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Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable atmospheric
conditions are evaluated, with a focus on gases for which fast sensors are not readily available. First, the relaxed eddy accu-
mulation (REA) classical approach and a recently-proposed mixing length parameterization, labelled A22, are tested against
eddy covariance computations. Using high-frequency measurements collected from two contrasting sites (the frozen tundra
near Utqiagvik, Alaska and a sparsely vegetated grassland in Wendell, Idaho during winter), it is shown that the REA and A22
models outperform the conventional Monin-Obukhov Similarity Theory (MOST) utilized widely to infer fluxes from mean
gradients. Second, scenarios where slow trace gas sensors are the only viable option in field measurements are investigated
using digital filtering applied to fast-response sensors to simulate their slow-response counterparts. With a filtered scalar sig-
nal, the observed filtered eddy-covariance fluxes are here referred to as large eddy-covariance (LEC) fluxes. A virtual eddy
accumulation (VEA) approach, akin to the REA model but not requiring a mechanical apparatus to separate the gas flows,
is also formulated and tested. A22 outperforms VEA and LEC in predicting the observed unfiltered (total) eddy-covariance
(EC) fluxes; however, VEA can still capture the LEC fluxes well. This finding motivates introducing a sensor response time
correction into the VEA formulation to offset the effect of sensor filtering on the underestimated net averaged fluxes. The only
needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective timescale. The
VEA approach is very suitable and simple to use with gas sensors of intermediate speed (~ 0.5 to 1 Hz), and with conventional

open or closed path setups.

1 Introduction

The significance of surface-atmosphere exchanges of trace gases, volatile organic compounds (VOCs), and aerosol species to
atmospheric composition and thermodynamics is not in dispute. Increasing concentrations of gases and particles due to natural

and anthropogenic sources are modulating the Earth’s climate and having deleterious consequences for human health and the



25

30

35

40

45

50

environment (Qian et al., 2010; Kolb et al., 2010; Voulgarakis et al., 2015). However, estimating these surface-atmosphere
exchanges is particularly challenging in the stable atmospheric boundary layer (ABL), which is characterized by weak mixing
and highly anisotropic turbulence (Stull, 1988; Mahrt, 1998; Shah and Bou-Zeid, 2014). Stable ABLs occur at nighttime, in
the downdraft region of deep mesoscale convective systems (that transport dry air from the mid troposphere to the surface
where it is compressed to higher temperatures), and in polar regions; they persist as one of the least understood regimes in
boundary layer meteorology owing to the inherently complex dynamics and the departure from continuous turbulence towards
intermittency (Ansorge and Mellado, 2014, 2016; Shah and Bou-Zeid, 2019; Mahrt and Bou-Zeid, 2020; Allouche et al.,
2022). On the sensing side, the so-called flux-gradient or flux-variance relations based on Monin-Obukhov Similarity Theory
(MOST) (Monin and Obukhov, 1954) are challenging to apply due to core assumptions that are tenuous to satisfy in practice for
stable ABLs. Specifically, a constant flux surface layer that requires stationarity, planar homogeneity, absence of subsidence,
and a high Reynolds number state may not be well established for surface flux measurements under stable conditions. The
challenges are exacerbated by surface heterogeneity, such as over surfaces with mixed water and sea ice in polar regions
that can accelerate the exchanges of gases, aerosols, and energy between the ocean surface and the atmosphere (Sharma et al.,
2012; Fogarty and Bou-Zeid, 2023), and semi-infinite heterogeneity patches e.g., land-sea interfaces (Allouche et al., 2023a, b).
These observational challenges then propagate into theoretical and modeling considerations, escalating the need for improved
estimates of scalar fluxes under stable conditions.

To begin addressing these challenges and scientific gaps, turbulence and flux observations using the eddy covariance (EC)
technique for fluxes of heat (an active scalar), momentum, and trace gases (representing passive scalars) are employed here.
These EC observations are used to evaluate a series of models that can be applied to parameterize turbulent fluxes of gases
for which no high frequency sensors exist, or such sensors are not available commercially at a moderate price. The formu-
lations considered are (i) the relaxed eddy accumulation (REA) technique (Businger and Oncley, 1990), or (ii) aerodynamic
approaches that use mean scalar concentrations that are available in coarse weather or climate models (mixing length-mean gra-
dients models). Here, high-frequency velocity and scalar concentration measurements from two contrasting land-cover types
are analyzed (i) over an ice sheet in Utqiagvik (Barrow), Alaska, and (ii) over a sparsely vegetated grassland downwind of
heavy agriculture in Wendell, Idaho. The current work seeks to answer the following research questions: (Q1) What flux/clo-
sure models can best reproduce the observed EC fluxes in the stable ABL? Models that best describe the observed fluxes are
then tested under scenarios that mimic coarse geophysical variables with mean fields measured using slow-response sensors
because fast-response instruments remain largely unavailable for reactive chemical species (mainly those characterized by
short atmospheric lifetimes). This motivates the second question: (Q2) Can the models correct for the "unresolved" turbulence
scales inherently missed when data are collected using slow-response sensors? For this second question, and since the scalar
data are all available and collected using fast sensors, the behaviour of a slow response sensor is simulated by digitally filtering

the high frequency data.
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2 Theory
2.1 Background and definitions

Any instantaneous flow variable (e.g., s) is decomposed as s =5+ s’, where S is an “ensemble mean™ quantity, and s’ is
a turbulent perturbation defined as a departure from 5. Operationally, primed variables are determined as excursions from
the time-averaged state (hereafter indicated by the overbar). The atmospheric stability is quantified using the dimensionless
stability parameter ( = z/L, where z is the wall-normal distance from the surface and L is the Obukhov length (Obukhov,
1971). Under stable conditions, which are the focus here, ¢ > 0.

The strength of the variability in any flow variable is quantified by o = (s”s”)'/2, the root-mean squared value of s’, while
the covariance w’s’ is the average net vertical kinematic scalar flux, w’ being the vertical velocity fluctuation. From definitions,

o is related to w’s’ using the correlation coefficient R, defined as

Rws = (1)

U'IU JS

2.2 VCC: Variable correlation coefficient flux model

Using Eq. 1, a simplified flux model can be defined based on an empirical parameterization of R, as a function of ¢

/

w's’ = Ryps(C)0w0s. 2)

The empirical relation (Ry,s(¢), a linear fit here) is, in general, non-generalizable as it may be site-specific and dependent on

some other meteorological variables or surface conditions.
2.3 ACC: Averaged correlation coefficient flux model

Again using Eq. 1, one could also test another simplified model with an averaged correlation coefficient (R,,), taken as the

mean over all the available observational periods, yielding

!/

w's" = (Ryps) 0w 0s. 3)

In addition to assuming that the correlation coefficient is stability independent, the same potential drawbacks of the variable
correlation coefficient formulation also apply to this model, and the results could not be extrapolated to other sites where other

factors may be present, such as heterogeneity, seasonality, and the influence of synoptic variability, to name a few.
2.4 REA: Relaxed eddy accumulation flux model

Businger and Oncley (1990) proposed the REA method to compute turbulent scalar fluxes. The REA method is ideally ap-
propriate to use when fast-response sensors are available for w’ (typically from sonic anemometers) but only slow response

measurements are available for the scalar concentration (slow trace gases sensors, or even trace gas samples that need to be



80

85

90

95

100

105

110

collected and analyzed subsequently). In such cases, the REA approach offers an enhanced representation of these scalar fluxes
(Nie et al., 1995).

The basic idea is inspired by the work of Desjardins (1977), who used conditional sampling techniques to collect scalar
information (along with vertical wind speed) in two electronic counters, one for upflow and another for downflow. From linear
correlation analysis, the regression slope of w’/o,, against s’/os may be estimated from the correlation coefficient following
(Baker et al., 1992; Katul et al., 1994, 2018)

Rups = @ (4)
(Wt —w™)/ow

where s+ is the conditional average of scalar s instantaneously attributed to updraft events (w’ > 0), and s~ is the conditional
average of scalar s instantaneously attributed to downdraft events (w’ < 0), As = s+ — s~ reflects this difference in collecting
scalar information from the two samples, and likewise for the vertical velocity statistics. When this estimate for R, is inserted

into Eq. 1, the REA expression emerges as

= [(wiww)} (5T —5). 5)

For a Gaussian distributed w’, it can be shown that o,/ (w+ — w~) = v/27 /4 (Katul et al., 2018), a constant whose numerical
value is 0.63.
Since the linear regression analysis to estimate 12,5 as featured in Eq. 4 is imperfect, an operational REA model is typically

used and is expressed as

!/

w's' = B0, (st —57), (6)

where (3, is now treated as an empirical coefficient that corrects for the above mentioned shortcomings of such a slope esti-
mation of R,,s. Many studies investigated the choice of optimal 35 over a wide range of atmospheric stabilities, surfaces, and
meteorological conditions (Businger and Oncley, 1990; Katul et al., 1996; Milne et al., 1999; Zahn et al., 2016; Vogl et al.,
2021). The choice of B is still debatable, yet various studies reported a S5 =~ 0.59 (Bowling et al., 1998; Katul et al., 1996),
which is not far from a Gaussian prediction derived from w’ statistics (= 0.63). Hence, a 3, = 0.59 is selected in the current
study as a reference baseline in assessing the REA method.

What is less debatable is the expectation of theoretical invariance of 35 with stability changes: it was recently shown that the
required independence of the REA formulation in the limit of free convection from the friction velocity (u.) is not compatible
with a stability dependent 535 (Zahn et al., 2023), and this stability invariance was in fact reported in many field observational
studies. The arguments of Zahn et al. (2023) for a stability-invariant 3, can be deduced from the dimensionless form of the

REA expression

1 oy (st—s7)
[65] N U Sx ’ (7)

where s, = w’s’ /u,. With s* — s— ~ o,. Noting that scalar flux-variance expressions of o /s, exhibit opposite scaling expo-

nents with ¢ compared to o, /u. across all stability regimes, the dependence of 35 on ( is likely to be small as the two terms
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on the right hand side of Eq. 7 cancel each others’ stability dependence. In convective conditions, o, /u, ~ |¢|t1/? whereas
04/8% ~|C|71/3. For near-neutral conditions, MOST predictions suggest o, /u. ~ || and o,/s. ~ || as well, making £3,
also independent of stability in that limit.

Under stable conditions, similar plausibility arguments for a stability independent 35 can be made based on the observations
of Weaver (1990) that o, /s, ~ |¢|° under very stable conditions. This result was explained by the author based on arguments
first presented by Wyngaard (1973) that under very stable conditions the active eddy size scales with L rather than z, and thus
turbulence statistics should become independent of ¢. This would then also apply to o, /u., and by extension to 3. However,
as later shown in the present paper, (i) the practical application of REA using devices with finite mechanical response time
to physically separate the accumulation of the trace gas in updrafts and downdrafts, (ii) the introduction of a ‘dead-band’ at
small w’ where the concentrations are not counted neither towards s+ nor towards s—, and (iii) the slow response of the scalar

sensors may all induce an indirect stability dependence.
2.5 VEA: Virtual eddy accumulation flux model

Despite its inherent assumptions and some open challenges, REA is at present the main tool for estimating fluxes with slow-
response gas sensors. However, the device it requires is not simple to design and construct and is not yet available off-the-shelf.
Therefore, we propose and test a version where the separation of air streams into downdrafts and updrafts is done virtually,
without a mechanical device. The resulting virtual eddy accumulation (VEA) uses the same REA expression in Eq. 6; however,
it assumes that the scalar concentrations are measured using a slow-response gas sensor. In this paper, we simulate this slow
signal based on the actual high-frequency scalar concentration measurements using a digital filter; the details will be provided
in Section 4.2. This method offers the alternative of using cheaper and simpler slow response scalar sensors instead of setting
up an REA apparatus. Sensors operating at measurement speeds slower than the 10 Hz required for eddy covariance, but still
somewhat rapid (e.g., 0.5 to 1 Hz) are now more widely available, less expensive, and cover more gas species (Chen et al., 2021;
Burba, 2022). Furthermore, slower gas sampling speeds reduce the needs for massive pumps in closed path sensors, decreasing
overall power usage and bulkiness, thus easing field deployability especially in remote areas (Burba, 2022). Slower response
sensors also tend to have higher precision, other factors being held equal, as white noise decreases with increasing averaging
times (Hodgkinson and Tatam, 2012). In laser based gas analyzers operating at rates slower than 10 Hz, spectroscopic and
temperature corrections can be done in real time, simplifying post processing and reducing frequency-correction errors (Burba
et al., 2019). All these advantages motivate the investigation of such a virtual counterpart to REA that can work with moderate
speed sensors.

Another advantage of the VEA is that, in theory, it can be applied over averaging periods comparable to eddy covariance (e.g.,
as short as 15 min), overcoming some of the challenges of conventional REA or of disjunct eddy-covariance (DEC) (another
technique for measuring fluxes with a slow gas sensor) (Rinne et al., 2001; Karl et al., 2002; Ruppert et al., 2002; Rinne et al.,
2008) that usually require longer averaging time periods of 30 min to 60 min to compute fluxes. Such long sampling durations,
while improving statistical convergence, might be problematic in the stable ABL, especially when turbulence is intermittent,

and thus non-stationarity becomes a concern.



145

150

155

160

165

170

2.6 LEC: Large eddy covariance model

A close analogue of the classic eddy covariance technique can be obtained when the EC calculations are applied as usual,
but here the scalar sensor has a slow physical response time. We refer to this calculation as the large eddy covariance (LEC)
approach. The sensor may still be sampled at a high rate, equal to that of w’, to compute the LEC flux as w’s’, but the method
should be cognizant of the inherent physical filtering of the fluxes carried by fast eddies that the slow scalar sensor cannot

resolve.
2.7 A22: Mixing length flux model

Recently proposed models for momentum and heat fluxes based on mixing length analogies (Allouche et al., 2022) that out-
performed MOST during stable periods marked with intermittent turbulence dynamics are also tested here. These models were
initially formulated using an eddy diffusion representation of fluxes
03 s

//:*K‘;i:* Lm77 8
w's : (U w T) 2 3

The eddy diffusivity (/) was then defined as the product of a characteristic velocity scale (Ucpqr) and a mixing length

scale (Lmiz): Ks = Uchar Lmiz. Here, Ly, will be defined differently for momentum (X,,) and heat (K, T, is the virtual
temperature), but both use the standard deviation of the vertical velocity (o,,) as the characteristic velocity scale (similar to
REA),ie., Ky = 0y Lpig-

For momentum, L,,;, = L,, and L, is defined as a harmonic average between two competing shear length scales (L,, a

local turbulent shear scale, and L., the classic bulk shear scale) as follows

L= (1= oo (22) 92)
ul = Ay )0 2 5
N\ —1
Lys = o u <gz> , (9b)
1 1\ !
L,= (Lul + Lug) . (9¢)

In this model, o, is an empirical constant; its value is determined as «,, = a7, = 0.35 (same value found to be also adequate
for the heat flux model described next). The mean wind speed at the measurement height is given by .

Similarly for heat, L,,;,, = L7,, and Lz, is defined as a harmonic average between two competing length scales. The first
is Lt ,, the Ellison length scale (Ellison, 1957) and the second is L7, ,, the buoyancy length scale (Stull, 1973; Zeman and

Tennekes, 1977). These scales are formulated as

o\ " V2TPE
Lr,, = ar,or, =ar,——, (10a)
0z Npy
Ow
Ly, =(1— 10b
Tya2 ( aTv) NBV, ( )
1 1\
Ly, = + . (10¢)
T <LTu1 LTuQ)
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Npy = (Tu 9% ) (11)

is the Brunt-Viisild frequency; g is the gravitational acceleration; and 7'PE is the turbulent potential energy, which is related

to Npy as shown in L, (Zilitinkevich et al., 2013; Katul et al., 2014).
2.8 MOST: Monin-Obukhov similarity theory flux model

Based on dimensional analysis, Monin and Obukhov (1954) formulated flux-gradient relations that are still used widely in
weather prediction and climate models. MOST has inherent limitations as it applies to planar homogeneous conditions and
stationary flows at very high Reynolds number in the absence of subsidence, and requires turbulent kinetic energy (TKE)
production to be balanced by the TKE dissipation rate. Nevertheless, MOST still serves as reference for idealized conditions
(Foken, 2006). MOST fluxes could still capture the observed fluxes under weakly stable conditions where turbulence is con-
tinuously sustained and not intermittently suppressed (Shah and Bou-Zeid, 2014). MOST fluxes here are computed using the
Businger—Dyer relations (Businger et al., 1971) as those relations remain pervasively in use today. Such relations are expressed
by non-dimensional gradient (diabatic) functions, W (), relating the scalar concentration surface scale s, = w’s’ /u, to the

gradient following

03 k2

¥s(C) 12)

0z sy

where k is the von Karman constant (= 0.4).

3 Field Data and Methods

In this study, data from two field experiments are analyzed. One data set is collected over the frozen tundra near Utqiagvik,
Alaska (U09) as part of the OASIS-2009 (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign (Staebler et al., 2009; Perrie
et al., 2012; Bottenheim et al., 2013). The second data set is collected from November 2022 to January 2023 at a sparsely
vegetated grassland in Wendell, Idaho (W22). At Utqiagvik, four sonic anemometers were mounted on a 10-m tall tower at
0.58, 1.8, 3.2, and 6.2 m above the snowpack, and the herein analyzed data correspond to z,, = 1.8 m. The lowest anemometer
(model TR90-AH, Kaijo Denki, Japan) had a 5-cm pathlength and provided data at a frequency of 20 Hz, while the other three
sonic anemometers (model CSAT3, Campbell Scientific Inc., Logan, Utah) each had a 10-cm pathlength, and provided data
at a frequency of 10 Hz. Three-dimensional velocity (u, v, w: longitudinal, lateral, and vertical components) and sonic virtual
temperature (Ts ~ T,,, where T, is the true virtual temperature) measurements were recorded. At the Wendell site, data were
acquired only at one height (z,,, = 2.4 m) above the ground surface. Chemical scalar concentration (carbon dioxide (CO,),
ammonia (NHj3), and water vapor (H,0)), in addition to the three-dimensional velocity and temperature measurements, were
recorded using a commercial open-path analyzer (CO,/H, 0O 7500A, LiCor Inc., Lincoln, NE), a custom made open path sensor

with a quantum cascade laser (NH3), and an R.M. Young 81000 sonic anemometer (Miller et al., 2014; Sun et al., 2015; Pan
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et al., 2021). Network-time-protocol (NTP) was used to ensure all the gas, environmental, and meteorological sensors were
synchronized by GPS (Global Positioning System). For both sites, instantaneous molar density measurements of the chemical
species were converted to mass concentrations using the pressure sensor on the LiCor 7500A, which has an accuracy of +0.4
kPa from 50 to 110 kPa and a resolution of 0.006 kPa (Edson et al., 2011). The gas fluxes were then calculated based on their
mass concentrations, in lieu of applying the so-called WPL density corrections to the fluxes after processing (Webb et al., 1980;
Detto and Katul, 2007).

The sampling frequency at both sites was set at fs = 10 Hz, and the post-processing involved (i) de-spiking, (ii) linear
detrending, and (iii) double rotation of wind components (Wilczak et al., 2001). Fluxes and other required statistics were then
computed for various scalar quantities (i.e., T,,, CO,, NH3, and H,O; u and its associated momentum flux were also tested here
for comparison). Analysis periods were set to 15-min in U09 (the 15-min Reynolds average choice here is selected because
U09 periods reveal strong intermittent behaviour) and 30-min W22. These were then the periods used for double rotation and

time-averaging throughout. Details of the data quality control for these data sets can be found elsewhere (Allouche et al., 2022).

4 Results and discussion

An earlier study (Zahn et al., 2023) investigated REA under non-ideal unstable conditions and concluded that the REA method
outperforms MOST flux models. One of the main aims of the present study is to examine whether REA outperforms MOST
under stably stratified conditions as well. MOST is used as a reference for comparison as it reflects the ’state-of-the science’ in
climate models. Since A22 established the limitations of MOST under stable conditions for the Utqgiagvik data set and further
proposed the closure models detailed previously that also outperform MOST, REA will then be compared to A22. Other model
details in Section 2 will serve as additional benchmarks to understand model performance, but the analyses focus on the REA

and A22, and the VEA approach that we will introduce later.
4.1 Model inter-comparison using high frequency measurements

All introduced models pertinent to high frequency measurements are now tested at the Utqiagvik site because it has the multiple
levels that are required for testing the A22 and MOST models. The middle panel subplots of Fig. 1, corresponding to the REA
and A22 models, depict the strongest correlation between modeled and observed EC fluxes for both momentum and heat. In
addition, the ACC model, which incorporates stability information (Eq. 2), performs slightly better than the constant ACC
model (Eq. 3). Although these models at first may appear to be better approximations of the eddy-covariance fluxes than REA,
the REA model performance is in practice superior, benefiting from the cancellation of the effect of stability in the model
coefficient 3 as detailed previously. This agrees with prior findings (Zahn et al., 2023) for unstable conditions. All proposed
models outperform MOST (Fig. 1c-1f). With their superior performance established, the REA and A22 models will be the only
ones retained in the subsequent analyses. When filtering is applied, the VEA model replaces the REA model.
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Figure 1. (a,b,c) Inter-comparison of kinematic momentum fluxes and (d,e,f) kinematic heat fluxes derived from the various models for the
Utgiagvik site U09. One-to-one line is shown as a reference (solid black line). Since both fluxes are negative, they are multiplied by —1 to

plot on log-log scale.

4.2 Simulating a slow scalar sensor for model testing

To address the limited bandwidth of many trace gas sensors, we simulate the output of a real slow sensor s measuring a variable
s as the numerical solution to the first-order ODE in Eq. 13. Here, s would be the "fast" turbulent sensor, and A is the time scale
of the filter-width (the response time scale of the slow sensor), which we selected to vary in the range [0-5 s] with increments
of 1 s. Thus, solving the following equation numerically (using explicit forward Euler time advancement scheme) converts the

s time series from 10-Hz to a lower frequency, down to 0.2-Hz when A =5 s:

ds 1_ 1

aJFAS:KS' (13)

The observed filtered EC fluxes computed with the filtered scalar signal s are referred to as the LEC fluxes. We also tested
another filter-type, a low-pass Gaussian filter, and the obtained results were not sensitive to the filter type, but the ODE solution
is a more accurate model for a first-order slow sensing system. The filtering is not applied to the vertical velocity (w) as high-

frequency anemometers are readily available. Hence, a tilde denotes the filtered virtual temperature (ﬁ), scalar concentration
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(5), and streamwise velocity (u). All three-dimensional velocity components (u, v, and w) are available in high-frequency
output of the sonic anemometer, but only wu is filtered () to compare its kinematic momentum fluxes to those of scalars.

In theory, an REA system should not suffer from the slow response of the trace gas sensor since it only requires the mean
measurements of s+ and s—. However, this requires a mechanism to separate the gas streams that has a 10-Hz response time
as well. While such systems have been constructed and used, they are typically operated using a certain threshold value that
defines a dead-band velocity wg below which the system does not switch intake or keeps both intakes closed. This is designed
to avoid an excessive number of movements and to guarantee larger individual air samples. In addition, since these systems
are typically custom made, there is still a possibility of some latency in the response of the mechanics of some models. In the
present implementation, a dynamic dead-band that is linked to the turbulence conditions in each period is adopted such that
similar amounts of air are sampled in updrafts and downdrafts. We used the empirical finding of Grelle and Keck (2021), as

depicted in Eq. 14, which yielded roughly similar amounts of air in the updraft and downdraft reservoirs. Sampling is activated

only if the vertical wind exceeds this threshold value in wy i.e., |w| > wo.
Ow
=—. 14
=35 14

We should underline that the computations of s+ and s— for the REA are first done with the unfiltered s signal (mimicking a
flawless and very fast mechanical system), and the dead-band of vertical velocity defined above is then the only effective filter
that applies to the REA computations. However, when exploring the VEA approach that we will later detail, we will compute

the VEA fluxes with sT and s— from the filtered signal produced by Eq. 13.
4.3 LEC, VEA and A22 model evaluation using simulated slow sensor data

Again focusing on Utgiagvik data set with its multilevel measurements, the models are now tested using inputs from a slow
sensor. The top and middle panel subplots of Fig. 2 show that the LEC and VEA methods significantly, and in similar fashion,
underestimate the observed (unfiltered) heat and momentum EC fluxes based on filtered quantities ﬁ and u, respectively, as
A increases. This underestimation, however, is not surprising because under stable conditions small eddies carry a significant
proportion of the fluxes, especially when the background flow is laminarizing and intermittent as shown elsewhere (Ansorge
and Mellado, 2014, 2016; Allouche et al., 2022; Issaev et al., 2023). These small eddies are filtered appreciably by the sensor’s
slow response. We should underline here that an REA system with fast-response mechanical valves will give results equivalent
to the unfiltered VEA (VEA recovers an REA system for A = 0), and will be in good agreement with the actual EC fluxes.
However, any latency in the mechanical response of the REA device will introduce some type of filtering to the signal that
depends on the device design; this underlines the importance of the mechanical design of these systems. Remarkably, the
bottom panel subplots of Fig. 2c and f show that the A22 model’s performance is not sensitive to the signal filtering and
provides good estimates of the observed (unfiltered) heat and momentum EC fluxes, even when filtered quantities i: and u
are used, and up to the highest filter-width A = 5 s. The A22 model relies on multilevel means and variances in computing
the fluxes, which tend to be carried by larger scales than the actual fluxes; this may explain the independence of the model

performance from sensor response.

10



280

285

= A':,J
Iflg N E
£ &
< A=0s .
g A=1s &
= = g
<% A= 2s 3
3 A=3s g
] = g
= A=ds 8
3 A=5s =
g T -4 -3 2 -1
g 2 10 10 10 10
© % A22
» 7
10° s
10 :
107 10°® 102 10” 107 10°® 102 10”
Modeled Heat Fluz [Kms '] Modeled Momentum Fluz [m*s~?]

Figure 2. Heat flux using ﬁ predicted by LEC (a), VEA (b) and A22 (c) models, and momentum flux using @ predicted by LEC (d), VEA
(e) and A22 (f) models at the Utqiagvik site U09, compared to real observed EC fluxes. One-to-one line is shown as a reference (solid black

line). Both fluxes are negative and are thus multiplied by —1 to plot on log-log scale. A (s) is the filter time scale.

Given the results above, a followup question is whether the VEA model estimates with a filtered signal actually correspond
to the fluxes that would be computed using eddy covariances of the filtered scalar signal, i.e., the LEC fluxes. Fig. 3a and b
indeed show that the VEA model is still a reliable method to capture these filtered observed heat and momentum LEC fluxes at
Utqgiagvik as A increases. All quantities here, including the fluxes, are computed based on filtered series ﬁ and w. This implies
that VEA flux estimates are broadly comparable to the filtering of the LEC fluxes by slow-response scalar sensors.

This match between VEA and LEC fluxes is also observed at the the Wendell site for heat and momentum, as well as for
the other scalars available at that site (CO,, NH3, and H,0). As in Utqiagvik’s site, the bottom panels of Figs. 4 and 5 show
that VEA performs better when evaluated against the LEC fluxes, compared to the respective top panels of Figs. 4 and 5 that
compare it to total EC fluxes. Note that since only one level of measurements at Wendell is available, gradients of first-order
moments could not be computed, which precludes testing of MOST or A22 models.

These similar VEA findings among the two different sites indicate that, under stable conditions, the VEA captures the fluxes
of the ‘resolved’ eddies. Any slow-response filtering will cause the method to significantly underestimate the needed high-

frequency, full observed fluxes. An important question (addressed in the next subsection) that follows is whether the VEA
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Figure 3. (a) Heat flux using T, predicted by VEA model versus the filtered observed heat LEC flux and (b) momentum flux using u predicted
by VEA model versus the filtered observed momentum LEC flux, at the Utqiagvik site U09. One-to-one line is shown as a reference (solid

black line). Both fluxes are negative and are thus multiplied by —1 to plot on log-log scale. A is the time scale filter-width (s).

fluxes can be ‘corrected’ under stable conditions to recover the missed fluxes. The proposed modifications, outlined below
for the VEA methodological framework, offer a correction for VEA flux estimates to recover their corresponding total EC
fluxes. It is to be noted that under unstable conditions at the Wendell site, where flux carrying eddies are of much larger scales
than under stable conditions, the VEA method is found to be almost insensitive to the considered filter-widths (A’s) (refer
to Appendix A). Therefore, VEA performs well and captures the observed (high and low frequency) fluxes under unstable
convective regimes, and hence biases in predicting scalar fluxes are expected to be minimal (Figs. Al and A2). This also
implies that for conventional REA the mechanical response speed is not as critical under unstable conditions. In the next
subsection, we aim to develop an effective correction for the under-resolved fluxes under stable conditions that will provide a

method to obtain continuous accurate fluxes using VEA over the whole diurnal cycle.
4.4 A sensor-response correction for the optimal VEA coefficient 3,

Fig. 3 reveals that the scatter between VEA and EC or LEC results is larger when the fluxes are small, which would translate
into larger errors and scatter in the values of 5. Analyses not shown here also reveal that 35 values calculated for each period
converge well towards the 0.59 value when the correlation R, increases i.e., R,,s > 0.2, indicating larger fluxes, with more
scatter for lower correlation values. However this scatter is randomly distributed around the 1:1 line, indicating some error
cancellation when the fluxes are integrated over longer periods of time. Discussions on these random variations in 3, have
linked them to the effect of height above canopies (Gao, 1995), and to the energy content influence of the associated eddy

motions (Katul et al., 1996), among others, and are not a focus of the present paper.
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Figs. 2 and 4 top panels, on the other hand, reveal that the chosen value of 35 = 0.59 in the modeled fluxes is a good estimate
in recovering the observed EC fluxes when the signal is not filtered (A = 0s). Missing smaller eddies (when the signal is
filtered) that contribute significantly to fluxes under stable, but not unstable, conditions thus requires a larger 5 to predict the
correct fluxes using VEA. Such underestimation was attributed to the filtering operation, dictated here by the choice of A. This
motivates a model development for [, that incorporates the effect of filtering of the fast eddies, which we will name express as
By.

Furthermore, the agreement between the LEC and VEA predictions when the scalar signal is filtered also opens the possi-
bility to apply the VEA method as surrogate for REA, without an actual device that separates air streams from downdrafts and
updrafts. If a slow response sensor (open or closed path) is available, the VEA method that uses the REA equation (Eq. 6) can
be applied with s* and s~ computed using conditional averaging of the scalar time series based on the sign of w — similar to
what is done to the simulated REA measurements — but without the dead-band given in Eq. 14.

For this purpose, we first compute each period’s optimal (3, (i.e., by inverting the expression in Eq. 6) that causes the REA

predicted fluxes, equivalent to VEA computed with the raw signal without filtering, to match the exact observed fluxes when
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Figure 5. Similar to Fig. 4, but here for scalars, (a,b): CO», (c,d): NH3, and (e,f): H>O.

A = 0's (no filtering) across the two contrasting sites. The top panel subplots, Fig. 6a for heat, Fig. 6¢ for momentum, and Fig.
6e for all three passive trace gases (CO,, NH3, and H,0), show a scatter plot of these exact (,’s relative to the integral time
scale 7;,,+(s) for each period’s co-spectrum, where the data points are colored with the MOST stability parameter. The integral
time scale (7;,,;) is determined by integrating the autocorrelation function (p,s (7)) up to the first zero-crossing from the
measured w’s’ instantaneous time series. We observe (3, values that depart from 85 = 0.59 under all stabilities, but in general
there is no clear 3, dependence on 7;,,; as depicted here.

For A # 0 s, the corresponding bottom panel subplots, Fig. 6 (b,d,f), show these same /3,’s relative to A /7, for different
A’s, where 7, is an advective time scale. After experimenting with various choices of time scales for normalizing the filter
scale A, an advective time scale formed by z and %, hereafter labeled as 7, = (xz/%), appears to provide the best scaling
for the variations of 3, with the filter size ( is the von Karman constant). This converges with the work of Horst (1997) who
formulated corrections to estimate the attenuation of scalar flux measurements by slow response of sensors (akin to LEC). They
used the sensor response frequency and a normalized frequency formulated based on 7,, which is the frequency of the peak of
the logarithmic cospectrum f,,, = n,,,k/7q, to correct for the missed fluxes. In that work, n,,, is the dimensionless frequency at
the cospectral maximum where it is estimated from observations of its behavior as a function of atmospheric stability (. The

advective time scale was similarly found to be a plausible choice in describing the drift and non-linear diffusion terms of a
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Table 1. Proposed models incorporating both sites Utgiagvik (U09) and Wendell (W22) with accounting for the dead-band criterion, 3, =

(

N

Ta

)b_’_c’ Czﬂv(ZZO):ﬁs

ine Fitting Parameters Heat (active scalar) Momentum CO,, NH3, and H,O
Bv=a (%) ’ +c (passive scalars)
ine a 0.3309 0.1391 0.0007
ine b 0.7316 0.825 1.448
ine ¢ 0.59 0.59 0.48
ine

proposed non-linear Langevin equation to model the turbulent kinetic energy in stably stratified ABL (Allouche et al., 2021).
This characteristic time scale, 7,, measures the advection time of the attached eddies, of size sz, past a fixed sensor.

As depicted in Fig. 6, an empirical fit that relates 3, to A/7, ie., B, = f (Z/Ta), is proposed here to recover the real
observed (unfiltered) EC fluxes using the VEA method with (s) measurements. This relation is best described using a power-
law model, 5, = a (Z/ Ta)b + ¢, and Table 1 summarizes these empirical coefficients (a,b) for momentum, heat (active scalar),
and passive scalar (CO,, NHj3, and H,O) fluxes at both sites where ¢ = 33, (Z = 0) = 5;. The reported b exponent for all fluxes,
which describes how [, scales with Z/ Tq, vVaries between active and passive scalars. Note that if the dead-band criterion is
removed, b~ 0.7 and does not vary much among all scalars as shown in Table 2, hinting at the possible universality of such
dependence for a VEA model that removes the need for a complex mechanical REA system. Nevertheless, further exploration
at disparate sites, and analyses of observational data for different scalars across wider stability ranges and different non-ideal
surfaces, are needed to have increased statistical confidence in the reported values of (a,b) and their generalizability, especially
for the Utqiagvik site that does not have measurements of the passive scalars.

A common feature for all fluxes, as depicted in the bottom panel of Fig. 6, is that the proposed model becomes less certain
as A increases (as expected). Therefore, such a model becomes less reliable with very slow sensors that cannot resolve most of
the scales of turbulence, and is ideally suited for moderately slow sensors that can still resolve the larger eddies. Otherwise, to
compute 3,, the only needed inputs are (i) A (ideally provided by the slow sensor manufacturer) and (ii) 7, (computed from
mean wind measurements). The reported fitting parameters in Table 1 are obtained using the least absolute residuals (LAR)
method, so that extreme values, which occur less frequently and may be related to unusual conditions or measurement errors,
have a lesser influence on the fit. Given the variability in the optimal values of /3,,, the proposed models would be mostly suited

for quantification of long-term aggregates (net averaged fluxes) of the scalars cycle.

5 Conclusions

Conventional and novel formulations are assessed to predict scalar fluxes under stable conditions. These conditions pose

measurement challenges because the turbulence time scales are shorter, thereby amplifying the effects of any spatial or temporal
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Table 2. Proposed models incorporating both sites Utgiagvik (U09) and Wendell (W22) without accounting for the dead-band criterion,

po=a(2) e c=B.B=0)=5,
ine Fitting Parameters Heat (active scalar) Momentum CO,, NH3, and H,O
Bo=a (%) b +e (passive scalars)
ine a 0.1456 0.0835 0.0096
ine b 0.7309 0.7169 0.7098
ine ¢ 0.59 0.59 0.59
ine
Heat Flux Momentum Flux COy, NH3, and HyO Fluzes
15" o 159 I e ° g
o ° .

AJ1,

Z/Ta Z/Tu
Figure 6. (a,c.e): Scatter of the computed [, for the observed (unfiltered) heat, momentum and passive scalar (CO,, NH3, and H,O) fluxes
at both sites relative to the integral time scale 7;,,¢(s), respectively. (b,d,f): similarly the computed 3, for the respectively observed (filtered)

. —~ . L A . —_ b
fluxes relative to A/7,. T4 is an advective time scale, and the magenta solid lines refer to the empirical fit models 8, = a (A / Ta) + ¢, refer
to Table 1.

averaging by sensors - or even instrument separation between w’ and ¢’. The models tested include the MOST-based flux-

gradient model, the A22 gradient and variance based flux model, the conventional REA approach, and VEA, a virtual version
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of REA requiring no flow separation and collection device that can be use with moderately-slow gas sensors. The test used
measurements collected at two different sites (Utqgiagvik and Wendell).

It was found that the REA and A22 models outperform the conventional models (e.g., MOST), and are thus less sensitive
to departures from ideal flow conditions of homogeneity, steadiness, negligible vertical transport of covariances, and TKE
production-dissipation balance. The A22 model was also found to perform well and provide good estimates of the observed
(unfiltered) heat and momentum EC fluxes, even when filtered quantities ﬁ and u are used, and up to the highest filter-width
A =5 s. This is because the A22 model is insensitive to filtering operations of the turbulent scales as it relies on multilevel
means and variances in computing the fluxes, which tend to be carried by larger scales than the actual fluxes; this may explain
the independence of the model performance from sensor response.

The REA model, on the other hand, would be sensitive to any latency in the response of the mechanical air flow separation
system, but is not affected by the wy dead-band. This underlines the importance of the design and construction of REA
devices, which remain inaccessible commercially and are rather custom-made by researchers who use them. This prompted us
to examine the possibility of using a virtual eddy accumulation (VEA) version where separating the updrafts and downdrafts
to obtain the conditional mean concentrations needed for REA is done digitally, only using the sign of w and without a need
for a mechanical device.

With numerically-simulated slow sensors, however, it was noted that the A22 model outperforms VEA in predicting the
observed (unfiltered) EC fluxes. VEA was instead reproducing the EC fluxes computed with a filtered scalar signal, which we
here called the large eddy covariance or LEC fluxes. This suggests that a VEA approach can plausibly be utilized without a
physical device to separate the updraft and downdraft air streams, but requires a correction for the missed (filtered) scales. To
correct the underestimated VEA fluxes, relative to the observed (unfiltered) EC fluxes, a model for the 3, coefficients of the
VEA model that incorporates the effect of filtering is proposed. The results indicate that the corrected VEA model remains
robust in terms of reproducing long-term averages of the scalar fluxes across their ecosystem lifetime cycle, but becomes
less certain over individual periods as the sensors response time A increases. Use of this model, along with the observations
reported in Appendix A that reveal an insensitivity of /3, to sensor response under unstable regimes (3, = 3s), suggest that
VEA can be a robust framework for estimating turbulent fluxes when only single level measurements are available, but with
sensors that can still resolve the larger scales of turbulence (i.e., with response frequencies ~ 0.5 to 1 Hz). The A22 can be
alternatively used, under stable conditions, when multilevel measurements are available to compute needed mean gradients,

even with slow-response sensors.

Data availability. The dataset of all the observational data for the two field experiments (Barrow and Wendell) are publicly available at

(https://doi.org/10.5281/zenodo.10073726).
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Figure Al. Similar to Fig. 4 but under unstable conditions.

Appendix A: VEA performance under unstable conditions at Wendell

Figs. Al and A2 show the same plots as Figs. 4 and 5 respectively, but here under unstable conditions. As seen here, VEA is

insensitive to filtering operations.
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