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Abstract24

While yearly budgets of CO2 flux (Fc) and evapotranspiration (ET ) above vegetation25

can be readily obtained from eddy-covariance measurements, the separate quantification26

of their soil (respiration and evaporation) and canopy (photosynthesis and transpiration)27

components remains an elusive yet critical research objective. In this work, we investi-28

gate four methods to partition observed total fluxes into soil and plant sources: two new29

and two existing approaches that are based solely on analysis of conventional high fre-30

quency eddy-covariance (EC) data. The physical validity of the assumptions of all four31

methods, as well as their performance under different scenarios, are tested with the aid32

of large-eddy simulations, which are used to replicate eddy-covariance field experiments.33

Our results indicate that canopies with large, exposed soil patches increase the mixing34

and correlation of scalars; this negatively impacts the performance of the partitioning35

methods, all of which require some degree of uncorrelatedness between CO2 and water36

vapor. In addition, best performances for all partitioning methods were found when all37

four flux components are non-negligible, and measurements are collected close to the canopy38

top. Methods relying on the water-use efficiency (W ) perform better when W is known39

a priori, but are shown to be very sensitive to uncertainties in this input variable espe-40

cially when canopy fluxes dominate. We conclude by showing how the correlation co-41

efficient between CO2 and water vapor can be used to infer the reliability of different W42

parameterizations.43

Plain Language Summary44

Forests and vegetated ecosystems play a crucial role in the water and carbon cy-45

cles. During the day, plants absorb CO2 through photosynthesis (P ), releasing water va-46

por via transpiration (T ). On the other hand, the soil underneath contributes to CO247

through respiration (R), and moist soil leads to water evaporation (E). While meteo-48

rological towers currently measure total CO2 (Fc = P + R) and water vapor (ET =49

E+T ) exchanges, distinguishing the contributions from soil respiration and evapora-50

tion versus tree photosynthesis and transpiration remains a challenge. This study ad-51

dresses this gap by investigating methods to separate Fc and ET into their individual52

components. Using a simulated forest environment with a virtual meteorological tower,53

the study tests four methods to estimate respiration, photosynthesis, evaporation, and54

transpiration. Results reveal that more reliable estimates are obtained when measure-55

ments are collected close to the forest top, especially in the absence of significant veg-56

etation gaps that lead to strong mixing. Additionally, the study highlights the expected57

errors in two approaches when faced with real-world uncertainties. By elucidating op-58

timal conditions for method application, this research contributes to advancing our un-59

derstanding of ecosystem-atmosphere interactions and informs the accurate measurement60

of vital components in the carbon and water cycles.61

1 Introduction62

Land-atmosphere exchanges of water vapor and CO2 are important components63

of the global water and carbon cycles. In this context, vegetated canopies play an im-64

portant role in both cycles through their contributions to evapotranspiration (ET ) and65

net CO2 exchange (Fc). Facilitated by an extensive network of eddy-covariance (EC) tow-66

ers setup across the globe, we are currently able to quantify the long-term budgets for67

both quantities over many land use types (Baldocchi et al., 2001; Baldocchi, 2003; Hollinger68

et al., 2004; Fisher et al., 2008; Novick et al., 2018; Baldocchi et al., 2024). Nonetheless,69

long-term quantification of their individual soil (evaporation and respiration) and plant70

canopy (transpiration and photosynthesis) components is an equally important but much71

more challenging research goal. While different methods have been proposed to measure72

one or more of these components (Law et al., 1999; Wilson et al., 2001; Roupsard et al.,73
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2006; Paul-Limoges et al., 2017; Stoy et al., 2019; Paul-Limoges et al., 2020), such as soil74

chambers, sap-flow, leaf-level measurements, and concurrent bellow and above canopy75

eddy-covariance measurements, they are still unable to offer unified long-term measure-76

ments (yearly scale) of all components across different ecosystems. This poses a challenge77

to understanding, for instance, how different environmental, meteorological, and clima-78

tological conditions affect these processes, which are urgent research questions as we at-79

tempt to mitigate and adapt to climate change and variability (Mengis et al., 2015; Kirschbaum80

& McMillan, 2018; Dusenge et al., 2019; Baslam et al., 2020; Wang et al., 2022). There-81

fore, the development and implementation of practical and accurate methods to parti-82

tion the observed total ET and Fc fluxes remains a significant objective, particularly if83

such methods can rely solely on eddy-covariance data and can thus be widely applica-84

ble to ongoing measurements.85

For partitioning CO2 components, several methods have been proposed; some, for86

example, rely on modeling soil respiration (Rsoil) and computing the plant component87

as the residual Fc − Rsoil = GPP , which is referred to as the gross primary produc-88

tivity (Reichstein et al., 2005; Lasslop et al., 2010). Various approaches (physical and89

machine learning based) have also emerged to partition total measured ET into plant90

transpiration (T ) and soil evaporation (E) (Zhou et al., 2016; Wei et al., 2017; Scott &91

Biederman, 2017; Perez-Priego et al., 2018; Nelson et al., 2018; Rigden et al., 2018; X. Li92

et al., 2019; Eichelmann et al., 2022). However, challenges in model validation have pre-93

vented a clear assessment of their accuracy, as illustrated by divergent partitioning es-94

timates in comparison studies (Nelson et al., 2020). Furthermore, these ET partition-95

ing methods often require additional uncertain parameterizations and/or depend on hard-96

to-measure, and often unavailable, environmental variables. Specifically, many require97

a priori knowledge of the GPP , itself an unknown that requires Fc partitioning mod-98

els as discussed above. Consequently, approaches capable of simultaneously partition-99

ing Fc and ET offer distinct advantages over existing methods that tackle these fluxes100

separately, given their intrinsic physical connections.101

A particularly useful class of partitioning methods, that this paper focuses on, are102

approaches based on turbulent statistics computed from high-frequency data. Not only103

do they require few (usually only water-use efficiency) or no extra inputs, but they also104

allow the simultaneous and consistent partitioning of ET and Fc flux components. Three105

previously proposed methods are the flux-variance similarity (FVS)(Scanlon & Sahu, 2008;106

Scanlon & Kustas, 2010; Scanlon et al., 2019), the modified relaxed-eddy accumulation107

(MREA) (Thomas et al., 2008; Zahn et al., 2022), and the conditional eddy covariance108

(CEC) (Zahn et al., 2022). Cognizant of potential limitations of FVS, CEC, and MREA,109

in the present study we also formulate and test two new but related approaches. The110

first approach is the conditional eddy accumulation or CEA, which combines quadrant111

analyses and the traditional Relaxed Eddy Accumulation method (Businger & Oncley,112

1990). While it uses similar principles as adopted by MREA and CEC, CEA’s formu-113

lation also includes downdrafts in its framework, and yields different results. The sec-114

ond method is a hybrid approach that assimilates W into the CEC method, and is here115

called CECw. The idea behind CECw is to investigate how much skill the water-use ef-116

ficiency alone adds to partitioning.117

Previous work comparing two or more of these EC-based methods (Klosterhalfen,118

Graf, et al., 2019; Klosterhalfen, Moene, et al., 2019; Zahn et al., 2022) across sites have119

highlighted their potential. Nonetheless, a general conclusion regarding their applica-120

bility across different ecosystems was not attained, in part because of the challenge in121

validating these methods’ formulations and results. In addition, assessing their limita-122

tions — i.e., when and where they do not perform well — would require tower data across123

a wide range of ecosystem types and climatic conditions that could result in various com-124

binations of flux component strengths. To overcome limitations of field experiments in125

answering many of the open research questions, in this study we use numerical simula-126
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tions of canopy flows relying on the Large-Eddy Simulations (LES) (Stoll et al., 2020)127

technique. One of the biggest advantages LES offers in the present study is that the true128

flux components and water-use efficiency are known inputs; therefore, the results and129

underlying assumptions for the implemented partitioning methods, which are applied to130

time series sampled during the simulation, can be validated.131

Equipped with numerical simulations over a wide range of flow conditions, we are132

now able to answer more specific questions that experimental data alone cannot. One133

important open subject of inquiry with these multiple available approaches is under what134

conditions (measurement height, season, canopy characteristics, etc.) are some approaches135

more accurate than others. As discussed by Zahn et al. (2022), the assumption that ed-136

dies with a signal from the soil can be distinguished from those originating from the plant137

canopy would suggest that more realistic results should be obtained for both methods138

over sparser canopies (a conclusion we will revisit here). The authors also concluded that139

the high-frequency data should be measured as close as possible to the canopy so as to140

sample the transporting eddies before turbulence mixes canopy and soil fluxes. However,141

it remains unclear whether sparser canopies would allow a higher measurement point given142

the stronger horizontal segregation between canopy and soil. The importance of plant143

canopy “openness” is thus investigated in the present simulations. Another related knowl-144

edge gap is how (not if) the methods’ performances are affected by the relative magni-145

tude of soil versus canopy fluxes. To address this, we investigate a broad range of com-146

binations of the ratios of photosynthesis/respiration and transpiration/evaporation, and147

how they influence the outcome of each method.148

Overall, this paper explores how similarity-based partitioning approaches perform149

under various conditions encountered in real field experiments, and how simple turbu-150

lence measurements can help elucidate the biophysiological behavior of plant canopies.151

The specific following questions frame our investigation152

1. How does the sparseness of the canopy impact the assumptions of the methods153

and their performance?154

2. How does the magnitude of the individual four flux components influence parti-155

tioning skill?156

3. What is the role of the measurement height for different levels of canopy sparse-157

ness?158

4. How sensitive are the FVS and CECw methods to errors in water-use efficiency?159

The answers to these questions will further deepen our understanding of ET and Fc par-160

titioning and the reliability of the investigated methods. They will also help to broadly161

identify the best practices for future experimental campaigns aimed at obtaining flux com-162

ponent estimates.163

2 Theory164

We start this section with a brief summary of the partitioning methods investigated,165

where the main equations and necessary inputs are discussed. Throughout the text, the166

concentrations of CO2 and H2O are defined as c and q, respectively. The velocity com-167

ponents in the streamwise (x), cross-stream (y), and vertical directions (z) are u, v, and168

w, while the deviation of a variable µ around its time and/or space average µ is denoted169

using a prime µ′ = µ− µ. An important note is that, for the remainder of the paper,170

we will not distinguish between soil and plant respiration. All the tested methods can-171

not make this distinction either since they are interrogating the properties of air parcels172

coming from the plants with the lumped information about gross primary production173

(GPP , which is the net carbon uptake by the plants accounting for their potential res-174

piration), and thus they partition net ecosystem exchange into GPP and soil respira-175

tion, Rsoil. In our LES setup and the rest of the paper, however, CO2 will be emitted176
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from the soil only, and we will refer to it as R, while the simulated plants only assim-177

ilate CO2, and we refer to that flux as photosynthesis (P ).178

2.1 Brief description of the partitioning methods179

In what follows, a summary of the FVS, CEC, and the newly proposed CEA and180

CECw, is presented. We note that results for the MREA method, previously explored181

in Zahn et al. (2022), were almost identical to CEC and thus will not be reported in this182

paper.183

2.1.1 Flux-variance similarity (FVS) method184

The flux-variance similarity method combines the similarity equations for variances185

of c and q with the water-use efficiency W = P/T (Scanlon & Sahu, 2008; Scanlon &186

Kustas, 2010). More specifically, it rewrites the budgets by separating the two scalars187

into their soil (cr for respiration and qe for evaporation) and canopy (cp for photosyn-188

thesis and qt for transpiration) components. To close the system of equations, the fol-189

lowing approximations are needed (Katul et al., 1995)190

ρcp,cr ≈ ρw,cr

ρw,cp

and ρqt,qe ≈ ρw,qe

ρw,qt

, (1)191

where ρa,b is the correlation coefficient between the variables a and b. After some alge-192

bra, the final equations for the ratios of flux components are193

EFVS

TFVS
=− ρ2cp,cr + ρ2cp,cr

√
1− ρ−2

cp,cr

(
1−W 2σ2

q/σ
2
cp

)
, (2a)194

RFVS

PFVS
=− ρ2cp,cr ± ρ2cp,cr

√
1− ρ−2

cp,cr

(
1− σ2

c/σ
2
cp

)
, (2b)195

where ρcp,cr and σcp , the standard deviation of cp, are directly computed by the two fol-196

lowing complementary equations (Skaggs et al., 2018; Scanlon et al., 2019),197

σ2
cp =

(
1− ρ2c,q

)
(σqσcW )

2
(
σ2
qw

′c′
2 − 2ρc,qσqσcw′c′ w′q′ + σ2

cw
′q′

2
)

[
σ2
cw

′q′ + σ2
qw

′c′W − ρc,qσqσc

(
w′c′ + w′q′W

)]2 , (3)198

ρ2cp,cr =

(
1− ρ2c,q

)
σ2
qσ

2
c

(
w′c′ − w′q′W

)2(
σ2
qw

′c′
2 − 2ρc,qσqσcw′q′ w′c′ + σ2

cw
′q′

2
) (

σ2
c − 2ρc,qσqσcW + σ2

qW
2
) . (4)199

The standard deviation of c, σc, and q, σq, and the correlation coefficient between c and200

q, ρc,q, are also needed and can be directly computed from the measured time series. The201

water-use efficiency — which is an input to the method — must be separately measured202

or estimated (a description of how to parameterize W can be found elsewhere (Scanlon203

& Kustas, 2010; Skaggs et al., 2018; Zahn et al., 2022)). For our numerical simulations,204

W is a known input. However, even the correct water-use efficiency will only result in205

realistic solutions if the following conditions are met (Scanlon et al., 2019)206

ρ−1
c,q

σc

σq
≤ w′c′

w′q′
< ρc,q

σc

σq
for ρc,q < 0, and (5a)207

w′c′

w′q′
< ρc,q

σc

σq
for ρc,q > 0. (5b)208

Failure to meet the conditions outlined above has been identified as the primary rea-209

son for the limited availability of physically valid solutions across various sites, with stud-210

ies (Sulman et al., 2016; Klosterhalfen, Graf, et al., 2019; Wagle et al., 2021; Zahn et al.,211

2022) reporting success rates as low as 30%.212
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2.1.2 Conditional eddy covariance (CEC) method213

The conditional eddy covariance method (Zahn et al., 2022) builds on the MREA214

framework proposed by Thomas et al. (2008). Similarly to MREA, CEC conditionally215

samples ejections originating from the soil that are rich in CO2 and H2O (w′ > 0, c′ >216

0, and q′ > 0); in addition, it also samples ejections that were in contact with the canopy217

and are depleted in CO2 but enriched in water vapor (w′ > 0, c′ < 0, and q′ > 0),218

which is not done in the MREA framework. The data points of a time series of length219

N that are identified to be in contact with soil or canopy are then used to compute “sam-220

ple” fluxes of evaporation (fE) and respiration (fR) or transpiration (fT ) and photosyn-221

thesis (fP ) (see Figure 1 in Zahn et al. (2022)). These sample fluxes are given by the fol-222

lowing expressions223

fE =
1

N

∑
ISw

′q′ and fR =
1

N

∑
ISw

′c′ (6)224

fT =
1

N

∑
ICw

′q′ and fP =
1

N

∑
ICw

′c′, (7)225

where IS is an indicator function that selects only “soil surface eddies”, i.e., instanta-226

neous data points that satisfy c′ > 0, q′ > 0, w′ > 0; IC, on the other hand, selects227

only eddies that were in touch with the canopy where we expect c′ < 0, q′ > 0, w′ >228

0. Sample fluxes were only computed when the respective quadrant contained at least229

2% of the total data points for the averaging period. If, on the other hand,
∑

IS/N <230

2% (or
∑

IC/N < 2% ), we attribute all fluxes to canopy (or soil) components.231

The expressions given in (6) and (7) are not the actual fluxes of each component;232

instead, they are assumed to be “sample” indicative fluxes that we can use to estimate233

the ratio of the total fluxes by the following:234

rET =
fE
fT

=
ECEC

TCEC
and rRP =

fR
fP

=
RCEC

PCEC
. (8)235

The separate flux components are then obtained by combining the flux ratios with the236

expressions for total fluxes (ET = T +E and Fc = R+ P ). However, as discussed by237

Zahn et al. (2022), a mathematical constraint (division by zero) happens whenever RCEC

PCEC
≈238

−1, but affects only the partitioning for CO2 flux components. Because the FVS method239

also computes the flux ratios, the same mathematical constraint arises when RFVS

PFVS
≈240

−1. Therefore, solutions in this limit must be carefully inspected (and removed) for both241

methods.242

2.1.3 Conditional Eddy Accumulation (CEA) method243

The traditional Relaxed Eddy Accumulation method (Businger & Oncley, 1990)244

was derived as an alternative to eddy-covariance measurements for scalars s that can-245

not be measured at a high frequency. The method consists of separately measuring the246

average scalar concentrations associated with updrafts (s+) and concentrations associ-247

ated with downdrafts (s−), estimating the total scalar flux (Fs) as248

Fs = βσw(s+ − s−), (9)249

where σw is the standard deviation of the vertical velocity and β is a constant.250

By taking into account only updrafts rich in CO2 and H2O, Thomas et al. (2008)251

modified equation (9) and proposed the MREA method. The CEA method, on the other252

hand, retains the information from downdrafts and estimates an analogue to s+ and s−253

for each individual flux component. In the framework proposed here, we compute c+r and254

q+e (using c′ > 0, q′ > 0, w′ > 0) and c−r and q−e (c′ < 0, q′ < 0, w′ < 0), both repre-255

senting respiration and evaporation (note that the fluxes in both cases are positive). For256

canopy components, we compute c+p and and q+t (c′ < 0, q′ > 0, w′ > 0) and c−p and257
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and q−t (c′ > 0, q′ < 0, w′ < 0), where the fluxes are now negative for c (photosyn-258

thesis) and positive for q (transpiration). These conditional averages are computed as259

c+r =
1

N+
S

∑
c′I+S and q+e =

1

N+
S

∑
q′I+S , (10)260

c−r =
1

N−
S

∑
c′I−S and q−e =

1

N−
S

∑
q′I−S , (11)261

c+p =
1

N+
C

∑
c′I+C and q+t =

1

N+
C

∑
q′I+C , (12)262

c−p =
1

N−
C

∑
c′I−C and q−t =

1

N−
C

∑
q′I−C , (13)263

where N and I are the number of sampled events and the indicator functions defined ac-264

cording to the origin of fluxes (subscript ‘S’ for soil and ‘C’ for canopy), as defined for265

the CEC method but not also separated by updrafts (+) and downdrafts (−).266

By assuming that the coefficient β is constant or weakly dependent on stability (Businger267

& Oncley, 1990; Katul et al., 1996; Zahn et al., 2023; Allouche et al., 2023), and that σw268

is the same regardless of conditional sampling, we approximate the flux ratios as269

rET =
ECEA

TCEA
=
q+e − q−e

q+t − q−t
, (14)270

rRP =
RCEA

PCEA
=
c+r − c−r

c+p − c−p
. (15)271

A diagram illustrating the method is shown in Figure 1, where we plot points clas-272

sified following the conditional sampling, as well as the average values as defined in (10)–273

(13). When plant components dominate the fluxes (E and R), we expect the denomi-274

nator in (14) and (15) to be larger, as indicated in plot 1a and b; however, for fluxes dom-275

inated by soil components, the numerators are larger (plot 1c and 1d).276

2.1.4 Combining CEC and water-use efficiency277

Both CEC and CEA have the practical advantage of not requiring a priori knowl-278

edge of the water-use efficiency. However, if W is known, it can in fact inform both meth-279

ods. Therefore, we now combine the flux ratios as defined by the CEC method with the280

water-use efficiency and derive an alternative partitioning method that we will refer to281

as CECw. The goal of this new model is to investigate if, given the correct water-use ef-282

ficiency, a simpler method could perform similarly to the FVS method, potentially be-283

ing easier to implement and yielding solutions more often. Comparing CEC and CECw284

will then indicate how important the knowledge of W is to the skill of partitioning mod-285

els in general, including for FVS.286

We start the derivation by combining the water-use efficiency (W = P/T ) and287

the flux ratios as defined by CEC (rRP = R/P and rET = E/T ),288

W =
P

T
=

R

E

rET

rRP
= Z

rET

rRP
, (16)289

where we define Z = R/E.290

Rewriting the equations for total fluxes and introducing the definitions of W and291

Z, we have292

Fc =W × T +R, (17)293

T =ET − R

Z
. (18)294
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Figure 1. Quadrant plots illustrating the Conditional Eddy Accumulation (CEA) method,

where the points selected to compute ratios in Eqs. (14) (plots a and c) and (15) (plots b and d)

are shown. Figure generated using time series from large-eddy simulations. Plots a) and b) have

ratios T/E=|P |/R=5, while plots c) and d) have ratios T/E=|P |/R=0.2.
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Combining equations (17) and (18) and rewriting for R, we get the following expression295

for soil respiration296

RCECw =
Fc −W × ET

1− W
Z

=
Fc −W × ET

1− rET

rRP

, (19)297

where the ratios rRP and rET are computed from equations (6)–(8). Similarly, we can298

obtain an expression for TCECw299

TCECw =
Fc −W × ET × rRP

rET

1− rRP

rET

. (20)300

Corresponding expressions can be derived for PCECW and ECECW , or they can then be301

computed as the residuals of the total eddy-covariance (EC) fluxes (both approaches yield302

identical results since the total flux expression are directly used in the derivation). Be-303

cause rET > 0 and rRP < 0, this equation has no mathematical singularity. Nonethe-304

less, under certain conditions the method can result in negative transpiration or respi-305

ration. Therefore, we must also ensure that TCECw > 0 and RCECw > 0. In addition,306

we also tested the method by computing the ratios following the CEA method (expres-307

sions (14) and (15)), deriving a CEAw method, but the results were similar to CECw308

and thus not included here.309

3 Methods310

This section describes the setup of our numerical simulations and how the time se-311

ries were sampled and processed for partitioning.312

3.1 Numerical simulations of plant and soil contributions of CO2 and313

H2O314

Simulation of turbulence transport and time series sampling by virtual towers were315

conducted using large-eddy simulations (LES). To avoid the computational expenses of316

simulating the entire Atmospheric Boundary Layer (ABL, on the order of 1 km), we fol-317

lowed the guidelines of Zahn and Bou-Zeid (2023) to simulate only the Surface Layer (SL318

≈ 10% ABL) and ensure a high-resolution representation of the canopy. In addition, ev-319

ery simulation utilizes an identical sink/source flux profile and homogeneous and steady320

soil fluxes, which are only rescaled, as described below, to represent different combina-321

tions of flux components. The detailed description of our LES setup can be found in Ap-322

pendix A.323

One of the main goals of our simulations is to reproduce (and sample) c and q un-324

der different combinations of canopy and soil fluxes. To decrease the number of simu-325

lations required to accomplish this task, we follow the approach adopted by Klosterhalfen,326

Moene, et al. (2019). First, we obtain four solutions for canopy (cp and qt) and soil (cr327

and qe) components separately, where c = cp + cr and q = qe + qt. In these simula-328

tions, we ensure that plant components have a source or sink term representing canopy329

transpiration and photosynthesis, while their bottom wall boundary condition is set to330

zero flux for qt and cp . Soil components, on the other hand, have an imposed flux only331

at the bottom surface representing qe and cr.332

Finally, and because the advection-diffusion equations we solve for these four scalar333

are linear, from a single simulation we can easily adjust the respective contributions of334

soil and plant components by simply multiplying the original statistics of cp, cr, qt, and335

qe by the respective scaling factors. Note that this is only possible if q is treated as a pas-336

sive scalar (otherwise the buoyant feedback from q on the velocity field will render the337

advective term in the scalar equation non-linear in q). Thus, all our simulations are neu-338

tral with respect to q. To further decrease the complexity of our simulations and inter-339

pretation of results, we also considered the flow neutral with respect to temperature, thus340
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simulating a fully neutral canopy flow (we discuss the potential influence of buoyancy341

in the conclusions.)342

3.2 Domain configuration and data sampling343

A summary of the main details of our simulations is shown in table 1. The domain344

contains (Nx × Ny × Nz) = (384 × 256 × 128) grid points, and aspect ratios (Lx/Lz,345

Ly/Lz) = (3,2), where Lz is vertical domain height. This setup results in dx = dy =346

dz. In addition, the ratio of the domain height to the canopy height, h, is Lz/h = 8,347

which is in the range (Lz/h =3–14) commonly adopted in the literature for canopy flows348

(Shaw & Schumann, 1992; Su et al., 1998; Watanabe, 2004; Yue et al., 2007; Dupont &349

Brunet, 2008; Mao et al., 2008; Pan, Chamecki, & Isard, 2014; Chen et al., 2020). To350

ensure good resolution for the turbulence inside the canopy flow, we represent the canopy351

with Nh=16 vertical grid points. Sensitivity test implementing different domain heights,352

aspect ratios, grid resolution, mean flow forcing, and soil roughness length z0 all indi-353

cated that the partitioning results are not sensitive to these simulation design options.354

Table 1. Parameters of our simulations. Lz, Ly, and Lx (m) are the dimensions in z, y, and x

directions; Nz, Ny, and Nx are the number of grid points in the three directions, while Nh is the

number of vertical grid points representing the canopy; dx, dy, and dz (m) are the grid spacing; h

(m) is the canopy height; z0 (m) is the roughness length of the soil surface; LAI is the leaf-area

index; dt is the time step (s).

Simulation parameter Units Value

Nx, Ny, Nz grid points 384, 256, 128

Nh grid points 16

Lz m 140

Lx/Lz, Ly/Lz 3, 2

dx, dy, dz m 1.1

Lz/h 8

z0/h 0.00285

LAI m2m−2 2.0

dt s 0.01

The analyses shown in this study used both spatial and temporal statistics. The355

spatial statistics (averaged in the cross-stream direction and time) were sampled after356

the total kinetic energy in the domain and the flux profiles reached equilibrium. For the357

temporal statistics, we also included 24 virtual “eddy-covariance towers” across the do-358

main, where the velocity and all simulated scalars were sampled at all vertical grid points359

every 25 time steps (i.e., every 0.25 s). This is sufficient here since the smallest resolved360

eddy is ∼ 2dx = 2.2 m and its advective time across a grid node at a mean wind speed361

of 1 m/s (see velocity profiles in B1) is thus 2.2 s; we thus sample the smallest eddies362

with about 9 measurements in time. To ensure convergence of the time series, we sam-363

pled over a period of approximately 20 domain-scale eddy turnover times (Lz/u∗).364

To represent the canopy, we used the leaf-area density and the source profiles Sq365

(Figure 2) for water-vapor mixing ratio following Shaw and Schumann (1992) and Su et366

al. (1998). As in these studies, we also set the leaf-area index (LAI) to 2. The same source367

–10–



manuscript submitted to JGR: Biogeosciences

0.0 0.5 1.0 1.5
Leaf-area density (m 1 ×  10)

0.0

0.2

0.4

0.6

0.8

1.0

z/
h

0.0 0.5 1.0 1.5 2.0 2.5
Sq (g m 3 s 1 ×10 3 )

LAD
Sq

Figure 2. Leaf-area density (LAD) and source profile for water vapor mixing ratio imposed in

the LES (Shaw & Schumann, 1992; Su et al., 1998). The crosses indicate the values used in the

numerical simulations.

profile shown in Figure 2 was rescaled and used as a source for transpiration in the trans-368

port equation for qt, and as a sink for photosynthesis in the equation for cp.369

3.2.1 LES validation370

To validate our LES setup, we followed Su et al. (1998) and compared our numer-371

ical results with field experimental data from Shaw et al. (1988) over a sparse forest (LAI≈2).372

This simulation was neutral with a leaf-area density (LAD) and source profiles (only wa-373

ter vapor) as shown in Figure 2. In addition, the lower boundary condition for water va-374

por (i.e., qe) was zero surface flux given the negligible evaporation at the experimental375

site.376

A comparison between our LES results and the experimental data is included in377

the appendix (Figure B1). Along with the spatial statistics, we also show the temporal378

statistics computed as the ensemble average across the 24 towers in the domain. Good379

agreement is seen between spatially and temporally averaged results for all statistics. In380

particular, both spatial and temporal results for quadrant flux fractions (quadrant anal-381

yses) of momentum and water vapor are very similar and follow the experimental trends382
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well. In addition, while not directly used by the partitioning algorithms, the skewness383

of u and w using a dynamic drag model are in better agreement with observations than384

when a constant drag coefficient is used (comparison not shown here). Overall, we can385

conclude that the time series are converged and can be used for partitioning.386

3.3 Simulating canopy openness387

A homogeneous forest was first simulated by imposing a drag force and scalar sources/sinks388

at every horizontal grid point of the first 16 vertical levels. To investigate how the sparse-389

ness of the canopy influences the partitioning methods, we designed two new domains.390

The first domain replicates a vineyard (Figure 3) with rows oriented parallel to the y axis.391

The ratio of the width of the vegetation rows (rv) to the width of the bare soil rows (rs)392

is 0.81. The second domain is representative of a sparse orchard, where “clusters” of veg-393

etation of length rv×rv are separated horizontally from other clusters by a distance rs.394

In both cases we kept the same canopy leaf-area density (LAI=2); thus, the effective leaf-395

area density is LAIe = LAI(Av/At), where At is the total area of the xy plane and Av396

is the area occupied by canopy elements. For the first and second domains, we thus have397

LAIe=0.98 and 0.42, respectively. In addition, the same canopy flux profiles and leaf-398

area density (Figure 2) were imposed. As boundary condition, we imposed a homoge-399

neous soil flux, i.e., the same respiration and evaporation magnitudes being emitted from400

under the canopies, as well as from the exposed soil. Simulations with heterogeneous soil401

fluxes were tested, but are not shown here since the key conclusions remained the same.402

In addition, we found no sensitivity in the results based on the location of the towers (i.e.,403

vegetated grid cell versus a bare soil grid cell). The mean wind profile and kinetic en-404

ergy resultant from all three domains are shown in the Supplementary Information, sec-405

tion S1.406

3.4 Implementation of partitioning methods407

Following the simulation and sampling of time series, we implemented all partition-408

ing methods following the same steps as in field experiments. For FVS and CECw, we409

used the “real” water-use efficiency, which is imposed in the simulation. The flux com-410

ponents computed at every vertical grid point for all 24 towers were later averaged, re-411

sulting in one single profile for all four components and all four methods. As an exam-412

ple, the variability around the average values is illustrated in section S2 of the Supple-413

mentary Information. Note that not all towers yielded valid solutions at all levels for all414

methods; nonetheless, for each method, if at least one of the 24 towers converged to a415

valid solution a height z, a valid estimate for this level is included in the plots. The rate416

of convergence to valid solutions, in particular for FVS, is discussed in the text.417

As previously explained, our LES setup allows us to reconstruct the time series of418

c and q that would result from any combination of ET and Fc flux components. To in-419

vestigate as many combinations as possible — from stronger soil fluxes to fluxes dom-420

inated by canopy components — we linearly increased T/ET by increments of 0.025 from421

0.025 to 0.975, while keeping T constant. Similarly, the ratio P/RP , where we defined422

RP = R+ |P |, was increased from −0.975 to −0.025 in increments of 0.025, as P was423

kept constant. Note that RP uses the absolute value of photosynthesis to ensure a ra-424

tio smaller than unity and no singularities when P = −R. Thus, the water-use efficiency425

remains the same for each of the 1600 flux combinations we generate.426

The performance of each method was quantified by computing the biases of the canopy427

flux components. More specifically, we compute the bias of the flux ratios (T/ET and428
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Figure 3. LES domain representing a vineyard (top) and clusters of trees (bottom).
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P/RP ) as follows,429

biasT/ET =
T − Tpart

ET
, (21)430

biasP/RP =
P − Ppart

RP
, (22)431

where T and P are the imposed transpiration and photosynthesis fluxes that we wish432

to retrieve in the partitioning, while Tpart and Ppart are the flux components obtained433

by any of the four partitioning methods (FVS, CEC, CEA, and CECw). Note that we434

do not compute the absolute error of flux components because they do not represent the435

overall performance of each method. For instance, a 100% error in estimating T also de-436

pends on whether T = 1 Wm−2 and E = 100 Wm−2 (thus the error in E would be437

very small), or T = 100 Wm−2 and E = 1 Wm−2. Since our analysis covers various438

flux combinations, the bias of the flux ratios are more appropriate.439

4 Assessing the Performance of the Four Methods440

We start this section by discussing the impact of canopy sparseness on transport441

efficiency; in particular, how the presence of gaps, or “canyons”, influence turbulence mix-442

ing, and what are the implications for flux partitioning. We follow by investigating the443

performance of each partitioning method for different measurement heights, flux com-444

ponent strength combinations, and canopy sparseness.445

4.1 Effect of canopy sparseness on mixing efficiency446

A common feature across all four partitioning methods is their requirement of a447

degree of uncorrelatedness between soil and plant flux components: the parcels emanat-448

ing from the soil and plants cannot be well mixed (correlated) if the separate signals are449

to be captured. The CEC, CEA, and CECw methods further require the presence of ed-450

dies that were in contact with the soil, and were subsequently transported to the sen-451

sor level without being fully mixed. Therefore, one expects that plant canopies with ex-452

posed gaps, such as vineyards, would offer a suitable environment for these methods. To453

explore the differences in turbulent statistics in different plant canopy configurations, we454

show in Figure 4 the correlation coefficient between cr and cp, namely ρcp,cr , as well as455

the skewness (Skcp and Skcr ) of both quantities obtained from simulations over a ho-456

mogeneous canopy, a vineyard, and a cluster domain. Note that ρcp,cr is here used as457

a measure of the degree of mixing between soil and canopy air parcels; for instance, in458

the event when ρcp,cr = −1, the parcels are fully mixed and no relevant partitioning459

information can be extracted. Identical conclusions can be made from the statistics of460

qe and qt, which are thus not included.461

As shown in Figure 4a, the correlation between soil and plant components approaches462

−1 faster, as the height increases, above the vineyard and the cluster domains. The im-463

plication is that soil respiration is mixed faster and at a lower height above the soil when464

wide gaps between plants are present. This, it turns out, is due to stronger shear tur-465

bulence generation by the gaps, compared to the homogeneous setup. Therefore, ejec-466

tions enriched in CO2, representing the soil surface, are more likely to be sampled be-467

fore being fully mixed into the flow over the homogeneous canopy. Figure 4b further cor-468

roborates this argument by indicating greater skewness for cr in the homogeneous do-469

main at z/h < 2. In this case, greater skewness indicates that more parcels were sam-470

pled with high cr values as a result of ejections carrying parcels enriched in CO2. Fig-471

ure 4b also indicates that scalars emitted by the canopy distributed profile have smaller472

skewness magnitudes than the scalar emitted at ground level due to stronger mixing in-473

side the canopy. These results are in agreement with Edburg et al. (2012)’s findings, in-474

dicating that strong and intermittent organized turbulence structures penetrate the en-475

tire canopy, albeit infrequently, causing bursts of scalars emitted from the soil.476
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Figure 4. Correlation between soil and plant components, and their individual skewness, over

homogeneous and heterogeneous canopies. Note that part (b) has a top and bottom x-axes.

Overall, these results contradict our initial expectation that exposed patches of soil477

improve the representativeness of soil respiration in conditional sampling analyses. In478

fact, they indicate that the opposite is true, i.e., that the presence of wide gaps (or canyons)479

increases turbulence mixing of soil fluxes, potentially worsening the performance of FVS,480

CEC, CECw, and CEA. Nonetheless, while vegetated canopies with the presence of open481

canyons and gaps are non-ideal, it is still necessary that the vegetated canopy of inter-482

est be porous enough such that updrafts originating below the canopy can escape ver-483

tically. As discussed by Zahn et al. (2022), canopies that are too dense might lead to un-484

coupled flows and lateral advection of soil fluxes (Thomas et al., 2013) that are not only485

problematic to partitioning, but to flux quantification in general.486

4.2 Partitioning versus flux component strength at various elevations487

In this section, we explore the performance of all four partitioning methods eval-488

uated with regards to measurement height and the relative magnitude of plant and soil489

fluxes of CO2 and H2O. As expected based on the comparison of mixing efficiency across490

domains — indicating faster mixing of soil and canopy scalars when large gaps are present491

— the partitioning performance for both heterogeneous domains is slightly worse than492

those over the homogeneous case. Thus, we will focus on the results for the homogeneous493

canopy simulation, noting that the figures for both heterogeneous domains are included494

in the supplementary information in sections S3 and S4.495

4.2.1 FVS496
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The biases in the partitioning computed by the FVS method are shown in Figure497

5. These results clearly indicate that, as long as the water-use efficiency is known exactly498

and the method converges to a solution, the FVS method has an excellent performance499

partitioning ET and CO2 across most flux magnitude combinations. Nonetheless, larger500

errors or no physically-valid solution were observed more often when the correlation be-501

tween c and q, ρc,q, approached unity. In Figure 5, this corresponds to conditions when502

photosynthesis dominates the total CO2 flux (−P/RP > 0.8 in the figure). This be-503

havior was even more evident above the cluster domain (S4.1 of the SI) and at higher504

levels, where stronger mixing increased ρc,q. A more detailed discussion on the role of505

scalar mixing on the FVS assumptions is addressed in section 5.1.506
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Figure 5. The top three plots show the bias in the partitioning of ET following the FVS

method at z/h = 1, 2, 3, where the colors represent the bias in transpiration, (T − TFV S)/ET .

Bottom plots show the bias for CO2 components, defined as (P − PFV S)/RP , where RP =

R + |P |. Regions in gray represent combinations where no physical solutions were found in any

of the 24 towers. Flux combinations inside the area delimited by the white dashed lines represent

the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15, from which we will later select points for

further analysis. Colorbar spans ±1 for easy comparison with subsequent figures.

4.2.2 CEC507

The bias with regard to the correct ratio T/ET (top panel) and R/RP (bottom508

panel) obtained by the CEC method is shown in Figure 6. Focusing on z/h = 1, we509

can identify a region along the diagonal with |(T−TCEC)|/ET ≤ 0.2, indicating smaller510

biases for ET . In particular, we see that the best agreement is expected when the ra-511

tios −P/R and T/E grow in tandem. On the other hand, greater errors are expected512

when one component overwhelmingly dominates the other. Thus, one requirement for513
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Figure 6. Same as 5, but for the CEC method.

good performance of CEC is that the ratios P/T and R/E should not be too dissimi-514

lar. However, note that regions where |(T−TCEC)|/ET ≥ 0.2 correspond to flux com-515

binations that are unusual or physically improbable. For instance, the top left corner would516

indicate fluxes dominated by transpiration and respiration, but with little evaporation517

and photosynthesis. Such occurrence is unlikely given the expected proportionality be-518

tween transpiration and carbon assimilation as defined by the water-use efficiency. Soil519

components, on the other hand, share physical drivers such as soil moisture and tem-520

perature, as well as turbulence intensity near the surface, but they are more loosely cou-521

pled compared to their canopy counterparts. After rain, for instance, it is possible that522

respiration could be suppressed by soil saturation (Xu et al., 2004), while evaporation523

would be large.524

The accuracy of CO2 partitioning using CEC is not as precise as for ET , as illus-525

trated in the bottom panel (particularly at −P/RP ≈ 0.5 when the carbon fluxes ex-526

actly cancel, region where the FVS predictions were also poorer). This discrepancy mainly527

arises from the unbounded combination of components P and R in recovering the cor-528

rect Fc. Unlike ET , which is constrained by the sum of E and T , the absence of addi-529

tional constraints for Fc is a challenge for all partitioning methods that do not use ad-530

ditional inputs such as the water-use efficiency. However, it is important to note that this531

limitation does not affect ET partitioning. In this case, the primary function of CO2 is532

to serve as a tracer for identifying the source of water vapor. Therefore, even if CEC can-533

not detect the correct magnitude of P or R, it can still leverage the sign of the CO2 fluxes534

to detect if water vapor is coming from the canopy or from the soil.535

As we move to higher levels, the region where |(T − TCEC)|/ET ≤ 0.2 becomes536

narrower, and good performance for CEC in partitioning water vapor flux is confined537

to cases when R is on the order of −P or much larger than P , with the obvious excep-538
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tion when R = −P . These results corroborate previous experimental findings (Zahn539

et al., 2022) suggesting that the best performance of the CEC method is achieved for540

measurements collected as close to the canopy as possible, ensuring that some uncorre-541

latedness between the various sinks and sources is sampled.542

4.2.3 CEA543

Results for the CEA method are moderately superior, but broadly similar, to CEC544

at the homogeneous canopy (Figure 7), as well as above the vineyard and cluster domains545

(section S3 and S4 of the SI). The biases for ET partitioning are lower, and CEA out-546

performs CEC significantly at higher levels. Similarly, larger errors for ET partitioning547

were observed usually for unrealistic flux combinations, for the same reason as CEC. An-548

other similarity with the CEC method is the less precise results for Fc partitioning: while549

the method may not accurately identify the correct magnitudes, CEA also can utilize550

the turbulent transport of CO2 and the sign of c′ to determine the magnitude of ET flux551

components.552

0.0

0.2

0.4

0.6

0.8

1.0

T/
ET

z/h=1.00

-0
.4

0

-0.20

0.
00

0.20

0.40

0.60

z/h=2.00

-0
.60

-0
.4

0
-0

.2
0

0.
00

0.
20

0.40

0.60

z/h=3.00

-0
.6

0

-0
.4

0

-0.20

0.
00

0.20

0.40

0.60

0.0 0.2 0.4 0.6 0.8
P/RP

0.0

0.2

0.4

0.6

0.8

1.0

T/
ET

-0
.2

0

-0.20

-0
.1

0

-0
.10

0.
00

0.
00

0.000.
00

0.
10

0.
10

0.10
0.10

0.20

0.
20

0.
20 0.20

0.20
0.40

0.40

0.0 0.2 0.4 0.6 0.8
P/RP

-0
.2

0

-0.20

-0
.2

0

-0
.2

0

-0
.1

0

-0
.1

0

0.
00

0.
00

0.0 0.2 0.4 0.6 0.8
P/RP

-0
.2

0

-0
.2

0

-0
.1

0

-0
.1

0

0.
00

0.
00

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

biasT/ET
or

biasP/RP

Figure 7. Same as 5, but for the CEA method.

4.2.4 CECw553

Lastly, we show the results obtained with the CECw method. Interestingly, despite554

similar assumptions to CEC, it performs better than the former in partitioning ET and555

Fc, displaying a wider range where biases are smaller than 20% and consistent perfor-556

mance at least up to z/h = 3. Furthermore, its performance in partitioning Fc is also557

quite different from CEC or CEA, with much better performance along the 1:1 diago-558

nal. The improvement in CO2 partitioning is a direct result of the input of water-use559

efficiency, which now helps constraint the magnitude of P and R. Thus, these superior560
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results are dependent on prior knowledge of the water-use efficiency, and the performance561

of the CECw method share this shortcoming (and the advantages if W is known) with562

the FVS method.563

In addition, although not performing as well as FVS when W is known, the CECw564

method is easier to implement and its poor performance, e.g. where (T−TCECw)/ET ≥565

±0.2 , is restricted to regions with unlikely flux combinations as with CEC and CEA.566

Comparing regions where CECw and FVS do not find valid solutions (gray zones in fig-567

ures 5 and 8), we see that generally they do not overlap, in particular for ET partition-568

ing. Thus, CECw seems to be a good complement to the FVS method, ensuring a com-569

plete record of flux components that are consistent with the water-use efficiency that both570

methods require. Yet, the resulting complete record will also be subject to the uncer-571

tainty that propagates from the uncertainty in W .572
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Figure 8. Same as 5, but for the CECw method.

5 Probing some Underlying Physical Assumptions573

One of the main advantages of investigating the partitioning methods through nu-574

merical simulations is the possibility of assessing their physical and mathematical assump-575

tions. By simulating all four scalars separately, we investigate in the next subsection if576

the approximations adopted by Scanlon and Sahu (2008) and Scanlon and Kustas (2010)577

in their mathematical derivation are robust. We then examine the ability to distinguish578

eddies emanating from the soil and plants, invoked for both CEC, CECw and CEA. This579

section ends with an evaluation of how errors in the estimate of the water use efficiency580

degrade the performance of FVS and CECw.581
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Figure 9. Profile of the ratio defined by equation (1). When this ratio reaches unity, it in-

dicates that the approximation is valid. Profiles were obtained by averaging the correlation

coefficients at each level across all 24 towers.

5.1 Assumptions and uncertainties of the FVS method582

The expressions given by equation (1) represent the main source of uncertainty in583

the FVS method (not considering the ability to estimate W ). These approximations as-584

sume that the correlation coefficient between plant and soil CO2 (ρcp,cr ) can be estimated585

as the ratio of their respective transfer efficiencies (ρw,cp/ρw,cr ), the same applying to586

H2O components. Such approximation was first proposed by Katul et al. (1995) in their587

study of similarity between temperature and water vapor. Bink and Meesters (1997) later588

demonstrated that ρT,q ≈ ρw,T /ρw,q can yield satisfactory results as long as ρw,T <589

ρw,q, that is, when water vapor is more efficiently transported by turbulence than tem-590

perature; if the opposite is true (ρw,T > ρw,q), then the appropriate approximation is591

ρT,q ≈ (ρw,T /ρw,q)
−1.592

Following the arguments of Bink and Meesters (1997), Scanlon and Sahu (2008)593

assumed that the transfer efficiency of plant components, cp and qt, are greater than the594

transfer efficiency of soil components, cr and qe, due to data sampling being done above595

the canopy (i.e., close to the sink of cp and qt). Thus, for c we need to satisfy ρw,cp >596

ρw,cr , which clearly satisfies |ρcp,cr | ≤ 1.597
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Figure 9 shows how this approximation (a value of 1 in the plot implying zero er-598

ror) holds over a homogeneous canopy, as well as for the two sparse canopies described599

in 3.2. Results for CO2 and H2O are the same, thus only the former are shown. In ad-600

dition, note that these results do not depend on the magnitude of soil and canopy fluxes,601

meaning that the same results hold regardless of the magnitude of respiration (evapo-602

ration) and photosynthesis (transpiration). Overall, it is clear that the approximation603

is worse below the canopy top where the transfer efficiency of respiration is greater given604

the proximity to the soil. Above the canopy, on the other hand, the approximation is605

more appropriate, almost reaching equality. In addition, the faster convergence towards606

unity in sparser canopies is a consequence of the more efficient turbulent mixing in the607

presence of gaps, as previously discussed.608

For z/h ≥ 3, the magnitudes of the correlation ρcp,cr — as well as ρqt,qe and ρc,q609

(not shown in the figure) — reach values close to unity for all three domains, causing610

the approximation in Equation (1) to approach equality. However, the derivation of the611

FVS method requires |ρc,q| < 1 (see equation 5), i.e., it is undefined in case of perfect612

correlation. Therefore, on one hand FVS requires a degree of decorrelation between scalars;613

on the other hand, its mathematical approximations in equation (1) are more accurate614

in regions where the different scalars are better mixed and their correlations are almost615

perfect. These contradictory requirements, also observed by Klosterhalfen, Moene, et al.616

(2019), add complexity to the interpretation of field data partitioning using FVS, and617

potentially decrease the number of valid partitioning estimates. This is illustrated in Fig-618

ure S5.1 of the SI, which shows that less valid solutions are found across towers at i) higher619

levels, ii) over open canopies (vineyard setup for instance), and iii) when P dominates620

the total CO2 fluxes, all conditions when scalar correlation was found to converge to-621

wards ±1.622

A different approach to guarantee equality of expression (1) would be its multipli-623

cation by a correction factor, as done by Klosterhalfen, Moene, et al. (2019). Nonethe-624

less, as shown by the authors, the correction values obtained from their simulations vary,625

and the extrapolation to real field data is impractical. Thus, we do not pursue this cor-626

rection here. With the limited information we usually have from experimental data, we627

can only hypothesize that a measurement height where there is strong, but not complete,628

mixing is preferable for the FVS method, and should result in the smallest uncertain-629

ties with regards to (1).630

5.2 Investigating the conditional sampling of eddies from the canopy and631

from the soil632

The main assumption behind the CEC, CECw and CEA methods is that, consid-633

ering that the measurements are done close enough to the sinks and sources, we are able634

to distinguish turbulent structures coming from the soil or from the canopy. To inves-635

tigate if this assumption is appropriate, we show in Figure 10 instantaneous snapshots636

of c′r, c
′
p, and the total CO2, c

′, simulated for a homogeneous domain.637

The snapshot of cr in Figure 10d clearly shows the presence of turbulent structures638

enriched in CO2 right above the surface (see for instance, x/Lz ≈ 1.5, 2.4). These same639

structures persist — although with smaller concentration given the assimilation of CO2640

— in the reconstructed field of total c in Figure 10f. Similarly, we can observe regions641

depleted in CO2 as a result of assimilation (e.g., z/Lz ≈ 3.0 in Figure 10e) and that642

are still present in the field of total CO2. These results thus lend credibility to the as-643

sumption that we can distinguish the origin of eddies solely based on high-frequency mea-644

surements. More specifically, CO2 can indeed be utilized as a tracer to detect the ori-645

gin of flux events for carbon as well as water vapor. However, note that these structures646

are only distinguishable below z/h = 3 (white dashed line); above that level, turbulent647

mixing becomes stronger and we are no longer able to separate plant and soil signals.648
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Figure 10. Panels a-c show the quadrant plot between the different components of c and q

from a time series measured at z/h ≈ 1.2. Only ejections (w′ > 0) are included. Note that the

conditional sampling implemented by the CEC is based on plot c). The bottom three panels

show instantaneous fields of d) c′r, e) c
′
p, and (f) c′ = c′r + c′p. The white dashed line represents

the height z = 3h. In this neutral simulation over a homogeneous canopy, R = −P = 1 mg

m−2s−1.

This corroborates the decreased performance of these methods reported in the previous649

section at higher elevations. The findings also support previous conclusions (Zahn et al.,650
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2022) that CEC, and this also applies to CEA and CECw, is more likely to perform bet-651

ter when sampling is done as close as possible to the canopy top.652

In Figures 10a–c we show an example of the quadrant analyses of a time series mea-653

sured at z/h = 1.2. Points on the first quadrant — related to respiration (w′ > 0, c′ >654

0, q′ > 0) — have larger concentrations than on the second (w′ > 0, c′ < 0, q′ > 0),655

which is related to photosynthesis. This asymmetry — evident in the skewness profile656

shown in Figure 4 — is caused by stronger bursts of parcels enriched in CO2 that were657

“trapped” under the canopy and took longer to be ejected. Carbon assimilation, on the658

other hand, is the strongest at the top of the canopy (Figure 2), and thus air parcels de-659

pleted in CO2 located around z/h ≈ 1 are mixed faster. Despite the asymmetry, the660

quadrant plot of c shows that conditional sampling is able to distinguish between the con-661

tribution of soil and canopy eddies, and can thus be used to infer the conditional flux662

ratios (equation 8).663

The main difference observed in the patterns over homogeneous and heterogeneous664

domains (vineyard and cluster, section S6 the SI) is the blending height at which full mix-665

ing of flux components happens. As expected from the greater turbulent mixing efficiency666

in sparser canopies, ejections carrying the soil signature are shorter lived, being almost667

fully mixed with the flow above z > 2h; for the cluster-like domain these structures are668

only distinguishable below z < h. These results suggest that in very open canopies, the669

measurement height should be even closer to the canopy, ideally at the canopy top, to670

ensure the best performance possible for CEC and CEA. It is important to note that bet-671

ter total flux convergence is expected away from the canopy at a height of at least 1.4672

h (Pattey et al., 2006), where the wakes and signatures of individual plants are erased.673

To avoid loss of information caused by EC measurements close to the canopy top (both674

for homogeneous and heterogeneous configurations), one approach would be the simul-675

taneous placement of an EC system at z ≈ h, which will be used to estimate the flux676

ratios (E/T and R/P ), and one system further away from the effects of the canopy layer677

(z > 1.4h). By considering that the flux ratios measured at the canopy top are con-678

served, we can use this information to obtain converged flux components further away679

from the canopy.680

5.3 Sensitivity of FVS and CECw to water-use efficiency681

As shown in previous sections, the FVS and CECw methods are reliable partition-682

ing approaches when the water-use efficiency is known. However, such information is usu-683

ally not available from measurements, and different parameterizations of W have shown684

to result in large variability (Skaggs et al., 2018; Zahn et al., 2022).685

To illustrate how the sensitivity of these methods to W vary with different flux mag-686

nitude combinations, we plot a phase diagram for biases in T and P (at z/h = 1) for687

different cases when W is overestimated or underestimated. Here, the water-use efficiency688

given to both methods, Winput, was increased by up to 2 times or reduced to 0.5 times689

its original value, Wreal, used in LES to generate the time series. This range was selected690

based on the variability detected for W using different parameterizations (Zahn et al.,691

2022; Wagle et al., 2020) and thus represent uncertainties expected in field experiments,692

noting that the variability across models can be more than two orders of magnitude and693

depend on the time of the day (Wagle et al., 2021).694

Results for FVS and CECw are shown in Figures 11 and 12. Less solutions are found695

by both methods when W is underestimated to half of the original value (Winput = 0.5Wreal)696

than when it is overestimated by 100% (Winput = 2Wreal). For FVS, it is also clear that697

larger errors are expected when plant components dominate (upper right corners in Fig-698

ures 11a and 11d) regardless of whether Winput was over or underestimated. Overall, this699

analysis suggests that the sensitivity of both methods to W is influenced not only by its700

accuracy but also by the combination of the four flux components. While this study fo-701
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cused on measurements at the top of the canopy, the lack of valid physical solutions may702

increase at higher canopy levels due to stronger scalar correlation. Nevertheless, these703

findings underscore the importance of improving measurements or parameterizations of704

W , as well as characterizing its uncertainty, to enable wider and more accurate appli-705

cation of FVS and CECw.706
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Figure 11. Phase diagrams indicating the sensitivity of the FVS method to uncertainties

in the water-use efficiency at z/h = 1. biasT/ET is shown on the left side (plots a)–d), while

biasP/RP is shown on the right side (plots e)–h). Regions in gray indicates conditions when no

physical solutions were found.
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Figure 12. Same as Figure 11, but for the CECw method.

6 Connecting Biophysiological Variables to Turbulence Statistics707

In this section, we explore the connection between the water-use efficiency, as im-708

posed in our simulations, and the correlation coefficient ρc,q retrieved from the final sim-709

ulated turbulence data. Figure 13a shows the variation of W/Wf , where we defined a710

“total” flux water-use efficiency Wf = Fc/ET , with ρc,q at four heights above the canopy.711

In addition, for all heights, we only show flux component combinations presented on the712

phase diagrams when −P/RP − 0.15 < T/ET < −P/RP + 0.15 (see dashed lines in713

the first plot of Figure 5). This constraint not only selects periods when all methods per-714

formed well, but also removes the most “unphysical” or rare flux component combina-715

tions.716

First we note that W/Wf = (1 + E/T )(1 − R/P )−1; therefore, W/Wf > 0 im-717

plies R < |P | while W/Wf < 0 implies R > |P |. A stronger connection between W/Wf >718

0 and ρc,q is noticed at the top of the canopy, with W/Wf increasing as the correlation719

increases from −1 to ≈ 0.5. The same trend is still visible at z/h = 2, although it is720

less “continous”, with the presence of “gaps”, as we go above this level. Overall, for W/Wf >721
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Figure 13. Panel (a) shows the relation between the ratio W/Wf and ρc,q at heights

z/h = 1, 2, 3, 4, where W = P/T and Wf = Fc/ET were computed from the imposed (“true”)

flux components. Panel (b) shows the ratio T/ET versus ρc,q at z/h = 1 for the imposed (LES)

values, as well as the results obtained by each partitioning method. A “cluster” of markers of the

same color contains points with the same R/P ratio but different E/T ratios, and the different

clusters thus have different R/P (as indicated by arrows of increasing R and E). Both panels

contain only flux combinations falling in the range −P/RP − 0.15 < T/ET < −P/RP + 0.15, as

shown in the delimited region in Figure 5.

0, the increase of respiration or evaporation both invariably lead to an increase in W/Wf722

given that Wf = Fc/ET decreases when R increases (for a constant P ) or when E in-723

creases (constant T ). However, when W/Wf < 0, a further increase in R leads to a de-724

crease in the ratio W/Wf , while an increase in E causes its increase (arrows in Figure725

13a). The transition in the sign of W/Wf occurs at different values of ρc,q depending on726
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the height, but clearly the ratio of water-use efficiencies is better defined when canopy727

components dominate the total fluxes and W/Wf > 0.728

The relation between T/ET and ρc,q is shown in Figure 13b. CEC predicts a good729

agreement, on average, with the true T/ET ratios, while CEA underestimates the true730

ratios (note that CEA outperforms CEC in other regions of the phase diagram that were731

not included following the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15). The732

CECw method clearly diverges from the expected trends for ρc,q > 0.50, performing733

similarly to the other methods when plant components become more important (ρc,q <734

0). Regarding the FVS method, it underestimates T/ET when ρc,q is very negative, but735

closely follows the expected LES (simulated) values as the correlation coefficient becomes736

positive. Overall, the relation between the ratios T/ET and ρc,q follows the behavior shown737

in our previous study (Zahn et al., 2022), which only used field data (although in that738

study the true flux components were not known).739

As previously mentioned, the measurement or parameterization of the water-use740

efficiency in field experiments is still a challenge, and its connection to ρc,q might help741

select the best parameterization model, or at least verify their plausibility, under certain742

conditions. Therefore, the aim of the previous analysis in this section is to examine whether743

we can use ρc,q as a screening tool for W/Wf , and ecosystem function more broadly. While744

such results cannot be generalized or be used for prediction with certainty at this point,745

they are a good first step towards obtaining more reliable ecosystem information from746

simple eddy-covariance measurements. To this end, we replicated the analyses for water-747

use efficiency, as shown in Figure 13, using field data collected at the Treehaven forest748

(see section S7 of the SI for a description of the site and data processing). We calculate749

W from five different parametrizations of water-use efficiency, and then obtain the ex-750

act field-measured Wf and ρc,q. Figure 14 depicts W/Wf versus ρc,q using these field751

data; we show the half-hourly data points, as well as the average ratios (black markers)752

in bins of ∆ρc,q = 0.05.753

Results for field data show a very similar trend (and magnitudes) to numerical re-754

sults, where all models seem to follow a similar increase in the magnitude of W/Wf as755

the correlation tends towards zero (from either side). Furthermore, models involving the756

water-vapor pressure D (Figures c and d) seem less robust, showing more scatter and/or757

lower magnitudes of W/Wf than the remaining models. All models indicate a linear in-758

crease of W/Wf with increasingly positive correlation, which might suggest that these759

sites experience more variability in respiration than in evaporation (as can be inferred760

from the trends shown in figure 13). The same plot over three other NEON sites show761

similar results (Section S8 of the SI). Overall, while this analysis cannot evaluate the skill762

of a water-use efficiency model, it can increase our confidence in its use given that, on763

average, it follows the expected behavior with regards to ρc,q. In addition, filtering out764

data points that fall outside the two “clusters” that can be seen in figure 14 for positive765

and negative ρc,q might help exclude periods with higher uncertainties.766

7 Conclusion767

We used large-eddy simulations to investigate partitioning methods that are based768

on the statistics of turbulent fluctuations of scalar concentrations above canopies. Be-769

low we summarize the main findings of this paper.770

1. The intercomparison of turbulent statistics across three different domains — a ho-771

mogeneous forest, a “vineyard-like” canopy with parallel rows, and a domain with772

square “clusters” of vegetation — revealed how the presence of open gaps of ex-773

posed soil impacts partitioning methods. Overall, the larger these canyons (such774

as the cluster domain), the greater the turbulent mixing of scalars. As a conse-775

quence, mixing of q and c (from soil and canopy) that blurs the soil and vegeta-776
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Figure 14. Scatter plot of the ratio W/Wf versus ρc,q at the NEON site Treehaven (TREE),

where Wf = Fc/ET . Black markers show the average over intervals ∆ρc,q = 0.05. Data mea-

sured in Spring of 2018 and 2019, only for unstable conditions (i.e., positive heat flux) and when

W from all methods were available, are shown. Each plot represents a different parameteriza-

tion of the water-use efficiency, more specifically the parameterization of the interstomatal CO2

concentration, cs. These models assume a) constant cs, b) constant ratio between interstomatal

and near canopy CO2 concentration, cs/cc, c) the ratio cs/cc is linearly proportional to vapor-

pressure deficit (D), d) the ratio cs/cc is linearly proportional to
√
D, e) the optimization model

proposed by (Scanlon et al., 2019). More details on each model are available in (Zahn et al.,

2022).

tion signals occurs faster, and at lower heights, when large gaps are present in the777

domain. Thus, all partitioning methods were negatively impacted by increased canopy778

“openness”. Thus, while vegetation with a low to moderate LAI is still ideal for779

partitioning purposes, the presence of wide gaps and large heterogeneity adds more780

challenges to the application of these methods.781

2. For CEC, CEA and CECw, the lowest errors in ET partitioning occurred when782

the ratios T/E and P/R were proportional. Flux combinations where some meth-783

ods performed poorly were usually characterized by atypical combinations, such784

as large photosynthesis but negligible transpiration, that are not expected in real785

field data. This lends confidence that these methods can provide results with suf-786

ficient accuracy to advance the understanding of ecosystems, optimize water-use787

in agriculture, or for other practical applications where the carbon-water cycle cou-788

pling is important. Nonetheless, more research is needed to determine a priori when789

(and where) “off-diagonal” conditions are expected.790

3. The best performance of CEC is expected near the canopy top (z/h ≈ 1) and791

when all flux components are non-negligible. CEA yielded comparable results to792

CEC, but outperformed the latter at all three levels. CECw also performed well793

at the canopy top, and its performance remained almost unaltered at higher lev-794

els. For a known water-use efficiency, the FVS method, followed by CECw, are795

the most reliable approaches. Therefore, the choice of the best method to apply796

hinges on the measurement height, flux ratio, and uncertainty in W .797
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4. By combining the CEC method and the water-use efficiency (CECw), we observed798

an improvement in the partitioning output relative to the other two methods that799

do not use W . Most notably, W helps constraint the magnitude of Fc components,800

thus resulting in more accurate flux partitioning for P and R. This underscores801

the value of the information that the water-use efficiency adds to simple partition-802

ing methods. In addition, given their shared connection through W , we suggest803

the concurrent implementation of FVS and CECw as a way to maximize the num-804

ber of available solutions over a period.805

5. Partitioning estimates from FVS and CECw respond differently to over and un-806

derestimation of the water-use efficiency as well as the flux component combina-807

tion themselves. This further motivates the appeal of their co-application since808

their weaknesses are not correlated. These results, however, underline the need809

for further studies to constrain the range of W over different canopy types and as-810

sess its parameterizations.811

6. Conditions when the FVS method yields less valid solutions were identified. Over-812

all, high correlation between c and q, in particular ρc,q = −1, explains many of813

the conditions when no solutions were found. High correlation tends to occur in814

scenarios where i) measurements are taken too far from the roughness sublayer,815

ii) the canopy structures are too open, leading to increased turbulence mixing, and816

when iii) photosynthesis is much stronger than soil respiration. In addition, less817

solutions were also found when W was underestimated from its real value. These818

insights can aid in better understanding when and why FVS converges or fails across819

different ecosystems.820

7. We identified a connection between the water-use efficiency — a variable inform-821

ing us about the plant functioning — and the correlation between q and c, a tur-822

bulent quantity. We further showed that this numerical result is in agreement with823

field data analyses. This exciting finding opens a path towards recovering biophys-824

iological variables from simple high-frequency data measurements.825

8. For readers interested in applying these methods for field data, and given the vari-826

ability of the skill and solution availability of the different methods with measure-827

ment height, flux ratio, and input uncertainty, our recommendation is to concur-828

rently apply all methods, and potentially MREA. This can increase confidence in829

the outputs when the methods agree for one or more components, but when they830

do not, the various analyses presented here can guide the user on which method831

is most likely to be more accurate under given conditions. As an example, figure832

S9.1 of the SI intercompares the partitioning components obtained by all meth-833

ods above a grass field in Kenya, a dataset previously investigated for partition-834

ing by Good et al. (2014) and Zahn et al. (2022). In terms of transpiration, rea-835

sonable agreement was found between all methods and the observations obtained836

through leaf-level measurements.837

Because our analyses focused on neutral conditions, we cannot readily extrapolate these838

results to all stability conditions. Nonetheless, we hypothesize that as long as no strong839

stratification — hindering strong updrafts from carrying soil fluxes — or strong convec-840

tion, strongly mixing the scalars — are present, the conclusions we draw in this paper841

should still be valid (i.e., for weakly stable or unstable conditions). We also limited our842

exploration of canopy domain configuration to three cases; thus, it is possible that dif-843

ferent results may emerge if, for instance, the gaps between rows of vegetation were smaller.844

Likewise, soil and canopy heterogeneity, including spatial variability of fluxes, LAI and845

LAD, are expected in real canopies, but were out of the scope of the present paper. Such846

additional analyses are left to future studies.847
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Appendix A Description of Large-eddy simulations848

The LES algorithm used in this study has been extensively tested over homoge-849

neous and heterogeneous surfaces, with and without resolved roughness elements (Bou-850

Zeid et al., 2005; Kumar et al., 2006; Q. Li & Bou-Zeid, 2019; Huang & Bou-Zeid, 2013;851

Zahn & Bou-Zeid, 2023). Its formulation is based on the solution of the spatially filtered852

incompressible continuity (equation (A1)) and Navier-Stokes (equation (A2)) equations853

under the Boussinesq approximation. The conservation equation for a scalar s (equa-854

tion (A3)) is also solved for cr, cp, qe, and qt. Since only neutral conditions are consid-855

ered, the effects of buoyancy are ignored in our analyses. To ensure that our canopy flow856

simulations, covering ≈ 14% of the atmospheric boundary layer (ABL ≈ 1 km) height,857

closely represent the turbulent profiles expected when the full ABL is simulated, we fol-858

lowed the recommendations from Zahn and Bou-Zeid (2023). In this setup, in addition859

to a large-scale pressure term, the force balance also includes a stress at the top of the860

domain in addition to the Coriolis term. More details are given below and discussed in861

Zahn and Bou-Zeid (2023).862

∂ũi

∂xi
=0, (A1)863

∂ũi

∂t
+ ũj

(
∂ũi

∂xj
− ∂ũj

∂xi

)
=− ∂p∗

∂xi
− ∂τij

∂xj
+ fcϵij3(ũj − uG

j ) +Di, (A2)864

∂s̃

∂t
+ ũj

∂s̃

∂xj
=− ∂πsj

∂xj
+ Ss. (A3)865

In the above expressions, a filtered variable µ is denoted as µ̃. ũi is the resolved (filtered)866

velocity field (i=1,2,3); xi is the position vector; τij is the anisotropic part of the subgrid-867

scale (SGS) stress tensor; fc = 1.4×10−4 is the Coriolis parameter; uG
j is a large scale868

pressure forcing imposed in terms of a geostrophic wind; πsj is the SGS scalar flux, and869

Ss represents volumetric sinks/sources of the scalar s. A modified resolved dynamic pres-870

sure, p∗, is defined to include the resolved and SGS turbulent kinetic energy (Bou-Zeid871

et al., 2005). The reference density is taken as 1 and is thus omitted from the equations.872

The term Di represents the drag force exerted by the canopy elements on the flow and873

was computed as874

Di = −CDaũi|ũi|, (A4)875

where CD is the drag coefficient and a is the leaf-area density. The drag coefficient was876

modeled following Pan, Follett, et al. (2014),877

CD = min
(
(⟨ũi⟩ /A)B , CD,max

)
, (A5)878

where A is a velocity scale, B a negative power-law exponent, and CD,max the maximum879

drag coefficient. This formulation represents the change in canopy drag caused by the880

variation in the wind speed, which can cause the canopy elements to bend, thus mod-881

ifying the canopy resistance through the drag coefficient. As shown by Pan, Follett, et882

al. (2014), this drag model improves the representation of higher order statistics. How-883

ever, the parameters A, B, and CD,max are canopy dependent and can be experimen-884

tally found if data are available. For our numerical study, we conducted various simu-885

lations for different combinations of the parameters tested by Pan, Follett, et al. (2014).886

We selected the parameters that resulted in the best comparison between the simula-887

tion and the velocity statistics profiles from Su et al. (1998) (more details in the section888

3.2). The best match was observed for A = 0.22 m/s, B = −1, and CD,max = 0.3.889

The SGS stress is modeled using the scale-dependent Lagrangian dynamic model890

(Bou-Zeid et al., 2005), where a constant turbulent SGS Prandtl number of 0.4 is used891

to infer the SGS diffusivity and compute the unresolved scalar fluxes. To ensure that the892

velocity field satisfies the continuity equation, a Poisson equation is solved for pressure893

p∗ at every time step. The vertical derivatives are computed by a second-order centered894
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finite difference scheme, implemented on a uniform staggered grid, while a pseudo-spectral895

method is implemented for horizontal derivatives. Finally, the explicit second-order Adams-896

Bashforth method is used for time stepping.897

The horizontal boundary conditions are periodic. At the top, we imposed a stress898

term, (τxz, τyz) = (u2
S cosα, u2

S sinα), where uS is the kinematic stress magnitude and899

α is the angle between the stress vector and the x-axis. Following the steps in Zahn and900

Bou-Zeid (2023), we used uS=0.3 m/s and α = 174◦. In addition, we imposed a stream-901

wise large-scale pressure forcing (uG, vG) = (8, 0) m/s. Finally, we simulated constant902

flux profiles for all scalars by imposing an SGS flux (sink or source) as the top bound-903

ary condition for c and q matching the total flux magnitude imposed inside the domain904

(ground + canopy).905

As previously discussed (Su et al., 1998; Watanabe, 2004; Zahn & Bou-Zeid, 2023),906

the inclusion of a top stress (and/or scalar flux) results in strong velocity and scalar gra-907

dients near the top boundary. However, Watanabe (2004) also showed that their region908

of interest (≈ 70% of the lower domain) was unaffected, resulting in the same turbulence909

statistics of a pressure-driven flow. To confirm this finding, we ran individual simulations910

driven by a non-zero top stress or by an imposed pressure force, confirming Watanabe911

(2004)’s results and also verifying that the partitioning results were consistent and in-912

dependent of the choice of the top boundary condition or flow forcing. Nonetheless, we913

confine our analyses to the bottom part of the domain, z ≤ 5h (≈ 65% of domain depth).914

915
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Appendix B Validation of LES setup916
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Figure B1. Validation of the LES set-up. Continuous lines represent the spatially and tem-

porally averaged statistics, while dashed lines are the temporal statistics computed from the

ensemble average of the 24 virtual eddy-covariance towers, and markers are statistics from a

field experiment by (Shaw et al., 1988). Top row shows the velocity profile (a), nondimensional

standard deviation of velocity components (b) and water vapor (c), and skewness of u and w

(d). The middle row depicts the correlation coefficient between u and w (e) and w and q (f), and

the nondimensional stress (g) and water vapor flux profiles (h). The bottom row shows the flux

fraction in the four quadrants for momentum (i) and water vapor flux (j), while the ratio between

quadrants is shown in (k) (sweeps/ejections) for momentum and (l) for water vapor fluxes.
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Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., . . .1085

Jung, M. (2020). Ecosystem transpiration and evaporation: Insights from three1086

water flux partitioning methods across fluxnet sites. Global Change Biology ,1087

n/a(n/a). Retrieved from https://onlinelibrary.wiley.com/doi/abs/1088

10.1111/gcb.15314 doi: 10.1111/gcb.153141089

Novick, K., Biederman, J., Desai, A., Litvak, M., Moore, D., Scott, R., & Torn, M.1090

(2018). The ameriflux network: A coalition of the willing. Agricultural and1091

Forest Meteorology , 249 , 444 – 456. doi: 10.1016/j.agrformet.2017.10.0091092

Pan, Y., Chamecki, M., & Isard, S. A. (2014). Large-eddy simulation of turbulence1093

and particle dispersion inside the canopy roughness sublayer. Journal of Fluid1094

Mechanics , 753 , 499–534. doi: 10.1017/jfm.2014.3791095

Pan, Y., Follett, E., Chamecki, M., & Nepf, H. (2014). Strong and weak, unsteady1096

reconfiguration and its impact on turbulence structure within plant canopies.1097

Physics of Fluids , 26 (10), 105102. Retrieved from https://doi.org/10.1063/1098

1.4898395 doi: 10.1063/1.48983951099

Pattey, E., Edwards, G., Strachan, I. B., Desjardins, R. L., Kaharabata, S., & Wag-1100

ner Riddle, C. (2006). Towards standards for measuring greenhouse gas fluxes1101

from agricultural fields using instrumented towers. Canadian Journal of Soil1102

Science, 86 (3), 373-400. Retrieved from https://doi.org/10.4141/S05-1001103

doi: 10.4141/S05-1001104

Paul-Limoges, E., Wolf, S., Eugster, W., Hörtnagl, L., & Buchmann, N. (2017).1105
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