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Abstract

Large-eddy simulations (LES) above forests and cities typically constrain the
simulation domain to the first 10-20% of the Atmospheric Boundary Layer
(ABL), aiming to represent the finer details of the roughness elements and
sublayer. These simulations are also commonly driven by a constant pressure
gradient term in the streamwise direction and zero stress at the top, resulting
in an unrealistic fast decay of the total stress profile. In this study, we investi-
gate five LES setups, including pressure and/or top-shear driven flows with and
without the Coriolis force, with the aim of identifying which option best repre-
sents turbulence profiles in the atmospheric surface layer (ASL). We show that
flows driven solely by pressure not only result in a fast-decaying stress profile,
but also in lower velocity variances and higher velocity skewnesses. Top-shear
driven flows, on the other hand, better replicate ASL statistics. Overall, we
recommend, and provide setup guidance for, simulation designs that include
both a large scale pressure forcing and a non-zero stress and scalar flux at
the top of the domain, and that also represent the Coriolis force. Such setups
retain all the forces used in typical full ABL cases and result in the best match
of the profiles of various statistical moments.

Keywords Canopy flows - Large-Eddy Simulation - Surface Layer

1 Introduction

Propelled by an increase in computational resources and the continuous im-
provement in physics parameterization of atmospheric processes, Large-Eddy
Simulations (LES) have been widely applied to investigate turbulence in the
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2 Einara Zahn, Elie Bou-Zeid

Atmospheric Boundary Layer (ABL) in the past decades (Stoll et al. 2020).
While its first applications aimed at reproducing the ABL structure above
flat, homogeneous surfaces (Deardorff 1970; Mason 1989; Kosovi¢ and Curry
2000; Bou-Zeid et al. 2005; Churchfield et al. 2012; Huang et al. 2011; Ghan-
nam and Bou-Zeid 2021), LES scope quickly expanded to represent more com-
plex surface features such as surface heterogeneity (Avissar and Schmidt 1998;
Bertoldi et al. 2007; Esau 2007; van Heerwaarden et al. 2014; Allouche et al.
2023; Fogarty and Bou-Zeid 2023), vegetation (Shaw and Schumann 1992; Su
et al. 1998; Albertson et al. 2001a,b; Patton et al. 2001; Watanabe 2004; Shaw
and Patton 2003; Yue et al. 2007; Huang et al. 2013; Bailey and Stoll 2013;
Pan et al. 2014), wind turbines (Calaf et al. 2010; Wu and Porté-Agel 2011;
Chatelain et al. 2013; Bastankhah and Porté-Agel 2014; Troldborg et al. 2014;
Hezaveh and Bou-Zeid 2018), and buildings (Xie and Castro 2009; Hellsten
et al. 2015; Anderson et al. 2015; Li and Wang 2018; Llaguno-Munitxa and
Bou-Zeid 2018; Shin et al. 2021). Coupling of LES with models representing
other atmosphere processes, such as cloud microphysics and land-atmosphere
interactions (Heus et al. 2010a; Maronga et al. 2015), as well as coupling with
mesoscale models (Talbot et al. 2012; Munoz-Esparza et al. 2021), have also
led to more realistic simulations of ABL evolution. With this expansion of
applications came challenges related, among others, to the range of scales an
LES can resolve.

Turbulence in the atmosphere exhibits an extensive range of eddy sizes,
spanning from a few millimeters up to the length of the very large scale mo-
tions (VLSMs) that can be multiple times the ABL height. The surface also
features a range of scales, from the leaf to the wind turbine, that need to
be captured or parameterized. Thus, the higher the resolution of the simula-
tion, the finer the details of the modeled turbulent structures and surface that
can be dynamically captured. For instance, Sullivan and Patton (2011) com-
pared the convective ABL structure under increasingly more refined domains,
varying from 323 to 1024 grid points, and showed continued improvement in
the representation of higher-order statistics. Such high-resolution simulations,
however, are not always feasible given the computational resources required,
and not always desirable when the problem at hand requires a large number of
simulations and setups. Thus, even if a 10243 grid points simulation is attain-
able, the question of whether to expend the computing resources capturing
the VLSMs or zooming in on the finer surface scale remains.

To circumvent these limitations and decrease the computational burden,
many studies have implemented grid nesting (Sullivan et al. 1996; Khanna
and Brasseur 1997; Talbot et al. 2012; Mirocha et al. 2013; Maronga et al.
2020) and/or grid stretching (Heus et al. 2010b; Hellsten et al. 2021; Sauer
and Mutioz-Esparza 2020; Llaguno-Munitxa et al. 2017). The former method
involves the use of two or more meshes, where the finer ones are nested inside
the coarser grids. Grid stretching, on the other hand, consists of progressively
increasing the grid space, keeping a refined grid close to the surface. Both
approaches improve the representation of details in the ASL, and have been
successfully employed, for instance, to study canopy flows (Patton et al. 2003;
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Cassiani et al. 2008; Huang et al. 2009; Klosterhalfen et al. 2019). Nonetheless,
despite their potential and the moderate increase in computational demand,
these alternatives are still not widely adopted, possibly due to their relatively
complex implementation requirements. Most LES studies thus continue to use
either large domains that coarsely span the full ABL, or smaller ones that
focus on the surface features and layer, with higher resolutions.

Of specific relevance to the present paper, studies interested in turbulence
in the ASL or an even shallower layer — such as the canopy and roughness sub-
layers of forests or cities — opt for decreasing the simulated domain depth so
as to better represent these roughness features near the surface. Thus, domain
heights above vegetation and cities are typically between 3 and 10h, where h
is the mean canopy height (Shaw and Schumann 1992; Watanabe 2004; Shaw
and Patton 2003; Yue et al. 2007; Mao et al. 2008; Pan et al. 2014; Li et al.
2016b; Grylls and van Reeuwijk 2021; Joshi and Anderson 2022), representing
only a fraction of the ABL extent. Such configurations are particularly benefi-
cial for research scenarios that require suites of simulations, where decreasing
the computational burden allows better spanning of the problem’s parameter
space. It would also be a remiss not to underline here that, in addition to faster
and simpler simulations, such setups reduce the rapidly increasing energy de-
mand of geophysical simulations: NCAR’s Wyoming Supercomputing Center,
designed as one of the most energy efficient data centers in the world, still uses
about 4-8 MW of power (depending on weather and computing loads), that
are equivalent to the needs of about 2000-4000 US homes (Potomac-Hudson
Environmental Team 2010).

In terms of LES design, full ABL simulations typically include an externally-
imposed synoptic pressure gradient, often expressed as an equivalent geostrophic
velocity, as well as the Coriolis force. At the top of the domain, zero stress and
zero scalar flux conditions are imposed, even when an inversion overlaid by
damping layer are added below the upper boundary. In all cases, a wall model
is also needed to compute the surface stress and flux. The final flux profiles are
then characterized by a slow decay of fluxes of momentum and scalars from a
maximum at the surface to zero at the top of the domain (with more activity
near the top of the ABL when an inversion is included). In such setups, a
flux decrease of around 10% is observed across the Atmospheric Surface Layer
(ASL) (~100 m), which is in agreement with predictions and observations.

Simulations with reduced domain heights above canopies are usually setup
in a very similar way to full ABL simulations, with an imposed external pres-
sure forcing, assuming a stress free and zero scalar flux top boundary condition.
As a result, a fast decaying stress profile balancing the pressure term is seen
under steady conditions, deviating from the expected constant flux (or approx-
imately constant stress) layer. The imposed condition of zero scalar flux at the
top also results in rapid and continuous increase of the scalar concentrations
in the domain, and a flux profile decreasing to zero very close to the canopy
top. These characteristics are not representative of the atmospheric surface
layer as shown in various field experiments or deduced from full-ABL sim-
ulations. However, while a few studies compared simulations above canopies
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driven by pressure or shear (Su et al. 1998; Watanabe 2004; Su and Paw U
2023; Sanemitsu et al. 2023), the question of how to improve the represen-
tation of the ASL in small domains remains largely unexplored. To bridge
this gap, this study investigates the impact of different flow forcings and top
boundary conditions on small-domain simulations representing the ASL. Five
different simulations using a combination of imposed pressure, shear and/or
Coriolis are compared against the results obtained from a full ABL simulation
to determine which one provides the most realistic ASL flow structures.

2 Simulations

The LES code used here has been extensively evaluated in previous studies
(Bou-Zeid et al. 2005; Kumar et al. 2006; Huang and Bou-Zeid 2013; Li and
Bou-Zeid 2019). It solves the spatially filtered incompressible continuity (1)
and Navier-Stokes (2) equations under the Boussinesq approximation, as well
as a budget equation for a scalar ¢

0u;

- 1
P (1)
Ou; - (0ui _ 0Ouj op*  Omyy ~ _ .G
- . — — — — €ii . G P“ 2
ot 1 (830] 8.1‘1) ox; aq;j + fee ]B(UJ U ) + ( )
azj ~ aZ]v o 87rj
ot + u; amj = 8:Uj’ (3)

where u; are the resolved (filtered) velocity components (i=1,2,3) and ¢ is
the resolved passive scalar. p* is a modified resolved dynamic pressure that
also includes the resolved and subgrid-scale (SGS) turbulent kinetic energy
(Bou-Zeid et al. 2005); 7;; is the anisotropic part of the SGS stress tensor;
fe = 1.4 x107* s7! is the Coriolis parameter; 7; is the SGS scalar flux; and
€5 is the Levi-Civita symbol. Finally, the flow can be driven by a large scale
pressure imposed either in terms of a geostrophic velocity ujG = (u%,v%,0),
or as a constant body force term P;. All our simulations are neutral, and thus
the buoyancy term was neglected in the momentum equation.

The numerical details of the code are typical of other Large-Eddy Simula-
tions, including a pseudo spectral scheme in the horizontal and a second-order
finite difference in the vertical. Second order Adams-Bashforth is used for
time stepping. Additional details on the numerics as well as the SGS and wall
models can be found elsewhere (Bou-Zeid et al. 2005; Li et al. 2016a).

To investigate the effects of top boundary conditions as well as imposed
driving forces on the flow, we designed six simulations as represented in Table
1. Different configurations include one or more of the following driving forces
and/or boundary conditions: pressure gradient imposed as a constant —dp/dx
(P; in the equation above, the overbar represents the Reynolds average), de-
noted by P, in the case name, or in terms of geostrophic velocity, where the
cases are denoted as UY . In addition, these simulations might also contain the
Coriolis term (C), stress (S) and/or scalar flux (F) at the top of the domain.
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Simulations driven by shear (S), meaning that they incorporated a top
stress, were accomplished by imposing the subgrid-scale component at the
upper boundary of the domain L, as follows:

Toz(L.) = cos a,uZ,

(4)

Ty=(L) = sin aTu%,

where u% is the kinematic stress magnitude to be imposed at the domain top;
(Tzz,Tyz) are its components in the streamwise and cross-stream directions,
respectively; and «., is the angle between the stress vector and the z-axis.
Similarly, a constant scalar flux is imposed at the top as

ﬂ-z(Lz) = Ftop = _Fbottoma (5)

where the top flux (Fiop) has the opposite sign of the flux imposed at the sur-
face (Fhottom), ensuring no accumulation of scalar in the domain that would
allow scalar statistics to reach a steady-state. Thus, while all simulations im-
pose a constant surface flux Fi,ottom, only simulations differentiated by “F” in
Table 1 additionally include Fiop = —Fhottom (i-€., the remaining cases main-
tain the usually adopted configuration Fi,, = 0). Moreover, note that Fi,p
can be adjusted in such a way that a 10-20% flux decay from the surface to
the top of the domain can be simulated.

The first case (Full ABL) represents a typical neutral ABL simulation that
extends to L, = 1 km above the surface, and is driven by a large scale forcing,
here imposed as u® = 8 m/s and v“ = 0 m/s, with zero stress and flux top
boundary conditions. This setup results in a geostrophic wind above the ABL
aligned in the x direction. The following five simulations assume a shorter
domain representing the bottom 14% of the full ABL simulation (i.e., 140
m), which is typically the range adopted when representing forests or urban
canopies, where 3—10h = 60-200 m for A =20 m, but the implications should
be similar for the deeper domains used for wind energy applications or taller
buildings.

Case 2 (S+U%+CHF) was designed to represent the same balance of forces
found at z = 140 m in the full ABL case. To this end, we first computed
the stress terms at z = 140 m in case 1, finding Tmz/uémoln = —0.9947
and Tyz/ugm()m = 0.1029 (a,=174.1° in equation (4)), where 7;, is the total

horizontal stress (resolved + SGS) at 140 m and ug140m = (72, + 72,)'/* =
0.30 m/s. This stress term was then imposed as the SGS contribution at the
top boundary. In addition to retaining the Coriolis term, case 2 was also driven
by the same large scale pressure force imposed in the full ABL case (u® = 8
m/s, v = 0 m/s). Our profiles for the full ABL results (case 1) are available
in the Supplementary Information and can be used as a starting point to
design shallow domain simulations in other studies of the neutral barotropic
ABL. However, new full-ABL simulations would be required to take stability
or baroclinicity into account.

The roughness length, zg = 0.05 m, was kept constant in all cases. The same
number of grid points was used in all small domain simulations (N, = N,=144,
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Table 1 Summary of simulations compared in this study. Different combinations include a
top stress term (S), pressure gradient imposed in terms of geostrophic wind US or a constant
streamwise gradient (P), and Coriolis (C). In addition, they might also include a constant
scalar flux at the top (F) matching the flux at the bottom. Case 1 simulates the entire
ABL, while the remaining five cases simulate a reduced domain of 140 m. A constant stress
(Tzz/u%,ryz/u?g) = (—0.9947,0.1029), as well as a constant scalar flux (Frop = —Fbottom,
where Fottom 1S the flux imposed at the surface), were used as top boundary condition in
cases 2, 3, 4 and 5. A large scale pressure forcing with & =8 m/s and v© =0 m/s was
included in cases 1, 2, and 4, while a normalized pressure gradient (L./u2)dP/dx1 = 1
drives the flow in 6. Output normalization removes any distinction between the simulations
imposing a geostrophic wind equivalent to the pressure gradient or a normalized value.

ID Forcing # grid points Domain

1 Full ABL Pressure + Coriolis (288, 288, 216) (6, 6, 1) km
Stress + Pressure

G

2  S+U+C+F © Coriolis 4+ Flux (144, 144, 108)  (0.84, 0.84, 0.14) km
Stress +
3 S+C+F Cotimlie 1 Flux (144, 144, 108)  (0.84, 0.84, 0.14) km
Pressure +
G

4 UCGHC+F Coriolis + Flux (144, 144, 108)  (0.84, 0.84, 0.14) km
5 SYF Stress + Flux (144, 144, 108)  (0.84, 0.84, 0.14) km
6 P, Pressure (144, 144, 108)  (0.84, 0.84, 0.14) km

and N,=108), while results for the full ABL case use double the number of
grid points. While this results in a coarser resolution in the full domain, we
note that the full ABL results were not significantly modified when a coarser
grid (same number of nodes as in cases 2-6) was used, indicating good grid
convergence for this case (comparison for first, second and third-order statistics
for the full ABL case for both resolutions are included in Appendix A, Figures
4 and 5). It is thus worth emphasising that the precursor ABL simulation used
to design the shallow domain can be run at a much lower resolution than case
1 used here. Only the stress vector (resolved+SGS), and potentially the scalr
flux, at a height 2z corresponding to the top of the shallow domain is needed
from the large domain simulation, and this variable is almost insensitive to
domain resolution as our grid sensitivity tests suggest (also, for instance, see
Fig. 9 in Berg et al. (2020)).

Similarly, results obtained for case 2 using double the resolution did not
alter the conclusions of this paper (comparison not shown here), and thus only
results obtained using the lower resolution grid is shown for small domain sim-
ulations. All results presented here were obtained from spatial and temporal
averages (over at least 20 eddy turnover times, L, /u.) after a warm up period
during which steady-state conditions were achieved. u, and ¢. = Thottom /U
were computed at the surface from the SGS contribution, while quadrant anal-
yses, variances, turbulent kinetic energy, and skewness were computed based
on the resolved part.
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3 Results and discussion
3.1 Mean profiles

The normalized streamwise (u/u,) and cross-stream (v/u,) velocity profiles
are shown in Figure la—b. Similar to results reported by Su et al. (1998) and
Watanabe (2004), the mean profiles obtained for cases with an imposed top
stress are characterized by a sharp gradient at the top of the domain (above
z > 110 m; dashed line in the figures), which is a consequence of inefficient tur-
bulence mixing by the smaller eddies present near the top boundary, requiring
larger gradients to drive the constant fluxes. Nonetheless, results below this
region are unaffected and follow the expected ABL statistics. Thus, as sug-
gested in previous studies (Su et al. 1998; Watanabe 2004), we recommend
ignoring the solution in the top & 20% of the domain when a stress boundary
condition (and/or a constant scalar flux) is used, which should be taken into
account when designing the height of the domain. Alternatively, setups that
impose the top stress and scalar flux across a finite-depth sponge region near
the top could be tested in the future to reduce the steep gradients.

As expected, the simulations with an imposed top stress vector resulted in a
non-zero v profile, although the wind angle also depends on whether a pressure
term or Coriolis were present. The best agreement with the full ABL case is
the simulation including a top stress, pressure, and Coriolis (S+U%+C+F).
The simulations with the cross-stream velocity profiles that deviate most from
full ABL reference case are S+C+F and UY4+C+F, which include Coriolis,
and either S or U%. This is understandable as these are the ones that produce
an unrealistic force balance by including only 2 of the 3 forces acting in an
Ekman boundary layer. Nonetheless, good agreement is seen for all mean wind
profiles, M = (u? +7%)'/2, in Figure lc. Thus, while the wind angle varies, the
mean wind profile normalized by the surface friction velocity, up to 100 m, is
less sensitive to the choice of forcings and top boundary condition.

The profiles of the mean scalar quantity, represented as (g — Q)/gx, where
@ is the domain volume average of the scalar, are shown in Figure 1d. Note
that this subtraction is necessary given that the concentrations increase over
time in the absence of scalar sinks (including in the full ABL simulation), and
particularly in case P, where the flux is concentrated in an even shallower
domain. Despite the scalar accumulation, we verified that (g — Q)/q. is sta-
tionary. Overall, the worst agreement with the full ABL profiles is observed
for case US+C+F, which overestimates concentrations below 50 m. Simula-
tion P, on the other hand, best replicates the full ABL profile, although all
simulations with a top stress also follow the reference closely.

3.2 High-order turbulent statistics

Typical LES setups above forests and cities include an external pressure gra-
dient in the streamwise direction as the main driver of the flow. Under these



Einara Zahn, Elie Bou-Zeid

(d)

0 10
(@-Q)/g~

(9)

140 ; :

120 1 e
—e—Full ABL ™ b e T = —_——— m—————

- 100 ]
~¥—S+U+C+F _ 801 1
—=—-S+C+F B 777 ;
——Uul+c+F N 607 ;
—4—S+F 40'5 '
—A—P,, 209 ]

0 ] - .

0 2 -1 0 1

—-wu'ju? w'v'ju? Wq'lu«q+«

Fraction Quadrant

°e Q2 o o =
o N B o »® o
1 1 1 1 1 ]

<
xC¥

s <
G ox

’\}G )(C')(e %)X e
5)(

S

Fig. 1 Mean profiles of streamwise velocity, & a), cross-stream, ¥ b), mean wind speed
M = (u? +92)'/2, and scalar concentration d), where u. is the friction velocity, Q is the
volume averaged scalar concentration, and g« is the turbulent scale of the scalar q. Profile
of streamwise e) and cross-stream momentum f), and scalar flux g). Fluxes in plots e-g
include the SGS component. Dashed black line represents the height above which a sharp
gradient is observed when a top stress drives the flow. Plot h) shows the contributions from
sweeps (S), ejections (E), inward (I) and outward (O) interactions to fluxes of momentum
(left bars) and scalar (right bars) at z = 100 m.
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conditions, a balance between the flux divergence term and the pressure forc-
ing, under steady state conditions, results in a linear decrease in momentum
flux from a maximum value near the surface to zero at the top of the domain
(case P, in Figure le—f). While routinely shown across papers, this stress pro-
file produced by shallow domains is not realistic in the surface layer, where a
near constant profile is expected. Furthermore, inclusion of the Coriolis force
invariably causes a more rapid (than linear) reduction in the stress, as shown
in Ghannam and Bou-Zeid (2021) at various Rossby numbers. For instance,
the simulation representing the full ABL shows a decrease of less than 20% up
to 100 m of the domain, which is faster than linear (due the the finite Rossby
number), but still slower than what would be produced by commonly-used
shallow domains setups. The correct drop in the stress with height is closely
replicated only by simulation S+U%+C+F (note that the results of that case
and the full ABL overlap in Figures le and 1f).

As expected, a constant stress profile is obtained for case S+F since no
other sinks or sources of momentum are present. However, the inclusion of
a Coriolis term (case S+C+F) results in an unrealistic stress profile that in-
creases with height. Since the forcing is applied at the top as a momentum
source and the Earth surface acts as a momentum sink, the stress must de-
crease across the ABL as the Coriolis force acts to partially counter the result-
ing stress gradient force, reducing the total stress below its constant profile
obtained without Coriolis (S+F case). Because u., by definition, is computed
at the surface, the quantity —w’u’/u? in Fig. le becomes larger than unity
above z ~ 70 m for case S+C+F. For a fixed Coriolis parameter, the rate of
stress decrease from top to bottom is also dependent on the Rossby number
which will be affected by the magnitude of the imposed top stress and the Cori-
olis parameter (results not shown here). Overall, this unrealistic profile is not
a surprise considering the nonphysical force balance used in this simulation.

Similarly, the scalar flux profile (Figure 1g) decays much faster in case
P, than the simulation for the full ABL predicts, the latter showing a flux
decrease of ~ 10% at 100 m, as expected. Here, the use of a constant flux
at the top of the domain ensures a constant flux layer that better matches
conceptual models of the ASL, but one could also elect to impose a top flux
that is reduced relative to the surface flux (as we do for stress), for example, to
reproduce exactly the full domain profiles or account for fluxes at the inversion.

The contributions from different quadrants to the momentum and scalar
fluxes are shown in Figure 1h, where the respective contributions from sweeps,
ejections, and inward/outward interactions at z = 100 m were quantified.
For xz-momentum flux, the different quadrants are defined as follows: sweeps
(w > 0 and v/ < 0); ejections (w' > 0 and v’ < 0); inward interactions
(w" < 0 and v/ < 0); and outward interactions (w’ > and u’ > 0). For
scalar flux, the following definition is adopted: sweeps (w’ < 0 and ¢’ < 0);
ejections (w’ > 0 and ¢’ > 0); inward interactions (w’ < 0 and ¢’ > 0);
and outward interactions (v’ > and ¢’ < 0). The quadrants’ contributions
observed across all simulations are similar for momentum and scalar fluxes, but
vary across simulations. Cases 1, 2, 3, and 5 show similar contributions from
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sweeps and ejections (= 40% each), as well as for inward/outward interactions
(= 10% each). Case 6 (P,), on the other hand, results in almost double the
contribution from inward interactions at the expense of a reduced contribution
from sweeps. Overall, simulations including a top stress term are closer to the
quadrant analyses observed for the ABL simulation.

Figure 2a—d) compares second and third-order moment profiles. Simula-
tions driven only by pressure depart from the full ABL case more often than
simulations that included a top stress term. As shown in Figure 2a-b, the
normalized variances o, /u. and o,/u, decrease fast with height for cases
UC+C+F and P,: on the other hand, the normalized horizontal standard
deviations for S+ UY+C+F and S+F show a better agreement with the full
ABL case. However, more differences are observed for the vertical standard
deviation, o, /u., where flows driven solely by pressure underestimate the full
ABL by up to 25%, while flows including a top stress overestimate the quan-
tity by 20%. Here, direct comparison to the full ABL should be made with
caution since the latter, with its coarser resolution, under-resolves the vertical
velocity component more severely than the horizontal components, and we do
not include the SGS components in the present comparison. As such, a higher
(than the full ABL) vertical variance in a shallow domain certainly makes more
sense than a lower one. In addition, it is expected that a shallow domain will
directly interfere with fluctuations of vertical velocity, so a perfect match is not
expected, but the differences between the shallow domains is significant and
informative. The full ABL simulation used in this comparison does not have
the same spatial resolution as the shallow domain cases. While the full ABL
is simulated with dx = dy = 20.8 m and dz =4.6 m, the remaining domains
impose dr = dy = 5.8 m and dz =1.3 m. Therefore, a more detailed quanti-
tative comparison where the full ABL is simulated with the same spatial grid
resolution is required to pinpoint the differences in higher-order statistics, but
this is left for future studies gives its computing cost. In this case, a matching
resolution full ABL would require N, x N, x N, = 1024 x 1024 x 756 for a
regular grid.

The profile of scalar standard deviation is shown in Figure 3d. Overall,
more variability across the simulations is observed below 50 m, with simula-
tion US+C+F showing the greatest departure from the full ABL profile. Case
S+U%+C+F, on the other hand, slightly overestimates the full ABL simu-
lation near the surface, but it generally shows a nearly constant profile that
follows the full ABL case. One here should note that the differences in mean
scalar profiles noted before will result in differences in the gradient production
term in the scalar variance budget, which then should result in differences in
the variance profiles as observed here.

The skewnesses of u, v, and w are shown in Figure 2e-g. With exception
of case US+C+F, all simulations converge to sk, ~ 0 away from the surface.
However, flows driven solely by a pressure term overestimate the magnitudes
of sk, and sk, compared to the full ABL case, indicating higher asymme-
try in the velocity distributions away from the surface. These results are in
agreement with Watanabe (2004)’s findings, who compared shear and pressure
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Fig. 2 Comparison of higher order statistics across all six simulations. The normalized
standard deviations of velocity components and scalar are shown in plots a—d. Note that the
scalar standard deviation, o4, was normalized by the standard deviation at z = 50 m. The
skewnessess of the three velocity components, as well as the turbulent kinetic energy (k) are
shown in plots e-h. Standard-deviations, skewness and k only include resolved turbulence.
Dashed black line represents the height above which a sharp gradient is observed when a
top stress drives the flow.
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driven flows above a canopy. The author found that the magnitudes of sk, and
sky in the streamwise pressure driven case increased with height, which is in
disagreement with observations indicating that the skewness should decrease
away from the surface. For the shear-driven flow, the author observed that u
and w became more symmetric (i.e., skewnesses closer to zero) at around twice
the canopy height, in agreement with a family portrait of observations across
forests presented by Raupach et al. (1996). We also observed the same be-
havior in our simulations with a canopy model (more details in Appendix B).
Thus, while none of the shear-driven flows perfectly captures the results from
the full ABL case in terms of skewness, they result in more realistic profiles
than flows driven solely by a pressure term.

Figure 2h suggests that shear-driven flows also better represent the turbu-
lent kinetic energy (k) profile in the atmospheric surface layer. However, note
that only the resolved part of k is included in the plot. The pressure driven
flows, on the other hand, show a rapid decrease in k from the surface to the
top of the domain. This is expected given the decrease in shear stress with
height, which decreases the mechanical shear turbulent production far from
the surface. Overall, in terms of k profile, simulations S+US+C+F and S+F
are superior in matching the full domain.

3.3 Instantaneous cross-sections

Figure 3 compares instantaneous horizontal slices of the streamwise velocity
perturbation, u’ /u., sampled at approximately 100 m. Simulations S+U%+C+F
and S+F indicate the presence of similar structures with similar length scales,
which was corroborated by analyses of the structure and autocorrelation func-
tions (not shown here). Cases S+C+F and U“4+C+F, on the other hand,
change the orientation of the streaks to approximately 4+45°, resulting in a
less realistic pattern when compared to the full ABL simulation. As mentioned
before, this is a result of the incomplete force balance of these two cases, either
driven by a shear or by a pressure term, which changes the alignment of the
main flow. Thus, the inclusion of all terms as in case S+U%+C+F is essential
for a more realistic representation of the ASL. Nevertheless, the shallow do-
main will not be able to capture the large and very large scale motions that
fill the full ABL, and studies where these features are important must span
the full depth of the ABL and the length of these structures.

4 Conclusion

While there is increasing research efforts examining the minimal requirements
on domain size for wall-bounded flows over roughness elements (e.g., Mac-
Donald et al. (2017)), recent studies (Su and Paw U 2023) have shown that
simulating the entire ABL depth, as opposed to a limited region, is ideal to
represent the full extent of the roughness and logarithmic layers above forests,
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Fig. 3 Horizontal (z-y) slices of the instantaneous u’/u, field across simulations sampled
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directions, respectively.

as well as to more accurately capture shear stress budget terms. Nonetheless,
the resolution required by such simulations is still prohibitive in most research
applications, and would consume significantly more energy than a minimal do-
main. Although the recent development of Graphics Processing Unit (GPU)-
based codes are promising options towards faster and more efficient simulations
(Sauer and Mutioz-Esparza 2020), whether to expend any given computing re-
source in spanning the full ABL depth to capture the largest scales or focus
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on better resolving the surface features and the turbulence therein remains a
compromise that must be settled based on the application at hand. Alterna-
tive approaches that can be considered are the use of nested and/or stretched
domains, where the ABL extent is represented by an independent coarse grid
in the case of nesting, or progressively larger Az in case of stretching, while the
canopy (limited to a shallower domain) can be solved at a higher resolution
(Patton et al. 2003; Cassiani et al. 2008; Huang et al. 2011). Nonetheless, these
approaches have not been widely adopted due to the complexity of modify-
ing existing codes and the intricate challenges associated with interfacing the
two grids. Instead, most studies of canopies or with an ASL focus continue to
use only one shallow domain due to it simplicity and suitability for conduct-
ing a large number of simulations. The present study is aimed at providing
guidelines for setting up such single shallow domain simulations.

To that end, we investigated the impact of different driving forces and
top boundary conditions on first, second, and third order moments, as well
as coherent structures. Our results indicate that mean velocity profiles are
relatively insensitive to the LES setup, although the wind angle varies from
case to case. Increased disagreement was observed for higher order statistics.
In particular, we show that the most commonly adopted configuration in sim-
ulations of canopy flows (streamwise pressure gradient, no Coriolis, zero stress
and scalar flux at the top) might result in unrealistic profiles. For instance, not
only do fluxes decrease much faster with height than predicted from full ABL
simulation, but there is also an asymmetry in the velocity field distribution
away from the canopy. Although similar results had been reported in the past
(Watanabe 2004) over canopy flows, pressure driven flows are still the most
common approach used to drive flows above complex terrains.

We propose a LES setup combining pressure and shear driven flows, as well
as the inclusion of the Coriolis term. We show that this simulation replicates
the expected flux profiles in the ASL, and agrees better with the full ABL
simulation for variances (especially for « and v), and turbulent kinetic energy.
We thus recommend it as a point of departure in future studies, with potential
modifications and refinements to the setup we have here, depending on the
goal of these future simulations. We also note that the values and angle of the
stress and fluxes needed at the top boundary can be estimated from a single,
relatively low resolution run of the full ABL. This approach is in some-sort a
simplified offline nesting of the two simulations. Finally, for researchers with
faster codes and more available computational resources, we also recommend
a more detailed quantitative comparison of higher-order statistics profiles for
the different setups at higher resolution, where the full ABL is simulated at
the same grid spacing as the shallow domains.
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Appendix A: Grid Convergence of the Full ABL Simulation

Below we compare profiles of up to third-order statistics in the ABL obtained
using a low resolution (LR) and a high-resolution (HR) domain. The respective
number of grid points are 144 x 144 x 108 (LR) and 288 x 288 x 216 (HR),
while the remaining characteristics of the simulation are identical.
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(Full ABL HR).
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Appendix B

For reference, this section compares cases 2 and 6 from Table 1 with the
inclusion of a canopy. The same details described in section 2 are used, where
now an additional drag term D; is added to the momentum equation (2) to
represent a sink of momentum imposed by the trees,

Di = —CDG(Z)aZ"ﬂA. (6)

Cp is the drag coefficient (= 0.25 in the present paper) and a(z) is the leaf-area

density profile, where the leaf-area index LAI = foh a(z)dz = 2 in the present
study. A source term S.(z), representing scalar ¢ emitted by the canopy, is
additionally included in equation (3). The same leaf-area density and scalar
source profiles from Su et al. (1998) were used in our simulations, and were
represented by the lowest 10 grid points of the domain. With N, = 108, we
thus have L,/h =10.8 and h ~13 m.

To ensure a constant scalar flux in the case S+UY+C+F, the subgrid scale
flux component at the top includes both surface and canopy flux contributions,

ie.,
z=h

Ttop = Thottom + Z Sc~ (7)
z=0
Finally, the turbulent scales u, and g, are computed above the canopy. Com-
parison of both simulations is shown in Figures 6 and 7. As with the simulations
over flat terrain in the body of the paper, significant differences can be noted
with the S+U%+C+F case displaying more realistic vertical patterns.
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Fig. 6 Same as Figure 1, where two canopy flows are considered. Simulation S+US+C+F
contains top stress, pressure gradient (geostrophic forcing), Coriolis and constant flux at
the top, while the second case is solely driven by a streamwise pressure term. The same
resolution was used for both simulations (144 x 144 x 108 grid points). Continuous black
line represents the canopy top, while dashed black line represents the height above which a
sharp gradient is observed when a top stress drives the flow.
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Fig. 7 Same as Figure 2, where two canopy flows are considered. Simulation S+US+C+F
contains top stress, pressure gradient (geostrophic forcing), Coriolis and constant flux at
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resolution was used for both simulations (144 x 144 x 108 grid points). Continuous black
line represents the canopy top, while dashed black line represents the height above which a
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