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Sharp information-theoretic thresholds for shuffled
linear regression
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Abstract—This paper studies the problem of shuffled linear
regression, where the correspondence between predictors and
responses in a linear model is obfuscated by a latent permutation.
Specifically, we consider the model y = I1. X 3. + w, where X
is an n x d standard Gaussian design matrix, w is Gaussian
noise with entrywise variance o2, I, is an unknown n x n
permutation matrix, and (. is the regression coefficient, also
unknown. Previous work has shown that, in the large n-limit, the
minimal signal-to-noise ratio (SNR), || 3. |3 /o2, for recovering the
unknown permutation exactly with high probability is between n?
and n° for some absolute constant C' and the sharp threshold is
unknown even for d = 1. We show that this threshold is precisely
SNR = n* for exact recovery throughout the sublinear regime
d = o(n). As a by-product of our analysis, we also determine the
sharp threshold of almost exact recovery to be SNR = n?, where
all but a vanishing fraction of the permutation is reconstructed.

I. INTRODUCTION

Consider the following linear model, where we observe

Here X € R™* is the design matrix, 8, € R? is the unknown
regression coefficient, II, is an unknown n X n permutation
matrix that shuffles the rows of X, and w € R™ is observation
noise. The goal is to recover II, and [, on the basis of
observing X and y.

If II. is known, (1) is the familiar linear regression.
Otherwise, this problem is known as shuffled regression [1],
[2], unlabeled sensing [3]-[5], or linear regression with per-
muted/mismatched data [6]-[8], as the correspondence be-
tween the predictors (the rows x;’s of X) and the responses
(y;’s) is lost. As such, it is a much more difficult problem
as one needs to jointly estimate the permutation I, and the
regression coefficients S,. This is a problem of considerable
theoretical and practical interest. For applications in areas such
as robotics, data integration, and de-anonymization, we refer
the readers to [3, Sec. 1] and [5, Sec. 1.1].

A line of work has studied the minimal signal-to-noise ratio
(SNR) that is required to reconstruct II,. Following [1], [9], in

this paper we consider a random design X with X;; S (0,1)
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. . iid . .
and Gaussian noise w; ~ A(0,02), which are independent
from each other. Define

8.3

o2

SNR £ 2

It is shown in [1, Theorems 1 and 2] that for exact recovery
(namely, II = II, with probability tending to one), the required
SNR is between n? and n¢ for some absolute constant C.
Intriguingly, numerical simulation carried out for d = 1 (see
[1, Fig. 2]) suggests that there is a sharp threshold SNR = n¢©
for some constant Cy between 3 and 5.

The major contribution of this work is to resolve this
question by showing that the sharp threshold for exact recovery
is SNR = n* for all dimensions satisfying d = o(n). Along the
way, we also resolve the optimal threshold for achieving al-
most exact reconstruction, namely, overlap(f[, IL,) = 1—o0(1),
where 1

overlap(I, I1,) £ ETr(f{TH*)

is the fraction of covariants that are correctly unshuffled. In
other words, if 7 and T are permutations corresponding to 1T
and II,, then overlap(ILIL,) = 1| {i € [n] : #(i) = m (i)} |.

II. MAXIMUM LIKELIHOOD AND QUADRATIC ASSIGNMENT

A natural idea for the joint estimation of (IL,,S.) is the
maximum likelihood estimator (MLE) [1]:

(IL,3) = argmin ||y — X3, 3)
IeS,,BcRe
where S, denotes the set of all n X n permutation matrices.
Since [, has no structural assumptions such as sparsity, n > d
is necessary even when there is no noise and II, is known. By
classical theory on linear regression, for a fixed II the optimal
S for (3) is given by

bus (XTX)TIX Ty @
and |ly — ILX 3|13 = || Prx) 2 y)13. where
Pux SOX(X'X)7'X 17 (5)
2Py

Paixyr 21, — Pux =11 (I, - X(XTX)"' XTI (6)

A
_,PXL
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are the projection matrices onto the column span of ITX and its
orthogonal complement respectively. Thus the ML estimator
of II, can be written as!

I = arg max || Prxyl|2. @)
I1es,
This optimization problem is in fact a special instance of the
quadratic assignment problem (QAP) [10]:
T
gggim,ﬂ BII), (8)
where A = yy' is rank-one and B = Px is a rank-d
projection matrix. For worst-case instances of (A, B), the QAP
(8) is known to be NP-hard [11]. Furthermore, even solving
the special case (7) is NP-hard provided that d = Q(n) [1,
Theorem 4]. On the positive side, for constant d it is not hard
to see that this can be solved in polynomial time. Indeed, as
the proof in Section V shows (see [9, Sec. 2] for a similar
result), instead of (8), one can approximate the original (3)
by discretizing and restricting 5 to an appropriate d-net for
d = 1/poly(n). Since for fixed 3, (3) becomes a very special
case of the linear assignment problem (LAP) maxy (y, I1X 3)
which can be solved by sorting the vectors y and X /3, the
discretized version of (3) can be computed in nP@ _time. In
fact, for the special case of d = 1, this can be made exact [,
Theorem 4].

III. MAIN RESULTS

The following theorem on the statistical performance of the
estimator (7) is the main result of this paper.
Theorem 1: Fix an arbitrary € > 0. Assume that d = o(n).
(a) Exact recovery: If SNR > nte, then P[II = II,] =
1 —o0(1) as n — oo, where o(1) is uniform in I, and
B

(b) Almost exact recovery: If SNR > n2t¢ then
Ploverlap(IT,11,) = 1 — o(1)] = 1 — o(1) as n — oo,
where o(1) is uniform in II, and S,.

The positive results in Theorem 1 are in fact information-
theoretically optimal. To see this, for the purpose of the lower
bound, consider the case where II, is drawn uniformly at
random and 3, is a known unit vector. Defining x £ X By ~
N(O, I,,), we have y = II,z + w. Then the problem reduces
to a special case of the linear assignment model studied in
[12]-[14] where the goal is to reconstruct II, by observing
x and 1.2 Specifically, applying [14, Theorem 3] for one
dimension shows that exact (resp. almost exact) reconstruction
is impossible unless o = o(n~2) (resp. o = o(n™1)).

Next, let us comment on the role of the dimension d. As
lower-dimensional problem instances can be embedded into
higher dimensions by padding zeros to [, the minimum

'We note that although (I1, B) defined in (3) is the MLE for (IL, B), it is
unclear that IT itself (i.e., (7)) is optimal (that is, minimizing the probability
of error P[II # II,] when Il is drawn uniformly at random), due to the
presence of the nuisance parameter Ss.

2These works considered the more general setting where z,y are n. X m
Gaussian matrices and the respective threshold for exact and almost exact
reconstruction has determined to be n =2/ and n~1/™ for m = o(logn).

required SNR for recovery is non-decreasing in d. Theorem 1
shows the optimal thresholds for exact and approximate exact
recovery are SNR = n* and n? in the sublinear regime of
d = o(n). When the dimension is proportional to the sample
size, say d = pn for some constant p € (0,1), we conjecture
that the conclusion in Theorem 1 no longer holds and the
sharp threshold depends on p. In fact, [1, Theorem 1] shows
that the estimator (7) achieves exact recovery provided that
SNR > n¢/(1=¢) for some unspecified constant C. On the
other hand, the simple lower bound argument above does not
yield any dependency on p, since it assumes S, is known
and reduces the problem to d = 1. Determining the optimal
threshold in the linear regime remains a challenging question.

IV. FURTHER RELATED WORK

The model (1) has been considered in the compressed
sensing literature for zero observation noise (¢ = 0), known
as the unlabeled sensing problem, with the goal of recovering
By € R? exactly. The work [3] showed that when the entries
of X are sampled iid from some continuous probability
distribution, any f,, including adversarial instances (the so-
called “for all” guarantee), can be recovered exactly with
probability one if and only if one has n > 2d observations.
The paper shows this using a constructive proof, but it requires
a combinatorial algorithm involving exhaustive search.

Moving to the weaker “for any” guarantee, the works [9],
[15] also consider the noiseless setting and propose an efficient
algorithm based on lattice reduction that recovers an arbitrary
fixed [, with probability one with respect to the random
design, provided that n > d. Another approach based on
method of moments is proposed in [2], where the empirical
moments of X B are matched to those of y.

There is also a line of work on shuffled regression when the
latent permutation is partially (or even mostly) known [5]—[8]
that has found applications in analyzing census and climate
data. This approach permits a robust regression formulation
for estimating 3., wherein the unknown permuted data points
are treated as outliers, from which I, can then be estimated.

The problem of learning from shuffled data has also been
considered in nonparametric settings, e.g., isotonic regression,
where y; = f(z;) + w;, for some f : [0,1]2 — R that is
coordinate-wise monotonically increasing, and the goal is to
estimate f. When the x; are permuted, this problem is known
as uncoupled isotonic regression, which has been studied in
[16] for d =1 and in [17] for d > 1.

V. PROOF OF THEOREM 1

Throughout the proof, we assume II, = I,, without loss
of generality. The proof of Theorem 1 follows a union bound
over II # I,, and is divided into two parts: Section V-A deals
with those permutations II whose number of non-fixed points
is at least nn (for some n = o(1) depending on d and ).
Section V-B deals with those permutations II whose number
of non-fixed points is at most nn.

Although both [1] and the present paper analyze the estima-
tor (3), the program of our analysis deviates from that in [1]
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in the following two aspects, both of which are crucial for
determining the sharp thresholds.

First, a key quantity appearing in the proof is the following
moment-generating function (MGF):

Bexp (¢ X5, — TIXBI13). ©
for a given II and S, where ¢ x ﬁ While similar quantities
have been analyzed in [1], only a crude bound is obtained in
terms of the number of fixed points of II (see Lemma 4 and
eq. (25-26) therein). Instead, inspired by techniques in [14]
for random graph matching, we precisely characterize (9) in
terms of the cycle decomposition of II and . In particular,
to determine the sharp thresholds, it is crucial to consider all
cycle types instead of just fixed points.

Second, recall that the MLE (3) involves a double mini-
mization over II and 3. While it is straightforward to solve the
inner minimization over $ and obtain a closed-form expression
for the optimal B (4), directly analyzing the MLE with this
optimal Bn plugged in, namely, the QAP (8), turns out to be
challenging. In particular, this requires a tight control of the
MGF (9) with S replaced by BH. While this is doable when
II is close to I, the analysis becomes loose when II moves
further away from I,, and requires suboptimally large SNR.
Alternatively, we do not work with this optimal fr1 and instead
take a union bound over a proper discretization (é-net) of 3.
Importantly, the resolution § needs to be carefully chosen so
that the cardinality of the §-net is not overwhelmingly large
compared to (9). This part crucially relies on the sublinearity
assumption d = o(n) and the fact that II has at least nn non-
fixed points.

A. Proof for permutations with many errors

In this part, we focus on the permutations that are far away
from the ground truth and prove that
P {overlap(fL L)< (1— n)} = o(1), (10)
for any fixed €, provided that SNR > n2*¢, d = o(n), enn >
100d, and i > n~/10. Note that here we only require SNR >
n?*t¢ instead of SNR > n**€. This directly implies the desired
sufficient condition for the almost exact recovery and proves
Part (b) of Theorem 1, with an appropriate choice of n = o(1).
Let S(m) denote the set of permutation matrices with m
fixed points. For a given r, let B,.(8,) £ {8 : |8 — Bu|l, < r}.
The following lemma shows that we can discretize S appro-
priately without inflating the objective too much.
Lemma 1: There exists a d-net Ny(r) for B,.(.) such that
|Ns(r)] < (14 2r/6)%. Moreover, for any II, if B € B,(B,),
min

~IXB; < min ly —TLXB]5 + | XI5, 6%
puin lly Blly =, min, lly Bl + 11X,

Next, we introduce a set of high-probability events to
facilitate our analysis of the MLE.

Lemma 2: Suppose SNR > 1, 7/§ < n? n > n=</10,
and enn > 100d. The following events hold with probability
1—o0(1):

E1 2 {1 X8 —TXB|3 = n 2Bl (n — 1),
Vny < (1 —n)n,VIL € S(n1),YB € Ns(r)},

£ 2 {|IX],, < C'Vn},

E3 2 {18 — Bull2 < cl|Bill2, VIL},

for some absolute constants C’, ¢, where BH is defined in (4).
Finally, we need a key lemma to bound the MGF of
|X58., —IIXp H; The proof crucially relies on the cycle
decomposition of the permutation matrix II. (See Appendices
A-A and A-D for details.)
Lemma 3: Suppose ||B.l, /o > n1T</2, 5 > n=¢/10 and
C is any constant. Then for all sufficiently large n,

(1-mn

n—n 1 2
S v Y Eewp (3202 | X8, HXB||2>
n1=0 IIeS(n1)
< n—enn/lO.

Now, we are ready to prove (10). By the definition of MLE
given in (3),
overlap(1I, I,,) < (1 —n)
= min |y ~ ILX B3 < min |y — X33
for some II € S(ny) and ny < (1 — n)n.

Recall that A = arg min glly —11X3 ||§ and the definition of
Es. By letting r = ¢||B«]||2, we have

min [ly ~ TIXBIJ; < min [y = XB[3., &

= min —TIX 2< *X*2:w2
jmin |y~ TLXB < fly — XB.15 = [w}

= min |y—IXB|2 < ||w||?+ | X]|>. 62,
56%@»)”3’ Blly < llwllz + 1X115,

where the last implication follows from Lemma 1. Note that
for any S,

2 2 2
ly = TIX B3 < [lw]3 + | X2, 62
2 2 2
= | X8, +w — X3 < w3 + || X2, 6
= 2(XB. — [IXB,w) < — [|XB. — XS5 + || X2, 6°.

Now, recalling the definitions of &;,&;, we choose § =
C’'\/n/2n=17¢/2 || 3,|,, so that on the event & N &, for all
IT € S(ny) and all ny < (1 —n)n,

IXB. —TIX 85 > 2| X3, 6%, V8 € Ns(r),
and hence

min |y — X85 < [[wl3 + [|X][2, 6%, &N E
ﬁENJ(T) Hy BHQ — || ||2 || ||op 1 2

= 36 € Ny(r) : 2 (XB, ~ TLXB,w) < — | X8, ~ ILXB2.
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In conclusion, we have shown that
overlap(I, I,) < (1 — 1), & N & N Es
1
= 2(XB, ~TIXB,w) < — | Xp. ~ ILXB||;
for some I € S(n1),n1 < (1 —n)n, and S € Ns(r).

Now, for each fixed II and 3, we condition on X and then
use the Gaussian tail bound, we get that

1
P {2 (XB. —TIXB,w) < — | X8, — HXBII%}
1 2
3252 | X B — HXﬁ||2>~
It follows from the union bound that

P {overlap(ﬂ7 L)< (1-7n),&5Nn&N 53}

X8, —IIXB|2
Z Z ]Eexp< —‘ 63202 BQ).

n1<(1—=n)n IIES(n1)

Finally, by Lemma 1, | Ns(7)| < (142r/3)%. Recall that we
set § = C'/n/2n"1=¢/2||B.||, and r = c|| .||, for constants
¢, C' > 0. Therefore,

d
INs(r)] < (Cnt* 2/ i)

for some universal constant C' > 0. Combining the last
displayed equation with Lemma 3 yields that

X8, — X2
S Y Eew (_ f -1 ﬁ|2>

n1<(1—-n)n IIES(n1)

< (Cn”e/z/\/ﬁ)dn_e”"/lo <

where the last inequality holds for all sufficiently large n due
to the facts that enn > 100d and n > n—</10,
Finally, applying Lemma 2, we conclude that

P {overlap(ﬁ,[n) <(1- 77)}
<P {overlap(f[, I)<(1-7n),&iNn&N 83}
+P{E}+ P& +P{EST = 0(1).

B. Proof for permutations with few errors

< Eexp (—

< [Ns(r)]

INs(r)]

n—enn/QO’

In this part, we focus on the permutations that are close to
the ground truth and prove that

n—2
n

P{(l—ﬂ)<cwahpdl]ﬁ)< }<<n-9“% (11)
provided that o/ || 8[|, <n727¢, 1 < ¢/8, and d = o(n).

In this case, we can no longer tolerate the n¢ factor arising
from the discretization of the /3 parameter. To address the high-
dimensional scenario where d = o(n), we instead adopt the
proof strategy outlined by [1] to analyze the QAP formula-
tion (8). However, achieving the sharp threshold necessitates
a more meticulous analysis than that employed by [1].

We first state several useful auxiliary lemmas. Recall that
S(m) denotes the set of permutation matrices with m fixed

points, and recall the projection matrices Prix and P(ryx). as
defined in (5)—(6).

Lemma 4: Let n > 2. Define &4 such that for all nqy < n—2
and all IT € S(n;y),

1Prox (w)ll; — [|Px (w)|5 < 100%(n — n1) logn.

Then P{&,} > 1 —4n—2.
Lemma 5: Suppose 11 < ¢/8. Define &5 such that for all
(I—nn<n; <n-—2andall IT € S(ny),

2 —4—€
[Py« (X85 = ™ Bell5 (n = ma).

Then P{&} > 1 —n~/5.
Lemma 6: Suppose o/ ||y, < n~27¢/2, n < ¢/8, and C
is any fixed constant. Then for all sufficiently large n,

n—2
n—n 1 2
Y o 5 Een (- [P (xl)
n1>(1-n)n IeS(n1)
Sn 6/8.

Now, we are ready to prove (11). By the definition of the MLE
given in (3),

R -2
(1—7) < overlap(L, I,) < —=
n

= [Parxy: W3 < 1Px- @)1
for some IT € S(ny) and (1 —n)n <ny <n —2.
Since Px1 (Xf,) = 0, it follows that
[Py @5 < 1Px- )13
& [Parx)s (X82) + Py ()5 < [P (w) 3
(Xﬁ*)Hz + 2 (Pax) L (X B4), Parxy - (w))
< Px @)l = [Py ()l
A HP(HX)J-(XB*)HE +2 <P(HX)J-(X6*)7“)>
< [Prx (w) 3 = [1Px (w)]3 -

By our assumption that o/ || B4]|, < n727¢, on event & N &5,
for all sufficiently large n, all (1 —n)n < n; <n—2, and all
II € S(nl),

& ||Paix)

1
[P @)1 = [[Parey @)]f; < 5 [1Pauo (X85

Thus, on event £, N Es,

. -2
(1 —n) < overlap(L, I,) < ™

n
1 2
=3 [Py (X8|, + 2 (Paixy« (XBi),w) <0
for some I € S(ny) and (1 —n)n <n; <n — 2.

By the Gaussian tail bound,
1 2
P {2 [Py (XB)[; + 2 (Prxy - (XB), w) < 0}

1
< Eexp <—3202 HP(HX)L(XB*”E)'
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Therefore, applying union-bound yields that

p{ -0 < overap(it 1) < "2 64
n

n—2
1 2
< Y% men(—glPan )
n1>(1—-n)nIIeS(n1)
<n/%,
where the last inequality holds by Lemma 6 and the assump-

tion that o/ || B.|l, <n=27¢.
Finally, applying Lemma 4 and Lemma 5, we arrive at

P {(1 —n) < overlap(Il, I,,) < - 2}
n

2

< IP’{(I — 1) < overlap(II, I,,) < 71_,54,55}

+P{EST+ P&}
< 6n¢/8.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we resolved the information-theoretically op-
timal thresholds for exactly and almost exactly recovering
the unknown permutation in shuffled linear regression with
random design in the sublinear regime of d = o(n). In addition
to determining the sharp threshold in the linear regime of
d = O(n) mentioned in Section III, a few other problems
remain outstanding.

First, the estimator (7) attaining the sharp thresholds in-
volves solving the computationally expensive QAP problem.
Although for low dimensions this can be approximately com-
puted in n°@ time, the resulting algorithm is far from
practical as it involves searching over an §-net in d dimensions.
For d — oo, currently there is no polynomial-time algorithms
except in the special case of o = 0 [9], [15].

Second, it is of interest to extend the current results to multi-
variate responses where each response y; is m-dimensional for
m > 1. In other words, y = I1, X 8, + w, where 3, € R¥*"™,
This has been considered in several existing works such as
[11, [4], [5], [8], where it is observed that multiple responses
can significantly reduce the required SNR. Drawing from
existing results on related models in LAP and QAP [13],
[14], we conjecture that the optimal thresholds for exact and
almost exact recovery are given by SNR = n*/™ and n?/™,
respectively, provided that m is not too large. While one can
deduce the lower bound from that in [14] by considering the
oracle setting of a known f3,, analyzing the counterpart of (7)
remains open.
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