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Abstract—This paper studies the problem of shuffled linear
regression, where the correspondence between predictors and
responses in a linear model is obfuscated by a latent permutation.
Specifically, we consider the model y = Π∗Xβ∗ + w, where X
is an n å d standard Gaussian design matrix, w is Gaussian
noise with entrywise variance σ2, Π∗ is an unknown n å n
permutation matrix, and β∗ is the regression coefficient, also
unknown. Previous work has shown that, in the large n-limit, the
minimal signal-to-noise ratio (SNR), kβ∗k

2

2
/σ2, for recovering the

unknown permutation exactly with high probability is between n2

and nC for some absolute constant C and the sharp threshold is
unknown even for d = 1. We show that this threshold is precisely
SNR = n4 for exact recovery throughout the sublinear regime
d = o(n). As a by-product of our analysis, we also determine the
sharp threshold of almost exact recovery to be SNR = n2, where
all but a vanishing fraction of the permutation is reconstructed.

I. INTRODUCTION

Consider the following linear model, where we observe

y = ΠåX�å + w, (1)

Here X 2 R
næd is the design matrix, �å 2 R

d is the unknown

regression coefficient, Πå is an unknown n å n permutation

matrix that shuffles the rows of X , and w 2 R
n is observation

noise. The goal is to recover Πå and �å on the basis of

observing X and y.

If Πå is known, (1) is the familiar linear regression.

Otherwise, this problem is known as shuffled regression [1],

[2], unlabeled sensing [3]–[5], or linear regression with per-

muted/mismatched data [6]–[8], as the correspondence be-

tween the predictors (the rows xi’s of X) and the responses

(yi’s) is lost. As such, it is a much more difficult problem

as one needs to jointly estimate the permutation Πå and the

regression coefficients �å. This is a problem of considerable

theoretical and practical interest. For applications in areas such

as robotics, data integration, and de-anonymization, we refer

the readers to [3, Sec. 1] and [5, Sec. 1.1].

A line of work has studied the minimal signal-to-noise ratio

(SNR) that is required to reconstruct Πå. Following [1], [9], in

this paper we consider a random design X with Xij
iidá N (0, 1)

A full version of this paper with proofs of all lemmas can be found at
arxiv.org/abs/2402.09693.

and Gaussian noise wi
iidá N (0,�2), which are independent

from each other. Define

SNR ,
k�åk22
�2

. (2)

It is shown in [1, Theorems 1 and 2] that for exact recovery

(namely, Π̂ = Πå with probability tending to one), the required

SNR is between n2 and nC for some absolute constant C.

Intriguingly, numerical simulation carried out for d = 1 (see

[1, Fig. 2]) suggests that there is a sharp threshold SNR = nC0

for some constant C0 between 3 and 5.

The major contribution of this work is to resolve this

question by showing that the sharp threshold for exact recovery

is SNR = n4 for all dimensions satisfying d = o(n). Along the

way, we also resolve the optimal threshold for achieving al-

most exact reconstruction, namely, overlap(Π̂,Πå) = 1�o(1),
where

overlap(Π̂,Πå) ,
1

n
Tr(Π̂>

Πå)

is the fraction of covariants that are correctly unshuffled. In

other words, if á̂ and áå are permutations corresponding to Π̂

and Πå, then overlap(Π̂,Πå) =
1
n | {i 2 [n] : á̂(i) = á(i)} |.

II. MAXIMUM LIKELIHOOD AND QUADRATIC ASSIGNMENT

A natural idea for the joint estimation of (Πå,�å) is the

maximum likelihood estimator (MLE) [1]:

(Π̂, �̂) = argmin
Π2Sn,�2Rd

ky �ΠX�k22, (3)

where Sn denotes the set of all n å n permutation matrices.

Since �å has no structural assumptions such as sparsity, n � d
is necessary even when there is no noise and Πå is known. By

classical theory on linear regression, for a fixed Π the optimal

� for (3) is given by

�̂Π , (X>X)�1X>
Π

>y (4)

and ky �ΠX�̂Πk22 = kP(ΠX)⊥yk22, where

PΠX , ΠX(X>X)�1X>

| {z }

,PX

Π
> (5)

P(ΠX)⊥ , In � PΠX = Π (In �X(X>X)�1X>)
| {z }

,P
X⊥

Π
> (6)
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are the projection matrices onto the column span of ΠX and its

orthogonal complement respectively. Thus the ML estimator

of Πå can be written as1

Π̂ = argmax
Π2Sn

kPΠXyk22. (7)

This optimization problem is in fact a special instance of the

quadratic assignment problem (QAP) [10]:

max
Π2Sn

hA,Π>BΠi, (8)

where A = yy> is rank-one and B = PX is a rank-d
projection matrix. For worst-case instances of (A,B), the QAP

(8) is known to be NP-hard [11]. Furthermore, even solving

the special case (7) is NP-hard provided that d = Ω(n) [1,

Theorem 4]. On the positive side, for constant d it is not hard

to see that this can be solved in polynomial time. Indeed, as

the proof in Section V shows (see [9, Sec. 2] for a similar

result), instead of (8), one can approximate the original (3)

by discretizing and restricting � to an appropriate �-net for

� = 1/poly(n). Since for fixed �, (3) becomes a very special

case of the linear assignment problem (LAP) maxΠhy,ΠX�i
which can be solved by sorting the vectors y and X�, the

discretized version of (3) can be computed in nO(d)-time. In

fact, for the special case of d = 1, this can be made exact [1,

Theorem 4].

III. MAIN RESULTS

The following theorem on the statistical performance of the

estimator (7) is the main result of this paper.

Theorem 1: Fix an arbitrary / > 0. Assume that d = o(n).

(a) Exact recovery: If SNR � n4+/, then P[Π̂ = Πå] =
1 � o(1) as n ! 1, where o(1) is uniform in Πå and

�å.

(b) Almost exact recovery: If SNR � n2+/, then

P[overlap(Π̂,Πå) = 1 � o(1)] = 1 � o(1) as n ! 1,

where o(1) is uniform in Πå and �å.

The positive results in Theorem 1 are in fact information-

theoretically optimal. To see this, for the purpose of the lower

bound, consider the case where Πå is drawn uniformly at

random and �å is a known unit vector. Defining x , X�å á
N (0, In), we have y = Πåx + w. Then the problem reduces

to a special case of the linear assignment model studied in

[12]–[14] where the goal is to reconstruct Πå by observing

x and y.2 Specifically, applying [14, Theorem 3] for one

dimension shows that exact (resp. almost exact) reconstruction

is impossible unless � = o(n�2) (resp. � = o(n�1)).
Next, let us comment on the role of the dimension d. As

lower-dimensional problem instances can be embedded into

higher dimensions by padding zeros to �å, the minimum

1We note that although (Π̂, β̂) defined in (3) is the MLE for (Π∗,β∗), it is

unclear that Π̂ itself (i.e., (7)) is optimal (that is, minimizing the probability

of error P[Π̂ 6= Π∗] when Π∗ is drawn uniformly at random), due to the
presence of the nuisance parameter β∗.

2These works considered the more general setting where x, y are n å m

Gaussian matrices and the respective threshold for exact and almost exact
reconstruction has determined to be n

−2/m and n
−1/m for m = o(logn).

required SNR for recovery is non-decreasing in d. Theorem 1

shows the optimal thresholds for exact and approximate exact

recovery are SNR = n4 and n2 in the sublinear regime of

d = o(n). When the dimension is proportional to the sample

size, say d = ãn for some constant ã 2 (0, 1), we conjecture

that the conclusion in Theorem 1 no longer holds and the

sharp threshold depends on ã. In fact, [1, Theorem 1] shows

that the estimator (7) achieves exact recovery provided that

SNR � nC/(1�ã) for some unspecified constant C. On the

other hand, the simple lower bound argument above does not

yield any dependency on ã, since it assumes �å is known

and reduces the problem to d = 1. Determining the optimal

threshold in the linear regime remains a challenging question.

IV. FURTHER RELATED WORK

The model (1) has been considered in the compressed

sensing literature for zero observation noise (� = 0), known

as the unlabeled sensing problem, with the goal of recovering

�å 2 R
d exactly. The work [3] showed that when the entries

of X are sampled iid from some continuous probability

distribution, any �å, including adversarial instances (the so-

called “for all” guarantee), can be recovered exactly with

probability one if and only if one has n � 2d observations.

The paper shows this using a constructive proof, but it requires

a combinatorial algorithm involving exhaustive search.

Moving to the weaker “for any” guarantee, the works [9],

[15] also consider the noiseless setting and propose an efficient

algorithm based on lattice reduction that recovers an arbitrary

fixed �å with probability one with respect to the random

design, provided that n > d. Another approach based on

method of moments is proposed in [2], where the empirical

moments of X�̂ are matched to those of y.

There is also a line of work on shuffled regression when the

latent permutation is partially (or even mostly) known [5]–[8]

that has found applications in analyzing census and climate

data. This approach permits a robust regression formulation

for estimating �å, wherein the unknown permuted data points

are treated as outliers, from which Πå can then be estimated.

The problem of learning from shuffled data has also been

considered in nonparametric settings, e.g., isotonic regression,

where yi = f(xi) + wi, for some f : [0, 1]d ! R that is

coordinate-wise monotonically increasing, and the goal is to

estimate f . When the xi are permuted, this problem is known

as uncoupled isotonic regression, which has been studied in

[16] for d = 1 and in [17] for d > 1.

V. PROOF OF THEOREM 1

Throughout the proof, we assume Πå = In without loss

of generality. The proof of Theorem 1 follows a union bound

over Π 6= In and is divided into two parts: Section V-A deals

with those permutations Π whose number of non-fixed points

is at least ;n (for some ; = o(1) depending on d and /).

Section V-B deals with those permutations Π whose number

of non-fixed points is at most ;n.

Although both [1] and the present paper analyze the estima-

tor (3), the program of our analysis deviates from that in [1]

364Authorized licensed use limited to: Yale University. Downloaded on September 04,2024 at 04:28:27 UTC from IEEE Xplore.  Restrictions apply. 



in the following two aspects, both of which are crucial for

determining the sharp thresholds.

First, a key quantity appearing in the proof is the following

moment-generating function (MGF):

Eexp
ã

�t kX�å �ΠX�k22
;

, (9)

for a given Π and �, where t / 1
�2 . While similar quantities

have been analyzed in [1], only a crude bound is obtained in

terms of the number of fixed points of Π (see Lemma 4 and

eq. (25-26) therein). Instead, inspired by techniques in [14]

for random graph matching, we precisely characterize (9) in

terms of the cycle decomposition of Π and �. In particular,

to determine the sharp thresholds, it is crucial to consider all

cycle types instead of just fixed points.

Second, recall that the MLE (3) involves a double mini-

mization over Π and �. While it is straightforward to solve the

inner minimization over � and obtain a closed-form expression

for the optimal �̂Π (4), directly analyzing the MLE with this

optimal �̂Π plugged in, namely, the QAP (8), turns out to be

challenging. In particular, this requires a tight control of the

MGF (9) with � replaced by �̂Π. While this is doable when

Π is close to In, the analysis becomes loose when Π moves

further away from In and requires suboptimally large SNR.

Alternatively, we do not work with this optimal �̂Π and instead

take a union bound over a proper discretization (�-net) of �.

Importantly, the resolution � needs to be carefully chosen so

that the cardinality of the �-net is not overwhelmingly large

compared to (9). This part crucially relies on the sublinearity

assumption d = o(n) and the fact that Π has at least ;n non-

fixed points.

A. Proof for permutations with many errors

In this part, we focus on the permutations that are far away

from the ground truth and prove that

P

n

overlap(Π̂, In) ÿ (1� ;)
o

= o(1), (10)

for any fixed /, provided that SNR � n2+/, d = o(n), /;n �
100d, and ; � n�//10. Note that here we only require SNR �
n2+/ instead of SNR � n4+/. This directly implies the desired

sufficient condition for the almost exact recovery and proves

Part (b) of Theorem 1, with an appropriate choice of ; = o(1).

Let S(m) denote the set of permutation matrices with m
fixed points. For a given r, let Br(�å) , {� : k� � �åk2 ÿ r}.

The following lemma shows that we can discretize � appro-

priately without inflating the objective too much.

Lemma 1: There exists a �-net N�(r) for Br(�å) such that

|N�(r)| ÿ (1+2r/�)d. Moreover, for any Π, if �̂Π 2 Br(�å),

min
�2Nδ(r)

ky �ΠX�k22 ÿ min
�2Br(�∗)

ky �ΠX�k22 + kXk2op �2.

Next, we introduce a set of high-probability events to

facilitate our analysis of the MLE.

Lemma 2: Suppose SNR � 1, r/� ÿ n2, ; � n�//10,

and /;n � 100d. The following events hold with probability

1� o(1) :

E1 , {kX�å �ΠX�k22 � n�2�/ k�åk22 (n� n1),

8n1 ÿ (1� ;)n, 8Π 2 S(n1), 8� 2 N�(r)},

E2 , {kXkop ÿ C 0
p
n},

E3 , {k�̂Π � �åk2 ÿ ck�åk2, 8Π},

for some absolute constants C 0, c, where �̂Π is defined in (4).

Finally, we need a key lemma to bound the MGF of

kX�å �ΠX�k22. The proof crucially relies on the cycle

decomposition of the permutation matrix Π. (See Appendices

A-A and A-D for details.)

Lemma 3: Suppose k�åk2 /� � n1+//2, ; � n�//10, and

C is any constant. Then for all sufficiently large n,

(1�;)n
X

n1=0

Cn�n1

X

Π2S(n1)

Eexp

7

� 1

32�2
kX�å �ΠX�k22

ç

ÿ n�/;n/10.

Now, we are ready to prove (10). By the definition of MLE

given in (3),

overlap(Π̂, In) ÿ (1� ;)

) min
�

ky �ΠX�k22 ÿ min
�

ky �X�k22
for some Π 2 S(n1) and n1 ÿ (1� ;)n.

Recall that �̂Π = argmin � ky �ΠX�k22 and the definition of

E3. By letting r = ck�åk2, we have

min
�

ky �ΠX�k22 ÿ min
�

ky �X�k22 , E3

) min
�2Br(�∗)

ky �ΠX�k22 ÿ ky �X�åk22 = kwk22

) min
�2Nδ(r)

ky �ΠX�k22 ÿ kwk22 + kXk2op �2,

where the last implication follows from Lemma 1. Note that

for any �,

ky �ΠX�k22 ÿ kwk22 + kXk2op �2

) kX�å + w �ΠX�k22 ÿ kwk22 + kXk2op �2

) 2 hX�å �ΠX�, wi ÿ �kX�å �ΠX�k22 + kXk2op �2.

Now, recalling the definitions of E1, E2, we choose � =
C 0
p

;/2n�1�//2 k�åk2, so that on the event E1 \ E2, for all

Π 2 S(n1) and all n1 ÿ (1� ;)n,

kX�å �ΠX�k22 � 2 kXk2op �2, 8� 2 N�(r),

and hence

min
�2Nδ(r)

ky �ΠX�k22 ÿ kwk22 + kXk2op �2, E1 \ E2

) 9� 2 N�(r) : 2 hX�å �ΠX�, wi ÿ �1

2
kX�å �ΠX�k22 .

365Authorized licensed use limited to: Yale University. Downloaded on September 04,2024 at 04:28:27 UTC from IEEE Xplore.  Restrictions apply. 



In conclusion, we have shown that

overlap(Π̂, In) ÿ (1� ;) , E1 \ E2 \ E3

) 2 hX�å �ΠX�, wi ÿ �1

2
kX�å �ΠX�k22

for some Π 2 S(n1), n1 ÿ (1� ;)n, and � 2 N�(r).

Now, for each fixed Π and �, we condition on X and then

use the Gaussian tail bound, we get that

P

ã

2 hX�å �ΠX�, wi ÿ �1

2
kX�å �ΠX�k22

�

ÿ Eexp

7

� 1

32�2
kX�å �ΠX�k22

ç

.

It follows from the union bound that

P

n

overlap(Π̂, In) ÿ (1� ;) , E1 \ E2 \ E3
o

ÿ |N�(r)|
X

n1ÿ(1�;)n

X

Π2S(n1)

Eexp

 

�kX�å �ΠX�k22
32�2

!

.

Finally, by Lemma 1, |N�(r)| ÿ (1+2r/�)d. Recall that we

set � = C 0
p

;/2n�1�//2 k�åk2 and r = c k�åk2 for constants

c, C 0 > 0. Therefore,

|N�(r)| ÿ
ã

Cn1+//2/
p
;
;d

for some universal constant C > 0. Combining the last

displayed equation with Lemma 3 yields that

|N�(r)|
X

n1ÿ(1�;)n

X

Π2S(n1)

Eexp

 

�kX�å �ΠX�k22
32�2

!

ÿ
ã

Cn1+//2/
p
;
;d

n�/;n/10 ÿ n�/;n/20,

where the last inequality holds for all sufficiently large n due

to the facts that /;n � 100d and ; � n�//10.

Finally, applying Lemma 2, we conclude that

P

n

overlap(Π̂, In) ÿ (1� ;)
o

ÿ P

n

overlap(Π̂, In) ÿ (1� ;) , E1 \ E2 \ E3
o

+ P {Ec
1}+ P {Ec

2}+ P {Ec
3} = o(1).

B. Proof for permutations with few errors

In this part, we focus on the permutations that are close to

the ground truth and prove that

P

ã

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n

�

ÿ n�Ω(1), (11)

provided that �/ k�åk2 ÿ n�2�/, ; ÿ //8, and d = o(n).
In this case, we can no longer tolerate the nd factor arising

from the discretization of the � parameter. To address the high-

dimensional scenario where d = o(n), we instead adopt the

proof strategy outlined by [1] to analyze the QAP formula-

tion (8). However, achieving the sharp threshold necessitates

a more meticulous analysis than that employed by [1].

We first state several useful auxiliary lemmas. Recall that

S(m) denotes the set of permutation matrices with m fixed

points, and recall the projection matrices PΠX and P(ΠX)⊥ as

defined in (5)–(6).

Lemma 4: Let n � 2. Define E4 such that for all n1 ÿ n�2
and all Π 2 S(n1),

kPΠX(w)k22 � kPX(w)k22 ÿ 10�2(n� n1) log n.

Then P {E4} � 1� 4n�2.
Lemma 5: Suppose ; ÿ //8. Define E5 such that for all

(1� ;)n ÿ n1 ÿ n� 2 and all Π 2 S(n1),
�
�P(ΠX)⊥(X�å)

�
�
2

2
� n�4�/ k�åk22 (n� n1).

Then P {E5} � 1� n�//8.

Lemma 6: Suppose �/ k�åk2 ÿ n�2�//2, ; ÿ //8, and C
is any fixed constant. Then for all sufficiently large n,

n�2X

n1�(1�;)n

Cn�n1

X

Π2S(n1)

Eexp

7

� 1

32�2

�
�P(ΠX)⊥(X�å)

�
�
2

2

ç

ÿ n�//8.

Now, we are ready to prove (11). By the definition of the MLE

given in (3),

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n

)
�
�P(ΠX)⊥(y)

�
�
2

2
ÿ kPX⊥(y)k22

for some Π 2 S(n1) and (1� ;)n ÿ n1 ÿ n� 2.

Since PX⊥(X�å) = 0, it follows that

�
�P(ΠX)⊥(y)

�
�
2

2
ÿ kPX⊥(y)k22

,
�
�P(ΠX)⊥(X�å) + P(ΠX)⊥(w)

�
�
2

2
ÿ kPX⊥(w)k22

,
�
�P(ΠX)⊥(X�å)

�
�
2

2
+ 2

'
P(ΠX)⊥(X�å),P(ΠX)⊥(w)

µ

ÿ kPX⊥(w)k22 �
�
�P(ΠX)⊥(w)

�
�
2

2

,
�
�P(ΠX)⊥(X�å)

�
�
2

2
+ 2

'
P(ΠX)⊥(X�å), w

µ

ÿ kPΠX(w)k22 � kPX(w)k22 .

By our assumption that �/ k�åk2 ÿ n�2�/, on event E4 \ E5,

for all sufficiently large n, all (1� ;)n ÿ n1 ÿ n� 2, and all

Π 2 S(n1),

kPX⊥(w)k22 �
�
�P(ΠX)⊥(w)

�
�
2

2
ÿ 1

2

�
�P(ΠX)⊥(X�å)

�
�
2

2
.

Thus, on event E4 \ E5,

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n

) 1

2

�
�P(ΠX)⊥(X�å)

�
�
2

2
+ 2

'
P(ΠX)⊥(X�å), w

µ
ÿ 0

for some Π 2 S(n1) and (1� ;)n ÿ n1 ÿ n� 2.

By the Gaussian tail bound,

P

ã
1

2

�
�P(ΠX)⊥(X�å)

�
�
2

2
+ 2

'
P(ΠX)⊥(X�å), w

µ
ÿ 0

�

ÿ Eexp

7

� 1

32�2

�
�P(ΠX)⊥(X�å)

�
�
2

2

ç

.
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Therefore, applying union-bound yields that

P

ã

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n
, E4, E5

�

ÿ
n�2X

n1�(1�;)n

X

Π2S(n1)

Eexp

7

� 1

32�2

�
�P(ΠX)⊥(X�å)

�
�
2

2

ç

ÿ n�//8,

where the last inequality holds by Lemma 6 and the assump-

tion that �/ k�åk2 ÿ n�2�/.

Finally, applying Lemma 4 and Lemma 5, we arrive at

P

ã

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n

�

ÿ P

ã

(1� ;) ÿ overlap(Π̂, In) ÿ
n� 2

n
, E4, E5

�

+ P {Ec
4}+ P {Ec

5}

ÿ 6n�//8.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we resolved the information-theoretically op-

timal thresholds for exactly and almost exactly recovering

the unknown permutation in shuffled linear regression with

random design in the sublinear regime of d = o(n). In addition

to determining the sharp threshold in the linear regime of

d = Θ(n) mentioned in Section III, a few other problems

remain outstanding.

First, the estimator (7) attaining the sharp thresholds in-

volves solving the computationally expensive QAP problem.

Although for low dimensions this can be approximately com-

puted in nO(d) time, the resulting algorithm is far from

practical as it involves searching over an �-net in d dimensions.

For d ! 1, currently there is no polynomial-time algorithms

except in the special case of � = 0 [9], [15].

Second, it is of interest to extend the current results to multi-

variate responses where each response yi is m-dimensional for

m > 1. In other words, y = ΠåX�å +w, where �å 2 R
dæm.

This has been considered in several existing works such as

[1], [4], [5], [8], where it is observed that multiple responses

can significantly reduce the required SNR. Drawing from

existing results on related models in LAP and QAP [13],

[14], we conjecture that the optimal thresholds for exact and

almost exact recovery are given by SNR = n4/m and n2/m,

respectively, provided that m is not too large. While one can

deduce the lower bound from that in [14] by considering the

oracle setting of a known �å, analyzing the counterpart of (7)

remains open.
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