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Abstract—We consider the problem of approximating a general
Gaussian location mixture by finite mixtures. The minimum
order of finite mixtures that achieve a prescribed accuracy (mea-
sured by various f-divergences) are determined within constant
factors for the family of compactly supported or subgaussian
mixing distributions. While the upper bound is achieved using
the technique of local moment matching, the lower bound is
established by relating the best approximation error to the low-
rank approximation of certain trigonometric moment matrices
and weighted moment matrices, followed by a refined spectral
analysis of the minimum eigenvalue of these matrices. In the case
of Gaussian mixing distributions, this result corrects a previous
lower bound in [1].

Index Terms—Gaussian mixture, density approximation, com-
plexity measure, convergence rate, non-asymptotic analysis, mo-
ment matrix, orthogonal polynomials.

I. INTRODUCTION

Let ¢ denote the standard normal density. For a probability
distribution P on the real line, denote by fp the marginal
density of the Gaussian convolution P * ¢, that is

fr(z) = / o — 0)dP(0). 0

We refer to P and fp as the mixing distribution and the
mixture, respectively. Given a general mixture fp, the problem
of interest is how to best approximate it by a finite mixture
fp.., where the support size of P, is at most m (i.e., m-
atomic).

Let d(f,g) denote a loss function that measures the ap-
proximation error of g by f. Concrete examples include L,
distances or f-divergences [2], the latter of which, includ-
ing the total variation TV(f,g), squared Hellinger distance
H?(f,g), the Kullback-Leibler divergence KL(f]||g), and the
x>2-divergence x2(f||g), are the focus of the present paper. The
best approximation error of fp by an m-component mixtures
is

* A .
& (m’ Pv d) - P,,}Ielg;m d(me7fP) (2)

where P,,, denotes the collection of all m-atomic distributions.
Considering the worst instance of this pointwise quantity, we
define

E*(m,P,d) £ sup £*(m, P,d) 3)

PeP

as the worst-case approximation error over a family P of
mixing distributions by m-component mixtures. It is well-
known that the optimization problem (2) is nonconvex (in the

location parameters) and is generally hard to solve. This shares
the essential difficulty of approximation by neural nets with
one hidden layer [3].

In information theory, the Gaussian convolution structure
arises in the context of Gaussian channels [4], where the input
and output distributions correspond to P and fp respectively.
The channel capacity determines the maximal rate at which
information can be reliably transmitted, which, under the
second moment constraint, is achieved by a Gaussian input
distribution. In practice, the input may be constrained to be
finitely valued due to modulation. To address this issue, [1]
studied the Gaussian channel capacity under input cardinality
constraints, in particular, the rate of convergence to the Gaus-
sian channel capacity when the cardinality grows. It turns out
that this capacity gap is precisely characterized by £* under
the KL divergence — see (11).

The problem of approximation by finite mixtures also nat-
urally arises in nonparametric statistics and empirical process
theory. Classical results show that the complexity of a class
of distributions, as manifested by their metric entropy, plays a
crucial role in determining the rate of convergence of nonpara-
metric density estimation [5], [6]. If the distribution family is
parametric, its entropy is often determined by the dimension
of the parameter space. However, nonparametric families are
infinite-dimensional and determining its entropy entails more
delicate analysis including finite-dimensional approximation.
To describe the most economical approximation by finite
mixtures, let us define

m*(e, P,d)=min{meN: 3P, €P,,,d(fp,,, [r)<e}, (4

i.e., the smallest order of a finite mixture that approximates a
given mixture fp within a prescribed accuracy e. For uniform
approximation over P, define

m* (e, P,d) = sup m*(e, P, d), (5)
PcP

which offers a meaningful complexity measure for the class
{fp : P € P} and is closely related to more classical
complexity notions such as the metric entropy. In fact, most of
the existing constructive bounds on the metric or bracketing
entropy for general Gaussian mixtures are obtained by first
finding a discrete approximation then quantizing the weights
and atoms, and the resulting upper bounds increase with m*
[7]-[10]. Hence, tightened upper bounds for metric entropy
immediately follow.
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Clearly, determining m* and that of £* are equivalent by
the dual formula

m*(e, P,d) = inf{m : E(m,P,d) < e}. (6)
Next, we state our main theorems in terms of m*.

A. Main Results

Our main results give tight non-asymptotic characterizations
of m* for the family of compactly supported or subgaussian
mixing distributions. For the former, consider

PpBId & fp. p[—M, M] = 1}. (7)

Theorem 1: Suppose M = O((e\/log 6_1)_1). Then, for
d € {TV, H,KL, x*},

log £

log<1 + ﬁ, /log %)

We provide some interpretations of Theorem 1. By defini-
tion, m* increases with M and decreases with e. In fact,
(8) captures an “elbow-effect” depending on the relationship
between M and e. If the support of mixing distributions is

m* (e, P54 d) = © Vit (@®)

not too wide, i.e., M = O<1 /log %) , m* has a slower growth

with respect to € as %; when M = Q(@) and
M=0 {(6 \/k)g? )*1} , the finite mixture needs to cover a

1

wider range, and m* grows as M, /log =.
€

Next we consider the family of o“-subgaussian distributions
+2
PSWG 2 [P PlX| >1t] <2 27,Vt >0} (9)

Theorem 2: Suppose c¢; < o < € for some constants
c;1 >0and 0 < ¢y < 1. Then for d € {TV, H,KL, x?},
1
m* (e, PSUC ¢y = © [Ulog =y 1] . (10)
€
One way to reconcile Theorems 1 and 2 is to notice

that each o2-subgaussian distribution is effectively supported
(except for a total mass that is polynomially small in €) on

[-Coy/log %, Coy/log %] for some large constant C, so that

the complexity of PSYG coincides with that of PBY with
M = O(c+/loge~!). While the upper bound essentially
pursues this idea, our lower bound applies a different analysis.

We now briefly discuss the proof strategies for the main
results. We prove the upper bound under the (stronger) x2-
divergence and the lower bound under the (weaker) TV
distance. For the upper bound, we extend the local moment
matching argument in previous work [9], which constructs
a discrete approximation by matching the moments for the
mixing distribution conditioned on each subinterval in a parti-
tion of the effective support of the mixture. This approach

IFor any positive sequences a,, and by, write a, = O(bn) if an < Cby,
for some absolute constant C' > 0, an, = Q(bn) when b, = O(an), an =
o(bp) when limay, /b, = 0, and a, = O(by) if both a, = O(by,) and
bn, = O(an) hold. For any z,y € R, z V y £ max{z, y}.

can be further extended to distribution families with gen-
eral tail conditions. The matching lower bound is the major
contribution of this paper, which is shown by relating the
best approximation error to the low-rank approximation of
(trigonometric) moment matrices followed by a refined spectral
analysis. The application of orthogonal polynomials also plays
a crucial role in this analysis. In fact, the matching lower
bound for Theorems 1 and 2 is proved for the uniform and
the Gaussian mixing distribution, respectively.

B. Comparison with Previous Results

Below we give a brief overview of previous results. The
upper bound for the compact support case is discussed in [7]-
[9]. Among them the best result [9, Lemma 1] gives an upper
bound of m* (e, P2 TV) = O(M/loge=! Vloge!). The-
orem 1 strengthens this result by bounding the x2-divergence
and establishing a faster rate. For the subgaussian case,
[11, Lemma 7] gives a simple loge~! upper bound for 1-
subgaussian family, while our Theorem 2 further discusses the
effect of the subgaussian parameter o. The specific approxi-
mation problem when P is N(0,02) is studied in [1], [12] in
the context of the finite-constellation capacity. In fact,

5*(m,N(0702),KL) = C_O’” (11)

where C' = maxp, gx2)<o2 [(X; X +2Z) = %log(l +0?) is
the Gaussian channel capacity with input X and additive noise
7 ~ ]\/v<07 1), and Cm = maprepm:]E[Xz]ng I(AXV7 X + Z)
is the capacity under input cardinality constraint. While quan-
tized Gaussian only achieves an error that is polynomial
in m, an exponential upper bound £*(m,N(0,0?),KL) =
0(02( 11; )2™ ) is shown in [1, Theorem 8] using the Gauss
quadrature. Theorem 2 generalizes this result to subgaussian
family with an improved exponent for large o.

Compared with these constructive upper bounds, the lower
bound is far less understood. For Gaussian distribution, [1,
Eq. (66)] claims that £* (m, N (0,02), KL) > (325 +0(1))>™;
however, the sketched proof turns out to be flawed, which
results in a wrong dependency of the exponent on large o. This
is now corrected in Theorem 2 (see also Propositions 2 and
4), which shows that the exponential convergence is indeed
tight. The exact optimal exponent, however, remains open.

C. Related Work

The problem of approximation by location mixtures is first
addressed by the celebrated Tauberian theorem of Wiener
[13], which gives a general characterization of whether the
translation family of a given function is dense in L*(R%) or
L*(R?) in terms of its Fourier transform. Convergence rates
have been studied over the past few decades, with a wide range
of applications in approximation theory, machine learning, and
information theory [1], [12], [14]-[16]. For example, Barron
[14] obtained dimension-free convergence rate for the location
and scale m-mixture class of sigmoidal functions, a funda-
mental result in the theory of neural networks. For Gaussian
models, Wu and Verdu [1] linked this problem to the Gaussian
channel capacity under input cardinality constraint (cf. (11)).
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More recently, [17]-[19] showed the consistent approximation
over various families with general location-scale mixtures. The
problem is also related to some recent work [20]-[22] on the
convergence rate of the empirical distribution to the underlying
distribution, both smoothed by Gaussian convolution, under
the so-called smoothed Wasserstein distance or f-divergences.

In the statistics literature, understanding the complexity of
a distribution class plays an important role in nonparametric
density and functional estimation [6]. Information-theoretic
risk bounds are obtained on the basis of metric entropy
for a variety of loss functions (see [23, Chapter 32] for
an overview). In addition, metric entropy of the Gaussian
mixture family is crucial for analyzing the statistical analysis
of the sieve and nonparametric maximum likelihood estimator
(MLE) in mixture models as well as posterior concentration
[7]1-[10], [24]-[27]. These results all rely on metric entropy
of the Gaussian mixture class (with respect to truncated Loo-
norm) obtained via approximation by finite mixtures.

D. Notations

We denote [k] = {1,...,k} for & € N. We use the Kro-
necker’s delta notation d;, = 1;j—4}. We use bold symbols
to represent vectors and matrices. For vector x, denote x!"
and x* as transpose and Hermitian transpose respectively, and
Diag(x) as the corresponding diagonal matrix. Denote || - ||
as the Euclidean norm for vector or spectral norm for matrix,
and let || - || be the matrix Frobenius norm. Write Apin(A)
as the smallest eigenvalue of matrix A.

In this paper, we present the main ideas and the proof
sketches. The details are omitted due to space limit.

II. PRELIMINARIES ON (TRIGONOMETRIC) MOMENT
MATRICES

The theory of moments is fundamental in many areas such
as probability, statistics, and approximation theory [28]. Given
a distribution P and X ~ P, denote its k-th moment by my =
my(P) = myp(X) = Ep[X*]. The moment matrix associated
with P of order n 4 1 is the following Hankel matrix:

mo mi My
my ma Mn+41
M, = (12)
mpy mn+1 man (n+1)><(n+1)
Denote the vector of monomials as X, = (1, X,..., X")T,

The moment matrix of P can be equivalently represented as
M, = Ep[X,X,]. Consequently, if P is discrete with no
more than m atoms, the moment matrix of any order is of
rank at most m, and P can be uniquely determined by its first
2m — 1 moments [28].

The above formulation can also be adapted to the trigono-
metric moments. For k € Z, denote ¢, = t,(P) = t1(X) =

Ep[e?*X] as the k-th order Fourier coefficients (or character-
istic functions) of P. Define the Toeplitz matrix

to t1 SR
t_q to th—1

T, = (13)
ten to(n-1) " to (n+1)x (n+1)

as the trigonometric moment matrix associated with P of
order n + 1. T,, is equivalently the ordinary moment ma-
trix of Z = eX in the sense that T, = Ep[Z,Z%] for
Z,=(1,Z,....Z"T.

Our proof of the converse results relies on classical theory
of moment matrices. For Hankel moment matrices, the seminal
work [29] studied the asymptotic behavior of small eigenvalues
for Gaussian and exponential weights. Systematical treatments
for general distribution classes are given by a series of work
[30]-[33]. [34] proposes a generalized result for certain forms
of weighted Hankel matrices. [35] gives characterization for
eigenvalues of Toeplitz forms, which applies in particular to
the trigonometric moment matrices.

The moment matrices are Hermitian and positive definite
provided that the corresponding distribution has infinite sup-
port [29]. In fact, the smallest eigenvalue of the moment matrix
plays an important role in the derivation of the lower bound.
[36] analyzes eigenvalues of Gaussian Toeplitz matrices, but
the lower bound is suboptimal. [31] introduces a framework
of bounding the smallest eigenvalue, extending the method of
[29]. Specifically, M, is related to the orthogonal polynomials
on the real line, and T, is related to the orthogonal polyno-
mials on the unit circle.

For this reason, we briefly introduce the general theory
of those orthogonal polynomials. Given a distribution P,
the associated set of orthogonal polynomials on the real
line satisfies: 1) pi(x) is a polynomial of degree k; 2)
J pj(x)pe(x)dP(z) = aidj; for some a; > 0. For the
orthogonal polynomials defined on the unit circle, the latter or-
thogonality condition is replaced by [ p;(e!?)pi(ei®)dP(6) =
ardjr. Say {pi} are orthonormal if they are orthogonal and
normalized such that a;, = 1. We refer the readers to [35] for
a comprehensive review of orthogonal polynomials and [37]
for orthogonal polynomials on the unit circle.

III. ACHIEVABILITY VIA MOMENT MATCHING

In this section, we give upper bounds of finite mixture
approximation of the distribution family P. For any P € P,
we need to construct an m-atomic distribution P, achieving a
small approximation error measured by d(fp,, , fp). Previous
results have shown that comparing moments is useful in
determining the approximation accuracy. For example, [I,
Theorem 8] considers the m-point Gaussian quadrature with
a scale parameter o that matches the first 2m — 1 moments of
N(0,0?). For the compactly supported family, [9, Lemma 1]
provides a moment matching approximation.

In our non-asymptotic analysis framework, when the relative
scale of the parameter of the distribution family compared
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with m changes, different treatments are needed. Consider the
compactly supported family as an example. The previous result
[9] becomes suboptimal unless M grows with m at a certain
rate, as shown in (14). To achieve a tight upper bound, we
bound the y2-divergence by moment differences and construct
moment matching approximations either globally or locally
depending on the relationship between parameters. The Gauss
quadrature serves as a classical approach to the global discrete
approximation in the sense of matching moments. In the
case of local approximations, we partition the support set
into subintervals and match the moments of each conditional
distribution. Similar constructions have appeared in [9] by
applying Caratheddory’s theorem to the conditional moments.

Then we extend our non-asymptotic analysis for the com-
pactly supported family to the subgaussian family via a
truncation argument. This approach is also applicable for other
distribution families with general tail bounds (e.g., subexpo-
nential tails and bounded moment conditions), by applying
(17) with the corresponding tail probability bounds.

Proposition 1: There exists a universal constant C' > 0 such
that for m € N and M > 0:

exp(—mlog %), m > CM?%

£ (m, Pyge, x*) < {
20 M?
(14)
Proposition 2: There exist universal constants C,C" > 0
such that for m € Nand 0 < 0 < C'm:

1
E*(m, PSUG ) <exp (—Cm log <1 + ) ) )
o

Note that the upper bound of m* in Theorems 1 and 2
directly follows from Propositions 1 and 2 in view of (6).
Additionally, as will be shown in Proposition 5, we have that
E*(m, PRI TV) (resp. £*(m, PSC TV)) is at least some
constant when M = Q(m) (resp. o = Q(m)). This result
coincides with Propositions 1 and 2 where the upper bounds
degenerate to constants for very large M or o. It follows that
no consistent approximation exists in these regimes.

The following lemma stated in [38, Lemma 9] is useful in
the derivation of y2-divergence upper bound, which bounds
the x2-divergence by comparing moments.

Lemma 1: Suppose all moments of P and @) exist, and Q)
is centered with variance 0. Then

S S

1
> J:

15)

(16)

Next we sketch the proof of Propositions 1 and 2.

Proof Sketch of Propositions 1 and 2: We first show the
upper bound for compactly supported distributions, then prove
the result for subgaussian family via a truncation argument.

o Global moment matching: Fix a distribution P € PJBV?d.
For any m € N, the Gauss quadrature rule implies the
existence of some P,, € P,, that matches the first 2m —1
moments of P. If m > CM?, applying Lemma 1 to
the centered distributions yields an exp(—Q (m log %))
upper bound.

exp(—logcﬁ>, VOM <m<CM?2.

o Local moment matching: If /CM < m < CM?, we
partition the interval [—M, M] into k subintervals [; =
[—M + (j — 1)2%, —M + j2Y] for j € [k], where k =
min{n € N: |[m/n] > C(M/n)?}. Note that k is finite
when m > VCM.

Specifically, we apply the results from global moment
matching to conditional distributions. Denote P;) as the
conditional version of P on I, that is, for any Borel
set A, Pj)(A) = Zgis Then P = Y5 P(I))Py).

P(1;)
According to the m > CM 2 case, for each P(j), there

exists some P; supported on at most |m/k| atoms
2

such that Xg(fl—:)ijp(j)) < exp(—Q(%)). Let P, =

Z?Zl P(I;)P;, then by Jensen’s inequality we have

X(fp.llfp) < eXP(_Q<%))'

e Truncation under subgaussian conditions: Fix P €
PSUG Let t € R, be a parameter to be determined.
Define P, and Pf as the conditional version of P on
I; & [—t,t] and If, respectively. For any distribution Q,
calculation shows that

2

X’(follfp) < P(L,)

(C(fallfr) + P(I)), (A7)

which converts the approximation problem to the sub-
gaussian P into that of its conditional version P;, which is
compactly supported, with an additional term of subgaus-
sian tail. Let ) be the approximation of P; achieving the
convergence rate in (14) for M = t. Then the two terms
on the right-hand side of (17) are bounded by (14) and
(9) respectively, as functions of m, ¢, and o¢. Finally, the
result (15) follows from choosing a suitable ¢ = t*(m, o)
to balance the terms, which also varies depending on the
regimes in (14).

IV. CONVERSE VIA SPECTRA OF MOMENT MATRICES

In this section, we give lower bounds for the best approx-
imation error by finite mixture approximation. To do so, we
propose a general framework applicable to various distribution
families and obtain the first valid lower bound that applies
to the approximation error of any finite mixture. Note that
for each P € P, m*(e, P,d) lower bounds m*(¢,P,d). We
choose Unif[—M, M|, the uniform distribution on [—M, M],
and N(0,02) as the representative in the family of com-
pactly supported and o2-subgaussian mixing distributions,
respectively. The connection between these two choices is
that the truncated version of N(0,02) in [—M, M] with a
sufficiently large o is essentially Unif[—M, M]. Also, they
are one of the hardest cases to approximate in their respective
class. The following results provide matching lower bounds to
Propositions 1 and 2, and also imply the desired lower bounds
for m*.
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Proposition 3: Suppose that m > 20. There exists some

universal constant ¢ such that
2
24) m3logm> (18)

Proposition 4: There exists a universal constant C; such that
the following holds. When m > C’M? for some sufficiently
large constant C’,

£*(m, Unif[~ M, M], TV) Zexp( Clmlog(MQ)); (19)

E*(m,N(0,02),TV) > cexp( (4+

and for any M >0, m € N,

m2
E*(m, Unif[— M, M],TV)ZeXp( Cl log4m> (20)
Before sketching the proof, we briefly introduce the main
ideas in our analysis. First, by applying the variational rep-
resentation with the set of trigonometric functions, the lower
bound reduces to comparing two trigonometric moment ma-
trices. Since the trigonometric moment matrix of an m-atomic
distribution is of rank at most m, we can think of the problem
from the perspective of low-rank approximation towards that
of Unif[—M, M|, which always has full rank. By the Eckart-
Young-Mirsky theorem, it is sufficient to bound the smallest
eigenvalue of the full-rank matrix. To handle this problem,
we further extend the spectral analysis procedure adopted in
[29] and [31] to the scaled trigonometric moment matrices
encountered in the derivation. The results are finally obtained
by evaluating the spectral norm of certain matrix consisting of
the coefficients of the corresponding orthogonal polynomials.
Proof Sketch of Proposition 3: Denote X ~ P, Z ~

N(0,1),Y=X+4+Z~ fp and X,, ~ P, for P,, € Py,.

o Lower bound via trigonometric moments: Let P =
N(0,02) € PSWG  Consider the variational rep-
resentation for total variation distance TV(P,Q) =
%supuf”oogﬂEpf(x) —Eqgf(x)]. Set the test function
as f,(r) = exp(iwz) and choose w € 0Z, where 0§ is
a frequency parameter to be chosen. Using the Gaussian
characteristic function, we obtain the lower bound

1tk (0X ) — tr(6X)]

TV 2 2!
(fpm’fp)_kez,\k\gm deop(i/y) D

| T (6X) — Tim(80Z)||r
= 2(m + 1) exp(m?§2/2) e
Amin(Tm(602)) (23)

~ 2(m + 1) exp(m?2§2/2)
where (23) follows from the Eckart-Young-Mirsky theo-
rem and the fact that rank(T,,(0X,,)) < m.
o Spectral Analysis for trigonometric moment matrix: For
T £ T,,(60Z), the Rayleigh quotient indicates that

x ' Tx

>\min T) = i T—_no -
D)= ™ o) 12

24
Let m, (w) = 37 xjw. Also expand 7,,, with orthog-
onal polynomials {o} on the unit circle as m,,(w) =
S cepr(w). Specifically, {¢k(z)} is the Rogers-
Szegd polynomials [37, Eq. (1.6.51)]. Denote x =

(0,...,Zm)" and ¢ = (cg,...,cm) ! as the two series
of coefficients respectively. It follows from the definition
that x = R, ¢, where R, is an (m+1) x (m+1) matrix
that encodes the coefficients of {¢y(x)}}",. Moreover,
the orthogonality of {¢y} implies that

lel3 = Efjmm(e®7)*] =x"Tx. (25
As a result, (24) becomes
Amin(T) = min el . (26)
cerm 1 [Ryc|? ~ [R[%

We then upper bound |R||% by a detailed calculation us-

ing the explicit form of {¢y(z)}. (18) is finally obtained

by a suitable choice of § to balance the terms in (23).
|

The proof of Proposition 4 also follows similar strategies.
Specifically, (20) simply follows from the expansion under
the standard monomial basis; (19) requires extra efforts as we
are unaware of the general explicit formula of the associated
orthogonal polynomials on the unit circle. To derive (19),
we turn to the variational lower bound of the x2-divergence
and determine the smallest eigenvalue of a certain weighted
moment matrix via a similar spectral analysis procedure. Then,
we convert the x2-divergence lower bound to a TV lower
bound by analyzing the Gaussian tails. Consequently, (19) and
(20) together yield a tight TV lower bound for Proposition 4.
However, for the case of Proposition 3, this indirect approach
only yields suboptimal dependency on o.

Finally, we consider the regime when o diverges. In this
case, we expect more components are needed to approximate
the mixture N (0, 1+0?) and it is natural to conjecture that the
approximation is impossible unless m is at least proportional
to o. This however is not captured by Proposition 3 due to
the extra polynomial term in m. The next result makes this
intuition precise in a strong sense for both the Gaussian and
the uniform mixing distributions.

Proposition 5: For some universal constant C', we have that

E5(m,N(0,0),TV) >1-C 1/ i
\llog—

The impossibility of non-trivial approximation for small m
can be explained as follows. If the mixing distribution P is
smooth enough with a large M (or o), then fp can be flat
over a large region. In comparison, when m is too small, fp,
inevitably has many modes and cannot approximate fp well.

E*(m, Unif[-M, M],TV) > 1 —
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