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The formation and subsequent growth of structural defects in an irradiated material can strongly influence
the material’s performance in technological and industrial applications. Predicting how the growth of defects
affects material performance is therefore a pressing problem in materials science. One common computational
approach that is used to examine defect growth is cluster dynamics, a method which employs a system of
mean-field rate equations to track the time evolution of concentrations of individual defect types. However, the
computational complexity of performing cluster dynamics can limit its practical implementation, specifically in
the context of exploring a broad set of physical conditions corresponding to, for example, different temperatures
and pressures. Here, we present a machine learning approach to circumvent the computational challenges of
performing cluster dynamics while maintaining high accuracy in the prediction of defect concentrations. Our
method is illustrated on the nuclear material uranium nitride but is broadly applicable to other materials.
The developed data-driven method is shown to accurately capture complex correlations between material

Nuclear materials
Data-driven methods
Structural defects

properties, temperature, irradiation conditions, and the concentration of defects.

1. Introduction

Structural defects alter the performance of materials in irradiated
environments [1]. Predicting how defects form and then grow under
a specific set of physical conditions corresponding to, for example, a
specific temperature, pressure, and/or fission rate, is a problem that
has generated significant interest due to its relevance in broad class of
technological and industrial applications [2-16]. Defects types such as
interstitials, bubbles, voids, anti-sites, among others, can form due to
irradiation and alter performance properties [17-23] including thermal
conductivity, electrical conductivity, and mechanical response. Perfor-
mance alterations in irradiated and nuclear materials due to ageing or
irradiation-enhanced defect formation [24] can significantly reduce the
viability of using a specific material due to safety and failure concerns
that push an engineered system outside of the safe operating enve-
lope [25]. Therefore, developing theoretical and computational tools to
predict how defects form, the rate at which those defects grow, and how
those defects affect the pertinent properties of a material under specific
physical conditions are important questions with direct ramifications
for technology advancement. Predicting defect growth is particularly
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important in multiscale modeling applications that use atomistic and/or
microscale data to inform macroscale and engineering-level models.

Predicting defect growth rates using computational methods is often
a process that involves the implementation of complex computational
procedures. For example, defect growth is often predicted by solving
large systems of nonlinear differential equations [23,26] or performing
kinetic Monte Carlo simulations [27-29]. Previous theoretical work on
defect evolution of irradiated materials has generally focused on the
development of systems of master equations that describe how clusters
of point defects evolve in time, i.e., cluster dynamics simulations, [17,
18,21,21,30-32] or on the application of lattice kinetic Monte Carlo
methods [26-29]. The specific defect type, or combination of defect
types, that give rise to structural changes generated by irradiation is
typically specific to the material. In general, the propensity of each
defect type to cluster with itself and with other defect types is material
dependent [10,11,30,31,33-41]. This poses a problem from a modeling
perspective because there is often limited transferability of a developed
defect growth model from one material to another.

One of the primary methods that is used to predict defect evolution
in materials is cluster dynamics [17-23,26,42-44]. Cluster dynamics
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models can be used to predict the outcome of complex physical process
that determine the time evolution of defects such as aggregation,
recombination, and fragmentation. In a cluster dynamics simulation, a
mean-field method is used to track the time evolution of concentrations
or densities of point defects and defect clusters [10,11,23]. The mean-
field nature of the method arises because the trajectories of each
individual defect are not followed, only the evolution of the defect
concentrations are followed. While implementing cluster dynamics is
less computationally taxing than other approaches, for example kinetic
Monte Carlo methods, it can still be computationally prohibitive to
perform simulations over a broad set of physical conditions which may
be needed to accurately inform macroscopic models in multiscale and
multiphysics frameworks, for example, when a cluster dynamics code is
used to compute a transport property that is then fed into a macroscale
model. The speed of performing a multiscale simulation is therefore
commonly limited by the model evaluation speed of the atomistic mod-
els at lower length scales in the hierarchical multiscale code structure.
This problem is further pronounced in nonequilibrium atomistic envi-
ronments, such as a material under irradiation, when the assumptions
used to derive equilibrium kinetic theories breakdown [44-49].

One method that can be applied to microscale material models
to increase evaluation speed and improve accuracy is to use data-
driven approaches, such as machine learning (ML), to predict defect
concentrations and reaction rates. There have been broad applications
of ML methods [50-52] in physicals sciences and engineering [53-671]
including in nuclear materials [68-73]. Some of the potential advan-
tages of using data-driven methods are improved accuracy, fast model
evaluation, and the ability to capture complex correlations in datasets.
Some common disadvantages are that data-driven models typically
have limited interpretability, limited transferability, and often generate
unphysical predictions when extrapolation outside of the training data
is performed.

In this work, we utilize machine learning methods to determine
concentrations of point defects and defect clusters in an irradiated
material. Specifically, we present a data-driven approach that uses
neural network models trained on limited cluster dynamics simulation
data to predict the steady-state concentrations of defects in irradiated
materials under a broad set of physical conditions. We illustrate the
method on uranium nitride, a potential nuclear fuel. Our method
consists of training a collection of deep neural networks, one network
for each defect type in the material model, on data generated using
cluster dynamics over a multidimensional space of state configurations.
The concentrations can then be used to predict macroscopic quantities
such as diffusion, volumetric swelling, and others. An overview of the
developed computational workflow is shown in Fig. 1. Here, we focus
only on point defects and defect clusters, ignoring extended defects.
However, the methodology can be modified to include extended de-
fects such as dislocations, voids, and grain boundaries in future work.
The primary step in this procedure is to include extended defects in
the cluster dynamics model used to generate the training data for
the neural networks. We show that machine learning methodologies
can be used to circumvent some of the computational challenges of
cluster dynamics that pose problems when building multiscale models
that must maintain high accuracy and fast evaluation speed across
multiple length scales. A comparison between the results of cluster
dynamics simulations and the machine learning predictions is pre-
sented, demonstrating that, after training, machine learning can be
used to achieve comparable accuracy to cluster dynamics simulations
while significantly reducing the computational overhead of determin-
ing defect concentrations over various state conditions such as different
temperatures, pressures, and fission rates. We find that, after training,
the ML methodology can reduce the computational cost needed to
sample a new state condition by a factor of ~ 10* in comparison to
performing a cluster dynamics simulation. The developed methodology
allows structural defect formation and growth to be understood over a
large range of physically-relevant state conditions.
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Fig. 1. Schematic diagram of the data-driven methodology developed in this work.
The defect concentrations obtained from cluster dynamics simulations are used to
train a collection of neural networks, one for each of the N defect types tracked
in the model. After training, each network can be used to predict the corresponding
defect concentration ¢ over a broad range of state points corresponding to different
physical conditions. The collection of predicted concentrations can then be used to
predict macroscopic properties P of the material such as atomistic diffusion values and
volumetric swelling rates.

The remainder of this article is organized as follows: Section 2
contains the details of the machine learning methods used to examine
defect concentrations in irradiated materials. An overview of how we
generated the data used to train and test those methods is also given,
focusing on using calibrated cluster dynamics models to calculate defect
concentrations under various conditions. In Section 3 and Section 4,
the results of the machine learning models are presented. Concluding
remarks are presented in Section 5.

2. Machine learning methods

The data we use to train the collection of neural networks is ob-
tained from cluster dynamics simulations of uranium nitride (UN) using
the model developed in Ref. [74]. It is important to note that while
we illustrate the developed ML method on UN, it is broadly applicable
to other irradiated materials and nuclear fuels. The developed com-
putational workflow, shown in Fig. 1, consists of training a collection
of neural networks, one for each defect type tracked in the model, to
produce the defect concentrations over a broad range of state points
corresponding to different temperature 7', partial pressure of nitrogen
P, > and fission rate F. After training, the collection of neural networks
can be applied to predict macroscopic properties of the material such
as the diffusivity of various species. The parameters in the UN cluster
dynamics model are calibrated to reproduce experimental data.

Cluster dynamics has been broadly applied to generate defect con-
centration data for irradiated materials and nuclear fuels [10,11,15,73-
75]. Implementing the cluster dynamics method for a specific material
consists of (1) identifying a set of defects in the material that alter the
physical processes under investigation, (2) parameterizing the model,
typically using a combination of electronic structure calculations and
experimental data, and then (3) solving a typically large system of
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nonlinear coupled ordinary differential equations, where each equation
in the system describes the time evolution of the concentration a
specific defect type. This procedure can be time-consuming in the
model development stage and computationally taxing when used to un-
derstand the defect growth under a broad range of physical conditions.
In previous work, we utilized ML to accelerate the calibration of cluster
dynamics models [73]. In this work we use ML to the accelerate the
computational speed of performing simulations and generating data.

2.1. Cluster dynamics

The free energy cluster dynamics code Centipede [10,11] was ap-
plied to incorporate physical parameters into a cluster dynamics model
for uranium nitride and then to solve the defect evolution equations.
Details about the Centipede code and the physics behind it can be
found in Ref. [10]. In a Centipede simulation, the concentration ¢,
of N defect typesd € {1,2,..., N} are tracked in time through a system
of nonlinear coupled differential equations of the form:

dey
< =ho+ ; Ry 4(ci,¢q, Dy, Dy, T, G)

=Y 81(c1.¢. D,.T.G),
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where f,(t) is the generation rate of defect d due to irradiation, R,
is the reaction rate between defect types d and d’, and S, ; is the sink
rate between defect type d and sink type s. The sums in Eq. (1) are
self-inclusive and taken over all defect types and all sink types. The
reaction and sink rates depend on the free energy of the system G and
temperature of the system 7. The reaction rate between defect types d
and d’ depends on the free energy G and temperature T and also on the
concentrations of each defect and the diffusion coefficients D, and D
of those defects. The dependence of the reaction rates on the diffusion
coefficients arises because the rate at which the defects move through
the material lattice dictates the rate at which two defects will come into
spatial proximity and interact, potentially combining to form a larger
defect type. The initial conditions for each simulation are obtained by
setting the concentration of each defect type to its equilibrium value.
We further assume that the concentrations have no spatial dependence
in the material, an assumption that is typical in the performance of
cluster dynamics.

In this work, we use cluster dynamics to generate data that is used
to train a collection of neural network models, one network for each
defect type that is tracked in the simulation. We specifically use neural
networks to calculate the defect concentration values when the system
reaches steady-state under constant source and sink values. We define
the steady-state condition for the material to be reached when the rate
of change of all the defect concentrations is zero (dﬁ = 0 for all d)
up to some predefined numerical precision. Specifically, we consider
a solution converged when 44 < R forall d where IRl = 1078,
Refs. [10,11] and [74] contain further details of the physics models
and numerical procedures we use to implement cluster dynamics.

The free energies and diffusion coefficients for the defects in UN
were calculated in previous work [73] using a combination of density
functional theory and empirical potential atomic scale simulations. The
point defects considered are vacancies, self-interstitials, anti-sites, and
Xe interstitials. Using Kroger-Vink notation [76], the point defects
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Table 1
List of defect types in the UN model. The Kroger—Vink notation is used for the defect
types [76].

Defect number Defect type Description

1 Ny N anti-site

2 {Ngy:Vy} N anti-site and U vacancy
3 N; N interstitial

4 U; U interstitial

5 Uy U anti-site

6 {Uy:Vy} U anti-site and N vacancy
7 Xe; Xe interstitial

8 {Xe:Vy} Xe and N vacancy

9 {Xe:2Vy} Xe and double N vacancy
10 {Xe:Vy} Xe and U vacancy

11 {Xe:Vy:Vy Xe and U vacancy and N vacancy
12 {Xe:2Vy} Xe and double U vacancy
13 Vy N vacancy

14 {2V} double N vacancy

15 Vy U vacancy

16 {Vy:Vyt U vacancy and N vacancy
17 {2Vy} double U vacancy

listed above are given by Vy, Vy, U;, N;, Uy, Ny, and Xe;. Clusters
of vacancies with other vacancies, anti-sites, and Xe defects are also
considered, and Table 1 gives the complete list of defects. The bracket
notation “{}” indicates that the defect is a cluster. The anti-site defects
(Ny and Uy) and the substitutional Xe defects ({Xe:Vy} and {Xe:Vy})
are assumed to be immobile; the rest of the defects are mobile. The
defect mobility is calculated using the atomic scale parameters for
migration barriers and attempt frequencies given in Ref. [74]. We use
a constant sink strength derived from the size and number densities
of intragranular bubbles based on microscopy measurements in UN in
Ref. [77]

2.2. Training data

In order to capture defect behavior under a diverse set of physical
conditions, approximately 30,000 Centipede cluster dynamics sim-
ulations were performed over varying physical states. Each simulation
corresponds to a randomly sampled temperature T, partial pressure of
nitrogen py, , and fission rate F. To generate the training data, for each
point in the set, the temperature was uniformly sampled between 700 K
and 2400 K. After a random temperature was selected, the N, partial
pressure was sampled uniformly on a logarithmic scale between the
temperature-dependent upper and lower bounds defined by pypper(T) =

1.33%10%atm-exp ( 6. 126") and poyer(T) = 3.17x10%tm-exp & 27";").
These pressure boundBarles define the UN-stable region of the phase
diagram as shown in Fig. 2. After the temperature and pressure were de-
termined, the fission rate was sampled uniformly on a logarithmic scale
over the range 107 fissions/m?s and 10%! fissions/m>s. We assume a
production of 10,000 Frenkel pairs per fission. The fission rate and
pressure sampling were performed on a logarithmic scale because the
ranges used span several orders of magnitude and sampling from the
logarithmic scale prevents an under-representation of data at smaller
values in the sampling range. An illustration of the calculated UN phase
diagram [74] and the N-rich, U-rich, and UN-stable regions is shown in
Fig. 2 with a corresponding scatter plot of a representative set of state
conditions in the pressure-temperature plane that were sampled.

Centipede calculates the concentration of each defect in terms
of site fraction, which is the number of defects in a given volume
divided by the number of formula units in a given volume. Therefore
throughout this work we express the concentrations of the defects in
these relative units.

2.3. Neural network method

We constructed our deep neural networks with the PyTorch [78]
machine learning library. The input layer in the network consists of
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Fig. 2. Phase diagram of UN. The white markers are representative state points used
in the training data.

fission rate, partial pressure of N,, and temperature. These inputs are
successively connected to / hidden layers that are n nodes wide. As the
terminus of the network, the output layer gives an estimation of defect
concentration. A different network was trained for each defect type. We
denote the specific neural network trained to predict the concentration
of defect type i as N;. A schematic diagram of the neural network
architecture used is shown in Fig. 3. All networks are trained using the
same architecture. Each hidden layer / + 1 node » has the form:

Xipin = f<z xl,nVVL];, + bz,n>- 2
n

In this notation the values of each node » and corresponding layer x,,

are calculated using the values of the subsequent layer x; ,, where W, ,

and b, , are the learnable parameters of layer number / and node n. The

function f in the above equation is an activation function. In our case

we chose the rectified linear unit function:

ReLU(x) = max(0, x), 3

given that the targets of the neural network, the defect concentrations,
are all positive. Moreover, the generated dataset was randomly split on
an 80:10:10 (training:validation:testing) basis for every network. The
inputs (T, p Ny F) and outputs (concentrations) were normalized against
the training data according to (x;—x)/c, where x; is the data point being
normalized, x is the mean of that data type, and o, is the standard
deviation. The collection of neural networks C = {N|,N,,..., Ny}
was used to determine the concentrations of each defect type using the
computational dataflow

{T,pNZ,F}—>{./\fl,./\fz,...,J\/.N}—>{Cl,C2,...,CN} C)]
——
inputs neural networks outputs

where neural network N generates concentration ¢, neural network
N, generates concentration c,, and so forth.

We performed hyperparameter optimization of the neural network
architectures. The tested architectures consisted of an input layer (tak-
ing values of T, py , and F), [ hidden layers, n nodes per hidden layer,
and an output layer (the defect concentration), with a learning rate r.
The hyperparameter optimization was performed using a grid search
over combinations of the sets n € {10, 15,20,25,30}, [ € {1,2,3,4}, and
r € {0.0005,0.001,0.003,0.005}. After 4000 epochs, the network archi-
tecture with 2 hidden layers of 25 nodes and a learning rate of 0.0005
maintained the lowest error. However, because every network was
trained and tested on different random subsets of the Centipede data,
we used the trends in performance to select the best architecture, not
the specific error values themselves. Networks trained with a learning
rate of 0.0005 were consistently the best performing. A neural network
architecture of 2 hidden layers of 25 nodes and a learning rate of
0.0005 was selected for further use after hyperparameter analysis. After
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Fig. 3. Schematic of the general form of the feed-forward neural network architecture
used in this work. The inputs are temperature, partial pressure of N,, and fission rate
and the output is the concentration of an individual defect. Each of the / hidden layers
consists of n nodes.

performing the grid search, the optimal neural network architecture
described above was selected and then trained using the Centipede
cluster dynamics data. The same architecture was used for every defect
type and each network was trained for 4000 epochs. The training data
inputs and output were log transformed before training each network.

3. Results

The concentrations of the N = 17 defect types listed in Table 1 for
UN were calculated with Centipede at approximately 30,000 state
points. The generated concentration training data exhibits strongly non-
linear dependencies on temperature, partial pressure, and fission rate.
This is illustrated in Fig. 4 where it can be seen that the dependence
of concentrations on the partial pressure and temperature conditions is
highly nonlinear and the overall behavior varies between different de-
fect types. Concentration data is shown in Fig. 4 for three defects types:
the N interstitial N;, a cluster of a U vacancy and a N vacancy {V:Vy},
and a Xe-based double N vacancy {Xe:2Vy}. These defects were respec-
tively, the best performing, median performing, and worst performing
neural networks in terms of percent error as discussed later. As shown
in Fig. 4(a), the data for N; exhibits two regimes. At temperatures
less than ~ 1200 K the distribution of concentrations decreases with
increasing temperature. This regime corresponds to the low pressure
regime as shown in the color bar of the figure. For temperatures greater
than =~ 1200 K, the distribution of concentrations increases nonlinearly
as the temperature is increased. This behavior corresponds to higher
pressures in the sampling data. The data for {V;:Vy} exhibits different
behavior as shown in Fig. 4(b). In the regime of low pressure and low
temperature, the concentrations are the highest. As the temperature
is increased, the concentration initially begins to decrease but then
as higher temperatures are approached the concentrations begin to
increase. As shown in Fig. 4(c), the trends are different for {Xe:2Vy}.
For this defect, no turnover behavior from decreasing to increasing con-
centration is observed with respect to temperature variation. The data
shown in Fig. 4 illustrate that the concentration dependence of each
defect is highly nonlinear with respect to variation of temperature and
partial pressure, and that each defect will, in general, have particular
dependencies that are not universal across defect types.

The performance of the neural network models for some individual
defects can be seen in the parity (true vs. predicted) plots in Fig. 5. We
again show results for the N interstitial N;, a cluster of a U vacancy and
a N vacancy {Vy:Vy}, and a Xe-based double N vacancy {Xe:2Vy}.
The network trained to predict the concentration of a single nitrogen
interstitial is the best performing network and delivers the best perfor-
mance in terms of the lowest mean absolute percent error (MAPE). As
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shown in Fig. 5(a), the range of concentrations in the testing data for N;
spans ~ 10 orders of magnitude. The MAPE for the cluster consisting of
a uranium vacancy and a nitrogen vacancy had the median MAPE, The
network trained on a xenon-based double nitrogen vacancies cluster
had the largest MAPE of 16.30%. The results for that defect, {Xe:2Vy},
are shown in Fig. 5(c). The networks trained on Xe-based defects are
generally the east accurate. This is likely due to the fact that the
Xe-based defect concentrations span ~30-40 orders of magnitude as
opposed to the ~10-20 orders of magnitude for other defect types. This
implies that the outputs in the data, i.e., the concentrations, will be
significantly more sparse as opposed to other types of defects that do
not contain Xe.

Further comparison between the ML model and Centipede is
shown in Fig. 6 illustrating that the neural networks are capable of cap-
turing the various non-linear behaviors in the concentrations. In Fig. 6,
a subset of the total testing data is shown. We generate this subset
by only including data points with fission rate values that fall within
the range 10'$7°-10'%2 fissions/m’/s and then randomly selecting 30
data points from the testing set that fall within this range. The neural
networks are capable of capturing complex nonlinear behaviors. Specif-
ically, this plot illustrates the ability of the developed methodology to
capture nonlinear dependence on temperature. The circular markers are
the results from Centipede simulations and the red crossed markers
are the corresponding predictions generated by the neural network.
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Excellent agreement is observed between the simulation results and the
results generated using ML. It can be seen that the projection of these
datapoints with varying pressures and fission rates into the temperature
space shows a nonlinear dependence on temperature. Importantly, we
observe no significant outliers in the ML predictions. It can also be seen
that there are only small differences between the Centipede data and
the corresponding ML predictions which implies that the variances in
the error distributions generated using the ML method are small.

The combined performance across all defect types is shown in the
parity plot in Fig. 7. The predicted values are in strong agreement with
the true values, with the ML method developed in this work generating
the defect concentrations with a MAPE of 7.39% when averaged over
all defects types. We are therefore able to predict the concentration
of defects with low error and with a significant computational savings
in comparison to performing cluster dynamics calculations. In Fig. 7,
the visible temperature trends are mostly representative of Xe-based
defect clusters at concentrations lower than approximately 10730 and
vacancy-type defects at concentrations higher than this. This is because
the Xe-based defects are the only ones to attain such low concentra-
tions. Fig. 7 is the primary outcome of this work. It illustrates that
training a collection of neural networks to predict the concentrations
can be used to circumvent the computational challenges of determining
defect concentrations at steady state in an irradiated material over a
broad set of physical conditions while capturing complex nonlinear
correlations between temperature, irradiation conditions, and the con-
centrations. Our method is illustrated on the nuclear material uranium
nitride but is broadly applicable to other materials. Timing analysis
shows that using the ML-based approach provides a computational
increase of a factor ~ 10* in comparison to performing a new cluster
dynamics simulation. This timing increase is based on a comparison
between the START and END time for a single state point solution using
Centipede and the same state point solution using the neural net-
work method. The specific computational increase may be different for
different problems. For example, in systems that do not involve a calcu-
lation of physical properties like those performed by the Centipede
code, a machine learning approach may not provide as significant a
reduction in computational cost.

The MAPE for each defect type is shown in Fig. 8. The MAPE was
calculated over the testing data. As discussed previously, the defect
types containing Xe are the least accurate networks and generate the
largest error. This is in part because the Xe defects have the largest
range of distributions in the concentrations over the temperature,
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Fig. 8. Percent error (MAPE) predicted by the corresponding trained neural network
for each defect type in the UN model. The MAPE is calculated over the testing dataset.

pressure, and fission rate regimes that we have sampled and therefore
the labeled output data is sparsest for these defect types. Another trend
that can be observed is that clusters, denoted by the bracket notation
“{}”, generate higher error than other defects. In comparison to the
Xe defects, the output concentration range for the other defect types
is small and therefore the general trend is that the error is reduced in
comparison to clusters that contain Xe. The MAPE averaged over all
defects is ~ 7%. We have also confirmed that similar trends in the error
magnitudes can be generated using the developed ML method even
when the size of the training dataset is reduced by an order of mag-
nitude. We found that using a data set of 30,000 state points generated
the targeted predictive accuracy (< 10%) and variance in the neural
network models. However, we have examined the performance of the
developed approach using smaller data sets and found that fewer state
points can be used, particularly if predictions of defect concentrations
are needed over a smaller range of physical (temperature, pressure, and
fission rate) conditions than what we examine here.

All the results presented in this manuscript constitute interpolation
over the training data. The extrapolation performance of the approach
will depend on many factors including, for example, the degree of
nonlinearity in the model output and the degree of smoothness in the
output. In general, it is expected that the extrapolatory performance of
the neural networks trained on nonlinear CENTIPEDE model outputs
will be poor, and we have observed that behavior. However, we have
also observed that in some regimes, specifically regimes that depend
exponentially on the input variables the model extrapolates well. The
cause of this is that these regimes are linear spaces in the log space we
work in after log-transforming the data.

4. Application to diffusivity prediction

The defect concentrations determined by the ML method can be
used to predict other properties of the material that depend on those
concentrations, for example, the diffusion coefficients of various species
in the material [73,79,80]. Here, we calculate the diffusion coefficients
of Xe, U, and N in UN to highlight how the developed method can be
used to quickly and accurately understand important complex physical
properties in the material and how the ML method can be applied to
supplant the complex and time-consuming task of using human-guided
approaches to derive analytical functions to predict material properties.

The diffusion coefficients are calculated using the sum over the
product of the relative concentration of each defect contributing to
diffusion of a species:

X .
Taexe keTgy e ma(D) (T, py,. F)

- ) (5)
ZdeXe c(T, PN, > F)

DXe(T’PNZa F) =
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Fig. 9. Diffusion coefficients predicted by the developed neural network approach for
Xe (red), U (black), and N (blue) as a function of inverse temperature. The N, partial
pressure is taken to correspond to the middle of the UN stable region of the phase
diagram shown in Fig. 2 and the fission rate is 10'° fissions/m?s.

DN(T, p,» F) = Y kgTel my(T) ¢y(T. py,» F), (6)
deN

Dy(T, py,, F) = Y, kT8 my(T) cy(T, py,, F), @)
deU

where my(T) is the temperature-dependent mobility of defect d calcu-
lated using the methods in Ref. [74], the sets of defects that are summed
over are

Xe = {Xei, {Xe:Vy ), (Xe:2Vy ),

{Xe:Vy}, {Xe:Vy:Vy ), {Xe:2Vy ) } 8)
U= {Ui,VU,UN, {Ny:Vy).

{Un:Vy ) (2V ), {VU:VN}}, ©)
N= {Ni’VN’NUs {Ny:Vyl,

(Uy:Vi). (2V ). (VW . (10)
and gfiE) E € {Xe,U,N} is the number of contributing defects in

defect type d to the diffusion of element E. For all the defect types
considered here gEIE) = 1 except for the double vacancy defects where

;I;\),N) = gg\)] y = 2. The Xe defect concentrations are normalized using
the total Xe concentration.

Shown in Fig. 9 are the diffusion coefficients of Xe, U, and N
predicted by the developed neural network approach as a function
of inverse temperature. Here, we constrain the partial pressure to
be in the middle of the UN phase diagram. This is accomplished by
taking a temperature-dependent pressure using the average of the upper

Pupper and lower pjq, pressure bounds on the UN phase space. That

—4.46eV )

kgT

The fission rate of 10'° fissions/m?> s is constant over all temperatures
and partial pressures. At higher temperatures, the diffusivity of N
dominates with the diffusion values for Xe and U being multiple orders
of magnitude less than the values for N. The predicted diffusion values
for each species show the expected Arrhenius-type behavior in the high-
temperature limit which illustrates the ability of the NN approach to
capture known physical phenomena. As the temperature is lowered, the
Xe defect shows an interesting regime in which the diffusivity increases
with decreasing temperature. The U diffusivity also shows this effect
but to a lesser degree. At the lowest temperature shown in Fig. 9, the
N and U diffusion coefficients are of a similar magnitude while the Xe
value is approximately two orders of magnitude lower than N and U.
The increased diffusivity for Xe at lower temperatures is caused by an
increasing concentration of the highly mobile Xe interstitials instead of
immobile substitutional Xe on U sites in that temperature range. For
U, this similar behavior is caused by increasing concentration of both

average pressure is given by piq(T) = 6.48 x 10%atm - exp(
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U interstitials and U on two vacant N sites instead of the immobile
single anti-site. These results illustrate the use of our NN-based method
to elucidate the behavior of important physical processes, in this case
diffusion, in an irradiated material.

Machine learning can provide advantages over human-guided fitting
approaches by reducing the complexity of generating an accurate model
for a material property and by increasing the ability to accurately
capture complex correlations between material properties. To illus-
trate these advantages, we constructed a human-guided function by
proposing an analytical function for the Xe diffusion coefficient in UN:

Dxo(T) = D exp (—%) an
B
Q(zl) Q(22) Q(23)
D =
+ 2eXP< kgT  (kgT)?>  (kgT)3
(1) (2) (3)
Y G SO G U
7 kT (kgT)?  (kgT)3

This expression must then be parameterized using a combination of
nonlinear regression and by hand tuning of parameters in order to
capture the salient physics-informed behavior of Xe diffusion. The
diffusion values generated by Centipede and those predicted by the
parameterized version of Eq. (11) are shown in Fig. 10, with excellent
agreement observed between the two. The major problems with devel-
oping these types of empirically-motivated analytical functions are: (1)
a proper form for the analytical function must be derived or proposed,
which is often a complex procedure, (2) parameterizing that function
can require significant time and effort particularly if there are known
physics that need to be encoded in the function and its parameters
and (3) the function must be reparameterized for each new state point
because the parameter values will not be, in general, transferable across
different temperatures, pressures, and fission rates. In addition, if an
exact value for the particular property is known in a specific limit,
the proposed function must also be constrained to agree with that
limiting case. These problems can provide significant complexity in the
production of analytical forms to fit materials properties.

In comparison, the Xe diffusion values predicted using the ML
approach developed here are also in excellent agreement with the
Centipede cluster dynamics results, as shown in Fig. 10, but the de-
veloped method can easily be applied at different state points without
reparameterization as that information has been encoded in the weights
and biases of the trained collection of neural networks. In addition, be-
cause NN are universal function approximators, using the ML approach
does not require an appropriate physics-informed functional form to be
proposed. This comparison illustrates that ML techniques can efficiently
capture nonlinear and intricate correlations among material properties,
temperature, and irradiation conditions.

5. Conclusions

A machine learning method has been developed to predict the con-
centrations of point defects and defect clusters in irradiated materials.
Structural defects can significantly alter material properties, and, as
such, defect growth poses safety and performance concerns when a
material must operate inside a defined operational envelope. We have
introduced a data-driven approach to predict point defects and defect
clusters concentrations under a wide range of physical and irradiation
conditions. Specifically, we have utilized deep feed-forward neural
networks trained on cluster dynamics simulation data to predict defect
concentrations. We have illustrated how the concentrations predicted
by our model can be applied to determine macroscopic properties like
diffusion in a material. The utility of the method was illustrated on
uranium nitride, a potential nuclear fuel, but is broadly applicable to
other materials.

The presented results illustrate that machine learning can be used to
capture, through a computationally-efficient procedure, nonlinear and
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Fig. 10. Xenon diffusion coefficient in UN predicted by the developed neural network
method (solid red) and the analytical model in Eq. (11) (dashed blue) as a function
of inverse temperature. The results from cluster dynamics calculations performed using
the Centipede code are shown as white and black markers. The N, partial pressure
is taken to correspond to the middle of the UN stable region of the phase diagram
shown in Fig. 2 and the fission rate is 10'° fissions/m?s.

complex correlations between material properties, temperature, irradi-
ation conditions, and the concentration of defects. Our method enables
the computationally-efficient determination of defect concentrations in
irradiated materials. The presented approach facilitates a more com-
prehensive understanding of point defect and defect cluster formation
and growth across diverse physical conditions. The machine learning
methodology can be easily modified to include extended defects such
as dislocations, voids, and grain boundaries. The primary step in this
procedure will be to include extended defects in the cluster dynamics
model used to generate the training data. Work in this direction for UN
is currently underway.

The developed method is sufficiently generalizable that it can be
readily applied to a large set of irradiated materials and nuclear fuels
without significant modification. The general methodology is transfer-
able across materials. After training a network on data for a specific
material, the model is transferable across thermodynamic state points
and irradiation conditions for that material provided that the physical
state in question is inside the bounds of the training set. The inte-
gration of data-driven approaches with multiscale and multiphysics
frameworks could lead to more computationally efficient and accurate
simulations workflows that bridge atomistic-scale and engineering-
scale models. This will in turn allow for the exploration of a larger
design space in technological applications. While we have illustrated
the method using the input space of temperature, fission rate, and
partial pressure, that input space could be extended to include other
parameters. Neural network architectures can efficiently handle large
input spaces, so we expect that expanding the input space will not limit
the applicability of the approach. We are currently applying techniques
such as sensitivity analysis to increase the interpretability of the mod-
els. Overall, this work illustrates the potential of machine learning to
address and aid in solving the pressing problem in materials science of
predicting structural defects in nuclear and irradiated materials.
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