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ABSTRACT: The configuration spaces for bimetallic AuPd nanoclusters of
various sizes are explored efficiently and analyzed accurately by combining
genetic algorithms with neural networks trained on density functional
theory. The methodology demonstrated herein provides an optimizable
solution to the problem of searching vast configuration spaces with
quantum accuracy in a way that is computationally practical. We implement
a machine learning algorithm which learns the density functional theory
potential with increasing performance while simultaneously generating and
relaxing structures within the system’s global configuration space
unbiasedly. As a result, the algorithm naturally converges onto the system’s
energy minima while mapping the configuration space as a function of
energy. The algorithm’s simple design applies not only to nanocluster
configurations, as demonstrated, but to bulk, substrate, and adsorption sites
as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and
25 atoms. Results focus primarily on evaluating the algorithm’s performance; however, several physical insights into possible
configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au
minimization as a function of stability.

1. INTRODUCTION studies deal with experimental synthesis and characterization of
AuPd nanoclusters.'®"*° In the group of Henry,'*™"® arrays of
AuPd were synthesized on ultrathin films of alumina, ranging
in size from a few atoms up to 400 atoms. These nanoclusters
are tunable in size and composition and self-organize on the
alumina substrates. Their stability at high temperature and
under oxygen was established. Davis et al."” synthesized AuPd
nanoclusters of sizes around 1 nm and characterized them with
EXAFS. They found that Pd atoms decorate the core—shell
nanoclusters of stoichiometry of Auy,Pdy¢. They also reported
a reduction of about 3% in the Au—Au nearest neighbor in the
cluster, compared to Au-bulk. Theoretically, Shan et al.”' used
DFT-based empirical potentials (embedded atom method) to
study AuPd nanoparticles of sizes ranging from S5 to 5083
atoms. They used a fixed shape (truncated octahedron) and
five stoichiometries ranging from Au,;Pdy, to AugyoPd,;. The
authors performed Monte Carlo simulations for these systems
at different temperatures. They found that Au atoms decorated

Machine learning (ML) has seen a large amount of success in
the fields of physics, chemistry, and materials science
predicting the properties of materials at the atomic scale. ML
algorithms successfully predicted many properties such as
molecular wavefunctions,' electron densities,” atomic charges,3
bond order,” dipoles,” atomization energies,‘s_8 excited states,”
barrier heights,'” adsorption energies,'’ ~'* and other proper-
ties.””'> ML predictions of these kind, while greatly
accelerating the search for new, interesting compounds, do
have drawbacks. First, ML methods require large datasets of
either experimental or high-level theoretical calculations to
train on, limiting the scope of these methods. Second, most
ML methods are not fine-tuned to quickly calculate
equilibrium configurations. Even with a neural network
(NN) trained to predict forces and total energies, for example,
one would still need to perform a single or several geometric
optimizations if the system has a high entropy. We address
these two problems by combining neural networks with a
genetic algorithm (GA) to predict the local equilibrium and
global minimum configurations of AuPd clusters with minimal
DEFT calculations.

AuPd clusters have been studied theoretically and
experimentally as a model for heterogeneous catalysis and
due to their catalytic properties.'“">’ A majority of these
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the smallest particles. For larger particles, Pd atoms are present
at the skin of the cluster with an increasing concentration as
the temperature increases. One of the very early DFT studies
of bimetallic clusters at various stoichiometries™ is on 33-atom
CuAg nanoclusters. The study covers all stoichiometries from
CuyAg;; to Cuy3Ag, with varying shapes. This study showed
that the HOMO—-LUMO gap can vary substantially as a
function of stoichiometry. They also reported a substantial
reduction in the nearest-neighbor distance in the nanoclusters
compared to their bulk counterparts. More recently, Zaman et
al.”® used DFT to study a variety of bimetallic nanoclusters of a
fixed size of S atoms. They investigated Pd;M, (where M = Ag,
Au, Co, Cu, Mn, Nj, Pt, and Ru) clusters on the hydroxylated
alumina surface. They focused on the gap between the top of
the valence band and the fermi level and found that this
quantity can be tuned by varying the chemical entity of the M
guest atom.

More generally, AuPd alloys have been demonstrated to
effectively catalyze several reactions: CO oxidation,”**" vinyl
acetate synthesis,”® and aromatics hydrogenation.””** Nano-
clusters are broadly attractive as catalysts because one can fine-
tune their reactivity for given applications.”” Indeed, this is the
main reason we chose to study AuPd nanoclusters here. By
selecting for particle size, composition, and stoichiometry, one
gains a high level of control over the chemical properties of the
nanoparticle. However, finding the most stable nanoparticle
configurations that will form under reaction conditions is
challenging to predict due to the enormous configuration
spaces available to such systems.

As such, there is a growing need for computational methods
that can search the vast configuration spaces available to
nanoclusters, substrates, adsorption sites, etc., such that unique
states and global patterns can be identified efficiently. To
understand the size of these spaces, consider an icosahedral
cluster of 13 atoms (one in the core and 12 evenly distributed
around). We have n'? possible states, where  is the number of
unique elements comprising the cluster substrate (each of the
13 spaces will have n elemental options)—e.g., Au,Pd,, (where
n+m = 13) has two elements, and so there are 2'3 = 8192
states. Even if we restrict ourselves to a certain stoichiometry,
e.g, AugPd;, we get 13 choose 6, which makes for 1716
possible states. This assumes that the symmetric states can be
distinguished (ordered combination), but it also severely limits
the actual geometries available to such clusters. In situ, we are
rarely dealing with such high symmetries, and indeed, clusters
and substrates naturally tend to organize themselves in local
not global minima. Therefore, the number of possible
configurations for similar systems makes them impossible to
evaluate with high precision in reasonable time. Moreover,
once we open the door to undefined configurations,
compositions, and stoichiometries (also known as high-entropy
states), any method of “brute-force” exploration quickly
becomes intractable, hence the demand for sophisticated
search algorithms to explore and map these vast state spaces.

Performing all of the calculations needed to completely map
configuration spaces of this size would be impossible, even
with a neural network (NN) or similar ML method alone. This
requires accurately and precisely predicting energies and forces
while also performing the necessary geometry optimizations.
To further streamline the process then, we utilize a GA®”*' for
the global minimization process. A GA can change the
structure of molecules and materials according to some
predetermined fitness criteria. In our case, the fitness function
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is a measure of a lower total energy. Therefore, our GA will
continuously modify, mix, and filter clusters while searching for
the lowest energy configurations in an otherwise unbiased,
stochastic fashion. And instead of direct DFT calculations, this
fitness function is calculated 3—4 orders of magnitude faster
using an NN trained on energies and forces. Here, we chose to
optimize the ML algorithm with cluster total energy as the
GA’s fitness function; however, we could have chosen
atomization energy instead. While the overall performance of
the algorithm is independent of this difference, we recognize
that the GA will converge onto different structures depending
on the fitness function’s definition, and therefore, one would
expect to end up with different structures within a different
global minimum—some analysis of total energy vs atomization
energy is explored in Section 3.

GAs have a long history in the field of chemistry and physics.
A combined DFT-GA approach has been utilized to study
metallic nanoclusters on surfaces’>*” and in vacuum.**~*
Paleico et al.** explored clusters of copper atoms, from 4 to 10
atoms, adsorbed on a ZnO(1010) surface utilizing an NN and
a GA with DFT reference data. Their NN predicted energies
which the GA used to evaluate fitness. The GA employed
direct, large-scale modification of the atomic coordinates of the
cluster such as mirroring through a plane. Overall, they
reported that clusters tend to prefer to interact with the surface
through the O atoms. Heydariyan et al. utilized a GA in
tandem with density functional tight binding to study Si
clusters ranging from 8 to 80 atoms in size. In addition to
finding previous unreported clusters, they noticed a transition
at 27 atoms from elongated to globular structures.” Seifried et
al. employed a GA to predict the most stable Pb,Bi,;_, clusters
in tandem with aimed swapping of element types by
perturbation theory in nuclear char§e.40 This method,"'
known as “alchemical derivatives,”*** can save time over
using only DFT. However, it requires the two elements in the
cluster to have similar nuclear charges.

In our approach, we study the configuration space of AuPd
clusters while generating our own DFT reference data as a
validation step, during self-optimization. These configuration
spaces are explored automatically via a series of global
iterations as the ML algorithm descends the configuration
space, improving upon its training data and in-turn improving
its predictive performance, significantly reducing the computa-
tional cost compared to traditional approaches. Our approach
is demonstrated to work with clusters with two different
elements yet can generalize to high-entropy systems. In Section
2, we discuss our methods, in Section 3 we present our results,
and in Section 4, we present our conclusions.

2. METHODS

We consider this an open-ended optimization problem,
wherein the task is to map the system’s physical properties
as a function of configuration, for a domain-specific set of
atomic (elemental composition and stoichiometric variability)
and geometric constraints. Specifically, we demand state-of-
the-art energy and force calculations typically provided via
DEFT. Since these calculations are as precise as they are slow,
despite being parallelizable, many have turned to NNs to try
and model the DFT functional for various systems.'””'> A
DFT-trained NN has the advantage of being able to accurately
predict atomic properties several orders of magnitude faster
than DFT. However, training these NNs typically requires
many DFT calculations regardless. We optimize this process by
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Figure 1. (a) Algorithmic schema: DFT-trained NN (top) evaluates structures generated by the GA (unique to each cluster size and
stoichiometry), which are then pruned down to uniquely representative structures for that iteration’s slice of the configuration space (see panel
(b)), then validated by 1 ionic DFT relaxation, and finally included into the next iteration’s training data (bottom). (b) 2D visual representation of
a configuration space as a function of cluster total energy. “Reasonable structures” are those satisfying our atomic and geometric criteria, and they
lie on a hypothetical surface where proximity is a function of atomic and geometric similarity. Our algorithm descends this possibility space
automatically and maps structures within each iteration’s sampling range along its way toward the global minima.

generating our own training data automatically, which is
applicable for situations where high-level training data is not
available. Moreover, we train our NNs exclusively on uniquely
representative (UR) structures—this means minimizing the
amount of DFT validation calculations required to build a
robust network. UR structures are defined as those which pass
two filters: First, cluster energies must be unique up to 1
meV—this parameter value minimizes our system’s cluster
degeneracy while preserving geometric nuance. Second, each
atom’s forces must be less than two standard deviations away
from that of their cluster—this safely removes unrealistic
configurations, where, for example, atoms may be on the verge
of breaking off the cluster, while preserving transition states.
Symbolically, uniquely representative (UR) structures can be
defined as

UR=UNR (1)
U=1li—jl >0.001eVVij€E 2)
R=((i<20)Vie€Ef)VfEF (3)

where E is the set of energies per cluster, f is the set of forces
per atom (xyz), and F is the set of forces per cluster. Note that
these filtration parameters are system-specific.

The key insight into developing our ML algorithm is to
combine DFT accuracy, NN speed, and the GA search by
letting DFT-trained NN serve as the fitness functions for our
GAs. To search the configuration spaces, many options are
available; however, GAs have proven especially useful for our
purposes, given their tunable preference for exploration and
exploitation.’”*""** They are modeled after biological evolution
by natural selection and serve us by generating “fit” structures
within our constraints with minimal bias, based on selective
mixing and mutation procedures. In recent works, GAs have
been combined with NNs,"”> ™ as well as with DFT.**™%° As
such, our ML algorithm generates structures with DFT-
accurate properties, via the GA, which are then filtered (or
“pruned”) for validation by minimal DFT calculations and fed
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back into the NN for further training. This process can be
iterated in an intuitive way via a global feedback-loop and will
converge naturally on the global energy minimum once the
reasonable configuration space is sufficiently mapped (see
Figure 1). The term “reasonable” reflects our domain-specific
geometric and atomic constraints (such as the cell size,
minimal interatomic distance, and stoichiometry); we do not
claim to map the possibly infinite state space available to such
systems.

In more detail, our GA is built as a customization of the
atomic simulation environment’' GA. It is designed to filter
unreasonable structures upstream via a simple linear regression
estimator on the energies, saving some computation time and
allowing a reasonably high mutation probability of 0.3. The
initial population consists of 100 structures which go on to
evolve into 1000 structures, per stoichiometry, per cluster size.
The GA is interfaced with a deep, continuous filter,
convolutional neural network, as parameterized from SchNet-
Pack” trained on modern GPUs with CUDA,>® such that it
can quickly and accurately evaluate a given cluster’s fitness as
its total energy, relative to the given population. Once filtered,
these structures are validated and relaxed via DFT. These
simulations are externalized from Python, such that they may
be more easily parallelized via the Vienna Ab initio Simulation
Package®* ™ on a large compute cluster. We use the GGA
functional from PBE,”’ with the PAW®® method, run for a
single ionic relaxation with a minimal energy difference of 1E-5
eV (EDIFFG tag), which translates to 50—100 electronic loops
per cluster. These DFT images are then used for training the
next iteration’s NN. We use an energy/force loss ratio of 0.1 to
emphasize force-training 10-fold, and a cutoff of S A, trained
for a maximum of 500 epochs on ~300 additional clusters per
global iteration (100 per cluster size), with training/validation/
testing split percentage of 80:10:10 and a minimal learning rate
of 1E-4, where loss is calculated as the mean absolute error
(MAE) of the validation set.

https://doi.org/10.1021/acs.jcim.3c00609
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Figure 2. Mean absolute error (MAE) for energy predictions (a) and force predictions (b) for all clusters trained upon during each global iteration.
Note that forces are calculated per atom, per dimension (xyz), unlike energies which are calculated per cluster unless otherwise stated.
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The ML algorithm has been specifically tailored to the
demonstration of AuPd nanoclusters of sizes 15, 20, and 25
atoms—its general schema is shown in Figure 1. Ng, clusters
of each size are generated by their own GA (with multiple
stoichiometries each) and pruned into a set of UR clusters for
relaxation in DFT, out of which comes Npgr clusters, which
are added to the training set for the next iteration’s NN. In
Figure 1b, we see cluster energy as a function of the reasonable
configuration space. Our ML algorithm will naturally descend
this abstract surface due to the GA’s fitness function being a
measure of cluster total energy (note that this is a visualization
of what the configuration space as a function of energy might
look like and is not meant to be taken literally). This, coupled
with relaxation steps, as performed via the NN within the GA
(BEGS algorithm), ensures that the algorithm will converge
automatically when it has run out of UR structures to generate,
and NN loss plateaus. Each global iteration, seen as one whole
loop within Figure la, samples a local slice of the reasonable
configuration space such that the algorithm can map local
minima during global descent—this local exploration, within
the global optimization, helps to ensure that we do not miss
unique states.

Seed data is required to start the ML algorithm, and for this
system, only ~300 UR structures within the search space are
needed (number being domain-specific) and were generated
via a GA and relaxed in DFT. Once the initial NN has been
trained, the main programmatic loop can begin. Here
demonstrated, each GA generates 500 structures per 10
stoichiometries, per cluster size, and out of these 15,000
“images,” only about 2% survive the pruning process, go on to
be validated in DFT, and train the next NN. Note that while
this may seem like a waste of computation, most of the state
space is symmetrically degenerate, i.e., uninteresting, and most
of the computation is done via the NN within the GA, which
has its own methods to avoid wasting computation on
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unreasonable structures as mentioned earlier, and so
generating 15,000 structures takes <1 hr if parallelized.

This methodology also provides an option: One can either
continuously build upon a single cumulative NN during global
optimization or train a NN specific to each global iteration. We
found the results to be similar, yet here made each global
iteration’s training data cumulative, such that the NN for each
iteration uses its knowledge of previous iterations to better
predict images in the next local slice of reasonable
configuration space (Figure 1b). This makes for slower
algorithmic convergence (more time spent training) yet better
performance. Additionally, it might be convenient for one to
use a more sophisticated pruning method—such as emphasiz-
ing clusters the NN has trouble with or, contrariwise, those
that it did well to predict. This choice is analogous with that of
exploitation vs exploration in machine learning, and we have
chosen the simple method of UR images as a balanced
compromise, which we found to optimize the ML algorithm’s
performance overall. Indeed, one should not expect global
monotonic improvement in predictions if one is emphasizing
training on challenging images, and if one is emphasizing
images the NN predicted well, the ML algorithm could orbit
local rather than global minima.

3. RESULTS

Our main result is the ML algorithm’s performance as
measured by its ability to improve DFT predictions as it
maps its way down the reasonable configuration space, as
shown in Figure 2. If not otherwise stated, we are using MAE
to quantify performance, which is determined by the mean
absolute difference between DFT reference values (energies
and forces) and the NN’s predictions. Typically, the total
energy is what is calculated, although, in Figure 3, we analyze
the atomization energy instead. We conclude that within these

https://doi.org/10.1021/acs.jcim.3c00609
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Table 1. Consistency Measures for the Cumulative Neural Network (Iteration 10)

cluster sizes 15, 20, 25 inner (16—19, 21—24) outer (11—14, 26—29)
generation method internal external external GA external MD external GA external MD

energy MAE (eV) 0.074 0.212 0.264 0.258 0.337 0.332
energy MAE (eV/atom) 0.004 0.011 0.013 0.013 0.020 0.021
force MAE (eV/atom/A) 0.070 0.117 0.146 0.190 0.149 0.196
max energy error” 0.679 1.095 1.762 1.731 2.013 1.995
max force error” 0.967 1.240 3.032 2236 2.890 2224
test set sample size 1500 1500 500 800 500 800

“Units here for energy and forces are eV and eV/atom/A, respectively. Explicit plots for these values are given in the Supporting Information

(Figures S1 and S2).

domain-specific criteria, as well as our hyperparameterization,
that only ~8 global iterations are required to map all UR
structures within this space. Convergence is seen as the point
at which the ML algorithm fails to improve over some
iterations, which is consequent to a lack of novel structures
being generated. Here, it is seen that after 8 iterations, MAEs
bounce around 0.07 eV/cluster for energy prediction and 0.06
€V/atom/A for force prediction, without significant changes—
analogous to oscillating about the bottom of the global
minima. We take the monotonic improvement in our DFT
predictions as a function of global iteration to be consequent to
a shrinking state space, as well as hyperparameter optimization.
To avoid overtraining or to improve prediction generalizability
beyond the training data’s domain, one may choose to
interrupt the global convergence earlier.

Clusters generated by the algorithm, as seen from the 1st
and 10th global iterations, are plotted in Figure 3 (Au is
colored gold, and Pd is teal). These are DFT energies and
geometries, which would go on to train the corresponding
iteration’s NN. They contain an even distribution of UR
samples from 15-, 20-, and 25-atom clusters. As such, one can
witness the energetic “steps” form as the NN learns the
important differences between cluster size, stoichiometry, and
stability. A smooth transition between a noisy broad
distribution (iteration 1) and a uniform stepped distribution
(iteration 10) is essential to demonstrate that our algorithm
learns not only these clusters but is also capable of inferring the
sizes and stoichiometries between them as well, as tested.
Moreover, it is immediately obvious that cluster atomization
energy is weakly correlated with Au occupation—that is, the
more Au in a given cluster, the weaker (less negative) the
atomization energy. Moreover, this relation is somewhat trivial
for cluster total energy because a single Au atom’s total energy
is considerably less negative than a single Pd atom’s total
energy as calculated by DFT (—0.135 and —1.473 eV,
respectively), and so for clusters of similar relaxed geometries,
the stoichiometry heavily determines its total energy with the
subtle differences in geometry playing a smaller role. However,
the fact that this relationship is still present, to some degree,
with respect to atomization energy indicates that it is a much
more meaningful relationship.

Energy and force predictions are made on test data set aside
from training and validation data of each global iteration.
Figure 4a shows these results for the training, validation, and
testing data separately, whereas Figure 4b—d shows just the
testing data which the NN never sees—yet which are sampled
from each iteration’s UR structures. The color in Figure 4b,c
reflects a Gaussian kernel density estimation (KDE) and so is
normalized from blues (low density) to reds (high density),

with Scott’s rule for covariance factor. This makes it obvious to

5050

see exactly what the NN is predicting. For example, beyond the
spreading of energies by cluster size, as seen in the bottom plot
(Figure 4b), we also see how most all of the forces have begun
to accumulate around zero (Figure 4c) as more clusters
converge within the global minima. In Figure 4d, we plot the
energy landscape at the top and below the direct energy
prediction errors for each species as DFT,-NN; (positive and
negative), where it is shown that the NN overestimates about
as much as it underestimates, with even the most outstanding
errors well within 1 eV per cluster for all three sizes.

Next, we evaluate the ML algorithm’s cumulative NN
against external cluster sizes which it has never seen. We define
two sets: “inner” cluster sizes between but not including 15, 20,
and 25 atoms and “outer” clusters from 11—14 atoms and from
26—29 atoms. This way we can separately test the NN’s
performance on larger and smaller clusters, as well as those
within and outside its training data range separately. We do so
via two distinct generation methods (with GA and MD)—see
Table 1 for these details, where values are also scaled by cluster
size for better comparison.

“Internal” images are those sampled from training data-
bases—be they from training, validation, or test sets, which
serves as a randomized metric for self-validation. “External”
images are generated completely separately from the ML
algorithm, which allows us to test the NN’s predictions on sizes
and stoichiometries it has never seen. MD images are initially
generated by a GA yet are then coupled to a simulated heat-
bath of 1000 K and iterated under Langevin dynamics, with a
time step of 10 fs and a friction coefficient of 0.002 Hartree/#.
This allows us to test the cumulative NN against novel
configurations the GA might not generate with more realistic
forces. To see the NN’s prediction on specific cluster sizes,
please refer to Figures S2 and S3 in the Supporting
Information. What we find is that the NN predicts more or
less evenly across inner and outer clusters alike, which is proof
of its ability to generalize the system state space, yet it is of
course better at internal images of its own training sizes. For
external images, it is slightly better at predicting the MD
energies compared to GA energies, yet slightly worse at MD
forces compared to GA forces. This is probably due to the fact
that the MD simulations tend to give symmetric energy
distributions, while simultaneously adding new asymmetric
forces.

To further determine the nature of these errors, we analyze
cluster stability as a function of stoichiometry. This is
important because we have yet to determine how the
prediction errors relate specifically to each element within
the cluster. To test this, we examine the middle NN'’s
performance (iteration S), in predicting cluster energies
specifically as a function of Au percentage. We use the Sth
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training (b). For each, 1000 out of the total 6435 possible permutations were randomly sampled. Occupancies were then relaxed for one ionic loop
in DFT, and the plots show the NN prediction errors by comparison. From left to right, we see energy and force MAEs, followed by energy mean

error (ME).

NN to minimize bias toward 15, 20, and 25 atoms, as it was
found that beyond iteration S, predictions improve for those
sizes yet slightly worsen for inner and outer clusters—which
could be interpreted as overtraining if the desire is to
generalize rather than specialize the NN. These results are
shown in Figure 5. For 15-, 20-, and 25-atom clusters, we have
10 evenly distributed stoichiometries to work with, ranging
from 10% Au, 90% Pd to 90% Au, 10% Pd. Within each of
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these stoichiometries, we randomly sample 80 clusters, for each
cluster size. The DFT reference energies (red circles) are
plotted on the left axis, along with the associated NN
predictions (blue dots). The MAE values across all cluster
sizes for each stoichiometry (black x’s) are measured on the
right axis. The only difference for inner and outer clusters is
that we just have 5 stoichiometries to work with, out of which
we only pull 10 unique clusters, again for each cluster size.
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Table 2. Elapsed Wall Times for DFT and NN Calculations as Averaged over ~1000 Cluster Images”

types of computation time (s)

DFT (1 ionic iteration) min
mean
max
NN (calculate energy and forces) min
mean

max

15-atom clusters

20-atom clusters 25-atom clusters

1.467 x 10° 1.028 x 10? 1.974 x 10°
3.696 x 107 2427 x 107 5.016 x 107
2.545 x 10° 1.725 x 10° 1.982 x 10°
2435 x 1072 2.831 x 1072 3435 x 1072
3.582 x 1072 4.495 X 1072 5431 x 1072
5.870 x 1072 7.127 X 1072 7.267 X 1072

“Note that some DFT calculations can stall for an unexpected amount of time, as seen in the maxima; however, such anomalies fail to account for

the widespread difference in DFT and NN runtimes.

(@

(b)

Figure 7. Gaussian kernel density estimations for atomic positions over ~1000: (a) 15-, (b) 20-, and (c) 25-atom clusters. We use S—7 contours to
help distinguish the extra nuance in configurations associated with larger clusters (Scott’s factor for covariance).

These plots reveal something very interesting: prediction
errors are indeed a function of Au %, yet the relationship is
nonlinear. As seen in Figure 3, we already know Au % is a
strong linear predictor of AuPd cluster total energy; however,
now we can see exactly how this translates to errors in the NN
prediction. Figure S thus provides evidence for the source of
MAE errors being correlated, but not fully explained, by cluster
total energy—note that since a consistent conversion between
cluster total energy and cluster atomization energy is always
possible, the MAE prediction errors are not affected by this
choice. Moreover, by simply “flipping” the stoichiometries of a
sample of clusters (swapping Au for Pd and vice versa) and
validating them with DFT, we can directly test if our NN has
any bias toward either stoichiometric distribution. This
examination is provided in Figure S3 in the Supporting
Information, where minimal statistical bias was found.

We conclude that our MAE prediction errors must then be
correlated not only with stoichiometry but also more subtly
with occupancy (which atom is in which geometric position
within the cluster), for there is no other variation present in the
training data distribution. Therefore, we are motivated to test
the NN’s precision in evaluating the subtle differences in
cluster energy when varying the exact occupancy of the
stoichiometric distribution. For this test, we select just two
clusters of 15 atoms of mostly even stoichiometric mixture
AugPd,, one internal to the training data and one external to
the training data—both of which are almost totally relaxed
with DFT. We hold constant the geometry and permute over
its occupancy, which would generate 15 choose 7 or 8, ie,
6435 clusters each. From these possibilities, we take a more
pragmatic random sample of 1000 clusters and compare DFT
vs NN predictions for these cluster permutations. Results are
shown in Figure 6. We found that in this high-demand
precision test, the final NN has trouble differentiating the
subtle energetic differences for the cluster occupancies and
likely estimates its energy based on the most similar
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stoichiometry it has seen, leading to slight yet consistent
over- and underestimations of cluster total energy.

In an effort to be thorough, we also relax in DFT the “top-
10” most stable UR structures for each cluster size for a total of
10 ionic steps and compared the final energies and forces with
what the cumulative NN would have predicted after 10
relaxation steps of its own, using the BFGS algorithm. Results
of which are in Figure S4 in the Supporting Information
(geometries shown in Figure SS) and showcase very similar
predictions for 25-atom clusters and even better predictions for
15- and 20-atom clusters. This demonstrates that the NN
knows not only the energy and forces of structures within the
system’s configuration space but can also reliably relax such
structures just like DFT.

Whereas Table 1 analyzes accuracy, Table 2 showcases how
fast the NN is compared to DFT—roughly four orders of
magnitude in general. DFT times shown here do more than
calculate energies and forces; however, as they are initialized by
VASP, many subprocesses must occur before electronic and
ionic iterations begin. Nevertheless, this difference fails to
compare with how much faster the NN is. Of course, we also
have to train the NNs which occupies a fair amount of the total
global iteration runtime, yet using the NNs in this fashion is
exactly what enables the GA to search such a vast configuration
space with high accuracy in a very reasonable amount of
time—trying to generate the same structures with the GA by
using DFT instead of the NN for force and energy calculations
would take thousands of hours.

One natural result of mapping global configuration space is
the statistical accumulation of clusters into regimented
patterns—geometric phases. These can be identified with
some post processing as seen here in Figure 7. This maps the
probability density of positions within the set, using another
gaussian KDE. Here, we took ~1000 DFT images from the
final global iteration’s training data for each of the 3 sizes. In
Figure 7, we see for 15-atom clusters, mostly every morphology
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is based upon the 13-atom icosahedron (one atom in the core
and 12 evenly distributed outside), with extensions added on
rather arbitrarily. Yet for 20-atom clusters, there is no
regimented pattern preferred, only layers of nearest-neighbor
occupations, and so morphology tends to represent radial
stochastic clumps. The same is true for 2S-atom clusters;
however, now the layers outside the core are just as occupied
as the core itself, representing a transition toward bulk
morphology.

Another natural consequence of this global optimization
scheme is that core—shell segregations become apparent. Here,
the ML algorithm tends to minimize Au as it descends the
energy landscape due to the Pd—Pd bonds being stronger than
Au—Pd and Au—Au bonds. During this process of Au
minimization, we see a natural core—shell segregation, with
Au moving to the surface of clusters and Pd moving to the core
(see Figure S6 in the Supporting Information). This is found
to be true for atomization energy and total energy, although
clusters with minimal atomization energy will not necessarily
minimize Au as is in the case for total energy. Furthermore,
this is seen more explicitly as first- and second-neighbor
coordination distributions in Figure S7 in the Supporting
Information. These physical insights can be used to guide the
fine-tuning of electronic properties, which is highly desirable
for applied nanocluster research.

4. CONCLUSIONS

We have demonstrated how state-of-the-art deep neural
networks can be utilized to estimate DFT energies and forces
precisely and accurately (for over 99% of clusters tested) with
bimetallic clusters of sizes 15, 20, and 25 atoms, regardless of
stoichiometry, and how combining these NNs with GAs allows
one to generate stable clusters within the local configuration
space. Combining these two facts together allows us to
construct an ML algorithm capable of mapping the system’s
configuration space as validated by DFT, which automatically
converges to the bottom of the system’s energy minima. The
optimization of such an algorithm only requires minor domain-
specific hyperparameterization as well as an efficient method
for pruning “uniquely representative” structures. Whereas NNs
have been trained on DFT images in the past, and GAs have
been utilized in conjunction with DFT, the combination of all
three methodologies into one optimization program is to our
knowledge new.

This optimization minimizes actual DFT calculations. For
example, with just 10 global iterations, we generate ~9,000
DFT-accurate configurations (3 sizes X ~300 UR structures X
10) in about 20 hours ((~0.1 h DFT + ~1 h GA + ~1 h NN
training) X 10). Moreover, these 9000 configurations
automatically represent unbiased samples across the global
configuration space, thanks to our UR pruning method and the
GA’s intrinsically unbiased stochastics. Beyond minimizing
DEFT calculations, we also attempt to maximize the domain of
the cumulative NN’s applicability—including cluster sizes and
stoichiometries outside its training set with minimal loss in
predictive power (~0.3 eV MAE for all cluster sizes and
stoichiometries tested). This also necessitates the avoidance of
overtraining, whereby the more precisely the NN can predict
the trained sizes, the less precisely it can predict sizes outside
of its training domain—such a tradeoff is inevitable; however,
the overall performance of the NN predictions can always be
improved with more data and more sensitive hyperparameter
values.
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In general, the ML algorithm here demonstrated serves as a
pragmatic solution to the problem of mapping large atomic
state spaces with quantum accuracy without a large amount of
computation time. Such a simple DFT+GA+NN methodology
can be easily extended to bulk, surface slab, and adsorption site
exploration as well (results of which are left to future reports),
especially in situations where one lacks labeled reference data
to begin with. This research’s application starts with new,
pragmatic methods in computational physics and spreads to
more specified theoretical domains, specifically catalysis design
and materials discovery, with the simple introduction of
domain-specific parameterization. Further research will explore
high-entropy structures of various composition and stoichi-
ometry, revealing in practical computation, unique states amid
vast possibilities for the growing experimental interest. As
neural networks have been demonstrated to predict well on
larger clusters and different bimetallic and high-entropy
metallic clusters, we anticipate a high level of transferability
for this methodology.
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