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Accessing the usefulness of atomic adsorption
configurations in predicting the adsorption
properties of molecules with machine learning†

Walter Malone, *a Johnathan von der Heydeb and Abdelkader Karab

We present a systematic study into the effect of adding atomic adsorption configurations into the

training and validation dataset for a neural network’s predictions of the adsorption energies of small

molecules on single metal and bimetallic, single crystal surfaces. Specifically, we examine the efficacy of

models trained with and without H and X atomic adsorption configurations, where X is C, N, or O, to

predict XHn adsorption energies. In addition, we compare our machine learning models to traditional

simple scaling relationships. We find that models trained with the atomic adsorption configurations

outperform models trained with only molecular adsorption configurations, with as much as a 0.37 eV

decrease in the MAE. We find that models trained with the atomic adsorption configurations slightly

outperform traditional scaling relationships. In general, these results suggest it may be possible to vastly

reduce the number of adsorption configurations one needs for training and validation datasets by

supplementing said data with the adsorption configurations of composite atoms or smaller molecular

fragments.

1. Introduction

Machine learning (ML) emerged recently as a tool to accelerate
the study of interfaces, especially the adsorption of small
molecules on surfaces. Studies have successfully predicted
properties of the adsorbate/substrate system such as adsorp-
tion energy,1–15 reaction barrier,16 adsorption height,17 and
buckling of the surface.17 The main application in many of
these studies has been heterogenous catalysis where one can
employ adsorption energy or another adsorption property as a
chemical descriptor,18–21 or an indicator of catalytic activity.
The authors of these studies hope to rapidly predict adsorption
properties, such as adsorption energy, and map them to the
efficacy of the catalysts they are studying. Thus, by the quick
and efficient calculation of adsorption properties using ML
algorithms, one can rapidly screen for novel, more efficient
catalysts. However, potential applications of ML methods to
surface adsorption problems are not limited to heterogenous
catalysis. These methods may be easily applied to any system

where molecules interact with an interface such as energy
storage systems22 or light-harvesting systems.23

Despite their successes, ML methods are often held back
from widespread deployment to surface science problems by
the methods’ requirement of a large database of experimental
observations or high-level theoretical calculations to serve as a
training dataset. The emergence of large datasets of high-level
theoretical calculations and online data repositories to store
and distribute those datasets, has somewhat mitigated this
obstacle to the widespread application of ML methods to
material discovery,24–27 However, due to the relatively large
computational time associated with surface calculations, it
remains imperative to be as efficient as possible with the data
available.

Being able to predict the adsorption properties of larger,
more complex adsorbates from smaller, simpler adsorbates
would vastly improve data efficiency. For example, using the
adsorption properties of C, H, and CH to predict the adsorption
properties of CH3 or CH4 would greatly decrease computational
cost, improving efficiency. This relationship between the
adsorption properties of smaller adsorbates and similar, larger
adsorbates is known as a scaling relationship28–38 and has been
successfully deployed many times without the inclusion of ML.
With a traditional scaling relationship, one assumes the
adsorption energy of the larger adsorbate scales linearly with
the adsorption energy of the smaller adsorbate. Scaling rela-
tionships have been known to fail with certain adsorbates and
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larger molecules,37,38 making ML an enticing option for resol-
ving these nuances.

In this manuscript, we report that ML methods can be
greatly aided in the prediction of the adsorption properties of
larger, more complex adsorbates from smaller, simpler related
adsorbates. Specifically, we utilize the adsorption energies of
N and H, O and H, and C and H over various single metal and
bimetallic single crystal surfaces to improve the predictions of
the adsorption energies of NH, OH and H2O, and CH, CH2, and
CH3, respectively. We demonstrate that including the atomic
adsorption configurations can drastically reduce the number of
data points we need in the training datasets for the more
complex molecules to make successful predictions. Impor-
tantly, we also directly compare our ML results to traditional
scaling relationships. In Section 2 we present the computa-
tional details of our calculations, in Section 3 we present our
results, and in Section 4 we present our conclusions.

2. Computational details

For our training dataset, we utilized density functional theory
(DFT) calculations on H, C, O, N, CH, CH2, CH3, NH, OH, and
H2O adsorbed on various single crystal, single metal, and
bimetallic fcc (111) surfaces. DFT, which models the total
energy as a function of electron density, provides a good
tradeoff between computational cost and accuracy. The refer-
ence calculations were taken from a high-throughput screening
study39 conducted by Mamun et al., for which the data is
available for free on Cataylsis-Hub.org.24 The dataset was
generated with the BEEF-vdW functional,40 which contains a
correction for the van der Waals (vdW) interaction. The vdW
interaction is known to be important for the description of
many systems including small molecules adsorbed on transi-
tion metal surfaces.41–47

As the details of the calculations can be found in ref. 39,
here we will only give a brief overview of the methods utilized to
create the dataset. To begin, each surface constructed was
3 layers thick. They fixed the bottom two layers of the slab at
their bulk value and allowed the top layer and adsorbate to
relax. To limit the interaction between slabs, at least 17 Å of

vacuum were placed in between slabs. Each layer is a 2 � 2
structure. To sample the Brillouin zone the authors utilized a
(12 � 12 � 12) and a (6 � 6 � 1) Monkhorst–Pack k-point grid
for bulk and slab calculations respectively. Moreover, they used
a 500 eV planewave cutoff and 5000 eV density cutoff for all the
calculations. The authors tried all stoichiometries 4 : 0, 3 : 1,
2 : 2, 1 : 3, 0 : 4 for elements A : B, where A and B were elements
with possible atomic numbers 13, 21–31,39–50, 57, or 72–83.
For elements Fe, Ni, Co, and Mn the authors performed spin-
polarized calculations with starting magnetic moments of 3, 3,
2, and 1mB respectively. Overall, the dataset of calculations
consisted of 9278, 8078, 8333, 8430, 2749, 2193, 1916, 2663,
2887, and 2430 adsorption calculations for H, C, O, N, CH, CH2,
CH3, NH, OH, and H2O respectively. The H, C, O, and N
datasets were pruned according to ref. 17, removing configura-
tions that led to more than 0.79 Å of buckling of the first layer
of the surface. Adsorption energy was calculated as:

Eads ¼ �Emolecule=surface þ Eclean surface þ

X

i

aiEi;molecule (1)

where Emolecule/surface is the total energy of the molecule on the
surface, Eclean surface is the total energy of the clean surface, and
Emolecule are the total energies of the gas phase species chosen
from H2, C2H2, C2H4, C2H6, O2, H2O, and NH3. Finally, Fig. 1
illustrates the adsorption sites studied in ref. 39 to build the
datasets. In Fig. 1 atop sites are denoted with squares, bridge
sites are denoted with triangles, and hollow sites are denoted
with circles. For the 2 : 2 surfaces the authors sampled 10
different adsorption sites, see Fig. 1(a), for the 3 : 1 And 1 : 3
surfaces the authors sampled 9 different adsorption sites,
see Fig. 1(b), and for the single element surfaces the authors
sampled four different adsorption sites, see Fig. 1(c).
All adsorption sites and surfaces were attempted for H, C, N,
and O adsorption while a limited, due to computational
resource constraints, number of surfaces and adsorption sites
were sampled for the molecular adsorption.

For our machine learning needs, we employed the Hier-
archically Interacting Particle Neural Network48 (HIP-NN). HIP-
NN, a deep neural network, has been successfully utilized to
predict the adsorption energies, adsorption heights, and buck-
ling of the first layer of the surface for small adsorbates on

Fig. 1 Adsorption sites sampled for the (a) 2 : 2 surfaces, (b) 3 : 1 and 1 : 3 surfaces, and (c) single element surfaces. Squares denote atop sites, triangles

denote bridge sites, and circles hollow sites.
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transition metal surfaces.17 HIP-NN makes predictions with
both the local atomic density, similar to a continuous convolu-
tional network, and information about atom pairs, similar to a
message-passing neural network. Specifically, HIP-NN builds
predictions of each quantum observable one is interested in
hierarchically, meaning HIP-NN takes some global property like
adsorption energy and breaks it into learnable local contribu-
tions of order n. Within this framework, HIP-NN contains both
onsite and interaction layers. Onsite layers gather information
about individual atoms up to some cutoff while interaction
layers transmit data between atoms within the same cutoff.
Given HIP-NN’s ease of use, prior success, and explicit inclu-
sion of periodic boundary conditions, we successfully utilized it
to predict the adsorption energies of NH, OH, H2O, CH, CH2,
and CH3 on various transition metal surfaces. The hyperpara-
meters were taken from ref. 17, which contained optimized
HIP-NN hyperparameters for the adsorption of atoms on tran-
sition metal surfaces. For brevity, the number of features was
set at 20, the number of sensitivity functions at 60, the number
of interaction layers at 3, the number of atoms per layer at 4,
the soft cutoff at 5.3 Å, and the hard cutoff at 9.0 Å.

To begin with, we trained several HIP-NN models, with
periodic boundary conditions, to predict the adsorption energy
of CH, CH2, CH3, NH, OH, and H2O. We began with 60% of the
configurations for each molecule in the training dataset, 20%
in a validation dataset, and the remaining 20% in a held-out
testing dataset. One purpose of the validation dataset is to help
with the overtraining problem. We kept a new model if it
performed better on the validation dataset. We then periodi-
cally reduced the number of configurations in the training/
validation dataset to 1250 configurations, 750 configurations,
500 configurations, and then to 250 configurations, training
new models after each reduction and placing the removed
configurations in the held-out testing dataset. We took a
similar approach for models trained with H, C, N, or O

adsorption configurations. We began with a model trained only
to C and H, N and H, or O and H adsorption configurations.
We then added 10, 50, 250, or 1250 CH, CH2, CH3, NH, OH, or
H2O adsorption configurations, training a new model after
each new addition of configurations to our training and valida-
tion dataset. We would test the model on the remaining CH,
CH2, CH3, NH, OH, or H2O configurations not in the training or
validation dataset. For the models trained with H and C, N, or O
adsorption configurations along with 250 or 1250 CH, CH2,
CH3, NH, OH, or H2O adsorption configurations, we also tried
increasing the weight of the molecular adsorption configura-
tions two or five-fold in our training and validation dataset.

3. Results and discussion
(A) Machine learning results

The results of each model’s MAE for molecular adsorption
configurations in the testing dataset are displayed in Fig. 2.
The numerical values are listed in Table S1 in the ESI.† In Fig. 2
we exclude the models only trained to C and H, N and H, or O
and H adsorption configurations as these models, as perhaps
expected, performed poorly on molecular adsorption config-
urations. From Fig. 2 we see that models trained on only the
molecules, CH, CH2, CH3, NH, OH, or H2O, performed, gen-
erally, more poorly than models that contained the atomic
adsorption configurations as well as an equal amount of
molecular adsorption configurations. On average, we find a
0.16 eV decrease in MAE for the 250 configuration models, a
0.13 eV decrease in MAE for the 500 configuration models,
a 0.14 eV decrease in MAE for the 750 configuration models,
and a 0.13 eV decrease in MAE for the 1250 configuration
models when introducing the atomic adsorption configura-
tions into the training and validation dataset. However, the
decrease in MAE is not uniform among the different models.

Fig. 2 Adsorption energy MAE versus number of XHn configurations in the training and validation dataset for (a) CH, (b) CH2, (c) CH3, (d) NH, (e) OH, and

(f) H2O. Black points correspond to only XHn configurations in the training and validation dataset, red points correspond to X, H, and XHn configurations in

the training and validation dataset, and blue and green points correspond to X, H, and XHn configurations in the training and validation dataset with XHn

configurations weighted two-fold and five-fold respectively. Lines are provided to guide the reader’s eye.
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For the 250 configuration models, the difference is largest for
NH, where the difference in MAE between the model trained
with only NH configurations and the model trained with NH, N,
and H configurations is 0.40 eV. Moreover, the difference in
MAE is smallest for H2O and CH3, where the difference in MAE
between the model trained with only H2O configurations and
the model trained with OH, N, and H configurations is 0.03 eV,
which is smaller than the accuracy of the DFT reference data.
For the 500, 750, and 1250 configuration models, we note a
similar story. The difference in MAE is largest for NH, where the
model trained with the atomic adsorption configurations out-
performs the model trained without the atomic adsorption
configurations by 0.27 eV, 0.24 eV, and 0.37 eV for the 500,
750, and 1250 configuration models. Moving further, the
difference in MAE is smallest for H2O where both models,
those trained with atomic adsorption configurations and those
trained without atomic adsorption configurations, perform
about the same, less than 0.03 eV, for the 500, 750, and 1250
configuration models. In fact, most models, except those
models trained with less than 250 H2O configurations in the
training and validation dataset, perform roughly the same,
within 0.08 eV MAE, which is again less than the accuracy of
DFT. We believe this to be the case as, on most of the surfaces,
H2O physisorbs (weak adsorption). With many adsorption
configurations close to 0.0 eV in adsorption energy, one would
expect a lower overall MAE for all models. The case of H2O will
be discussed in further detail later. In general, these results
demonstrate that including atomic adsorption configurations
in one’s training and validation dataset will noticeably improve
their model’s predictions on the molecules’ adsorption energies.

Moreover from Fig. 2, we further note that the models
trained with X, H, and 1250 XHn configurations generally
approach or exceed the accuracy of the models trained with
more molecular adsorption configurations without the atomic
adsorption configurations. To sum up the results, for CH,
Fig. 2(a), the model trained with atomic adsorption configura-
tions and 1250 molecular adsorption configurations, produces
a MAE of 0.22 eV while a model trained with the full 2200
molecular adsorption configurations gives a similar MAE
of 0.21 eV. For CH2, Fig. 2(b), the model trained with atomic
adsorption configurations and 1250 molecular adsorption con-
figurations, weighted five-fold, produces a MAE of 0.24 eV while
a model trained with the full 1755 molecular adsorption con-
figurations gives a similar MAE of 0.25 eV. For CH3, Fig. 2(c),
the model trained with atomic adsorption configurations and
1250 molecular adsorption configurations, weighted five-fold,
produces a MAE of 0.17 eV while a model trained with the full
1533 molecular adsorption configurations gives a similar MAE
of 0.16 eV. For NH, Fig. 2(d), the model trained with atomic
adsorption configurations and 1250 molecular adsorption con-
figurations, weighted five-fold, produces a MAE of 0.20 eV while
a model trained with the full 2131 molecular adsorption con-
figurations gives inferior predictions with a MAE of 0.27 eV.
For OH, Fig. 2(e), the model trained with atomic adsorption
configurations and 1250 molecular adsorption configurations,
weighted five-fold, produces a MAE of 0.19 eV while a model

trained with the full 2310 molecular adsorption configurations
gives a similar MAE of 0.22 eV. Finally, for H2O, Fig. 2(f),
the model trained with atomic adsorption configurations
and 1250 molecular adsorption configurations, weighted
five-fold, produces a MAE of 0.07 eV while a model trained
with the full 1944 molecular adsorption configurations gives
the same MAE of 0.07 eV. This data serves as further evidence
of the importance of including the atomic adsorption config-
urations in the training and validation dataset. It also suggests
that one can reduce the size of one’s training and validation
dataset if one includes atomic adsorption configurations,
providing one a means to greatly reduce the computational
time one expends building one’s training and validation
dataset if the atomic adsorption configurations are readily
available.

As hinted at above, weighting the molecular configurations
either two or five-fold within the dataset often led to small
improvements or no improvements, that is MAEs of the
weighted models were within 0.01 eV of the unweighted
models. Overall, we witnessed the largest change in MAE for
the CH3 250 configuration models. In the model where we
weighted the CH3 molecular configurations five-fold, the MAE
decreased by 0.10 eV compared to the unweighted model.
While there is not a huge decrease in MAE, and sometimes
we do not see any change in MAE, the fact that the error would
never appreciably increase for predictions on the testing data-
set illustrates that weighting unrepresented configurations a
bit more may be a viable strategy to improve results. It can lead
to one’s model better capturing the chemistry one is interested
in when data is limited.

Moving on, in general, we note a modest decrease in MAE by
increasing the number of molecular adsorption configurations
in our training dataset from 250 to 500 to 750 to 1250 molecular
configurations with or without the atomic configurations pre-
sent. There are exceptions to this general rule, though mostly in
the models trained with no atomic adsorption configurations.
For example, we see a 0.11 eV and 0.05 eV spike in MAE for NH
and OH going from smaller to larger training datasets, demon-
strating that purely molecular adsorption configuration train-
ing datasets are likely insufficient to train these models.
Another indicator that these models fall short are their MAEs,
which rise above 0.33 eV for OH and 0.49 for NH. The large
overall MAEs and sporadic increases in MAE demonstrates that
the purely molecular configuration datasets are insufficient to
train a robust model to make adsorption energy predictions,
especially for NH and OH. For the models that include atomic
adsorption configurations, we note a smoother more consistent
decrease in MAE as the training dataset increases. For NH we
record a decrease from a MAE of 0.33 eV to 0.23 eV going from
a model trained with 250 molecular configurations to 1250
molecular configurations. For the same size datasets for OH,
CH, and CH3 we witness a decrease of MAE from 0.30 eV,
0.36 eV, and 0.37 eV to 0.22 eV, 0.24 eV, and 0.22 eV respec-
tively. For H2O, we note only a 0.06 eV decrease in MAE likely as
HIP-NN has nearly reached its limit of accuracy. Finaly for CH2,
the MAE, like H2O, also seems to reach a limit, oscillating
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�0.04 eV, from the 500 configuration model to the 1250
configuration model. Weighting the molecular configurations
appears to help break this limit, lowing the MAEs closer to that
of NH or CH. CH2 will be discussed further in detail a little
later. Taken together with the generally larger decrease in MAE
when including atomic adsorption configurations, these results
indicate that the presence of the atomic configurations is more
important to improve training than more molecular configura-
tions. This demonstrates that once the network possesses
enough data to predict on the atomic species, it does not

require much more (250 to 1250 configurations) to make
accurate predictions on molecular species that contain the
relevant atomic species. This suggests that it may be easier to
learn how the X–H bond affects adsorption than the adsorption
characteristics of the X atomic species or X–H molecular
species outright. Further support for this conclusion comes
from the fact that the 1250 configurations weighted models,
trained with the atomic species, perform better than or on par
with, within 0.01 eV, models trained with more molecular
configurations and no atomic configurations.

Fig. 3 Calculated adsorption energy vs. true adsorption energy with 1250 XHn configurations in the training and validation dataset for (a) NH without and

(b) with N and H adsorption configurations in the training and validation dataset, (c) OH without and (d) with O and H adsorption configurations in the

training and validation dataset, and (e) H2O without and (f) with O and H adsorption configurations in the training and validation dataset.
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To further analyze our results, we now focus on the models
trained with 1250 molecular adsorption configurations in
the training and validation dataset. We display in Fig. 3 the
predicted versus the true adsorption energies for NH, OH, and
H2O for models trained with 1250 molecular configurations
without and with the atomic configurations in the training and
validation dataset. All panels are plotted with the same scales
for comparison. A zoomed in version of Fig. 3 is available in the
ESI† as Fig. S1. From Fig. 3 we note many outliers for the
models trained without the atomic adsorption data, reflected in
a larger RMSE value. This is true for every molecular species we
tried to predict on, including H2O, demonstrating the benefit of
including atomic species adsorption data into your training
and validation dataset. The decrease in MAE and RMSE is
largest again for NH where we note a 0.37 eV and a 0.52 eV
decrease respectively. Fig. 3 also illustrates for H2O, the mole-
cule bonds relatively weakly to the substrates, giving a relatively
large cluster of configurations with adsorption energy around
0.0 eV. Given this pattern, one would expect the neural network
to perform better with a large clump of values around zero.
Indeed, the MAE for the H2O model’s predictions was 0.08 eV
while the MAE was 0.23 eV and 0.22 eV for the NH and OH
models, respectively. Moreover, as previously stated, the fact
that all models perform very similarly for H2O suggests we are
nearly at the limit of accuracy of HIP-NN, which appears to be
0.05 eV to 0.10 eV, in agreement with our previously published
report.17 Overall, we see that adding the atomic adsorption sites
lowers the MAE and/or the RMSE for HIP-NN’s predictions on
NH, OH, and H2O.

We note the exact same trend for CH, CH2, and CH3. Fig. 4
plots the HIP-NN calculated adsorption energy versus the true
adsorption energy for CH, CH2, and CH3 adsorbed on the
various metallic surfaces in our test dataset for both models
with and without the atomic adsoption configurations in the
training and validation datasets. The results in Fig. 4 are for the
models trained with 1250 molecular configurations. From
Fig. 4 we see that adding the atomic adsorption configurations
decreases both the MAE and RMSE of our models’ predictions.
This improvement is largest for CH2 where we note a 0.12 eV
decrease in the MAE and a 0.17 eV decrease in RMSE going
from a model without atomic adsorption configurations in the
training and validation dataset to a model with atomic adsorp-
tion configurations in the training and validation dataset. The
results for CHx molecules reinforces this insight that one
should always include the atomic adsorption configurations
whenever they are available. Including these configurations
drastically improves the fully trained model’s performance, as
made evident by lower errors and fewer outliers, while adding a
small amount of computational time to the training procedure.
Finally, looking specifically by molecular species, we see HIP-
NN performs roughly about equally well for CH, CH2, and CH3

with the MAE for all three models within 0.07 eV. Despite
all being relatively close, CH2 performs the worst of any of the
1250 configuration models trained with atomic adsorption site
configurations. For this subset of models, neglecting H2O
which we have already discussed, CH2 predictions yield a

MAE of 0.29 eV compared to 0.22 eV to 0.25 eV for the other
four adsorbates. There are a variety of reasons this can occur,
but it is likely that it is simply harder for the network to predict
on CH2. HIP-NN gathers information about local atom pairs.
The specific CH2 geometry and symmetry may make it harder
for HIP-NN to learn the adsorption energy. Weighting the CH2

configurations in the training dataset partially solves this
problem reducing the MAE by 0.05 eV, making the prediction
accuracy closer to that of CH. It also reinforces the idea that
there is something particular about CH2 adsorption that the
network needs to see more of during training. It is not surpris-
ing though that HIP-NN performs slightly worse on one mole-
cule than some of the others. Many other ML reports have
found a larger than 0.05 eV spread in error when they apply
their specific ML algorithm to predict the adsorption energy of
different adsoprbates.2,4,15,17

Taking the results from Fig. 3 and 4 together we see that
including molecular adsorption configurations into your train-
ing and validation dataset can greatly improve ML predictions
at a negligible computational cost. Excluding H2O, we see MAE
and RMSE values ranging from 0.31 eV to 0.60 eV and 0.46 eV to
0.91 eV, respectively, for models trained with a 1250 molecular
adsorption configuration dataset without atomic adsorption
configurations. This drops to a MAE and RMSE ranging from
0.22 eV to 0.29 eV and 0.30 eV to 0.43 eV, respectively, after
adding the atomic adsorption configurations into the training
dataset. Besides H2O, which HIP-NN makes better predictions
for, NH is also an outlier, where HIP-NN makes worse predic-
tions when only trained on the molecular adsorption config-
urations. This large MAE and RMSE of 0.60 eV and 0.91 eV are
most likely caused by the small, randomly selected training
dataset, missing important configurations. To examine this
possibility, we looked at the standard deviation (SD) of the
adsorption energy of the 1250 molecular adsorption configu-
ration training and testing dataset. For NH we note a SD of the
training dataset of 2.00 eV while for OH, CH, CH2, and CH3 we
note a SD in the training dataset of 3.36 eV, 2.74 eV, 2.75 eV,
and 2.76 eV. This relatively low SD of NH likely means our
random sampling is missing configurations of a particular
bonding strength. This explanation looks more likely as we
calculate a SD of 1.89 eV, 1.71 eV, 2.13 eV, 1.39 eV, and 0.85 eV
for the testing dataset of NH, OH, CH, CH2, and CH3. NH,
by far, has the lowest SD for the training dataset, but for
the testing dataset NH possesses the second largest SD. This
inadequacy in sampling is overcome by adding the atomic
configurations into the training dataset, reducing the MAE to
0.23 eV and RMSE to 0.39 eV, again further illustrating the
power of adding atomic adsorption configurations to one’s
training and validation dataset.

In addition to demonstrating the importance of including
the atomic adsorption configurations, our neural network pre-
dictions share a similar accuracy to other state of the art ML
methods2,4,5,15–17 which usually have a MAE of adsorption
energy predictions around 0.1 eV to 0.3 eV, depending on the
species studied and the methods employed. For example,
Li et al. predicted OH adsorption energies with a RMSE of
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0.24 eV. However, they utilized many inputs for their neural
network including information about the d-band of the adsorp-
tion site and local electronegativity, among others.16 In this
report, we simply use atomic species and the atomic positions
of the starting adsorption configurations. In another study,
Nayak et al. predicted atomic adsorption energies, H, C, and N,
and molecular adsorption energies, OH, CO, and NO, over
twenty-five transition metal surfaces using ML with a RMSE of
0.41 eV and 0.26 eV respectively. They utilized a much smaller
dataset, about 200 calculations, butmanymore descriptors to train

their model: 7 features for the atomic adsorption configurations
and 8 for the molecular adsorption configurations. They also only
studied single metal surfaces.15 As in this study, Tran et al. studied
surfaces with up to two elements and recorded a MAE of 0.29 eV
for CO adsorption energies and 0.24 eV for H adsorption energies
for their ML predictions.2 In another ML study, Back et al.

predicted the adsorption energies of OH and H both to 0.15 eV
on materials consisting up to 4 elements chosen from a total of
37 elements.4 In a different study, Fung et al. predicted H, CH,
CH2, CH3, NH, and OH, among other adsorbates, adsorption

Fig. 4 Calculated adsorption energy vs. true adsorption energy with 1250 CHn configurations in the training and validation dataset for (a) CH without

and (b) with C and H adsorption configurations in the training and validation dataset, (c) CH2 without and (d) with C and H adsorption configurations in the

training and validation dataset, and (e) CH3 without and (f) with C and H adsorption configurations in the training and validation dataset.
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energies on bimetallic surfaces. They found adsorption energies
with a MAE of 0.07 eV, 0.15 eV, 0.13 eV, 0.11 eV, 0.16 eV and
0.16 eV for H, CH, CH2, CH3, NH, and OH, respectively.5 While
their predictions slightly outclass HIP-NN’s predictions some
considerations must be made. They trained using features from
the density of states. HIP-NN needs only an initial geometry to
make a prediction, saving valuable computational time. Fung also
noted that they needed about B2700 calculations in their H
training dataset to achieve convergence with respect to testing
error.5 Our largest dataset, NH, had 2310 datapoints in the testing
dataset, indicating withmore data our results would likely improve
too. They also noted, like this report, a small decrease in MAE
when including other adsorbates in their H training dataset.5 They
did not investigate this further with other adsorbates. Taken
together we see that our results’ accuracy is within the accuracies
reported by others, MAEs anywhere from 0.07 eV to 0.29 eV and
RMSEs anywhere from 0.24 eV to 0.41 eV, using ML to predict the
adsorption energies of small molecules and atoms on metallic
surfaces. HIP-NN performs quite well considering the relatively
small sizes of the datasets. Moreover, while HIP-NN has not
achieved the accuracy of DFT, approximately 0.13 eV or roughly
3 kcal mol�1, except for H2O, adsorption energies predicted with a
MAE of 0.22 eV to 0.29 eV is suitable for search space reduction,
saving valuable computational time and achieving the end goal of
using ML for material discovery.49

(B) Traditional scaling relationships

To assess the relative effectiveness of the neural network, we
compare our ML results with traditional scaling relationships.
Fig. 5(a) plots the adsorption energy of NH versus the adsorp-
tion energy of N for the highest, most stable, adsorption energy
configuration on each surface, and the best fit linear line for
this relationship. From Fig. 5(a) we note that a scaling relation-
ship between the highest NH and H adsorption energies gen-
erally fails with a MAE of 0.83 eV from the best fit line. This
failure is a result of the most stable adsorption site sometimes

being different for N and NH, and different adsorption sites
possess different coordination numbers. However, scaling rela-
tionships rely on the coordination number of the surface being
the same from one adsorbate to another, highlighting a weak-
ness of the method. Successful attempts have been made to
build a more complicated scaling relationship for a specific
adsorption site from a different adsorption site.30 Considering
adsorption site, in Fig. 5(b) we plot the adsorption energy of NH
vs. N for identical adsorption sites and a linear best fit line.
From Fig. 5(b) we note a MAE of 0.26 eV, a huge improvement
from plotting the most stable adsorption sites and utilizing the
best fit line. A MAE of 0.26 eV for NH sits in between the MAE
for the ML without the N adsorption sites in the training and
validation dataset, 0.60 eV, and the MAE for the ML predictions
with the N adsorption sites in the training and validation
dataset, 0.23 eV. This illustrates that ML may have the edge
over traditional scaling relationships if sufficent data is avail-
able. Indeed, in a recent study, Vijay et al. pointed out several
weaknesses of scaling relationships. Scaling relationships may
perform poorly for surfaces of noble metals and for surfaces
with metals that do not belong to the same row in the periodic
table as these different metals may lead to qualitatively differ-
ent normalized adsorbate valence energies. Other problems
with scaling relationships include issues with larger molecules
where the greater degree of freedom of the adsorbate may break
the relationship, and higher coverages where adsorbate–
substrate interactions could also alter or break simple scaling
relationships.38 Several of the aftermentioned issues likely are
contributing to the scatter in Fig. 5(b).

4. Conclusions

Overall, we notice that ML can compete and even surpass
simple scaling relationships for small molecules and atoms
adsorbed on transitionmetal surfaces. ML, perhaps unsurprisingly,

Fig. 5 (a) NH adsorption energy vs. N adsorption energy for the most stable adsorption configuration on each surface, and (b) NH adsorption energy vs.

N adsorption energy for each adsorption site on each surface. A line of best fit is provided for each plot which would represent the scaling relationship.
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performs better as we increase the amount of data we utilize to
train the network. With the addition of atomic adsorption config-
urations, our methods reach a similar accuracy to other ML
methods when predicting the adsorption energy of small molecules
and atoms on transition metal surfaces. More importantly, we have
demonstrated that a neural network’s predictions of the adsorption
energies of small molecules can be greatly improved by including
the atomic adsorption configurations in the training and validation
dataset. This improvement manifests itself in smaller MAEs,
RMSEs, and fewer outliers for models that have been trained with
atomic adsorption configurations in addition to the molecular
adsorption configurations. Specifically, we saw that models trained
with 250, 500, 750, and 1250 molecular adsorption configurations
generally saw an overall reduction in MAE and RMSE when
introducing the atomic adsorption configurations into the training
and validation dataset. Not only did models trained with atomic
adsorption configurations in the training and validation dataset
outperform similar models lacking atomic adsorption configura-
tions in the training and validation dataset, but these models,
which included the atomic adsorption configurations during train-
ing, could reach or even exceed the accuracy of models trained with
many more molecular adsorption configurations.

In fact, it appears that including the atomic adsorption
configurations in the training and validation dataset is more
important than more molecular configurations, as demon-
strated by a generally larger decrease in error when including
atomic adsorption configurations in the training procedure,
compared to increasing the number of molecular configura-
tions in the training procedure from 250 to 1250 adsorption
configurations. This suggests that it may be more difficult for
the neural network to initially learn the adsorption energies
associated with the X–metal or H–metal bond than how a new
X–H bond will change the adsorption dynamics of the metal-
non-metal bonds.

As a consequence of including atomic adsorption configura-
tions, one will need fewer of the more computationally expen-
sive molecular adsorption configurations in their dataset. This
can potentially improve computational efficiency by allowing
one to, instead of building an entirely new dataset when one
is interested in larger new molecules, build a training dataset of
smaller, already available, molecular, or atomic adsorption
sites supplemented by a much smaller amount of larger, novel
molecular adsorption sites. In principle, this can eliminate a
great deal of computational time by finding or reusing datasets
of smaller molecules absorbed on the surfaces one is interested
in. By placing these simpler adsorbate configurations in their
dataset, one will reduce, as we have illustrated, the number
of more computationally demanding adsorption calculations
with the larger molecules. Finally, we found that weighting the
molecular configurations inside the training and validation
dataset can further, although to a smaller degree, increase
the quality of predictions. As such, the concept may be worth
exploring in future high-throughput ML surface studies. Espe-
cially when building a diverse training dataset, it may be
valuable to examine underrepresented configurations and
modify their weight within the entire dataset.
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