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High-entropy alloys show promising properties for novel catalytic designs, but their vast potential configurations
make them challenging to study computationally. Additionally, the traditional methods for data acquisition
required to train neural networks on these broad systems can be inefficient. To address this, we propose an active
learning methodology that integrates genetic algorithms with deep convolutional neural networks trained on

Density Functional Theory calculations via a simple closed feedback loop. This approach streamlines data
acquisition and the exploration of large configurational spaces simultaneously. We illustrate its effectiveness on
high-entropy clusters of variable sizes and compositions, the vast state spaces of which are automatically
explored and trained on, so as to generate and predict the stability of any cluster within the latent space given
minimal computational requirements. Importantly, this method is adaptable for use in a variety of other systems
of different sizes, chemical compositions, and stoichiometry.

1. Introduction

High-entropy alloys (HEAs), alloys with generally five or more ele-
ments, are a novel class of materials involving many principal elements.
They offer a broad range of applications beyond low entropy alloys
(LEAs) by combining unique properties like strength, ductility, corrosion
resistance, thermal stability, among others [1-3], as well as fine-tuned
catalytic behavior [4-6], all in one material. However, these unique
properties derive from specific elemental compositions, stoichiometries,
and geometries, and so are not easily predicted a priori due to the vast
space of complex, combinatoric possibilities. Therefore, many have
turned to machine learning (ML) methods to learn chemical patterns in
experimental and theoretical data and hence infer predictive design with
significant accuracy [7-18]. Studies exist, for example, that predict the
ductility [10], hardness [8,14,18], surface energies [13], as well as other
properties of HEAs [15-17].

The bottleneck for these data-driven predictive models is of course
data acquisition. Due to the immense scale of the combinatoric space
available to HEAs, no reasonable method exists for exploring these
possibilities thoroughly. Only very recently have more advanced tech-
niques been applied together with neural networks (NNs) and other ML
methods in order to further improve efficiency [19-26]. To this end, our
work addresses this bottleneck and expands upon the research from a
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theoretical standpoint by demonstrating how one can engineer a feed-
back loop between structures generated and structures validated within
an active learning algorithm (ALA).

ALAs have been used successfully in material discovery for exploring
vast search spaces of promising potential without the need for human-in-
the-loop verification [27-41]. Notable examples include ALA techniques
utilized to optimize for wide band-gap materials [39], surface reaction
networks [40], and melting temperatures [41]. Many ALAs that seek to
explore chemical space utilize what is known as query-by-committee,
where one builds an ensemble of models and focuses training on areas
of the phase space with large, normalized ensemble standard deviation.
For high entropy materials, other approaches have also gained traction
[42-50]. Notable examples include a study where Rao et al. employed a
complex active learning loop between experiment and theory to study
high-entropy materials. They began with an autoencoder and stochastic
sampling technique for generating and sampling structures. Then with a
two-step ensemble regression model and a gradient-boosting decision
tree they narrowed down promising high entropy materials. A ranking
policy selected the final candidates, which were experimentally vali-
dated [46]. Xue et al., looking to find high entropy alloys with low
thermal hysteresis, found success using a Bayesian-based approach with
bootstrap sampling to estimate uncertainty and guide where to supple-
ment their dataset of first-principles calculations [47]. Li et al. employed
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a domain knowledge constrained active learning loop with Bayesian
optimization and bootstrap sampling to search for high-entropy alloys
by ultimate strength and ductility [48]. Sulley also utilized a Bayesian
optimization approach to predict the stable phases of high-entropy al-
loys [49]. Zhang et el., like the previous study, focused on predicting the
phases of high-entropy alloys, but instead used a genetic algorithm to
pick specific ML models and descriptors [50]. Our ALA methodology is
similar in design to previous methodologies, wherein a closed feedback
loop is established between structures sampled, and structures used to
improve an inference model, which in-turn improves the decision
making algorithm for prioritizing the sampling of novel data — a broad
view of implementations and their applications can be found in litera-
ture reviews [28,38]. Here we present a simple approach that scans
phase space for lower atomization energies, simultaneously building up
our training dataset while proceeding closer to an energy minimum. Our
approach also reduces the number of high-entropy data points needed to
train models to predict the properties of high entropy materials by
making use of low-entropy, bimetallic data.

In a previous report [51] we established the ALA’s functionality with
bimetallic nanoclusters of various sizes, where it was discovered that
training on exclusively 15, 20, and 25 atom clusters allowed us to suc-
cessfully interpolate and infer the energies and forces of clusters be-
tween these sizes with high accuracy, ~0.3 eV mean absolute error
(MAE) in all energy predictions. This proved the NN was learning the
energy landscape as a function of cluster configuration with minimal
bias, allowing us to dramatically reduce the compute naively required
for generalization by training specifically on uniquely representative
clusters. Now, we expand the ALA’s domain of applicability by testing it
on high-entropy clusters (HECs) of various sizes, stoichiometries, and
compositions.

As proof-of-concept, we focus on HECs, rather than bulk or substrate
alloys, because they have advantages in their high surface-to-volume
ratio, allowing for wider ranges in coordination and hence reactivity,
which is essential for novel catalytic design [52-55]. The ALA combines
a genetic algorithm (GA) for generating structures and density func-
tional theory (DFT) for validating or ‘labeling’ said structures. GAs have
a long history of use in exploring the conformational space of metallic
clusters [55-65,18], with most attempts however involving only
low-entropy systems. In this work, we explore the chemical space of six
elements: Ag, Au, Cu, Ni, Pd, and Pt, and show that one can reliably
predict HEC energies (~0.3 eV MAE across all tests) and forces at the
quantum level in a highly efficient and automatic way. Taken together,
our results demonstrate the ability to generalize from low-to-high en-
tropy clusters, as well as between small and large clusters. Specifically,
we show how the ALA trained to predict energies and forces for bime-
tallic clusters of sizes 33, 55, and 77 atoms can reliably predict the en-
ergies and forces of clusters with up to six elements, as well as
successfully interpolate predictions for clusters between these sizes. By
relying on bimetallic data and only three cluster sizes, we can save vast
amounts of computational resources exploring HECs.

Stoichiometries per cluster size are generated randomly from their
binomial distributions such that they maintain mostly even elemental
and stoichiometric ratios. If one instead uses a NN to train an inter-
atomic potential for a specific stoichiometry or range of stoichiometries,
as has become popular [22-26], there is no guarantee, and indeed it is
unlikely, that this potential performs well on different stoichiometries,
severely limiting the high-entropy chemical space that we can reliably
explore. And so by generating cluster compositions from their total
possibilities in a random yet controlled fashion, maintaining uniform
elemental and stoichiometric distributions, we minimize bias across
these combinatoric possibilities. Counting the total number of allowed
stoichiometries S is relatively straightforward with combinatorics: let z
be the set of available elements z = {Ag, Au, Cu, Ni, Pd, Pt}, c the
choice in number of elements per cluster, measuring the entropy of our
system, ¢ = {2, 3, 4, 5, 6}, and n the size of the system. The total
number of possible stoichiometric combinations can therefore be
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The first factor is understood to be the number of ways one can
choose c elements from z options, and the second factor is derived
directly from the ‘stars and bars’ theorem for combinations with repe-
tition. Total combinations S grows quickly in all of its parameters. For
example, if we have 55-atom clusters of six total possible elements per
cluster, we have S = 8.10 x 102, 2.86 x 10* 3.72 x 10°, 1.9 x 106,
3.16 x 10° stoichiometries for c = 2, 3, 4, 5, 6 respectively. Note that
this says nothing about geometry, we are simply counting all possible
unique combinations of elements and elemental ratios. Thus, if we had a
larger system of 100 atoms and 10 elements to choose from, we already
have approximately a trillion possible stoichiometric combinations for
any given geometric configuration. This expression of the vastness of the
state space is the underlying motivation for merging sophisticated
search algorithms and machine learning techniques.

Our results suggest fully automatic data generation and validation
for mapping these vast state spaces at high accuracy, in identifying both
global patterns and unique local states, is very much possible with
reasonable computational demands. The overall compute saved by
combining sophisticated search algorithms with machine learning
techniques, as compared to traditional methods, cannot be overstated.
In Section 2 we present our computational methods, in Section 3 we
present our results & discussion, and in Section 4 we present our
conclusions.

2. Computational methods

Active learning is an ML technique that typically involves feedback
loops for self-optimization and allows the algorithm to actively decide
what data to use as it iterates, e.g., which data to label for training a NN.
The ALA’s algorithm and schema are simplified in Fig. 1, where one
global iteration is defined by the outermost “for loop”. Here, this
decision-making is achieved by the filtration functions F1 and F2. The
first filtration function decides which of the images generated by the GA
to label via DFT. The second filtration function likewise decides which of
the labeled images to use for training the NN. Together, they can be
optimized to minimize costly DFT calculations and train exclusively on
minimally necessary images. In our example, F1 primarily ensures
clusters are ‘safe’, in that they obey interatomic distances and cell
constraints with a minimal interatomic distance of 0.2 A and cell bounds
of 20 A, with the additional function of maintaining size and stoichio-
metric distributions within the dataset. F2 likewise filters out any mis-
labels, maintains distributions, and can use the previous iteration’s NN
to infer which images to select, minimizing training redundancy and
ensuring diversity within the training dataset per global iteration.

The GA is implemented via the Atomic Simulations Environment

a) b)

for i in range(iterations): -

>for size in sizes:

>>for stoi in stoichiometries:
runGA(j, size, stoi)

>F1(1)

>runDFT(1)

>F2(i)

>runNN(1)

done

Fig. 1. ALA simplified algorithm (a), and schema (b). Global iterations are
defined by the outer “for loop™.
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(ASE) library [66]. It works by taking in system constraints and gener-
ating an initial population of images, and then a process of ‘evolution’
occurs. Images are selected based on a ‘fitness function’, possible ‘mu-
tations’ occur, and pairs are combined via ‘crossover’ functions, gener-
ating new structures. This process of selection, mutation, and crossover
constitutes one generational cycle and can be iterated to ‘evolve’ novel
and evermore fit images (structures). In our demonstration, the fitness
function is simply the cluster’s atomization or binding energy, defined as
the difference in its total energy (TE) and the sum of energies E; of its
constituent atoms

AE=TE-) E 2

Thus, our GA performs a global optimization search on cluster at-
omization energy as a function of configuration. We chose to allow our
GA algorithm to modify cluster geometry and stoichiometry with respect
to atomization energy as we are interested in screening for clusters that
may be experimentally synthesized. While atomization energy may not
be a perfect indicator of which clusters may form under experimental
conditions, it serves as a useful metric for reducing state space, allowing
us to screen a much smaller subspace of clusters with high-level theo-
retical calculations or with experiment. Moreover, if our algorithm
works with atomization energy as a fitness function, it should work with
any other calculatable quantity. Evolutionary algorithms are in general
well-known to be efficient and unbiased search techniques due to their
ability to balance exploration and exploitation via their tunable pa-
rameters and inherent stochastics. We start with 100 initial random
images and generate from them 500 images per size, per stoichiometry,
per global iteration. We use a mutation rate of 0.3, for mirror, rattle, and
permutation mutations as implemented by ASE. Each set of 500 images
is then filtered down by F1 to the top 50 images sampled from a log-
normal distribution over their atomization energies. This leads to just
500 images per cluster size, per global iteration, for labeling with DFT.

The DFT validation labeling is implemented via the VASP package
5.4 [67-69], which we use to calculate a given image’s total energy and
forces. These simulations are externalized from Python, such that they
may be more easily parallelized on a large compute cluster. We use the
GGA functional from PBE [70] with the PAW [71] method, a1l x 1 x 1
k-point mesh, 50-100 electronic iterations, under a minimal energy
difference of 1E-4 eV, and no positional update. F2 then filters these
images, if need be, ensuring they converge to reasonable energy and
force values. Moreover, F2 can ensure no new images are energetically
redundant within the training set, maintaining efficiency and diversity.

The NN is implemented via the SchNetPack library [72], which uses
a deep convolutional approach for modeling atomistic properties such as
potential energy surfaces and other quantum-chemical properties of
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molecules and materials. For our purposes, we use it to learn the pair-
wise DFT potentials, so as to predict cluster energies and forces from
geometry and composition around 1000x faster than DFT, with reliable
precision and accuracy. We train each global iteration’s cumulative
dataset for 500 epochs, or until no improvements to the validation loss
occur over 50 epochs, with a starting learning rate of 0.001, which re-
duces by half every 20 epochs that don’t improve by a relative change of
0.1 %. We use a 70, 15, and 15 percentage split for training, validation,
and testing datasets, respectively.

To demonstrate the efficiency of our methodology, we first run the
ALA to convergence, given our criteria, with all possible types of
bimetallic clusters, given our six elements of sizes 33, 55, and 77 atoms.
Then we test how well the final NN interpolates the energies and forces
of clusters between the range of 33 and 77 atoms and between low and
high entropy, from two up to six elements.

3. Results & discussion

Global convergence is seen in Fig. 2a and b, where after 8 global
iterations, we determine our cumulative NN to have successfully learned
the DFT potential for the given state space of bimetallic 33, 55, and 77
atom clusters. Here the ALA is considered to converge when the MAEs
fail to improve significantly between successive iterations. We notice
that the global improvement is not monotonic, as iterations can fare
worse than previous iterations. This behavior is expected since, while
the state space is simplifying globally, due to the fact that generated
clusters are becoming more relaxed and symmetric via the GA’s imple-
mentation, it is not always simplifying locally. For instance, we often
have an up-tick in MAEs when the clusters transition from an open,
random distribution, to a closed, more orderly configuration — not unlike
how relaxation curves often involve potential barriers that need to be
overcome before deeper minima are achieved, the same principle ap-
plies to the global state space. The fact is, we could use our filtration
functions, F1 and F2, to emphasize structures the NN knows well, and we
would get a more monotonic trajectory, at the cost of over-specializing
the NN, and so a balance must be struck between training on novel and
familiar images.

Once our ALA has converged, we put the cumulative NN to the test of
generalization (explicit training results are seen in the supplementary
material Fig. S1). Fig. 2c shows these results for the NN trained exclu-
sively on LECs (bimetallic clusters) again for 33, 55, and 77 atom clus-
ters, where the NN is attempting to generalize from LECs to HECs, and
performs surprisingly well. Each set of energies and forces per entropy,
per graph, contains approximately 500 images generated by a GA and
validated with DFT, external to the ALA. We see a more or less constant
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Fig. 2. Mean absolute error (MAE) on prediction for energies (eV/cluster) in a), and forces (eV/atom//e\) in b), show learning improvement as a function of global
iteration. Low-to-high entropy predictions in the same units c¢). Datasets were trained exclusively on bimetallic clusters of sizes 33, 55, and 77 atoms.
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MAE as a function of entropy. This result is what one would expect if the
NN was approximating the DFT potential well, as there should be min-
imal bias concerning system entropy, and importantly, this indicates we
can predict high-entropy systems from low entropy ones, without the
computational increase that is typically associated with increased sys-
tem complexity.

Now that we have evidence for the algorithm’s ability to use LECs to
predict HECs, we want to test size interpolation and entropy extrapo-
lation simultaneously. Since in our previous report we have shown that
these NNs can successfully predict between and around cluster sizes
used for training, we now want to see if they can do the same for high
entropy systems, and to what extent. This test is a direct measure of the
extent to which the NN has learned the DFT potential — because if it has
learned the potential well, then just like DFT, its accuracy should not be
affected by the size of the system or combinations of its constituent
atoms. Of course some deviation is expected, since the NN is only
approximating the DFT potential, given the trained dataset, and making
extrapolations. However, the point of using NNs like this is precisely to
trade in some affordable error to obtain a very reasonable prediction
several orders of magnitude faster than the associated first-principle
calculation.

Fig. 3 shows these results. The first graph shows rolling averages of
the energy MAEs of each subsequent graph collectively. Whereas in
Fig. 2¢), every adjacent blue-red bar pair represents approximately 500
test clusters of the graph’s associated size(s), per entropy, here they
represent ~100 test clusters of the graph’s associated entropy, per size.
That is, here in Fig. 3, the x-axis spans all cluster sizes between 33 and 77
atoms inclusively, and for each size we plot an associated MAE for the
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energy and forces over ~100 clusters of that size. The rolling average of
the first graph’s window is every 5 cluster sizes, and so each point in the
associated entropy’s colored line is composed of an average of the en-
ergy MAE for ~500 test clusters, again generated by a GA, and validated
with DFT, external to the ALA - force MAEs are ignored in the first plot
to ease visualization of the energy error distribution.

The general trends here are obvious, firstly the NN seems to present
robustness regarding the given cluster’s entropy. Additionally, by
training on exclusively 33, 55, and 77 atom clusters, the NN can infer
with scattered but predictable accuracy for all sizes in between, meaning
the NN can predict with a MAE for atomization energy of less than 0.40
eV and a MAE for forces below 0.25 eV/A for most cluster sizes in be-
tween 33, 55, and 77 atoms. The first two trends are taken to be evidence
for the NN approximating the DFT functional well. Some outliers with
larger MAEs exist. We see these outliers generally at lower cluster sizes.
That is to say, the NN prediction error is somewhat inversely propor-
tional to cluster size. This last trend, the downward slope of MAE vs
cluster size, can be understood by realizing smaller clusters have less
diversity within their coordination trends, whereas larger clusters can
encapsulate the coordination trends of smaller clusters into their own.
That is to say, geometric and elemental patterns made by smaller clus-
ters can be picked up on by the NN from pieces of larger clusters,
whereas the reverse is not true. As the NN predicts with less accuracy on
smaller clusters, we also expect the error per atom to be larger for the
smaller clusters and smaller for the larger clusters. This exact trend is
demonstrated in Figure S2 in the Supplementary information. Figure S2
contains the same plots as Fig. 3 but with errors in eV/atom. Finally, we
do not see noticeable outliers for force predictions on clusters with sizes
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C=2 == energy . energy
m— C=3 = forces mm forces
w— C=4
0.8+ C=5 0.8 0.8
Cc=6

MAE (eV)

Atoms per Cluster

Atoms per Cluster

55 55
Atoms per Cluster

C=4 C=5 C=6
1.0 1.0 1.0
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Fig. 3. Cumulative NN’s prediction errors tested for sizes between trained sizes (33, 55, 77), and across higher entropy values (¢ = 2,3,4,5,6). Each bar pair contains
~100 test images generated external to the ALA of random, even stoichiometry. Units are again eV for energies and eV/A for forces.
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outside the training dataset. We attribute this to the fact that our algo-
rithm is converging on some local or global energy minimum, where the
forces on each atom will all be close to zero.

Focusing on the bimetallic clusters the algorithm trains on, during
the ALA’s descent toward the system’s global minima, the configuration
space is mapped as a function of energy. That is, the set of clusters
generated, sampled, and labeled during this process automatically
represent some estimation of the otherwise intractable state space to-
pology. Therefore, we can infer unique states and global patterns from
this collection and its statistical distributions. As exemplified in Fig. 4,
we showcase the highest and lowest unique structures with respect to
both their total energy and atomization energy as the ALA explores
bimetallic clusters. A few noteworthy trends stand out. Firstly, Pt clus-
ters dominate the most stable states, be they in terms of total or atom-
ization energy, with few exceptions — note that no pure clusters exist in
the datasets, they are all composed of at least two elements. Addition-
ally, the least stable total energy structures are populated mostly by Ag-
Au clusters, with a few Ag-Pd and Ag-Cu as well, whereas in terms of
atomization energy, we see many more Pd clusters, not all of which
contain Ag. These differences stand to justify the importance of calcu-
lating atomization or binding energy as a more representational measure
of structure stability, as compared to total energy. We see the use of this
more relative measure in the fact that the most stable structures are
more consistent, as well as the fact that the least stable structures are
more diverse. We also note more disorder among clusters with the
highest atomization energy, which should be expected. As our ALA
moves towards an atomization energy minimum, the clusters adopt a
much more ordered phase.

To get a better understanding of this energy landscape, we plot
several distributions in Fig. 5, which stand to demonstrate what global
patterns can be gleaned from our ALA methodology. We sample 9000
images of those generated and validated and plot their atomization
energies as a function of cluster size (black lines in the first plot). We see
that they span a wide overlapping range of —40 to —375 eV, and by
plotting which element is most common for each cluster (here as
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different colors), we can get an idea of the stability contributions per
element. Fig. 5b) emphasizes this relation by normalizing the distribu-
tion of each cluster’s stability as a function of its most common element
(same colors). Clearly, Pt and Ni dominate the most stable clusters
regardless of size, and Ag and Au compose most of the least stable
structures. Moreover, we can compare these elemental and energetic
distributions directly with core-shell segregation — that is, how the ele-
ments prefer to gather within the cluster, as either in the core, on the
surface, or some other mixed morphology. This shows which elements
will be more or less susceptible to reaction conditions. For example, we
note that while Pt and Ni dominate the most stable clusters, Pt doesn’t
prefer the core, rather, Ni and Cu do, while Au and Ag prefer the surface,
where the rest are mixed. These insights into global and local patterns
come automatically and without bias from the ALA’s data generation
and validation methodology, providing us with meaningful trends of
significant interest to the new era of materials discovery.

4. Conclusions

We have demonstrated the utility of a new ALA design, in its ability
to self-improve as it descends the energy landscape, generating, sam-
pling, and labeling new images to learn from. This procedure serves
specifically for exploring vast new state spaces, for which no data is
readily available, and will by design converge automatically on or
around the state space’s global energy minima complete with a cumu-
lative neural network capable of accurately predicting the energies and
forces (and perhaps other properties) of any reasonable structure
(defined by filtration functions) within the system’s state space. More-
over, we have provided evidence for the fact that low-entropy systems’
characteristics can indeed be used to predict the formation of high-
entropy systems. Specifically, we demonstrated that the ALA trained
on bimetallic clusters can successfully make predictions on clusters with
up to six elements, and between all trained sizes. All energy prediction
MAE:s are less than 1.0 eV per cluster, and decrease towards ~0.2 eV
with increasing cluster size scale. The cluster’s total energy ranges
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between —50 and —400 eV, and therefore, assuming an average MAE of
0.3 eV, our energy errors range from 0.075 % to 0.6 % of the total energy
— with force errors consistently smaller. We thereby demonstrate that a
properly trained NN can generalize from LECs to HECs and interpolate to
cluster sizes never seen before. While these results come naturally with
the assumption that our neural networks have accurately modeled the
DFT potential, which can itself generalize, they nevertheless represent
extremely valuable insights for dramatically reducing the computational
cost of simulating complex systems, as is inherent in the search for novel
high entropy materials. Moreover, since our algorithm works well
minimizing atomization energy, it should work well for other properties
of HECs. Future studies will focus on the ability of our method to other
properties, and to size extrapolation.

The importance of this computational frugality cannot be overstated,
for simulating high-entropy systems via DFT involves notably larger
compute compared to low-entropy systems of the same design, due to
greater electronic complexity. Yet, a NN which has approximated the
DFT potential will predict system properties in constant runtime
regardless of system complexity. This allows us to make quantum-
accurate guesses for complex systems from low-complexity data, effec-
tively circumventing the exponential compute typically associated with
the scaling of non-linear systems. To conclude, we believe the method-
ology presented in this study represents a significant step forward in the
computational exploration of high-entropy systems, demonstrating the
potential of active learning, and machine learning methods in general, in
tackling complex materials science problems. The development and
successful implementation of our ALA paves the way for future studies to
further harness and exploit the unique properties of high-entropy ma-
terials for practical applications, especially in the field of catalysis and
hydrogen storage. This basic algorithmic feedback design could very
well be instrumental in guiding experimental efforts by providing in-
sights into promising configurations and phases for complex materials.
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