ice-water surfaces considered in this study, we chose
the variance inflation factor (VIF) technique to reduce these metrics to a compact set that are weakly dependent on one another
to minimize information redundancy (Miles, 2014).

The questions that will be answered in this study are:

1. Is the sea ice fraction of a MIZ surface, combined with some measure of average floe area, sufficient to predict the

behavior of the overlying MIZ-ABL?
2. If not, what other surface information in a two-dimensional lattice spatial pattern is needed to describe air-sea interaction?

3. How can this surface information be applied to sea ice surfaces in weather models and ESMs, considering factors such

as availability of information, resolution-resampling invariance, and ease of understanding?

Section 2 will detail the methods on the idealized and real-world maps used in this study; this includes the steps taken
to reduce multicolinearity and determine which landscape metrics, alongside sea ice fraction, give additional information on
the pattern of the sea-ice surface. The large-eddy simulations that will be used are also presented in this section, but a more
complete description is found in Appendices A and B. Section 3 will report the results of the idealized sea ice surfaces in the
large-eddy simulation, thus answering Question 1. Section 4 will report the results from the 2D surface analysis, with additional
discussion in Section 5 on principal directions and climate model implications, thus answering Questions 2 and 3. Section 6

will synthesize the findings and outline open questions that can guide future investigations of sea ice heterogeneity.
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Table 1. Large-eddy simulation numerical details. Time is represented in terms of inertial periods, 27/ fc, which is the time scale associated

with the response of the mean flow since it represents the Coriolis redistribution of energy between u and v (Momen and Bou-Zeid, 2016)

Domain height, z; 1km
Horizontal domain size, L, X Ly 10km x 10km

Number of grid points (N, N,,N.) (100,100,50) = 5 x 10° points

Vertical mesh spacing, dz 20m

Horizontal mesh spacing, dz, dy 100 m

Initial air temperature 0, o See Appendix B, constant profile
Warm up period 5 inertial periods (107/ fe)
Simulation time step 0.05s

Averaging period 1 inertial period (27/ fc)
Frequency of statistical sampling 100 timesteps = 5 s

2 Methods and Data
2.1 Large-Eddy Simulations

Large-eddy simulations (LES) are widely used to model heterogeneous high Reynolds number flows (Baidya Roy, 2002;
Bou-Zeid et al., 2004) in convective boundary layers (Courault et al., 2007; Maronga and Raasch, 2013), stable boundary
layers (Huang et al., 2011), and coastlines (Allouche et al., 2023) to name a few; see Section 3.6 of Stoll et al. (2020). This
heterogeneous high-Reynolds number description aptly applies to the MIZ-ABL. Unlike a direct numerical simulation (DNS),
an LES is able to attain Reynolds numbers representative of the MIZ-ABL (Re ~ 107), because the smaller turbulent eddies
(smaller than the grid or filter size, which is comparable to the numerical grid spacing in our simulations) are not explicitly
resolved. However, unlike Reynolds averaged Navier-Stokes (RANS) approaches, which encompass all weather and climate
models, LES directly resolves and captures the large turbulent eddies, the heterogeneity of the surface, advective fluxes, and
the large-scale sea ice patterns, making it a computationally and physically appealing approach for the problem at hand. By
retaining these larger structures, most of the turbulent energy and fluxes are explicitly resolved, allowing for investigation of
three-dimensional flow structures that may arise over these heterogeneous surfaces.

LES is thus used to model MIZ-ABL flow over 10 km x 10 km patterns of idealized ice/water surfaces, modulated by
a Coriolis force at the latitude of ® =90° N. This full domain is smaller than a single grid cell in state-of-the-art ESMs,
underlining why the simulated properties of the MIZ-ABL in ESMs require sub-grid scale (SGS) parameterization. More
details on the numerical aspects of our LES are described in Appendix A. For the bottom boundary condition, one surface node
represents either water or sea ice, as done in Fogarty and Bou-Zeid (2023). This bottom boundary for each simulation can be
thought of as categorical lattice spatial data, where each node represents either “ice” or “water.” An “ice” node is prescribed

a surface temperature of 255 K, typical of autumn and spring temperatures in the Central Arctic, and a momentum roughness
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length of 1 mm, while a “water” node is prescribed a surface temperature of 271 K, roughly the freezing point of seawater, and
a roughness length of 1cm. The heat roughness length is 0.1 mm for the entire surface. The actual roughness lengths for heat
and momentum of sea ice vary considerably depending on the surface state and degree or deformation due to wind and ocean
forces; similarly, for water, these lengths depend on the wave field. The values we use here are characteristic of rough sea ice
and wavy waters, but the conclusions and analyses on the effect of surface patterns will not be altered by a change in these

surface properties.

L, = 10km

Figure 1. Schematic of the large-eddy simulation domain set-up. The ice (in grey) has a surface temperature of 6y ; = 255 K and roughness
length zp ; = 1 mm; the water surface (in blue) has 6y ., = 271K and zo ., = 1 cm. The bottom boundary represents one of the many cases

(Pattern 1) illustrated in Figure 2.

This large-eddy simulation technique was used to simulate the MIZ-ABL over different idealized configurations of sea ice.
All five patterns, displayed in figure 2, have a fixed sea ice fraction of f; = 0.46 and mean floe area of 11.56 x 10°m?. The
geostrophic wind also flows left-to-right at an angle of 18° relative to the x-axis in all simulations, expected to give a surface
wind that is roughly aligned with the z-axis for homogeneous neutral surfaces (Ghannam and Bou-Zeid, 2021). The turbulence
field is warmed up for 60 hours, and the statistics are then Reynolds-averaged over an additional 12 hours. A variable with an
overbar denotes averaging in time, used as a surrogate for ensemble Reynolds averaging, and any spatial averaging over the

heterogeneous domain in z and y will be denoted by angled brackets.
2.2 Ice Map Data

While the LES utilizes idealized surfaces to examine the influence of patterns on the MIZ-ABL, examining what other land-
scape metrics might be important for surface characterization necessitates using real-world sea-ice maps. The lattice spatial
data that will be used in the statistical analysis (see Section 2.3) are derived from recently declassified high-resolution (1 m)
national technical means (NTM) literal image derived products (LIDPs), detailed in Kwok (2014). These images we use here
had already underwent a supervised maximum likelihood classification algorithm, which assigned either a water or ice surface

class (Fetterer and Untersteiner, 1998; Fetterer et al., 2008) for each pixel in the original LIDP. This process converted the
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Figure 2. Birds-eye view of the bottom surfaces used in the large-eddy simulations. The geostrophic wind at the surface flows from left-to-

right in all patterns.

high-resolution LIDPs into categorical lattice spatial data (where each cell represents one of two possible surface types, ice or
water).

These maps, which have a horizontal extent of up to 10km by 10 km, comprise the dataset used to calculate landscape
metrics. The advantage of this high-resolution large-extent data set is that we can analyze how these metrics change with grain
size. These maps are thus aggregated from 1 m resolution to 2m, 10 m, 20 m, 50 m, 100 m, 200 m, 500 m, 1 km, and 2 km
resolutions; resampling was done using the nearest-neighbor method in the Python Imaging Library (PIL). These resolutions
cover common resolutions used from fine large-eddy simulations to numerical weather prediction (NWP) models. Due to
excessive computational processing time for the original 1 m resolution data, the highest resolution at which landscape metrics
were calculated was 2 m.

One important caveat of this dataset is that the histogram of sea ice fraction f; is heavily skewed towards higher sea ice
fractions. We recognize that this may lead to bias in the results; however, the analysis methods developed here are insensitive
to f; and can certainly be applied to other datasets with more uniform sea ice fraction distributions in the future. The high
resolution afforded by the present dataset remains a key appealing factor in adopting it for the present study since it allows

aggregating and tracking how landscape metrics change from actual surface states when resampled to a coarser numerical grid.
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Figure 3. The distribution of f; values in the Fetterer et al. (2008) ice map dataset

2.3 Landscape Metric Space Reduction

The FRAGSTATS spatial analysis program was used to calculate the landscape metrics (McGarigal and Marks, 1995) based off
of lattice spatial data. Given a GeoTIFF-format raster lattice data, FRAGSTATS will calculate the patch metrics, class metrics,
and landscape metrics of your choice. Patch metrics are computed for every patch in the landscape, and are thus not relevant for
the current study of sea-ice surface patterns. Class metrics are computed for every patch type (class) in the landscape. In this
study, that would mean calculating metrics for sea ice only and water only, which may be useful in other applications of pattern
analysis, but for this study, we want to look at the aggregate patterns of sea ice and water combined. Thus, only landscape
metrics were calculated. Sea ice fraction (calculated as the number of cells of ice type divided by the total number of ice and
water cells) was calculated using PIL, the only metric not calculated by FRAGSTATS.

This resulted in 22 landscape metrics that focus on the global patterns of the surface. Many of these landscape metrics,
however, are correlated with one another; for example, patch density and mean patch size are proportional to one another. This
is due to the fact that there are limited observations one can make about a surface (number of patches, area of a patch, amount
of edge in a patch, etc.), yet an infinite number of operations one can perform on them. Many of these metrics (especially at
the landscape level) are thus simply different ways to aggregate or statistically analyze these observations.

While colinearity between two metrics can be easily detected through a correlation matrix, multicolinearity (when one
indicator is a linear combination of two or more other indicators) is more likely in these types of data sets. It is thus possible for

two or more landscape metrics to jointly define another metric. An objective and statistical way of reducing these parameters
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is hence needed. Here, we chose the variance inflation factor (VIF),

1

VIF = ——
- R

)]

where R? is the coefficient of determination, to detect multicolinearity of these heterogeneity parameters (see Ibidoja et al.

(2023)). For each metric X;, where i € [1,...,22], the VIF was calculated over the regression equation
Xi=ap+ a1 X + oo Xipo+ .o+ a1 X0y ()

where v is a constant. The st at smodels Python library (Seabold and Perktold, 2010) was used for these computations. The
metric with the largest VIF was then removed from the dataset, and thus not considered to be important in the quantification
of sea ice surfaces. All VIFs were then recalculated for this ‘reduced’ dataset, and the new metric with the highest VIF was
removed. Through this process, metrics are removed one by one until all remaining metrics exhibit a VIF less than a pre-defined
cutoff, which was set as VIF' < 2.5. While this low of a cutoff may not be necessary in certain practices of multicolinearity
reduction (O’Brien, 2007), the ultimate goal of this technique is to reduce the parameter space. In other words, for climate
modelers, a lower amount of metrics in their SGS parameterizations result in a more practical models.

Each of these metrics, listed in Table C1, can be clustered into one of six “metric groups”: Area and Edge, Shape, Core Area,
Aggregation, Contrast, and Diversity. The first four metrics are important in a sea ice surface. Area and Edge metrics deal with
the size of floes and the amount of edge they create, while Shape metrics discriminate based on patch morphologies and overall
geometric complexity. Core Area metrics analyze the area within a patch beyond some specified buffer width. An Aggregation
metric will focus on the tendency of patches of similar types to be spatially aggregated in the landscape, or otherwise dispersed.

The last two metric groups, Contrast and Diversity, are less important for the present application to sea ice. Contrast metrics
refers to the magnitude of difference between adjacent patch types with respect to some attribute - in the case of a sea ice
surface, with only two classes (ice and ocean), there is only one ’contrast’ between two categories, and thus metrics in this
group are simply represented by the contrast of surface temperature and roughness. Diversity metrics are influenced by the
number of patch types present and the area-weighted distribution of those patch types. In this case we only have two types of
patches (ice and water) so the diversity is the same in all maps, and their weighted distribution is related to the ice fraction.

Further information on all of these metric groups can be found in the FRAGSTATS manual (McGarigal and Marks, 1995).

3 Results: the MIZ-ABL over Idealized Configurations

The large-eddy simulation technique detailed in Section 2.1 was used to simulate the MIZ-ABL over different configurations of
sea ice patterns, with the results presented here. Figure 4 displays the Reynolds- and horizontally-averaged normalized vertical
profiles of the horizontal wind speed M = (v/u2 +v2), total heat flux (w#), and total horizontal stresses (ww) and (7). Note
that these lump the turbulent fluxes with the dispersive fluxes that arise over heterogeneous surfaces from the spatial correlation
of the mean (time-averaged) fields (Raupach and Shaw, 1982; Finnigan and Shaw, 2008; Li and Bou-Zeid, 2019). The results
clearly display significant differences, underlining the fact that sea ice fraction is not a sufficient surface metric to describe

MIZ-ABL dynamics.
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Figure 4. Vertical profiles of normalized (a) horizontal wind speed, (b) total heat flux, (c) total stress in the streamwise direction, and (d)

total stress in the cross-stream direction, for all five patterns.

In all five simulations, the largest difference occurs between Pattern4 and Pattern5 (the red and purple lines, respectively),
which is to be expected since the geostrophic wind is flowing parallel vs. perpendicular to the strips of ice (Willingham et al.,
2014; Anderson et al., 2015; Salesky et al., 2022; Fogarty and Bou-Zeid, 2023). Although wind direction is not a surface
property of the sea ice, its orientation relative to that of the surface features is still an important driver that must be taken into
consideration and will be discussed further on. All patterns except for Pattern5 developed a low-level jet (LLJ), which can
be seen in Figure 4a, though the LLJ in Patternl is remarkably weak. The LLJs seem to increase in Pattern2 and Pattern3,
likely due to large swaths of ice in the direction of the geostrophic wind (and therefore little interruption by the unstable
ocean surface). The second strongest LL]J is in Pattern3, and is likely due to the one large ice floe, and would persist for any
wind direction (the same can be said about Pattern2). The strongest LLJ in Pattern4 is similarly explained by the secondary

circulations (not shown) that consist of streamwise aligned rolls driven by the lateral contrast in surface temperature, and
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by the fact that the small strips of ocean between the ice floes are not wide enough to ‘interrupt’ the circulations and the
geostrophic flow. However, unlike Pattern2 and Pattern3, Pattern4 is highly anisotropic, so the geostrophic wind direction is of
more importance in this case, as can be deduced from the fact that Pattern5 has no LLJ despite being a 90° rotated version of
Pattern4.

Major differences are also seen in the total streamwise and cross-stream stresses, displayed in Figure 4c and d, respectively.
Again, Pattern4 and Pattern5 exhibit the highest differences from one another due to the geostrophic wind direction. All
simulations have a similar negative streamwise stress in the surface layer, but at higher MIZ-ABL heights, the differences
between simulations are greater. Above the LLJ, some of the stresses turn positive implying upward transfer of momentum
from the LLJ, explaining differences that may be seen below the blending height (Wood and Mason, 1991; Mahrt, 2000;
Brunsell et al., 2011). The cross-stream component of the total momentum flux, seen in 4d, are all quite distinct from one
another indicating significant differences in the wind and stress Ekman rotation with height.

To further explain the differences seen in these patterns, we consider the decomposition of the total flux to its dispersive and

turbulent counterparts. Vertical turbulent heat flux is designated as w’6’, while vertical turbulent streamwise and cross-stream
stress are designated as w/w’, and v/w’, respectively. Dispersive fluxes emerge in a time-averaged but spatially-variable mean
flow (Raupach and Shaw, 1982; Li and Bou-Zeid, 2019). Since our Reynolds averaging is done in time, we can spatially de-
compose a Reynolds-averaged variable following w = (w) +w”, where the brackets represent the spatial average (as defined in
Section 2.1) and the double-prime represents the variations of the mean planar fields in space. We then calculate the dispersive

fluxes, using vertical heat flux as an example, by:

wl = ((w) + ") (0) +0") 3)
= (@) (0) + " (0) + (w)8 + "9 )

We then spatially average the entirety of Equation 4 over the horizontal plane to obtain

(@) = (@7, ©)

The middle two terms in Equation 4 are zero via spatial averaging, since (w”) = 0 and @H) = 0 by definition; therefore, these

terms have no impact on spatially-averaged surface-atmosphere exchanges. Furthermore, (W) is assumed to be very small
(unless strong and large scale subsidence or uplift are present); in our LES it must be zero since there cannot be accumulation
or depletion of mass below a given horizontal plane in a periodic domain with an incompressible flow. Thus, the first term on
the right hand side of Equation 4 is also negligible, leading to one remaining term in Equation 5. This term, the dispersive flux,
is of most interest: it represents the coherent spatial correlation of vertical velocity and temperature in regions with consistent
secondary structures (such as consistent warm updrafts or cool downdrafts, or streamwise rolls).

Figure 5 shows the vertical profiles of the total, turbulent, and dispersive horizontally-averaged fluxes of each pattern for
the heat flux, streamwise momentum flux, and cross-stream momentum flux, thus allowing us to decompose and analyze the
total fluxes that were shown in Figures 4b-d. For example, it is clearer now that the cross-stream components of the total

momentum flux (Figure 4d) are all distinct from one another due to these dispersive fluxes (dotted green lines). Over these

10
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Figure 5. Left: Vertical profiles of normalized total heat flux (w8, blue solid), turbulent heat flux (w’é’, orange dashed), and dispersive heat
flux (w6, green dotted) for each individual pattern. Center: Same as left, but for normalized total streamwise stress (waw, solid), turbulent

streamwise stress (u/w’, dashed), and dispersive streamwise stress (#w, dotted). Right column: Same as left, but for normalized total cross-

stream stress (vw, solid), turbulent cross-stream stress (v’w’, dashed), and dispersive cross-stream stress (vw, dotted)
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Table 2. Dispersive-to-total atmospheric vertical flux ratios

Patternl | Pattern2 | Pattern3 | Pattern4 | Pattern5
[@0|/|wl| | 0.512 0.668 0.697 0.586 0.388
|aw|/[aw| | 0.321 0.354 0.250 0.046 0.137
|vw|/|vw| | 1.598 1.101 0.923 0.816 0.365

heterogeneous surfaces, the dispersive cross-stream stress is the dominant forcing in all patterns except Pattern5 (see panels
c,f,i,] in Figure 5). The formation of these dispersive fluxes are not equal when the heterogeneous surfaces are different from
one another. Thus it is not the ice fraction or average floe area, but the surface pattern itself, which leads to these differences in
total cross-stream flux. The streamwise stresses, on the other hand, seem to be a balance of the dispersive and turbulent stresses
that are not always of the same sign (middle column of Figure 5), and thus the dispersive components that directly result from
the secondary motions imprinted by the surface pattern on the atmosphere are also critical here.

The total heat flux in all these simulations linearly decreases with height as dictated by the LES setup. As seen in Figure 4b,
there are minimal differences in the total heat flux, except at the surface level; however, analyzing the left column of Figure 5
shows that the relative importance and profiles of the dispersive and turbulent heat fluxes exhibit more significant differences.
The various surface patterns seem to lead to differences in the dispersive fluxes, but in all cases, these are balanced out by
the turbulent fluxes. Nevertheless, in all the figures, there is strong variability near the surface in the dispersive and turbulent
flux profiles. This is partially due to the shallow internal boundary layers that are created by the mean flow and secondary
circulations over the floes, and it is these differing secondary circulations that arise due to the difference in surface pattern.
However, one should also note that the first few points are also strongly influenced by the transition from the wall model to the
SGS model in representing resolved turbulence, a persistent challenge in LES (Piomelli and Balaras, 2002; Brasseur and Wei,
2010); the quantitative details of the results in that region should be interpreted with care.

Lastly, analyzing the dispersive-to-total atmospheric vertical flux ratios (Table 2) lends insight into the differences between
simulations, as well as comparison to other surface types. For example, in Patternl and Pattern2, |w|/|vw| > 1, meaning that
the dispersive and turbulent fluxes in the cross-stream axis are in opposite directions, which can be seen in the green and orange
profiles in the right column in Figure 5c,f. The ratios in Pattern4 and Pattern5 are also closer to unity than the other values,
again showing the differences in secondary circulations due to the sea ice pattern. These values have been seen before, for
example over urban or forest canopies (Moltchanov et al., 2015; Boudreault et al., 2017; Li and Bou-Zeid, 2019).

Overall, these LES results indisputably indicate that ice-water patterns hold key information on how the MIZ-ABL interacts

with the underlying surface, and the rest of the paper is thus dedicated to characterizing these patterns

4 Results: Statistical Analysis

Now that we have established the need for additional surface characteristics beyond sea ice fraction, we aim to examine what

indicators can be used for that purpose. For each of the nine resolutions considered, there were 44 observed sea ice images
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analyzed. Conducting this analysis over the 2 m resolution, four metrics (including sea ice fraction) seemed to remain from the
VIF elimination process and not exhibit multicolinearity with one another: sea ice fraction (f;), patch density (PD), splitting
index (SPLIT), and perimeter-area fractal dimension (PAF RAC). These remaining metrics were then grouped into the
different metric groups defined in Section 2.3: the sea ice fraction is an area and edge metric, PD and SPLIT are both
aggregation metrics, while PAFRAC is a shape metric. There were no metrics remaining that were in the diversity, core
area or contrast metric group. We expected there to be no remaining metrics in the contrast metric group, since for a sea
ice-water surface, an edge can only exhibit one “contrast” - however, this might change were this analysis to be conducted with
continuously variable surface temperatures or roughness lengths. We also did not expect any in the diversity group, since many
metrics such as evenness or Simpson’s diversity index are functions of sea ice fraction. The absence of any representative of
the core area was not predicted, but it is probably related to the fact that the shape and area and edge metrics are together able
to represent the core area characteristics.

The first aggregation metric, PD (Ruiitters et al., 1995; Simova and Gdulov4, 2012), witha VIF = 1.9, is an area-normalized

number of patches, described by the equation

n
PD=—
A, (6)

where PD is the patch density, A, the total area of the surface, and n the total number of distinct patches (of either sea ice
or water). As the PD of a sea ice surface increases, one would expect to find more ice-water edge instances, and thus more
regions of stable-to-unstable stratification transition. Patch density may also work in tandem with geostrophic wind direction,
as discussed in Section 3, as a geostrophic wind flowing in one direction may have more ice-to-water edge transitions than
another (see Pattern4 and Pattern5, for example).

The second metric, SPLIT, with a VIF = 1.9 was first described in Jaeger (2000) as "the probability that two randomly

chosen places in a region will be found in the same undissected area," with a corresponding equation of

A
SPLIT = ST (N
where a; is the area of patch 4, and the index ¢ iterates over all patches. SPLIT = n if there is only one patch or if all patches
are of equal size. However, generally SPLIT < n, with lower values indicating a larger variance in patch sizes. Since we
already use P D, the new information SPLIT brings is precisely about the patch size variance.
The only shape metric, PAFRAC, with a VIF = 2.1 is obtained by regressing each patch’s perimeter P; against its area

A; on a log-log plot such that
A=kpP?P, (®)

where k is a constant and D is the perimeter-area fractal dimension. It measures the tortuosity or jaggedness of the ice-water
interface as with any fractal dimension (Mandelbrot, 1982).
Thus, the three metrics, in addition to sea ice fraction f;, that would be useful in describing a sea-ice surface are SPLIT,

PD, and PAFRAC. Table 3 details these values for each of the sea ice patterns simulated in Section 3. We observe that
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SPLIT is invariant to the shape of floes as long as the area of each floe is equivalent (no variance), which is why SPLIT is
equivalent for all patterns except Pattern3. This is where PAF RAC shows its utility, as it will give different values between

Pattern1/Pattern2, Pattern3, and Pattern4/Pattern5.

Table 3. Landscape metrics of the simulations conducted in Section 3. Note that for maps with a low number of patches (less than ten)

and/or simple shapes, PAFRAC may exceed the theoretical range, as in Pattern3, but this has not happened in any of the real sea ice maps we

examine next.

Metric Patternl Pattern2 Pattern3 Patternd Pattern5

fi 0.462 0.462 0.461 0.462 0.462
Average Floe Area (m?) | 11.56 x 10° | 11.56 x 10° | 11.56 x 10° | 11.56 x 10° | 11.56 x 10°
SPLIT 291 291 2.71 2.91 2.91

PD 5x 1078 5x 1078 5x 1078 5x 1078 5x 1078
PAFRAC 1.895 1.895 2.035 1.929 1.929

In many cases, numerical simulations also require a resampling of the high-resolution surfaces by increasing the grain (pixel)
size. For example, sea ice maps from reconnaissance satellites may have a resolution up to 1 m, but this is computationally
impractical for numerical weather models. Large-eddy simulations of the ABL can have up to a 50 m resolution, while NWP
models have 2 to 5km resolution. Thus, even with high-resolution data, the aggregation and resampling of these surface
patterns is inevitable in modeling.

Therefore, it is useful to examine how these chosen metrics vary as an image is aggregated to a resolution applicable to
numerical weather models (or other numerical models, such as LES). An appleaing metric would be one that it is invariant to
a resolution change. The sea ice fraction f; is a good example of such an invariant indicator, as shown in Figure 6a, where it
is calculated for all images and then averaged over that resolution. A second-best case would be a metric that displays a clear
scaling law with the resolution, such as PD depicted in Figure 6b. In this case, the PD for the “real” 2 m resolution surface can

be extrapolated to higher resolutions based on a scaling power law
m = kAP )

where m is the metric, A is the map resolution, and &k and D, are scaling coefficients.

Some metrics, such as SPLIT and PAFRAC seems to exhibit close-to-invariant behavior after a sort of ’jump’ in the
resolution. For example, starting from the 10 m resolution, SPLIT stays fairly constant as the resolution decreases. There is
also variation in PAF RAC' as the resolution decreases from 10 m. This is consistent with results from previous studies, as
some landscape metrics exhibit large errors when these surfaces are aggregated to lower resolutions (Moody and Woodcock,
1994, 1995). Given the close-to-invariant scaling of 3 of the metrics and the predictable power law scaling of the forth, we can

proceed with this set of 4 metrics since it is usable (or translatable) across scales.
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Figure 6. Landscape metric plotted against resolution for (a) sea ice fraction, (b) splitting index, (c) patch density, and (d) fractal dimension.

A power law of the form m = kAP is fitted to the sea ice fraction and patch density plots (dashed blue line), but no such power law is

applicable to splitting index and fractal dimension.
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5 Principal Direction of Geostrophic Flow

Thus far, we have identified four surface pattern indicators that characterize the MIZ surface’s sea ice versus water concentration
(f:), the density and thus the total number of patches (PD), the variance in the sizes of these patches (SPLIT), and the
tortuosity of their edges PAF RAC. However re-examining Pattern4 and Pattern5 in Figure 4 raises the question as to why
these maps have the largest differences in their respective MIZ-ABLs. Their geometric patterns are the same (thus the four
metrics are identical for the two configurations), yet the difference in the geostrophic wind direction results in large differences
in the surface-atmosphere interactions. This reveals that another important attribute is how the surface patterns are oriented
relative to the wind. If the surface is isotropic, the wind angle should be irrelevant, but most water-sea ice patterns in the
MIZ display a significant degree of anisotropy (Feltham, 2008). Therefore, quantifying the impact of surface orientation and
including it in the metric set obtained from the VIF analysis in Section 4 may provide additional information for modelers to
parameterize MIZ-ABL dynamics in global climate models.

We observe that in Pattern4 and PatternS, the difference in the geostrophic direction is related to the directional variance
of the data. In Pattern4, the wind is consistently blowing over an infinitely repeating pattern of sea ice and water at regular
intervals. In Pattern5, the wind blows over much longer strips of ice and water, even though there are some sea ice-water
transitions present. Any other oblique flow is thus “in between” these two ‘parallel’ and perpendicular regimes. We characterize
the differences between these regimes by the variance of the surface that the surface wind is exposed to. In other words,
Pattern4 exhibits a high variance (since over one domain length, the geostrophic wind flows over a maximum of eight ice-
water transitions, and Pattern5 exhibits a low variance, since the geostrophic wind flows over a maximum of two sea ice-water
transitions. This then raises the question of how to obtain some principal direction for a more complex surface.

We thus attempted to characterize this anisotropy by computing the direction of the eigenvector (the eigendirection) with the
least amount of variance, thus giving the fewest ice-water transitions possible. This was done by implementing the scikit-learn
Python package, via a principal component analysis (PCA) using the sklearn.decomposition.PCA class (Pedregosa
et al., 2011). This method performs the eigendecomposition of the covariance matrix of our sea ice map, yielding two orthog-
onal eigenvectors. The principal eigendirection points in the direction of minimal variance, denoted by the longer of the two
arrows in Figure 7. That is, the principle or most coherent mode that best explains the pattern is along the direction of least vari-
ability. The secondary eigendirection is, by definition, orthogonal to the principal eigenvector. Some of these eigendirections
are intuitive, as one can ‘imagine’ trying to pick a geostrophic wind direction that passes over a minimal number of ice-water
edges. The maps in Figures 7a and 7g are two such examples. However, the map in Figure 7f, for example, is a bit less intuitive
- visual inspection may suggest that the principle eigendirection should aligned from the lower right to the upper left, but the
results indicate a less obvious orientation.

It is hypothesized that for a fixed f;, the geostrophic wind flowing in a principal direction with minimal variance will behave
more so like Pattern5, and the perpendicular angle to that principal direction (the secondary direction) will behave more so

like Pattern4 (similar to the parallel and perpendicular cases in the simulations conducted in Fogarty and Bou-Zeid (2023)),
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Sea Ice
Il Ocean

Figure 7. Eight maps from the sea ice dataset overlayed with their principal eigendirection (long arrow) and secondary eigendirection (short

arrow), computed via principal-component analysis

but further LES simulations are needed to elucidate the exact impact of this relative orientation and the other parameters we
identified on the MIZ-ABL.

However, some of these maps exhibit a higher degree of anisotropy than others, such as Figure 7c. To measure the degree of
anisotropy in these maps, one may also look into percentage of variance (POV), defined as
N
22:0 Ai

for an eigenvector J; in an i-dimensional matrix. The POV of an eigenvector for a two-dimensional surface thus describes the

POV(\;) = : (10)

amount of variance that can be explained (or reconstructed) by that eigenvector alone, such that A\g + A; = 1. In theory, a sea

ice map with a high POV (\g) would be anisotropic, since the principal eigendirection explains much more of the variance
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Table 4. Eigenvector (v;) angle and eigenvalue (;) for principal ( = 0) and secondary (¢ = 1) eigenvectors, as well as percentage of variance
(POV) of Ao, corresponding to each map in Figure 7. Note that these angles are not traditional meteorological wind angles, but are instead in

Cartesian coordinates, as 0° is a left-to-right westerly wind

Map | Zvo | Xo | Zvi | A | POV(\o)
@@ | 41° | 3396 | 311° | 3286 | 0.508
(b) | 69° | 4784 | 339° | 2688 | 0.640
(©) | 229° | 3339 | 319° | 3330 | 0.501
@ | 0° | 3337 | 90° | 3285 | 0504
() | 50° | 3347 | 320° | 3332 | 0501
(M | 209° | 3624 | 299° | 2688 | 0.574
(@ | 269° | 3370 | 359° | 3293 | 0.506
(hy | 102° | 3697 | 12° | 3033 | 0.549

than the other mode, and the surface thus has a preferential direction of variability (one would expect Figure 7g to have a high
POV(\g)). Conversely, a map with a low POV ()\g) would be a fairly isotropic map.

By definition, POV ()\g) > 0.5, since the POV (\g) is the POV for the principal eigendirection. However, most of the ratios in
these examples lie in the range of 0.50 < POV () < 0.60, showing little variability among these maps. Thus in this small sub-
set of sea ice maps, solely looking at POV (\g) would not give information on how much influence the principal eigendirection

has.

6 Conclusions

The ice fraction of a sea ice surface itself can be fair indicator of the behavior of the MIZ-ABL, if the ice fraction approaches
0.0 (all ocean, leading to an unstable atmosphere) or 1.0 (all ice, leading to a stable atmosphere). However, when the f; is
between these limits (in other words, if the surface flow alternates between very stable or very unstable), ice fraction alone is
not enough to predict the dynamics and thermodynamics of the MIZ-ABL. Large-eddy simulations conducted for five different
sea ice surfaces, detailed in Figure 2, have shown that surfaces with the same ice fraction, number of floes, and mean floe size
can result in very distinct atmospheric dynamics. Differences were examined in the horizontal wind speed (Figure 4a) and total
surface stresses (Figures 4c,d and 5).

While Figure 5 shows moderate differences in the total heat flux that is here constrained by the simulation setup, more
significant differences are seen in the dispersive and turbulent fluxes that make up this flux (see also Table 2). The total,
turbulent, and dispersive fluxes of the streamwise and cross-stream momentum were even more sensitive to the surface patterns.
These dispersive fluxes are shown to drive many of the differences, and are thus non-negligible in climate models (Margairaz

et al., 2020; Fogarty and Bou-Zeid, 2023; Lu et al., 2023).
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To understand what other information one can obtain from a two-dimensional binary lattice surface, we examined 44 spatial
metrics traditionally used in the field of landscape ecology, since knowing the cover fraction (ice fraction), and the number and
median area of the floes is not enough to fully describe the ice-water-atmosphere physics. These 44 additional spatial metrics
were used on LIDPs of real-world satellite sea ice imagery to determine which metrics were important, and the variance infla-
tion factor was used to detect and remove multicolinearity in this dataset. The remaining metric set included ice fraction, patch
density (representing the number of sea ice floes and thus their mean size in a given total area), splitting index (representing
the variance in the floe sizes) and the perimeter-area fractal dimension (representing edge tortuosity). We also propose the use
of the surface eigendirection relative to the mean wind direction, to characterize the influence of surface anisotropy and its
interaction with the wind direction.

The resulting five metric set, including eigendirection, is not only useful for describing a two-dimensional surface, but based
on the VIF analysis, it is also a minimal set of indicators needed to describe such a surface since they contain distinct and
important information. However, the development of practical parameterizations for sea ice and the MIZ-ABL will ultimately
need to include additional considerations including the ease of obtaining these parameters for modeling applications, the
computing time needed to calculate these surface metrics dynamically versus resolving the surface features when running an
ESM, the availability of easier-to-compute surrogate metrics, among others.

The first step in answering this broad question is investigating to what degree these other metrics affect the MIZ-ABL, in
comparison with the first-order effect on the MIZ-ABL of ice fraction. In other words, given an ice fraction, how will changing
any of the metrics in the resulting set affect the overlying MIZ-ABL? While this was answered in this paper for idealized
surfaces, proving that under some conditions these parameters are relevant, which of these parameters will be critical over real
ice maps, and how often and to what degree, requires additional simulations (and is an underway followup to this study). More
turbulence-resolving numerical simulations of the real ice surface are thus needed.

Another crucial step to answering this question is figuring out how one would go about creating an accurate parameterization
based on the available external grid-cell variables; the resources to answer this question may be extensive as well. Again, even
more large-eddy simulations, beyond what has been done here, over real sea ice maps are imperative to answer this question.
Lastly, this open question also requires looking at how to incorporate the resulting metrics and eigendirections into these
climate models, such as examining (i) how the geostrophic wind at certain principal directions interacts with the resulting
metric set, (ii) other possible metrics of anisotropy, and (iii) how the sea ice model in an ESM can provide the data needed to

capture the heterogeneity of the sea ice surface - among other questions that remain unanswered at this time.

Code and data availability. A dataset containing the simulation results for the five patterns, and the FRAGSTATS output for the sea ice maps,
are publicly available at https://doi.org/10.34770/5x2y-5485. FRAGSTATS is publicly available for download/use at https://fragstats.org/
(McGarigal and Marks, 1995), and the prepossessed sea ice maps are available at Fetterer et al. (2008).
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Appendix A: Large-Eddy Simulation Details

In this study, the incompressible filtered Navier-Stokes equations (with the Boussinesq approximation for the mean state) and
heat budget are solved for a horizontally periodic flow, where a variable with a tilde represents a quantity filtered via the

numerical grid spacing A:

ou;

or, 0, "o
ou;  _du _ 1dp = . [ O\ o
E +’U,387x] = o 81}]‘ + F+ fceij3uj 9613 (]— 07‘) axj ) (A2)
00 00 _ g (A3)

ot Yow; 0w,

The equations above invoke the Einstein summation rule, where ¢ is the free index and j the repeated index; u; is the
velocity vector; x; is the position vector; p is a modified pressure (see Bou-Zeid et al. (2005) for details); # is the potential
temperature; 6, and 0 are, respectively, the Boussinesq reference (planar mean in our calculations) and the perturbation from
that reference for potential temperature; p,. is the reference mean density corresponding to 6,.; and F; is the main flow-driving
force (a synoptic pressure gradient). The Coriolis force is represented by the third term on the right-hand side of Eq.A2, where
fe is the Coriolis parameter and ¢;;3 represents the Levi-Civita symbol. Buoyancy is represented by the fourth term on the
right-hand side of Eq.A2, where d;; represents the Kronecker delta.

An overbar denotes averaging in time, used as a surrogate for ensemble Reynolds averaging, while spatial averaging over
the heterogeneous domain (in both z and y) will be denoted by angled brackets. The sub-grid scale stress 7;; = w;u; — U; U;
and buoyancy flux g; = EJVQ — ﬂjg, which result from the filtering, are modelled using a Lagrangian scale-dependent dynamic
model (Bou-Zeid et al., 2005) with a constant sub-grid scale Prandtl number of Pr = 0.4. As noted before, the numerical grid
is the inherent filter of the model, but any explicit filtering needed to compute the dynamic Smagorinsky constant ¢, is done at
scales 2A and 4A (2A for the local wall model); for these computations, a sharp-spectral cutoff filter is used. This model was
validated by Bou-Zeid et al. (2005) for boundary layer flows over both homogeneous and heterogeneous terrain by reproducing
experimental velocity and stress profiles obtained by Bradley (1968) after a change in surface roughness. It was then further
validated for urban flows (Tseng et al., 2006; Li et al., 2016), and both stable and unstable boundary layers (Kleissl et al., 2006;
Kumar et al., 2006; Huang and Bou-Zeid, 2013). Therefore, the ability of this model to successfully capture the impacts of
stability and spatial transitions in surface properties was not tested further in this paper.

The LES employs boundary conditions that are periodic in the horizontal, with zero vertical velocity at the top and bottom
of the domain, as well as a stress-free top lid (0,u; = 0 where i = 1,2), with zero heat flux. These mimic a very strong top
inversion, and are adequate for our setup since the top of the domain is not stably stratified and there is thus no need for a sponge
to avoid wave reflection. This allows for the surface characteristics to be isolated from z; and the inversion strength. The indices
1 =1,2,3 represent the x, y, and z directions, oriented along the streamwise, cross-stream, and vertical directions, respectively.
At the bottom of the domain, the surface stress and heat flux are computed by a wall model based on a local law-of-the-wall

formulation (Bou-Zeid et al., 2005), with Monin-Obukhov buoyancy correction. Numerically, a pseudo-spectral approach is
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employed in the horizontal, and an explicit second-order centred difference scheme used in the vertical. Time advancement is
done using the fully explicit second-order Adams-Bashforth scheme. Dealiasing of the convective terms is performed using
the 3/2 rule (Orszag, 1971). Pressure is computed from a Poisson equation obtained by taking divergence of the momentum

equation and applying the incompressibility assumption.

Appendix B: Temperature Initialization

The initial temperature was chosen to be one such that the heat flux over the ice is equivalent to the heat flux coming from
the water, based on the area fraction (ice fraction, in this case) of the of the domain. Thus, the initial air temperature of the
large-eddy simulation was chosen such that the ice-fraction weighted heat flux over the ice (f; H;) was equivalent to the water

fraction weighted heat flux over the ocean (f,, H,,),
—fiHi= fuHy, (BI)

where f; + f,, = 1. Using Monin-Obukhov flux profiles relations to express the surface fluxes:

e () (5]

om0 (2)

where 6, is the bulk air temperature; 6; is the temperature of the ice surface; 6,, is the temperature of the ocean surface;

k =~ 0.4 is the von Kdrmdn constant; u, ; and u, ; are the friction velocities of the ice and water surface respectively; p is the
density of air; ¢, is the specific heat of air; 2 is a height near the surface (taken at z = 50m); zox,; and zop ., are the scalar
roughness lengths of the ice and water surface, respectively; L; and L,, are the Obukhov lengths over the ice and water surface
respectively; and W, and ¥, represent the stable and unstable correction functions, respectively, as reported in Brutsaert (2005).
These Obukhov lengths are defined as

—u3 iPCp
L= —2r, (B4)
Hi’{(g/ga)
—uiwpcp (BS)

Ly=—"""7",
Y H wh(9/0a)
where the value of H; and H,, in these equations is taken as a first-order estimate obtained by rearranging Equations B2 and

B3 without the stability functions (i.e., for a neutral atmosphere),

PN
H; = (0; — 0a)kuni (1 , B
i = (0; — 0,)ku, (nzom) (B6)
2 -1
Hy = (0w — 0a)Kts 1y <1n ZOh,w) , (B7)

which allows one to write a function substituting Equations B2 and B3 into Equation B1 to obtain a function that can be solved
for 6, via numerical root-finding. Of course, this is only a first guess to initialize the LES, which will then dynamically create

its air temperature field during the warm-up period.
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Appendix C: Landscape Quantification Metrics

Table Cl1 lists the landscape metrics used in the VIF analysis conducted in Section 4. For more information on each individual

metric (other than ice fraction), consult the FRAGSTATS manual (McGarigal and Marks, 1995).

Table C1. All landscape metrics used in the VIF analysis conducted in Section 4

Ice Fraction Edge Density Interspersion and Juxtaposition Index
Number of Patches Landscape Shape Index Patch Cohesion Index
Patch Density Perimeter-Area Fractal Dimension Landscape Division Index
Largest Patch Index Contagion Index Effective Mesh Size
Total Edge Percentage of Like Adjacencies Splitting Index
Modified Simpson Evenness Index Aggregation Index Shannon Diversity Index
Simpson Diversity Index Modified Simpson Diversity Index Shannon Eveness Index
Simpson Evenness Index
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