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Optimal Prediction of Markov Chains With and

Without Spectral Gap
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Abstract— We study the following learning problem with
dependent data: Observing a trajectory of length n from a
stationary Markov chain with k states, the goal is to predict the
next state. For 3 ≤ k ≤ O(

√
n), using techniques from univer-

sal compression, the optimal prediction risk in Kullback-Leibler

divergence is shown to be Θ(k
2

n
log n

k2 ), in contrast to the

optimal rate of Θ( log log n

n
) for k = 2 previously shown in

Falahatgar et al. (2016). These rates, slower than the parametric

rate of O(k
2

n
), can be attributed to the memory in the data,

as the spectral gap of the Markov chain can be arbitrarily
small. To quantify the memory effect, we study irreducible
reversible chains with a prescribed spectral gap. In addition to
characterizing the optimal prediction risk for two states, we show
that, as long as the spectral gap is not excessively small, the

prediction risk in the Markov model is O(k
2

n
), which coincides

with that of an iid model with the same number of parameters.
Extensions to higher-order Markov chains are also obtained.

Index Terms— Markov chains, prediction, redundancy, spec-
tral gap, mixing time, Kullback Leibler risk, higher-order
Markov chains.

I. INTRODUCTION

L
EARNING distributions from samples is a central ques-

tion in statistics and machine learning. While significant

progress has been achieved in property testing and estimation

based on independent and identically distributed (iid) data, for

many applications, most notably natural language processing,

two new challenges arise: (a) Modeling data as indepen-

dent observations fails to capture their temporal dependency;

(b) Distributions are commonly supported on a large domain

whose cardinality is comparable to or even exceeds the sample

size. Continuing the progress made in [1] and [2], in this paper

we study the following prediction problem with dependent

data modeled as Markov chains.
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Suppose X1, X2, . . . is a stationary first-order Markov chain

on state space [k] ≜ {1, . . . , k} with unknown statistics.

Observing a trajectory Xn ≜ (X1, . . . , Xn), the goal is to

predict the next state Xn+1 by estimating its distribution

conditioned on the present data. We use the Kullback-Leibler

(KL) divergence as the loss function: For distributions P =
[p1, . . . , pk] , Q = [q1, . . . , qk], D(P∥Q) =

∑k
i=1 pi log pi

qi
if

pi = 0 whenever qi = 0 and D(P∥Q) = ∞ otherwise. The

minimax prediction risk is given by

Riskk,n ≜ inf
M̂

sup
Ã,M

E[D(M(·|Xn)∥M̂(·|Xn))]

= inf
M̂

sup
Ã,M

k∑

i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}] (1)

where the supremum is taken over all stationary distributions Ã
and transition matrices M (row-stochastic) such that ÃM = Ã,

the infimum is taken over all estimators M̂ = M̂(X1, . . . , Xn)
that are proper Markov kernels (i.e. rows sum to 1), and

M(·|i) denotes the ith row of M . Our main objective is to

characterize this minimax risk within universal constant factors

as a function of n and k.

The prediction problem (1) is distinct from the parameter

estimation problem such as estimating the transition matrix

[3], [4], [5], [6] or its properties [7], [8], [9], [10] in

that the quantity to be estimated (conditional distribution

of the next state) depends on the sample path itself. This

is precisely what renders the prediction problem closely

relevant to natural applications such as autocomplete and

text generation. In addition, this formulation allows more

flexibility with far less assumptions compared to the esti-

mation framework. For example, if certain state has very

small probability under the stationary distribution, consis-

tent estimation of the transition matrix with respect to

usual loss function, e.g. squared risk, may not be possible,

whereas the prediction problem is unencumbered by such rare

states.

In the special case of iid data, the prediction problem

reduces to estimating the distribution in KL divergence. In this

setting the optimal risk is well understood, which is known to

be k−1
2n (1+o(1)) when k is fixed and n → ∞ [11] and Θ( k

n )

for k = O(n) [12], [13].1 Typical in parametric models, this

rate k
n is commonly referred to the “parametric rate”, which

leads to a sample complexity that scales proportionally to the

1Here and below ≍, ≲, ≳ or Θ(·), O(·), Ω(·) denote equality and inequal-
ities up to universal multiplicative constants.
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number of parameters and inverse proportionally to the desired

accuracy.

In the setting of Markov chains, however, the prediction

problem is much less understood especially for large state

space. Recently the seminal work [1] showed the surprising

result that for stationary Markov chains on two states, the

optimal prediction risk satisfies

Risk2,n = Θ

(
log log n

n

)
, (2)

which has a nonparametric rate even when the problem has

only two parameters. The follow-up work [2] studied general

k-state chains and showed a lower bound of Ω(k log log n
n ) for

uniform (not necessarily stationary) initial distribution; how-

ever, the upper bound O(k2 log log n
n ) in [2] relies on implicit

assumptions on mixing time such as spectral gap conditions:

the proof of the upper bound for prediction (Lemma 7 in the

supplement) and for estimation (Lemma 17 of the supplement)

is based on Berstein-type concentration results of the empirical

transition counts, which depend on spectral gap. The following

theorem resolves the optimal risk for k-state Markov chains:

Theorem 1 (Optimal rates without spectral gap): There

exists a universal constant C > 0 such that for all 3 f k f√
n/C,

k2

Cn
log
( n

k2

)
f Riskk,n f Ck2

n
log
( n

k2

)
. (3)

Furthermore, the lower bound continues to hold even if the

Markov chain is restricted to be irreducible and reversible.

Remark 1: The optimal prediction risk of O(k2

n log n
k2 ) can

be achieved by an average version of the add-one estimator

(i.e. Laplace’s rule of succession).

Given a trajectory xn = (x1, . . . , xn) of length n, denote

the transition counts (with the convention Ni ≡ Nij ≡ 0 if

n = 0, 1)

Ni =

n−1∑

ℓ=1

1{xℓ=i}, Nij =

n−1∑

ℓ=1

1{xℓ=i,xℓ+1=j}. (4)

The add-one estimator for the transition probability M(j|i) is

given by

M̂+1
xn (j|i) ≜

Nij + 1

Ni + k
, (5)

which is an additively smoothed version of the empirical

frequency. Finally, the optimal rate in (3) can be achieved by

the following estimator M̂ defined as an average of add-one

estimators over different sample sizes:

M̂xn(xn+1|xn) ≜
1

n

n∑

t=1

M̂+1
xn

n−t+1
(xn+1|xn). (6)

In other words, we apply the add-one estimator to the most

recent t observations (Xn−t+1, . . . , Xn) to predict the next

Xn+1, then average over t = 1, . . . , n. Such Cesàro-mean-

type estimators have been introduced before in the density

estimation literature (see, e.g., [14]). It remains open whether

the usual add-one estimator (namely, the last term in (6) which

uses all the data) or any add-c estimator for constant c achieves

the optimal rate. In contrast, for two-state chains the optimal

risk (2) is attained by a hybrid strategy [1], applying add-

c estimator for c = 1
log n for trajectories with at most one

transition and c = 1 otherwise. Also note that the estimator in

(6) can be computed in O(nk) time. To derive this first note

that given any j ∈ [k] calculating M̂+1

xn−1
1

(j|xn−1) takes O(n)

time and given any M+1

xn−1
n−t+1

(j|xn−1) we need O(1) time to

calculate M̂+1

xn−1
n−t+2

(j|xn−1). Summing over all j we get the

algorithmic complexity upper bound.

Theorem 1 shows that the departure from the parametric

rate of k2

n , first discovered in [1] and [2] for binary chains,

is even more pronounced for larger state space. As will

become clear in the proof, there is some fundamental dif-

ference between two-state and three-state chains, resulting in

Risk3,n = Θ( log n
n ) k Risk2,n = Θ( log log n

n ). It is instructive

to compare the sample complexity for prediction in the iid

and Markov model. Denote by d the number of parameters,

which is k−1 for the iid case and k(k−1) for Markov chains.

Define the sample complexity n∗(d, ϵ) as the smallest sample

size n in order to achieve a prescribed prediction risk ϵ. For

ϵ = O(1), we have

n∗(d, ϵ) ≍





d
ϵ iid
d
ϵ log log 1

ϵ Markov with 2 states
d
ϵ log 1

ϵ Markov with k g 3 states.

(7)

At a high level, the nonparametric rates in the Markov

model can be attributed to the memory in the data. On the

one hand, Theorem 1 as well as (2) affirm that one can

obtain meaningful prediction without imposing any mixing

conditions;2 such decoupling between learning and mixing has

also been observed in other problems such as learning linear

dynamics [15], [16]. On the other hand, the dependency in

the data does lead to a strictly higher sample complexity than

that of the iid case; in fact, the lower bound in Theorem 1

is proved by constructing chains with spectral gap as small

as O( 1
n ) (see Section III). Thus, it is conceivable that with

sufficiently favorable mixing conditions, the prediction risk

improves over that of the worst case and, at some point,

reaches the parametric rate. To make this precise, we focus

on Markov chains with a prescribed spectral gap.

It is well-known that for an irreducible and reversible chain,

the transition matrix M has k real eigenvalues satisfying 1 =
¼1 g ¼2 g . . . ¼k g −1.

The absolute spectral gap of M , defined as

µ∗ ≜ 1 − max {|¼i| : i ̸= 1} , (8)

quantifies the memory of the Markov chain. For example, the

mixing time is determined by 1/µ∗ (relaxation time) up to

logarithmic factors. As extreme cases, the chain which does

not move (M is identity) and which is iid (M is rank-one)

have spectral gap equal to 0 and 1, respectively. We refer the

reader to [17] for more background. Note that the definition of

absolute spectral gap requires irreducibility and reversibility,

thus we restrict ourselves to this class of Markov chains (it is

2To see this, it is helpful to consider the extreme case where the chain does
not move at all or is periodic, in which case predicting the next state is in
fact easy.
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possible to use more general notions such as pseudo spectral

gap to quantify the memory of the process, which is beyond

the scope of the current paper). Given µ0 ∈ (0, 1), define

Mk(µ0) as the set of transition matrices corresponding to

irreducible and reversible chains whose absolute spectral gap

exceeds µ0. Restricting (1) to this subcollection and noticing

the stationary distribution here is uniquely determined by M ,

we define the corresponding minimax risk:

Riskk,n(µ0) ≜ inf
M̂

sup
M∈Mk(µ0)

E

[
D(M(·|Xn)∥M̂(·|Xn))

]

(9)

Extending the result (2) of [1], the following theorem

characterizes the optimal prediction risk for two-state chains

with prescribed spectral gaps (the case µ0 = 0 corresponds to

the minimax rate in [1] over all binary Markov chains):

Theorem 2 (Spectral gap dependent rates for binary chain):

For any µ0 ∈ (0, 1)

Risk2,n(µ0) ≍
1

n
max

{
1, log log

(
min

{
n,

1

µ0

})}
.

Theorem 2 shows that for binary chains, parametric rate

O( 1
n ) is achievable if and only if the spectral gap is nonvanish-

ing. While this holds for bounded state space (see Corollary 4

below), for large state space, it turns out that much weaker

conditions on the absolute spectral gap suffice to guarantee

the parametric rate O(k2

n ), achieved by the add-one estimator

applied to the entire trajectory. In other words, as long as

the spectral gap is not excessively small, the prediction risk

in the Markov model behaves in the same way as that of

an iid model with equal number of parameters. A similar

conclusion has been established previously for the sample

complexity of estimating the entropy rate of Markov chains

in [9, Theorem 1].

Theorem 3: The add-one estimator in (5) achieves the

following risk bound.

(i) For any k g 2, Riskk,n(µ0) ≲ k2

n provided that µ0 ≳
( log k

k )1/4.

(ii) In addition, for k ≳ (log n)6, Riskk,n(µ0) ≲ k2

n provided

that µ0 ≳ (log(n+k))2

k .

Corollary 4: For any fixed k g 2, Riskk,n(µ0) = O( 1
n ) if

and only if µ0 = Ω(1).
Remark 2 (The role of reversibility): The main reason

why we require reversibility in Theorems 2 and 3 is to

make use of the absolute spectral gap, which might not be

well-defined without reversibility. For non-reversible chains,

a related notion is the pseudo spectral gap (used later in

Lemma 31), which is technically more involved. The result

of Theorem 3(ii) is still true under the pseudo spectral gap,

using the concentration inequality for non-reversible chains

[18, Theorem 3.4]. As for other results in Theorems 2 and 3(i),

currently we do not know whether they can be extended to the

pseudo spectral gap.

Next, we address the optimal prediction risk for higher-order

Markov chains:
Theorem 5: There is a constant Cm depending on m such

that for any 2 f k f n
1

m+1 /Cm and constant m g 2 the

minimax prediction rate for mth-order Markov chains with

stationary initialization is Θm

(
km+1

n log n
km+1

)
.

Notably, for binary states, it turns out that the optimal rate

Θ
(

log log n
n

)
for first-order Markov chains determined by [1]

is something very special, as we show that for second-order

chains the optimal rate is Θ
(

log n
n

)
.

Finally, we discuss some basic results for the prediction

problem with stationary reversible chains when other f -

divergences are considered. For the spectral gap independent

results, our general proof techniques for the KL-based predic-

tion strongly depend on the reduction to redundancy, which is

usually unavailable for other general divergences. As a result,

the corresponding risk bounds do not directly follow, and one

needs to resort to other techniques. Nevertheless, we show

that for the specific case of the squared total variation loss

our results can establish a Θk

(
log n

n

)
when k g 3 (cf. (136)).

On the other hand, we investigate the prediction risk for the

stronger loss function given by the Chi-square divergence for

the spectral gap dependent results. We show that whenever the

absolute spectral gap is non-vanishing in n, k, we can achieve

the parametric error rate (cf. Theorem 33).

A. Proof Techniques

The proof of Theorem 1 deviates from existing approaches

based on concentration inequalities for Markov chains. For

instance, the standard program for analyzing the add-one

estimator (5) involves proving concentration of the empirical

counts on their population version, namely, Ni ≈ nÃi and

Nij ≈ nÃiM(j|i), and bounding the risk in the atypical

case by concentration inequalities, such as the Chernoff-type

bounds in [19] and [18], which have been widely used in recent

work on statistical inference with Markov chains [2], [6], [8],

[9], [10]. However, these concentration inequalities inevitably

depends on the spectral gap of the Markov chain, leading to

results which deteriorate as the spectral gap becomes smaller.

For two-state chains, results free of the spectral gap are

obtained in [1] using explicit joint distribution of the transition

counts; this refined analysis, however, is difficult to extend to

larger state space as the probability mass function of (Nij)

is given by Whittle’s formula [20] which takes an unwieldy

determinantal form.

Eschewing concentration-based arguments, the crux of our

proof of Theorem 1, for both the upper and lower bound,

revolves around the following quantity known as redundancy:

Redk,n ≜ inf
QXn

sup
PXn

D(PXn∥QXn)

= inf
QXn

sup
PXn

∑

xn

PXn(xn) log
PXn(xn)

QXn(xn)
. (10)

Here the supremum is taken over all joint distributions of

stationary Markov chains Xn on k states, and the infimum

is over all joint distributions QXn . A central quantity which

measures the minimax regret in universal compression, the

redundancy (10) corresponds to minimax cumulative risk

(namely, the total prediction risk when the sample size ranges

from 1 to n), while (1) is the individual minimax risk at sample
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size n – see Section II for a detailed discussion. We prove the

following reduction between prediction risk and redundancy:

1

n
Red

sym
k−1,n − log k

n
≲ Riskk,n f 1

n − 1
Redk,n (11)

where Redsym denotes the redundancy for symmetric Markov

chains. The upper bound is standard: thanks to the convexity of

the loss function and stationarity of the Markov chain, the risk

of the Cesàro-mean estimator (6) can be upper bounded using

the cumulative risk and, in turn, the redundancy. The proof

of the lower bound is more involved. Given a (k − 1)-state

chain, we embed it into a larger state space by introducing a

new state, such that with constant probability, the chain starts

from and gets stuck at this state for a period time that is

approximately uniform in [n], then enters the original chain.

Effectively, this scenario is equivalent to a prediction problem

on k − 1 states with a random (approximately uniform)

sample size, whose prediction risk can then be related to the

cumulative risk and redundancy. This intuition can be made

precise by considering a Bayesian setting, in which the (k−1)-
state chain is randomized according to the least favorable prior

for (10), and representing the Bayes risk as conditional mutual

information and applying the chain rule.

Given the above reduction in (11), it suffices to show

both redundancies therein are on the order of k2

n log n
k2 .

The redundancy is upper bounded by pointwise redundancy,

which replaces the average in (10) by the maximum over all

trajectories. Following [21] and [22], we consider an explicit

probability assignment defined by add-one smoothing and

using combinatorial arguments to bound the pointwise redun-

dancy, shown optimal by information-theoretic arguments.

The optimal spectral gap-dependent rate in Theorem 2 relies

on the key observation in [1] that, for binary chains, the

dominating contribution to the prediction risk comes from

trajectories with a single transition, for which we may apply

an add-c estimator with c depending appropriately on the

spectral gap. The lower bound is shown using a Bayesian

argument similar to that of [2, Theorem 1]. The proof of

Theorem 3 relies on more delicate concentration arguments as

the spectral gap is allowed to be vanishingly small. Notably,

for small k, direct application of existing Bernstein inequalities

for Markov chains in [19] and [18] falls short of establishing

the parametric rate of O(k2

n ) (see Remark 5 in Section IV-B for

details); instead, we use a fourth moment bound which turns

out to be well suited for analyzing concentration of empirical

counts conditional on the terminal state.

For large k, we further improve the spectral gap condition

using a simulation argument for Markov chains using inde-

pendent samples [5], [9]. A key step is a new concentration

inequality for D(P∥P̂+1
n,k), where P̂+1

n,k is the add-one estimator

based on n iid observations of P supported on [k]:

P

(
D(P∥P̂+1

n,k) g c · k

n
+

polylog(n) ·
√

k

n

)
f 1

poly(n)
,

(12)

for some absolute constant c > 0. Note that an application

of the classical concentration inequality of McDiarmid would

result in the second term being polylog(n)/
√

n, and (12)

crucially improves this to polylog(n)·
√

k/n. Such an improve-

ment has been recently observed by [23], [24], and [25] in

studying the similar quantity D(P̂n∥P ) for the (unsmoothed)

empirical distribution P̂n; however, these results, based on

either the method of types or an explicit upper bound of the

moment generating function, are not directly applicable to (12)

in which the true distribution P appears as the first argument

in the KL divergence.

The nonasymptotic spectral gap-independent analysis of the

prediction rate for higher-order chains with large alphabets is

based on a similar redundancy-based reduction as the first-

order chain. However, the nonasymptotic redundancy lower

bound for higher-order chains is more challenging. The main

technical difficulty is that even if {Xt}n
t=1 is a reversible m-th

order chain, the first-order chain {(Xt, . . . , Xt+m−1)}n−m+1
t=1

is usually not reversible. Consequently, as also noted in [26],

existing analysis in [27, Sec III] based on simple mixing

conditions from [28] leads to suboptimal results on large

alphabets. To bypass this issue, we show the pseudo spectral

gap [18] of the transition matrix of the first-order chain

{(Xt, . . . , Xt+m−1)}n−m+1
t=1 is at least a constant. This is

accomplished by a careful construction of a prior on mth-

order transition matrices with Θ
(
km+1

)
degrees of freedom.

The high-level idea is to add laziness to the first-order chain

{(Xt, . . . , Xt+m−1)}n−m+1
t=1 so that its pseudo spectral gap

is of the same order of the Poincaré’s constant [29, Corol-

lary 1.15], a property which requires reversibility without

laziness.

B. Related Work

While the exact prediction problem studied in this paper

has recently been in focus since [1] and [2], there exists a

large body of literature on relate works. As mentioned before

some of our proof strategies draws inspiration and results

from the study of redundancy in universal compression, its

connection to mutual information, as well as the perspective

of sequential probability assignment as prediction, dating back

to [21], [30], [31], [32], and [33]. Asymptotic characterization

of the minimax redundancy for Markov sources, both average

and pointwise, were obtained in [27], [34], and [35], in the

regime of fixed alphabet size k and large sample size n. Non-

asymptotic characterization was obtained in [27] for n k
k2 log k and recently extended to n ≍ k2 in [26], which

further showed that the behavior of the redundancy remains

unchanged even if the Markov chain is very close to being iid

in terms of spectral gap µ∗ = 1 − o(1).
The current paper adds to a growing body of literature

devoted to statistical learning with dependent data, in par-

ticular those dealing with Markov chains. Estimation of the

transition matrix [3], [4], [5], [36] and testing the order of

Markov chains [7] have been well studied in the large-sample

regime. More recently attention has been shifted towards large

state space and nonasymptotics. For example, [6] studied

the estimation of transition matrix in ℓ∞ → ℓ∞ induced

norm for Markov chains with prescribed pseudo spectral gap

and minimum probability mass of the stationary distribution,
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and determined sample complexity bounds up to logarithmic

factors. Similar results have been obtained for estimating prop-

erties of Markov chains, including mixing time and spectral

gap [10], entropy rate [8], [9], [37], graph statistics based

on random walk [38], as well as identity testing [39], [40],

[41], [42]. Most of these results rely on assumptions on the

Markov chains such as lower bounds on the spectral gap

and the stationary distribution, which afford concentration for

sample statistics of Markov chains. In contrast, one of the

main contributions in this paper, in particular Theorem 1,

is that optimal prediction can be achieved without these

assumptions, thereby providing a novel way of tackling these

seemingly unavoidable issues. This is ultimately accomplished

by information-theoretic and combinatorial techniques from

universal compression.

C. Notations and Preliminaries

For n ∈ N, let [n] ≜ {1, . . . , n}. Denote xn = (x1, . . . , xn)
and xn

t = (xt, . . . , xn). The distribution of a random variable

X is denoted by PX . In a Bayesian setting, the distribution of

a parameter ¹ is referred to as a prior, denoted by P¹. We recall

the following definitions from information theory [43], [44].

The conditional KL divergence is defined as as an average of

KL divergence between conditional distributions:

D(PA|B∥QA|B |PB) ≜ EB∼PB
[D(PA|B∥QA|B)]

=

∫
PB(db)D(PA|B=b∥QA|B=b).

(13)

The mutual information between random variables A and B
with joint distribution PAB is I(A;B) ≜ D(PB|A∥PB |PA);
similarly, the conditional mutual information is defined as

I(A;B|C) ≜ D(PB|A,C∥PB|C |PA,C).

The following variational representation of (conditional)

mutual information is well-known

I(A;B) = min
QB

D(PB|A∥QB |PA),

I(A;B|C) = min
QB|C

D(PB|A,C∥QB|C |PAC). (14)

The entropy of a discrete random variables X is H(X) ≜∑
x PX(x) log 1

PX(x) .

D. Organization

The rest of the paper is organized as follows. In Section II

we describe the general paradigm of minimax redundancy and

prediction risk and their dual representation in terms of mutual

information. We give a general redundancy-based bound on

the prediction risk, which, combined with redundancy bounds

for Markov chains, leads to the upper bound in Theorem 1.

Section III presents the lower bound construction, starting

from three states and then extending to k states. Spectral-

gap dependent risk bounds in Theorems 2 and 3 are given

in Section IV. Section V presents the results and proofs for

mth-order Markov chains. In Section VI we discuss prediction

risks assessed by other loss functions than the KL divergence.

Section VII discusses the assumptions and implications of our

results and related open problems.

II. TWO GENERAL PARADIGMS

A. Redundancy, Prediction Risk, and Mutual Information

Representation

For n ∈ N, let P = {PXn+1|¹ : ¹ ∈ Θ} be a collection of

joint distributions parameterized by ¹.

1) “Compression”: Consider a sample Xn ≜
(X1, . . . , Xn) of size n drawn from PXn|¹ for some

unknown ¹ ∈ Θ. The redundancy of a probability assignment

(joint distribution) QXn is defined as the worst-case KL risk

of fitting the joint distribution of Xn, namely

Red(QXn) ≜ sup
¹∈Θ

D(PXn|¹∥QXn). (15)

Optimizing over QXn , the minimax redundancy is defined as

Redn ≜ inf
QXn

Redn(QXn), (16)

where the infimum is over all joint distribution QXn . This

quantity can be operationalized as the redundancy (i.e. regret)

in the setting of universal data compression, that is, the excess

number of bits compared to the optimal compressor of Xn that

knows ¹ [44, Chapter 13].

The capacity-redundancy theorem (see [45] for a very

general result) provides the following mutual information

characterization of (16):

Redn = sup
P¹

I(¹;Xn), (17)

where the supremum is over all distributions (priors) P¹ on Θ.

In view of the variational representation (14), this result can

be interpreted as a minimax theorem:

Redn = inf
QXn

sup
P¹

D(PXn|¹∥QXn |P¹)

= sup
P¹

inf
QXn

D(PXn|¹∥QXn |P¹).

Typically, for fixed model size and n → ∞, one expects that

Redn = d
2 log n(1 + o(1)), where d is the number of param-

eters; see [31] for a general theory of this type. Indeed, on a

fixed alphabet of size k, we have Redn = k−1
2 log n(1+o(1))

for iid model [30] and Redn = km(k−1)
2 log n(1 + o(1)) for

mth-order Markov models [46], with more refined asymptotics

shown in [47] and [48]. For large alphabets, nonasymptotic

results have also been obtained. For example, for first-order

Markov model, Redn ≍ k2 log n
k2 provided that n ≳ k2 [26].

2) “Prediction”: Consider the problem of predicting the

next unseen data point Xn+1 based on the observations

X1, . . . , Xn, where (X1, . . . , Xn+1) are jointly distributed

as PXn+1|¹ for some unknown ¹ ∈ Θ. Here, an estimator

is a distribution (for Xn+1) as a function of Xn, which,

in turn, can be written as a conditional distribution QXn+1|Xn .

As such, its worst-case average risk is

Risk(QXn+1|Xn) ≜ sup
¹∈Θ

D(PXn+1|Xn,¹∥QXn+1|Xn |PXn|¹),

(18)
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where the conditional KL divergence is defined in (13). The

minimax prediction risk is then defined as

Riskn ≜ inf
QXn+1|Xn

Riskn(QXn+1|Xn), (19)

While (16) does not directly correspond to a statistical estima-

tion problem, (19) is exactly the familiar setting of “density

estimation”, where QXn+1|Xn is understood as an estimator

for the distribution of the unseen Xn+1 based on the available

data X1, . . . , Xn.

In the Bayesian setting where ¹ is drawn from a prior P¹,

the Bayes prediction risk coincides with the conditional mutual

information as a consequence of the variational representa-

tion (14):

inf
QXn+1|Xn

E¹[D(PXn+1|Xn,¹∥QXn+1|Xn |PXn|¹)]

= I(¹;Xn+1|Xn). (20)

Furthermore, the Bayes estimator that achieves this infimum

takes the following form:

QBayes

Xn+1|Xn = PXn+1|Xn =

∫
Θ

PXn+1|¹ dP¹∫
Θ

PXn|¹ dP¹
, (21)

known as the Bayes predictive density [30], [49]. These

representations play a crucial role in the lower bound proof

of Theorem 1. Under appropriate conditions which hold for

Markov models (see Lemma 34 in Appendix A), the minimax

prediction risk (19) also admits a dual representation analo-

gous to (17):

Riskn = sup
¹∼Ã

I(¹;Xn+1|Xn), (22)

which, in view of (20), show that the principle of

“minimax=worst-case Bayes” continues to hold for prediction

problem in Markov models.

The following result relates the redundancy and the predic-

tion risk.

Lemma 6: For any model P ,

Redn f
n−1∑

t=0

Riskt. (23)

In addition, suppose that each PXn|¹ ∈ P is stationary and

mth-order Markov. Then for all n g m + 1,

Riskn f Riskn−1 f Redn

n − m
. (24)

Furthermore, for any joint distribution QXn factorizing as

QXn =
∏n

t=1 QXt|Xt−1 , the prediction risk of the estimator

Q̃Xn|Xn−1(xn|xn−1) ≜
1

n − m

n∑

t=m+1

QXt|Xt−1(xn|xn−1
n−t+1)

(25)

is bounded by the redundancy of QXn as

Risk(Q̃Xn|Xn−1) f 1

n − m
Red(QXn). (26)

Remark 3: Note that the upper bound (23) on redun-

dancy, known as the “estimation-compression inequality” [1],

[13], holds without conditions, while the lower bound (24)

relies on stationarity and Markovity. For iid data, the

estimation-compression inequality is almost an equality; how-

ever, this is not the case for Markov chains, as both sides

of (23) differ by an unbounded factor of Θ(log log n) for

k = 2 and Θ(log n) for fixed k g 3 – see (2) and Theorem 1.

On the other hand, Markov chains with at least three states

offers a rare instance where (24) is tight, namely, Riskn ≍
Redn

n (cf. Lemma 7).

Proof: The upper bound on the redundancy follows from

the chain rule of KL divergence:

D(PXn|¹∥QXn) =

n∑

t=1

D(PXt|Xt−1,¹∥QXt|Xt−1 |PXt−1).

(27)

Thus

sup
¹∈Θ

D(PXn|¹∥QXn) f
n∑

t=1

sup
¹∈Θ

D(PXt|Xt−1,¹∥QXt|Xt−1 |PXt−1).

Minimizing both sides over QXn (or equivalently, QXt|Xt−1

for t = 1, . . . , n) yields (23).

To upper bound the prediction risk using redundancy, fix

any QXn , which gives rise to QXt|Xt−1 for t = 1, . . . , n.

For clarity, let use denote the tth estimator as P̂t(·|xt−1) =
QXt|Xt−1=xt−1 . Consider the estimator Q̃Xn|Xn−1 defined

in (25), namely,

Q̃Xn|Xn−1=xn−1 ≜
1

n − m

n∑

t=m+1

P̂t(·|xn−t+1, . . . , xn−1).

(28)

That is, we apply P̂t to the most recent t − 1 symbols prior

to Xn for predicting its distribution, then average over t. We

may bound the prediction risk of this estimator by redundancy

as follows: Fix ¹ ∈ Θ. To simplify notation, we suppress the

dependency of ¹ and write PXn|¹ ≡ PXn . Then

D(PXn|Xn−1∥Q̃Xn|Xn−1 |PXn−1)

(a)
= E

[
D

(
PXn|Xn−1

n−m

∥∥∥ 1

n

n∑

t=1

P̂t(·|Xn−1
n−t+1)

)]

(b)

f 1

n − m

n∑

t=m+1

E

[
D(PXn|Xn−1

n−m
∥P̂t(·|Xn−1

n−t+1))
]

(c)
=

1

n − m

n∑

t=m+1

E

[
D(PXt|Xt−1

t−m
∥P̂t(·|Xt−1))

]

(d)
=

1

n − m

n∑

t=m+1

D(PXt|Xt−1∥QXt|Xt−1 |PXt−1)

f 1

n − m

n∑

t=1

D(PXt|Xt−1∥QXt|Xt−1 |PXt−1)

(e)
=

1

n − m
D(PXn∥QXn),

where (a) uses the mth-order Markovian assumption;

(b) is due to the convexity of the KL divergence;

(c) uses the crucial fact that for all t = 1, . . . , n − 1,

(Xn−t, . . . , Xn−1)
law
= (X1, . . . , Xt), thanks to stationarity;

(d) follows from substituting P̂t(·|xt−1) = QXt|Xt−1=xt−1 ,
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the Markovian assumption PXt|Xt−1
t−m

= PXt|Xt−1 , and rewrit-

ing the expectation as conditional KL divergence; (e) is by

the chain rule (27) of KL divergence. Since the above holds

for any ¹ ∈ Θ, the desired (26) follows which implies that

Riskn−1 f Redn

n−m . Finally, Riskn−1 g Riskn follows from

E[D(PXn+1|Xn
∥P̂n(Xn

2 ))] = E[D(PXn|Xn−1
∥P̂n(Xn−1

1 ))],
since (X2, . . . , Xn) and (X1, . . . , Xn−1) are equal in law. □

Remark 4: Alternatively, Lemma 6 also follows from

the mutual information representation (17) and (22). Indeed,

by the chain rule for mutual information,

I(¹;Xn) =

n∑

t=1

I(¹;Xt|Xt−1), (29)

taking the supremum over Ã (the distribution of ¹) on

both sides yields (17). For (22), it suffices to show that

I(¹;Xt|Xt−1) is decreasing in t: for any ¹ ∼ Ã,

I(¹;Xn+1|Xn) = E log
PXn+1|Xn,¹

PXn+1|Xn

= E log
PXn+1|Xn,¹

PXn+1|Xn
2

+ E log
PXn+1|Xn

2

PXn+1|Xn

︸ ︷︷ ︸
−I(X1;Xn+1|Xn

2 )

,

and the first term is

E log
PXn+1|Xn,¹

PXn+1|Xn
2

= E log
PXn+1|Xn

n−m+1,¹

PXn+1|Xn
2

= E log
PXn|Xn−1

n−m,¹

PXn|Xn−1

= I(¹;Xn|Xn−1)

where the first and second equalities follow from the mth-

order Markovity and stationarity, respectively. Taking supre-

mum over Ã yields Riskn f Riskn−1. Finally, by the chain

rule (29), we have

I(¹;Xn) g (n − m)I(¹;Xn|Xn−1),

yielding Riskn−1 f Redn

n−m .

B. Proof of the Upper Bound Part of Theorem 1

Specializing to first-order stationary Markov chains with k
states, we denote the redundancy and prediction risk in (16)

and (19) by Redk,n and Riskk,n, the latter of which is precisely

the quantity previously defined in (1). Applying Lemma 6

yields Riskk,n f 1
n−1Redk,n. To upper bound Redk,n, consider

the following probability assignment:

Q(x1, · · · , xn) =
1

k

n−1∏

t=1

M̂+1
xt (xt+1|xt) (30)

where M̂+1 is the add-one estimator defined in (5).

This Q factorizes as Q(x1) = 1
k and Q(xt+1|xt) =

M̂+1
xt (xt+1|xt). The following lemma bounds the redundancy

of Q:

Lemma 7:

Red(Q) f k(k − 1)

[
log

(
1 +

n − 1

k(k − 1)

)
+ 1

]
+ log k.

Combined with Lemma 6, Lemma 7 shows that Riskk,n f
C k2

n log n
k2 for all k f

√
n/C and some universal constant C,

achieved by the estimator (6), which is obtained by applying

the rule (25) to (30).

It remains to show Lemma 7. To do so, we in fact

bound the pointwise redundancy of the add-one probabil-

ity assignment (30) over all (not necessarily stationary)

Markov chains on k states. The proof is similar to those of

[22, Theorems 6.3 and 6.5], which, in turn, follow the argu-

ments of [21, Sec. III-B].

Proof: We show that for every Markov chain with

transition matrix M and initial distribution Ã, and every

trajectory (x1, · · · , xn), it holds that

log
Ã(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)

f k(k − 1)

[
log

(
1 +

n

k(k − 1)

)
+ 1

]
+ log k (31)

where we abbreviate the add-one estimator M+1
xt (xt+1|xt)

defined in (5) as M̂+1(xt+1|xt).
To establish (31), note that Q(x1, · · · , xn) could be equiva-

lently expressed using the empirical counts Ni and Nij in (4)

as

Q(x1, · · · , xn) =
1

k

k∏

i=1

∏k
j=1 Nij !

k · (k + 1) · · · · · (Ni + k − 1)
.

Note that

n−1∏

t=1

M(xt+1|xt) =

k∏

i=1

k∏

j=1

M(j|i)Nij f
k∏

i=1

k∏

j=1

(Nij/Ni)
Nij ,

where the inequality follows from
∑

j
Nij

Ni
log

Nij/Ni

M(j|i) g 0 for

each i, by the nonnegativity of the KL divergence. Therefore,

we have

Ã(x1)
∏n−1

t=1 M(xt+1|xt)

Q(x1, · · · , xn)

f k ·
k∏

i=1

k · (k + 1) · · · · · (Ni + k − 1)

NNi
i

k∏

j=1

N
Nij

ij

Nij !
. (32)

We claim that: for n1, · · · , nk ∈ Z+ and n =
∑k

i=1 ni ∈ N,

it holds that

k∏

i=1

(ni

n

)ni

f
∏k

i=1 ni!

n!
, (33)

with the understanding that ( 0
n )0 = 0! = 1. Applying this

claim to (32) gives

log
Ã(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)

f log k +

k∑

i=1

log
k · (k + 1) · · · · · (Ni + k − 1)

Ni!

= log k +

k∑

i=1

Ni∑

ℓ=1

log

(
1 +

k − 1

ℓ

)
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f log k +

k∑

i=1

∫ Ni

0

log

(
1 +

k − 1

x

)
dx

= log k +
k∑

i=1

(
(k − 1) log

(
1 +

Ni

k − 1

)

+Ni log

(
1 +

k − 1

Ni

))

(a)

f k(k − 1) log

(
1 +

n − 1

k(k − 1)

)
+ k(k − 1) + log k,

where (a) follows from the concavity of x 7→ log x,∑k
i=1 Ni = n − 1, and log(1 + x) f x.

It remains to justify (33), which has a simple information-

theoretic proof: Let T denote the collection of sequences xn

in [k]n whose type is given by (n1, . . . , nk). Namely, for each

xn ∈ T , i appears exactly ni times for each i ∈ [k]. Let

(X1, . . . , Xn) be drawn uniformly at random from the set T .

Then

log
n!

∏k
i=1 ni!

= H(X1, . . . , Xn)

(a)

f
n∑

j=1

H(Xj)
(b)
= n

k∑

i=1

ni

n
log

n

ni
,

where (a) follows from the fact that the joint entropy is at

most the sum of marginal entropies; (b) is because each Xj

is distributed as (n1

n , . . . , nk

n ). □

III. OPTIMAL RATES WITHOUT SPECTRAL GAP

In this section, we prove the lower bound part of Theorem 1,

which shows the optimality of the average version of the

add-one estimator (25). We first describe the lower bound

construction for three-state chains, which is subsequently

extended to k states.

A. Warmup: An Ω(
log n

n ) Lower Bound for

Three-State Chains

Theorem 8: Risk3,n = Ω
(

log n
n

)
.

To show Theorem 8, consider the following one-parameter

family of transition matrices:

M =



Mp =




1 − 2
n

1
n

1
n

1
n 1 − 1

n − p p
1
n p 1 − 1

n − p




: 0 f p f 1 − 1

n

}
. (34)

Note that each transition matrix in M is symmetric (hence

doubly stochastic), whose corresponding chain is reversible

with a uniform stationary distribution and spectral gap Θ( 1
n );

see Fig. 1.

The main idea is as follows. Notice that by design, with

constant probability, the trajectory is of the following form:

The chain starts and stays at state 1 for t steps, and then

transitions into state 2 or 3 and never returns to state 1, where

t = 1, . . . , n−1. Since p is the single unknown parameter, the

only useful observations are visits to state 2 and 3 and each

visit entails one observation about p by flipping a coin with

Fig. 1. Lower bound construction for three-state chains.

bias roughly p. Thus the effective sample size for estimating

p is n− t−1 and we expect the best estimation error is of the

order of 1
n−t . However, t is not fixed. In fact, conditioned on

the trajectory is of this form, t is roughly uniformly distributed

between 1 and n − 1. As such, we anticipate the estimation

error of p is approximately

1

n − 1

n−1∑

i=1

1

n − t
= Θ

(
log n

n

)
.

Intuitively speaking, the construction in Fig. 1 “embeds” a

symmetric two-state chain (with states 2 and 3) with unknown

parameter p into a space of three states, by adding a “nuisance”

state 1, which effectively slows down the exploration of the

useful part of the state space, so that in a trajectory of length n,

the effective number of observations we get to make about p is

roughly uniformly distributed between 1 and n. This explains

the extra log factor in Theorem 8, which actually stems from

the harmonic sum in E[ 1
Uniform([n]) ]. We will fully explore

this embedding idea in Section III-B to deal with larger state

space.

Next we make the above intuition rigorous using a Bayesian

argument. Let us start by recalling the following well-known

lemma.

Lemma 9: Let q ∼ Uniform(0, 1). Conditioned on q, let

N ∼ Binom(m, q). Then the Bayes estimator of q given N is

the “add-one” estimator:

E[q|N ] =
N + 1

m + 2

and the Bayes risk is given by

E[(q − E[q|N ])2] =
1

6(m + 2)
.

Proof of Theorem 8: Consider the following Bayesian

setting: First, we draw p uniformly at random from [0, 1− 1
n ].

Then, we generate the sample path Xn = (X1, . . . , Xn) of a

stationary (uniform) Markov chain with transition matrix Mp

as defined in (34). Define for t = 1, . . . , n − 1

Xt = {xn : x1 = . . . = xt = 1, xi ̸= 1, i = t + 1, . . . , n},
X = ∪n−1

t=1 Xt. (35)
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Let µ(xn|p) = P [X = xn]. Then for xn ∈ Xt we have

µ(xn|p)=
1

3

(
1− 2

n

)t−1
2

n
pN(xn)

(
1− 1

n
− p

)
n−t−1−N(xn),

(36)

where N(xn) denotes the number of transitions from state

2 to 3 or from 3 to 2. Then

P [Xn ∈ Xt]

=
1

3

(
1 − 2

n

)t−1

·

2

n

n−t−1∑

k=0

(
n − t − 1

k

)
pk

(
1 − 1

n
− p

)n−t−1−k

=
1

3

(
1 − 2

n

)t−1
2

n

(
1 − 1

n

)n−t−1

=
2

3n

(
1 − 1

n

)n−2(
1 − 1

n − 1

)t−1

(37)

and hence

P [Xn ∈ X ]

=
n−1∑

t=1

P [Xn ∈ Xt]

=
2(n − 1)

3n

(
1 − 1

n

)n−2
(

1 −
(

1 − 1

n − 1

)n−1
)

(38)

=
2(1 − 1/e)

3e
+ on(1).

Consider the Bayes estimator (for estimating p under the

mean-squared error)

p̂(xn) = E[p|xn] =
E[p · µ(xn|p)]

E[µ(xn|p)]
.

For xn ∈ Xt, using (36) we have (with notation p ∼
Uniform

(
0, n−1

n

)
and U ∼ Uniform(0, 1))

p̂(xn) =
E

[
pN(xn)+1

(
1 − 1

n − p
)n−t−1−N(xn)

]

E

[
pN(xn)

(
1 − 1

n − p
)n−t−1−N(xn)

]

=
n − 1

n

E

[
UN(xn)+1 (1 − U)

n−t−1−N(xn)
]

E

[
UN(xn) (1 − U)

n−t−1−N(xn)
]

=
n − 1

n

N(xn) + 1

n − t + 1
,

where the last step follows from Lemma 9. From (36), we con-

clude that conditioned on Xn ∈ Xt and on p, N(Xn) ∼
Binom(n − t − 1, q), where q = p

1− 1
n

∼ Uniform(0, 1).

Applying Lemma 9 (with m = n − t − 1 and N = N(Xn)),
we get

E[(p − p̂(Xn))2|Xn ∈ Xt]

=

(
n − 1

n

)2

E

[(
q − N(xn) + 1

n − t + 1

)2
]

=

(
n − 1

n

)2
1

6(n − t + 1)
.

Finally, note that conditioned on Xn ∈ X , the probability of

Xn ∈ Xt is close to uniform. Indeed, from (37) and (38) we

get for t = 1, . . . , n − 1

P [Xn ∈ Xt|X ] =
1

n − 1

(
1 − 1

n−1

)t−1

1 −
(
1 − 1

n−1

)n−1

g 1

n − 1

(
1

e − 1
+ on(1)

)
.

Thus

E[(p − p̂(Xn))21{Xn∈X}]

= P [Xn ∈ X ]
n−1∑

t=1

E[(p − p̂(Xn))2|Xn ∈ Xt]P [Xn ∈ Xt|X ]

≳
1

n − 1

n−1∑

t=1

1

n − t + 1
= Θ

(
log n

n

)
. (39)

Finally, we relate (39) formally to the minimax prediction

risk under the KL divergence. Consider any predictor M̂(·|i)
(as a function of the sample path X) for the ith row of M ,

i = 1, 2, 3. By Pinsker inequality, we conclude that

D(M(·|2)∥M̂(·|2)) g
1

2
∥M(·|2) − M̂(·|2)∥2

ℓ1 g
1

2
(p − M̂(3|2))2

(40)

and similarly, D(M(·|3)∥M̂(·|3)) g 1
2 (p− M̂(2|3))2. Abbre-

viate M̂(3|2) ≡ p̂2 and M̂(2|3) ≡ p̂3, both functions of X .

Taking expectations over both p and X , the Bayes prediction

risk can be bounded as follows

3∑

i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}]

g 1

2
E[(p − p̂2)

21{Xn=2} + (p − p̂3)
21{Xn=3}]

g 1

2

∑

x∈X
µ(xn)

(
E[(p − p̂2)

2|X = xn]1{xn=2}

+E[(p − p̂3)
2|X = xn]1{xn=3}

)

g 1

2

∑

xn∈X
µ(xn)E[(p − p̂(xn))2|X =xn](1{xn=2}+1{xn=3})

=
1

2

∑

xn∈X
µ(xn)E[(p − p̂(xn))2|X = xn]

=
1

2
E[(p − p̂(X))21{X∈X}]

(39)
= Θ

(
log n

n

)
.

□

B. k-State Chains

The lower bound construction for 3-state chains in

Section III-A can be generalized to k-state chains.

The high-level argument is again to augment a (k−1)-state

chain into a k-state chain. Specifically, we partition the state

space [k] into two sets S1 = {1} and S2 = {2, 3, · · · , k}.

Consider a k-state Markov chain such that the transition

probabilities from S1 to S2, and from S2 to S1, are both very

small (on the order of Θ(1/n)). At state 1, the chain either
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Fig. 2. Lower bound construction for k-state chains. Solid arrows represent transitions within S1 and S2, and dashed arrows represent transitions between
S1 and S2. The double-headed arrows denote transitions in both directions with equal probabilities.

stays at 1 with probability 1 − 1/n or moves to one of the

states in S2 with equal probability 1
n(k−1) ; at each state in S2,

the chain moves to 1 with probability 1
n ; otherwise, within

the state subspace S2, the chain evolves according to some

symmetric transition matrix T . (See Fig. 2 in Section III-B.1

for the precise transition diagram.)

The key feature of such a chain is as follows. Let Xt be the

event that X1, X2, · · · , Xt ∈ S1 and Xt+1, · · · , Xn ∈ S2. For

each t ∈ [n − 1], one can show that P(Xt) g c/n for some

absolute constant c > 0. Moreover, conditioned on the event

Xt, (Xt+1, . . . , Xn) is equal in law to a stationary Markov

chain (Y1, · · · , Yn−t) on state space S2 with symmetric tran-

sition matrix T . It is not hard to show that estimating M and

T are nearly equivalent. Consider the Bayesian setting where

T is drawn from some prior. We have

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]

≈ inf
T̂

ET

[
E[D(T (·|Yn−t)∥T̂ (·|Yn−t))]

]

= I(T ;Yn−t+1|Y n−t),

where the last equality follows from the representation (20)

of Bayes prediction risk as conditional mutual information.

Lower bounding the minimax risk by the Bayes risk, we have

Riskk,n

g inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]

g inf
M̂

n−1∑

t=1

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt] · P(Xt)

]

g c

n
·

n−1∑

t=1

inf
M̂

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]

≈ c

n
·

n−1∑

t=1

I(T ;Yn−t+1|Y n−t)

=
c

n
· (I(T ;Y n) − I(T ;Y1)). (41)

Note that I(T ;Y1) f H(Y1) f log(k − 1) since Y1 takes

values in S2. Maximizing the right hand side over the prior

PT and recalling the dual representation for redundancy in

(17), the above inequality (41) leads to a risk lower bound

of Riskk,n ≳ 1
n (Red

sym
k−1,n − log k), where Red

sym
k−1,n =

sup I(T ;Y1) is the redundancy for symmetric Markov chains

with k−1 states and sample size n. Since symmetric transition

matrices still have Θ(k2) degrees of freedom, it is expected

that Red
sym
k,n ≍ k2 log n

k2 for n ≳ k2, so that (41) yields the

desired lower bound Riskk,n = Ω(k2

n log n
k2 ) in Theorem 1.

Next we rigorously carry out the lower bound proof

sketched above: In Section III-B.1, we explicitly construct

the k-state chain which satisfies the desired properties in

Section III-B. In Section III-B.2, we make the steps in (41)

precise and bound the Bayes risk from below by an appropriate

mutual information. In Section III-B.3, we choose a prior

distribution on the transition probabilities and prove a lower

bound on the resulting mutual information, thereby completing

Authorized licensed use limited to: Yale University. Downloaded on September 04,2024 at 05:40:53 UTC from IEEE Xplore.  Restrictions apply. 



3930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

the proof of Theorem 1, with the added bonus that the

construction is restricted to irreducible and reversible chains.

1) Construction of the k-State Chain: We construct a

k-state chain with the following transition probability matrix:

M =




1 − 1
n

1
n(k−1)

1
n(k−1) · · · 1

n(k−1)

1/n
1/n

...

1/n

(
1 − 1

n

)
T




, (42)

where T ∈ R
S2×S2 is a symmetric stochastic matrix to be

chosen later. The transition diagram of M is shown in Figure 2.

One can also verify that the spectral gap of M is Θ( 1
n ). Let

(X1, . . . , Xn) be the trajectory of a stationary Markov chain

with transition matrix M . We observe the following properties:

(P1) This Markov chain is irreducible and reversible, with

stationary distribution ( 1
2 , 1

2(k−1) , · · · , 1
2(k−1) );

(P2) For t ∈ [n − 1], let Xt denote the collections of

trajectories xn such that x1, x2, · · · , xt ∈ S1 and

xt+1, · · · , xn ∈ S2. Then

P(Xn ∈ Xt)

= P(X1 = · · · = Xt = 1) · P(Xt+1 ̸= 1|Xt = 1)·
n−1∏

s=t+1

P(Xs+1 ̸= 1|Xs ̸= 1)

=
1

2
·
(

1 − 1

n

)t−1

· 1

n
·
(

1 − 1

n

)n−1−t

g 1

2en
. (43)

Moreover, this probability does not depend of the choice

of T ;

(P3) Conditioned on the event that Xn ∈ Xt, the trajectory

(Xt+1, · · · , Xn) has the same distribution as a length-

(n−t) trajectory of a stationary Markov chain with state

space S2 = {2, 3, · · · , k} and transition probability T ,

and the uniform initial distribution. Indeed,

P [Xt+1 = xt+1, . . . , Xn = xn|Xn ∈ Xt]

=

1
2 ·
(
1 − 1

n

)t−1 · 1
n(k−1)

∏n−1
s=t+1 M(xs+1|xs)

1
2 ·
(
1 − 1

n

)t−1 · 1
n ·
(
1 − 1

n

)n−1−t

=
1

k − 1

n−1∏

s=t+1

T (xs+1|xs).

2) Reducing the Bayes Prediction Risk to Redundancy: Let

Msym
k−1 be the collection of all symmetric transition matrices

on state space S2 = {2, . . . , k}. Consider a Bayesian setting

where the transition matrix M is constructed in (42) and the

submatrix T is drawn from an arbitrary prior on Msym
k−1. The

following lemma lower bounds the Bayes prediction risk.

Lemma 10: Conditioned on T , let Y n = (Y1, . . . , Yn)
denote a stationary Markov chain on state space S2 with

transition matrix T and uniform initial distribution. Then

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]

g n − 1

2en2
(I(T ;Y n) − log(k − 1)) .

Lemma 10 is the formal statement of the inequality (41)

presented in the proof sketch. Maximizing the lower bound

over the prior on T and in view of the mutual information

representation (17), we obtain the following corollary.

Corollary 11: Let Riskrev
k,n denote the minimax prediction

risk for stationary irreducible and reversible Markov chains on

k states and Red
sym
k,n the redundancy for stationary symmetric

Markov chains on k states. Then

Riskrev
k,n g n − 1

2en2
(Red

sym
k−1,n − log(k − 1)).

We make use of the properties (P1)–(P3) in Section III-B.1

to prove Lemma 10.

Proof of Lemma 10: Recall that in the Bayesian setting,

we first draw T from some prior on Msym
k−1, then generate

the stationary Markov chain Xn = (X1, . . . , Xn) with state

space [k] and transition matrix M in (42), and (Y1, . . . , Yn)
with state space S2 = {2, . . . , k} and transition matrix T .

We first relate the Bayes estimator of M and T (given the X
and Y chain respectively). For clarity, we spell out the explicit

dependence of the estimators on the input trajectory. For each

t ∈ [n], denote by M̂t = M̂t(·|xt) the Bayes estimator of

M(·|xt) give Xt = xt, and T̂t(·|yt) the Bayes estimator of

T (·|yt) give Y t = yt. For each t = 1, . . . , n− 1 and for each

trajectory xn = (1, . . . , 1, xt+1, . . . , xn) ∈ Xt, recalling the

form (21) of the Bayes estimator, we have, for each j ∈ S2,

M̂n(j|xn)

=
P
[
Xn+1 = (xn, j)

]

P [Xn = xn]

=
E

[
1
2 M(1|1)t−1M(xt+1|1)M(xt+2|xt+1)...

M(xn|xn−1)M(j|xn)

]

E

[
1
2 M(1|1)t−1M(xt+1|1)M(xt+2|xt+1)...

M(xn|xn−1)

]

=

(
1 − 1

n

)
E[T (xt+2|xt+1) . . . T (xn|xn−1)T (j|xn)]

E[T (xt+2|xt+1) . . . T (xn|xn−1)]

=

(
1 − 1

n

)
T̂n−t(j|xn

t+1),

where we used the stationary distribution of X in (P1) and

the uniformity of the stationary distribution of Y , neither of

which depends on T . Furthermore, by construction in (42),

M̂n(1|xn) = 1
n is deterministic. In all, we have

M̂n(·|xn) =
1

n
¶1+

(
1 − 1

n

)
T̂n−t(·|xn

t+1), xn ∈ Xt. (44)

with ¶1 denoting the point mass at state 1, which parallels the

fact that

M(·|x) =
1

n
¶1 +

(
1 − 1

n

)
T (·|x), x ∈ S2. (45)
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By (P2), each event {Xn ∈ Xt} occurs with probability at

least 1/(2en), and is independent of T . Therefore,

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]

g 1

2en

n−1∑

t=1

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]
.

(46)

By (P3), the conditional joint law of (T, Xt+1, . . . , Xn) on

the event {Xn ∈ Xt} is the same as the joint law of

(T, Y1, . . . , Yn−t). Thus, we may express the Bayes prediction

risk in the X chain as

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]

(a)
=

(
1 − 1

n

)
· ET

[
E[D(T (·|Yn−t)∥T̂ (·|Y n−t))]

]

(b)
=

(
1 − 1

n

)
· I(T ;Yn−t+1|Y n−t), (47)

where (a) follows from (44), (45), and the fact that for

distributions P,Q supported on S2, D(ϵ¶1 + (1 − ϵ)P∥ϵ¶1 +
(1 − ϵ)Q) = (1 − ϵ)D(P∥Q); (b) is the mutual information

representation (20) of the Bayes prediction risk. Finally, the

lemma follows from (46), (47), and the chain rule

n−1∑

t=1

I(T ;Yn−t+1|Y n−t)

= I(T ;Y n) − I(T ;Y1) g I(T ;Y n) − log(k − 1),

as I(T ;Y1) f H(Y1) f log(k − 1). □
3) Prior Construction and Lower Bounding the Mutual

Information: In view of Lemma 10, it remains to find a prior

on Msym
k−1 for T , such that the mutual information I(T ;Y n) is

large. We make use of the connection identified in [21], [27],

and [31] between estimation error and mutual information

(see also [22, Theorem 7.1] for a self-contained exposition).

To lower the mutual information, a key step is to find a good

estimator T̂ (Y n) of T . This is carried out in the following

lemma.

Lemma 12: In the setting of Lemma 10, suppose that T ∈
Msym

k with Tij ∈ [ 1
2k , 3

2k ] for all i, j ∈ [k]. Then there is an

estimator T̂ based on Y n such that

E[∥T̂−T∥2
F] f

16k2

n − 1
,

where ∥T̂−T∥F =
√∑

ij(T̂ij − Tij)2 denotes the Frobenius

norm.

We show how Lemma 12 leads to the desired lower bound

on the mutual information I(T ;Y n). Since k g 3, we may

assume that k − 1 = 2k0 is an even integer. Consider the

following prior distribution Ã on T : let u = (ui,j)i,j∈[k0],ifj

be iid and uniformly distributed in [1/(4k0), 3/(4k0)], and

ui,j = uj,i for i > j. Let the transition matrix T be given

by

T2i−1,2j−1 = T2i,2j = ui,j ,

T2i−1,2j = T2i,2j−1 =
1

k0
− ui,j , (48)

∀i, j ∈ [k].

It is easy to verify that T is symmetric and a stochastic

matrix, and each entry of T is supported in the interval

[1/(4k0), 3/(4k0)]. Since 2k0 = k − 1, the condition of

Lemma 12 is fulfilled, so there exist estimators T̂ (Y n) and

û(Y n) such that

E[∥û(Y n) − u∥2
2] f E[∥T̂ (Y n)−T∥2

F] f
64k2

0

n − 1
. (49)

Here and below, we identify u and û as
k0(k0+1)

2 -dimensional

vectors.

Let h(X) =
∫
−fX(x) log fX(x)dx denote the dif-

ferential entropy of a continuous random vector X with

density fX w.r.t the Lebesgue measure and h(X|Y ) =∫
−fXY (xy) log fX|Y (x|y)dxdy the conditional differential

entropy (cf. e.g. [44]). Then

h(u) =
∑

i,j∈[k0],ifj

h(ui,j) = −k0(k0 + 1)

2
log(2k0). (50)

Then

I(T ;Y n)

(a)
= I(u;Y n)

(b)

g I(u; û(Y n)) = h(u) − h(u|û(Y n))

(c)

g h(u) − h(u − û(Y n))

(d)

g k0(k0 + 1)

4
log

(
n − 1

1024Ãek2
0

)
g k2

16
log

(
n − 1

256Ãek2

)
.

where (a) is because u and T are in one-to-one correspondence

by (48); (b) follows from the data processing inequality; (c) is

because h(·) is translation invariant and concave; (d) follows

from the maximum entropy principle [44]: h(u − û(Y n)) f
k0(k0+1)

4 log
(

2Ãe
k0(k0+1)/2 · E[∥û(Y n) − u∥2

2]
)

, which in turn is

bounded by (49). Plugging this lower bound into Lemma 10

completes the lower bound proof of Theorem 1.

Proof of Lemma 12: Since T is symmetric, the sta-

tionary distribution is uniform, and there is a one-to-one

correspondence between the joint distribution of (Y1, Y2) and

the transition probabilities. Motivated by this observation,

consider the following estimator T̂ : for i, j ∈ [k], let

T̂ij = k ·
∑n

t=1 1{Yt=i,Yt+1=j}
n − 1

.

Clearly E[T̂ij ] = k · P(Y1 = i, Y2 = j) = Tij . The following

variance bound is shown in [26, Lemma 7, Lemma 8] using

the concentration inequality of [18]:

Var(T̂ij) f k2 · 8Tijk
−1

µ∗(T )(n − 1)
,

where µ∗(T ) is the absolute spectral gap of T defined in (8).

Note that T = k−1J + ∆, where J is the all-one matrix

and each entry of ∆ lying in [−1/(2k), 1/(2k)]. Thus the

spectral radius of ∆ is at most 1/2 and thus µ∗(T ) g 1/2.

Consequently, we have

E[∥T̂−T∥2
F] =

∑

i,j∈[k]

Var(T̂ij) f
∑

i,j∈[k]

16kTij

n − 1
=

16k2

n − 1
,

completing the proof. □
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IV. SPECTRAL GAP-DEPENDENT RISK BOUNDS

A. Two States

The proof for the spectral gap dependent result in the

specific case of two states chain follow closely along the

techniques presented in [1]. More specifically, let us consider

the sequences in {1, 2}n
which have exactly one transition,

either from 1 to 2 or from 2 to 1

S =
{
2n−ℓ1ℓ, 1n−ℓ2ℓ : 1 f ℓ f n − 1

}
. (51)

Then [1, Lemma 6,7] and its supplemental results establish that

the add half estimator M̂+ 1
2 (j|i) =

Nij+
1
2

Ni+1 achieves O
(

1
n

)

risk upper bound over the trajectory set S. This implies that

analyzing the risk bound for S is sufficient for detecting any

non-parametric rate.

For establishing a minimax upper bound on parameter space

M2(µ0) we consider the following estimator: if xn = 2n−ℓ1ℓ,

we use the estimator

M̂ℓ(2|1) = 1/(ℓ log(1/µ0)), M̂ℓ(1|1) = 1 − M̂ℓ(2|1).

and symmetrically construct the estimator for 1n−ℓ2ℓ. Note

that this is similar to the estimator used in [1, Equation 5],

which we modified specifically to serve our purpose. For this

estimator, we show that the desired minimax rate is achieved

for a strictly larger parameter space that consists of binary

Markov chains with the spectral gap being at least µ0, instead

of the absolute spectral gap. We analyze the risk individually

for every trajectory in S and add them up to achieve the

result.

For establishing the minimax lower bound we consider a

Bayesian strategy. We provide here a short description of the

analysis when log log(1/µ0) > 0, the rest of the analysis

has been provided later. We use the prior distribution that is

uniformly distributed over the following class binary Markov

chains for ³ = log(1/µ0)

M =

{
M : M(1|2) =

1

n
, M(2|1) =

1

³m
,

m ∈ N ∩
(⌈

³

5 log ³

⌉
, 5

⌈
³

5 log ³

⌉)}
.

This prior is similar to the prior used in [2, Section 3], and

so is the proof strategy, which we modified specifically to fit

our setup. We analyze the Bayes risk for trajectories over the

set S. For each M ∈ M with M(2|1) = 1
³m we consider

trajectories of the form 2n−ℓ1ℓ such that
⌈

³m

log ³

⌉
f ℓ f

+³m log ³,. We show that for each such trajectory the expected

contribution to the risk is significantly big which sum up to

the desired risk lower bound.

We now present the entire proof in detail.

Proof of Theorem 2: To show Theorem 2, let us prove a

refined version. In addition to the absolute spectral gap defined

in (8), define the spectral gap

µ ≜ 1 − ¼2 (52)

and M′
k(µ0) the collection of transition matrices whose spec-

tral gap exceeds µ0. Paralleling Riskk,n(µ0) defined in (9),

define Risk′k,n(µ0) as the minimax prediction risk restricted to

M ∈ M′
k(µ0) Since µ g µ∗, we have Mk(µ0) ¦ M′

k(µ0)
and hence Risk′k,n(µ0) g Riskk,n(µ0). Nevertheless, the next

result shows that for k = 2 they have the same rate:

Theorem 13 (Spectral gap dependent rates for binary

chain): For any µ0 ∈ (0, 1)

Risk2,n(µ0) ≍ Risk′2,n(µ0)

≍ 1

n
max

{
1, log log

(
min

{
n,

1

µ0

})}
.

We first prove the upper bound on Risk′2,n. Note that it is

enough to show

Risk′2,n(µ0) ≲
log log (1/µ0)

n
, if n−0.9 f µ0 f e−e5

. (53)

Indeed, for any µ0 f n−0.9, the upper bound O (log log n/n)
proven in [1], which does not depend on the spectral gap,

suffices; for any µ0 > e−e5

, by monotonicity we can use the

upper bound Risk′2,n(e−e5

).
We now define an estimator that achieves (53). Follow-

ing [1], consider trajectories with a single transition, namely,{
2n−ℓ1ℓ, 1n−ℓ2ℓ : 1 f ℓ f n − 1

}
, where 2n−ℓ1ℓ denotes the

trajectory (x1, · · · , xn) with x1 = · · · = xn−ℓ = 2 and

xn−ℓ+1 = · · · = xn = 1. We refer to this type of xn as

step sequences. For all non-step sequences xn, we apply the

add- 1
2 estimator similar to (5), namely

M̂xn(j|i) =
Nij + 1

2

Ni + 1
, i, j ∈ {1, 2},

where the empirical counts Ni and Nij are defined in (4); for

step sequences of the form 2n−ℓ1ℓ, we estimate by

M̂ℓ(2|1) = 1/(ℓ log(1/µ0)), M̂ℓ(1|1) = 1 − M̂ℓ(2|1).

(54)

The other type of step sequences 1n−ℓ2ℓ are dealt with by

symmetry.

Due to symmetry it suffices to analyze the risk for sequences

ending in 1. The risk of add- 1
2 estimator for the non-step

sequence 1n is bounded as

E

[
1{Xn=1n}D(M(·|1)∥M̂1n(·|1))

]

= PXn(1n)

{
M(2|1) log

(
M(2|1)

1/(2n)

)

+M(1|1) log

(
M(1|1)

(n − 1
2 )/n

)}

f (1 − M(2|1))n−1

{
2M(2|1)2n + log

(
n

n − 1
2

)}

≲
1

n
.

where the last step followed by using (1 − x)n−1x2 f n−2

with x = M(2|1) and log x f x−1. From [1, Lemma 7,8] we

have that the total risk of other non-step sequences is bounded

from above by O
(

1
n

)
and hence it is enough to analyze the

risk for step sequences, and further by symmetry, those in{
2n−ℓ1ℓ : 1 f ℓ f n − 1

}
. The desired upper bound (53) then

follows from Lemma 14 next.
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Lemma 14: For any n−0.9 f µ0 f e−e5

, M̂ℓ(·|1) in (54)

satisfies

sup
M∈M′

2(µ0)

n−1∑

ℓ=1

E

[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]

≲
log log(1/µ0)

n
.

Proof: For each ℓ using log
(

1
1−x

)
f 2x, x f 1

2 with

x = 1
ℓ log(1/µ0)

,

D(M(·|1)∥M̂ℓ(·|1))

= M(1|1) log

(
M(1|1)

1 − 1
ℓlog(1/µ0)

)
+M(2|1) log (M(2|1)ℓlog(1/µ0))

≲
1

ℓlog(1/µ0)
+ M(2|1) log(M(2|1)ℓ) + M(2|1) log log(1/µ0)

f
1

ℓlog(1/µ0)
+ M(2|1) log+(M(2|1)ℓ) + M(2|1)log log(1/µ0),

(55)

where we define log+(x) = max{1, log x}. Recall the follow-

ing Chebyshev’s sum inequality: for a1 f a2 f · · · f an and

b1 g b2 g · · · g bn, it holds that

n∑

i=1

aibi f
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
.

The following inequalities are thus direct corollaries: for x, y ∈
[0, 1],

n−1∑

ℓ=1

x(1 − x)n−ℓ−1y(1 − y)ℓ−1

f 1

n − 1

(
n−1∑

ℓ=1

x(1 − x)n−ℓ−1

)(
n−1∑

ℓ=1

y(1 − y)ℓ−1

)

f 1

n − 1
, (56)

n−1∑

ℓ=1

x(1 − x)n−ℓ−1y(1 − y)ℓ−1 log+(ℓy)

f 1

n − 1

(
n−1∑

ℓ=1

x(1 − x)n−ℓ−1

)

(
n−1∑

ℓ=1

y(1 − y)ℓ−1 log+(ℓy)

)

f 1

n − 1

n−1∑

ℓ=1

y(1 − y)ℓ−1(1 + ℓy) f 2

n − 1
, (57)

where in (57) we need to verify that ℓ 7→ y(1−y)ℓ−1 log+(ℓy)
is non-increasing. To verify it, w.l.o.g. we may assume that

(ℓ + 1)y g e, and therefore

y(1 − y)ℓ log+((ℓ + 1)y)

y(1 − y)ℓ−1 log+(ℓy)
=

(1 − y) log((ℓ + 1)y)

log+(ℓy)

f
(

1 − e

ℓ + 1

)(
1 +

log(1 + 1/ℓ)

log+(ℓy)

)

f
(

1 − e

ℓ + 1

)(
1 +

1

ℓ

)
< 1 +

1

ℓ
− e

ℓ + 1
< 1.

Therefore,

n−1∑

ℓ=1

E

[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]

f
n−1∑

ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

D(M(·|1)∥M̂ℓ(·|1))

(a)

≲
n−1∑

ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

(
1

ℓ log(1/µ0)
+ M(2|1) log+(M(2|1)ℓ)

+M(2|1) log log(1/µ0)

)

(b)

f
n−1∑

ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

ℓ log(1/µ0)

+
2 + log log(1/µ0)

n − 1
, (58)

where (a) is due to (55), (b) follows from (56) and (57) applied

to x = M(1|2), y = M(2|1). To deal with the remaining sum,

we distinguish into two cases. Sticking to the above definitions

of x and y, if y > µ0/2, then

n−1∑

ℓ=1

x(1 − x)n−ℓ−1(1 − y)ℓ−1

ℓ

f 1

n − 1

(
n−1∑

ℓ=1

x(1 − x)n−ℓ−1

)(
n−1∑

ℓ=1

(1 − y)ℓ−1

ℓ

)

f log(2/µ0)

n − 1
,

where the last step has used that
∑∞

ℓ=1 tℓ−1/ℓ = log(1/(1−t))
for |t| < 1. If y f µ0/2, notice that for two-state chain the

spectral gap is given explicitly by µ = M(1|2) + M(2|1) =
x + y, so that the assumption µ g µ0 implies that x g µ0/2.

In this case,

n−1∑

ℓ=1

x(1 − x)n−ℓ−1(1 − y)ℓ−1

ℓ

f
∑

ℓ<n/2

(1 − x)n/2−1 +
∑

ℓgn/2

x(1 − x)n−ℓ−1

n/2

f n

2
e−(n/2−1)µ0 +

2

n
≲

1

n
,

thanks to the assumption µ0 g n−0.9. Therefore, in both cases,

the first term in (58) is O(1/n), as desired. □
Next we prove the lower bound on Risk2,n. It is enough

to show that Risk2,n(µ0) ≳ 1
n log log (1/µ0) for n−1 f µ0 f

e−e5

. Indeed, for µ0 g e−e5

, we can apply the result in the

iid setting (see, e.g., [11]), in which the absolute spectral gap

is 1, to obtain the usual parametric-rate lower bound Ω
(

1
n

)
;

for µ0 < n−1, we simply bound Risk2,n(µ0) from below by

Risk2,n(n−1). Define

³ = log(1/µ0), ´ =

⌈
³

5 log ³

⌉
, (59)
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and consider the prior distribution

M = Uniform(M),

M =

{
M : M(1|2)=

1

n
, M(2|1)=

1

³m
: m ∈ N ∩ (´, 5´)

}
.

(60)

Then the lower bound part of Theorem 2 follows from the

next lemma.

Lemma 15: Assume that n−0.9 f µ0 f e−e5

. Then

(i) µ∗ > µ0 for each M ∈ M;

(ii) the Bayes risk with respect to the prior M is at least

Ω
(

log log(1/µ0)
n

)
.

Proof: Part (i) follows by noting that absolute spectral

gap for any two states matrix M is 1−|1 − M(2|1) − M(1|2)|
and for any M ∈ M, M(2|1) ∈

(
³−5´ , ³−´

)
¦ (µ0, µ

1/5
0 ) ¦

(µ0, 1/2) which guarantees µ∗ = M(1|2) + M(2|1) > µ0.
To show part (ii) we lower bound the Bayes risk

when the observed trajectory Xn is a step sequence in{
2n−ℓ1ℓ : 1 f ℓ f n − 1

}
. Our argument closely follows that

of [2, Theorem 1]. Since µ0 g n−1, for each M ∈ M, the

corresponding stationary distribution Ã satisfies

Ã2 =
M(2|1)

M(2|1) + M(1|2)
g 1

2
.

Denote by Risk(M ) the Bayes risk with respect to the prior

M and by M̂B
ℓ (·|1) the Bayes estimator for prior M given

Xn = 2n−ℓ1ℓ. Note that

P
[
Xn = 2n−ℓ1ℓ

]

= Ã2

(
1 − 1

n

)n−ℓ−1
1

n
M(1|1)ℓ−1 g 1

2en
M(1|1)ℓ−1.

(61)

Then

Risk(M )

g EM∼M

[
n−1∑

ℓ=1

E

[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂B

ℓ (·|1))
]]

g EM∼M

[
n−1∑

ℓ=1

M(1|1)ℓ−1

2en
D(M(·|1)∥M̂B

ℓ (·|1))

]

=
1

2en

n−1∑

ℓ=1

EM∼M

[
M(1|1)ℓ−1D(M(·|1)∥M̂B

ℓ (·|1))
]
.

(62)

Recalling the general form of the Bayes estimator in (21)

and in view of (61), we get

M̂B
ℓ (2|1) =

EM∼M [M(1|1)ℓ−1M(2|1)]

EM∼M [M(1|1)ℓ−1]
,

M̂B
ℓ (1|1) = 1 − M̂B

ℓ (2|1). (63)

Plugging (63) into (62), and using

D((x, 1 − x)∥(y, 1 − y))

= x log
x

y
+ (1 − x) log

1 − x

1 − y
g xmax

{
0, log

x

y
− 1

}
,

we arrive at the following lower bound for the Bayes risk:

Risk(M )

g 1

2en

n−1∑

ℓ=1

EM∼M

[
M(1|1)ℓ−1M(2|1)

·max

{
0, log

(
M(2|1) · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]

)
− 1

}]
.

(64)

Under the prior M , M(2|1) = 1 − M(1|1) = ³−m with

´ f m f 5´.

We further lower bound (64) by summing over an appro-

priate range of ℓ. For any m ∈ [´, 3´], define

ℓ1(m) =

⌈
³m

log ³

⌉
, ℓ2(m) = +³m log ³, .

Since µ0 f e−e5

, our choice of ³ ensures that the intervals

{[ℓ1(m), ℓ2(m)]}´fmf3´ are disjoint. We will establish the

following claim: for all m ∈ [´, 3´] and ℓ ∈ [ℓ1(m), ℓ2(m)],
it holds that

³−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
≳

log(1/µ0)

log log(1/µ0)
. (65)

We first complete the proof of the Bayes risk bound assum-

ing (65). Using (64) and (65), we have

Risk(M )

≳
1

n
· 1

4´

3∑́

m=´

ℓ2(m)∑

ℓ=ℓ1(m)

³−m(1 − ³−m)ℓ−1 · log log(1/µ0)

=
log log(1/µ0)

4n´

3∑́

m=´

{
(1−³−m)ℓ1(m)−1 − (1 − ³−m)ℓ2(m)

}

(a)

g log log(1/µ0)

4n´

3∑́

m=´

((
1

4

) 1
log ³

−
(

1

e

)−1+log ³
)

≳
log log(1/µ0)

n
,

with (a) following from 1
4 f (1 − x)

1
x f 1

e if x f 1
2 , and

³−m f ³−´ f µ
1/5
0 f 1

2 .

Next we prove the claim (65). Expanding the expectation

in (60), we write the LHS of (65) as

³−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
=

Xℓ + Aℓ + Bℓ

Xℓ + Cℓ + Dℓ
,

where

Xℓ =
(
1 − ³−m

)ℓ
, Aℓ =

m−1∑

j=´

(
1 − ³−j

)ℓ
,

Bℓ =

5∑́

j=m+1

(
1 − ³−j

)ℓ
,

Cℓ =

m−1∑

j=´

(
1 − ³−j

)ℓ
³m−j , Dℓ =

5∑́

j=m+1

(
1−³−j

)ℓ
³m−j .
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We bound each of the terms individually. Clearly, Xℓ ∈
(0, 1) and Aℓ g 0. Thus it suffices to show that Bℓ ≳ ´ and

Cℓ, Dℓ ≲ 1, for m ∈ [´, 3´] and ℓ1(m) f ℓ f ℓ2(m). Indeed,

• For j g m + 1, we have

(
1 − ³−j

)ℓ g
(
1 − ³−j

)ℓ2(m)

(a)

g (1/4)
ℓ2(m)

³j g (1/4)
log ³

³ g 1/4,

where in (a) we use the inequality (1 − x)1/x g 1/4 for

x f 1/2. Consequently, Bℓ g ´/2;

• For j f m − 1, we have

(
1 − ³−j

)ℓ f
(
1 − ³−j

)ℓ1(m) (b)

f e−
³m−j

log ³ = µ
³m−j−1

log ³

0 ,

where (b) follows from (1 − x)1/x f 1/e and the

definition of ℓ1(m). Consequently,

Cℓ f µ
³

log ³

0

m−2∑

j=´

³m−j + ³µ
1

log ³

0

f e−
³2

log ³ +(2´+1) log ³ + elog ³− ³
log ³ f 2,

where the last step uses the definition of ´ in (59);

• Dℓ f
∑5´

j=m+1 ³m−j f 1, since ³ = log 1
µ0

g e5.

Combining the above bounds completes the proof of (65). □

B. k States

We first present a high-level proof strategy for the add-one

estimator to achieve the spectral gap dependent risk bounds

when k is large. Given any realization of transition matrix M
and add-one estimator M̂+1 the expected risk is

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]
,

M̂+1(j|i) =
Nij + 1

Ni + k
. (66)

As M̂+1 g 1
n+k we get

D(M(·|i)∥M̂+1(·|i)) f log(n + k), i ∈ [k]. (67)

Let µ be the spectral gap of M . For absolute constants

a0, a1, . . . to be chosen later we define

ϵ(m) =
a0k

m
+

a1(log n)3
√

k

m
, cn = a2

log n

nµ
,

n±
i = nÃi ± a3 max

{
log n

nµ
,

√
Ãi log n

nµ

}
, (68)

where i = 1, . . . , k. For each i ∈ [k] we bound

E

[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]
based on the following

cases.

• Ãi f cn: We bound the expected loss by log(n + k)cn.

• Ãi > cn: We further divide this case as

– Ni < n−
i or Ni > n+

i : The probability of the event

can be made O(n−4) by properly choosing a2, a3

– n−
i f Ni f n+

i and D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni):
The probability of the event can be made O( 1

n3 ) by

properly choosing a0, a1, a2, a3

– n−
i f Ni f n+

i and D(M(·|i)∥M̂+1(·|i)) f
ϵ(Ni): We bound the expected loss by

Ãi maxn−
i fNifn+

i
ϵ(Ni).

Summing up the bounds from the above cases and further

summing over i ∈ [k] we get

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]

≲ k log(n + k)

(
cn +

k

n2
+ n−4

)
+

k∑

i=1

Ãiϵ(n
−
i )

≲
k2

n
+

(log n)3k3/2

n
+

k(log(n + k))2

nµ
. (69)

As k ≳ (log n)6 we get the desired result.

As evident from the above, we need a different analysis

when k f (log n)6. To this end, we work with the spectral

structure and deduce a more detailed concentration guarantees

for both Ni and Ni,j . The concentration results use the

following moment bounds which uses the absolute spectral

gap. The proofs are deferred to Appendix B.

Lemma 16: Finite reversible and irreducible chains observe

the following moment bounds:

(i) E

[
(Nij − NiM(j|i))2 |Xn = i

]
≲ nÃiM(j|i)(1 −

M(j|i)) +

√
M(j|i)
µ∗

+ M(j|i)
µ2
∗

(ii) E

[
(Nij − NiM(j|i))4 |Xn = i

]
≲ (nÃiM(j|i)(1 −

M(j|i)))2 +

√
M(j|i)
µ∗

+ M(j|i)2
µ4
∗

(iii) E

[
(Ni − (n − 1)Ãi)

4 |Xn = i
]

≲ n2Ã2
i

µ2
∗

+ 1
µ4
∗
.

When µ∗ is high this shows that the moments behave as if

for each i ∈ [k], N1 is approximately Binomial(n− 1, Ãi) and

Nij is approximately Binomial(Ni, M(j|i)), which happens

in case of iid sampling.

The above results imply that Ni is highly con-

centrated around (n − 1)Ãi and Nij − NiM(j|i) is

highly concentrated around 0. Using this, we bound

E

[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]
for each i ∈ [k] based on

the following cases.

• Ni f (n−1)Ãi

2 : We bound the expected loss by

Ãi log(nÃi + k)P
[
Ni f (n−1)Ãi

2

∣∣∣Xi = i
]
.

• Ni > (n−1)Ãi

2 : We further divide expected loss for each

i as
∑k

j=1 ∆j where ∆j is defined as

∆j = log

(
M(j|i)(Ni + k)

Nij + 1

)
+

Nij + 1

Ni + k
− M(j|i).

(70)

We bound E

[
1{

Xn=i,Ni>
(n−1)Ãi

2

}∆j

]
for each j ∈ [k].

– When either of the expected transition counts

nÃin, nÃiM(j|i) are small we use

∆i f
(M(i|1)N1 − N1i + M(i|1)k − 1)

2

(N1 + k) (N1i + 1)
. (71)
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show that

E

[
1{

Xn=i,Ni>
(n−1)Ãi

2

}∆i

]

≲ E

[
1{Xn=i}

(M(j|i)Ni − Nij)
2

nÃ + k

]
. (72)

Then we use Lemma 16 to bound

E
[
1{Xn=i}(M(j|i)Ni − Nij)

2
]
.

– When both nÃi, nÃiM(j|i) are big we consider two

sub-cases. If Nij > (n−1)ÃiM(j|i)
4 we use (71)

and second moment bound to control the expected

risk. Otherwise, if Nij f (n−1)ÃiM(j|i)
4 , we get

|NiM(j|i) − Nij | > (n−1)ÃiM(j|i)
4 . The probability

pertaining to this event can be controlled using a

concentration result based on the fourth moment bound

in Lemma 16(ii). Furthermore, controlling ∆i by

log (M(j|i)(Ni + k)) and using the above probabilis-

tic results we bound the related expected risk.

Combining the above bounds we show that whenever the

absolute spectral gap of the underlying chain satisfies µ∗ g µ0,

we have

E

[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]
≲

k

n

(
1 +

√
log k

kµ4
0

)
.

(73)

Summing over i ∈ [k] we get the desired Riskk,n(µ0) ≲
k2

n

(
1 +

√
log k
kµ4

0

)
.

The technical details of the proof of Theorem 3 are given

below.

Proof of Theorem 3(i):

Proof: The analysis for E

[
1{Xn=i}D

(
M(·|i)∥

M̂+1(·|i)
)]

is identical for each i ∈ [k], so we only consider

the case i = 1 and show the bound in (73). We split the risk

based on N1 as

E

[
1{Xn=1}D

(
M(·|1)∥M̂+1(·|1)

)]

= E

[
1{Af}D

(
M(·|1)∥M̂+1(·|1)

)]

+ E

[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]

where the typical set A> and atypical set Af are defined as

Af ≜ {Xn = 1, N1 f (n − 1)Ã1/2} ,

A> ≜ {Xn = 1, N1 > (n − 1)Ã1/2} . (74)

Analysis for the atypical set Af: For the atypical case, note

the following deterministic property of the add-one estimator.

Let Q̂ be an add-one estimator with sample size n and alphabet

size k of the form Q̂i = ni+1
n+k , where

∑
ni = n. Since Q̂ is

bounded below by 1
n+k everywhere, for any distribution P ,

we have

D(P∥Q̂) f log(n + k). (75)

Applying this bound on the event Af, we have

E

[
1{Af}D

(
M(·|1)∥M̂+1(·|1)

)]

f log (nÃ1 + k) P [Xn = 1, N1 f (n − 1)Ã1/2]
(a)

≲ 1{nÃ1µ∗≤10}Ã1 log (nÃ1 + k)

+1{nÃ1µ∗>10}Ã1 log (nÃ1 + k)
E
[
(N1 − (n − 1)Ã1)

4 |Xn = 1
]

n4Ã4
1

(76)
(b)

f 1{nÃ1µ∗≤10}
10

nµ∗
log

(
10

µ∗
+ k

)

+1{nÃ1µ∗>10} log (nÃ1 + k)

(
1

n2Ã1µ2
∗

+
1

n4Ã3
1µ4

∗

)

(c)

≲
1

n

{
1{nÃ1µ∗≤10}

log(1/µ∗) + log k

µ∗

+1{nÃ1µ∗>10} (nÃ1 + log k)

(
1

nÃ1µ2
∗

+
1

n3Ã3
1µ4

∗

)}

≲
1

n

{
1{nÃ1µ∗≤10}

(
1

µ2
∗

+
log k

µ∗

)

+1{nÃ1µ∗>10}

(
1

µ2
∗

+
log k

µ∗

)}
≲

1

nµ2
0

+
log k

nµ0
. (77)

where we got (a) from Markov inequality, (b) from

Lemma 16(iii) and (c) using x + y f xy, x, y g 2.

Analysis for the typical set A>: Next we bound

E

[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]
. Define

∆i = M(i|1) log

(
M(i|1)

M̂+1(i|1)

)
− M(i|1) + M̂+1(i|1).

As D(M(·|1)∥M̂+1(·|1)) =
∑k

i=1 ∆i it suffices to bound

E
[
1{A>}∆i

]
for each i. For some r g 1 to be optimized

later consider the following cases separately.

• nπ1 ≤ r or nπ1M(i|1) ≤ 10:

Using the fact y log(y) − y + 1 f (y − 1)2 with y =
M(i|1)

M̂+1(i|1) = M(i|1)(N1+k)
N1i+1 we get

∆i f
(M(i|1)N1 − N1i + M(i|1)k − 1)

2

(N1 + k) (N1i + 1)
. (78)

This implies

E
[
1{A>}∆i

]

f E

[
1{A>} (M(i|1)N1 − N1i + M(i|1)k − 1)

2

(N1 + k) (N1i + 1)

]

(a)

≲
E

[
1{A>} (M(i|1)N1 − N1i)

2
]

+ k2Ã1M(i|1)
2

+ Ã1

nÃ1 + k

(b)

≲
Ã1E

[
(M(i|1)N1 − N1i)

2
∣∣∣Xn = 1

]

nÃ1 + k
+

1 + rkM(i|1)

n

(79)

where (a) follows from N1 > (n−1)Ã1

2 in A> and the

fact that (x + y + z)2 f 3(x2 + y2 + z2); (b) uses the

assumption that either nÃ1 f r or nÃ1M(i|1) f 10.
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Applying Lemma 16(i) and the fact that x + x2 f 2(1 +
x2), continuing the last display we get

E
[
1{A>}∆i

]

≲
nÃ1M(i|1) +

(
1 + M(i|1)

µ2
∗

)

n
+

1 + rkM(i|1)

n

≲
1 + rkM(i|1)

n
+

M(i|1)

nµ2
0

.

Hence

E

[
1{A>}D(M(·|1)∥M̂+1(·|1))

]

=

k∑

i=1

E
[
1{A>}∆i

]
≲

rk

n
+

1

µ2
0

. (80)

• nπ1 > r and nπ1M(i|1) > 10:

We decompose A> based on count of N1i into atypical

part Bf and typical part B>

Bf ≜ {Xn = 1, N1 > (n − 1)Ã1/2,

N1i f (n − 1)Ã1M(i|1)/4}
B> ≜ {Xn = 1, N1 > (n − 1)Ã1/2,

N1i > (n − 1)Ã1M(i|1)/4}

and bound each of E
[
1{Bf}∆i

]
and E

[
1{B>}∆i

]

separately.

I. Bound on E

[
1{B≤}∆i

]
:

Using M̂+1(i|1) g 1
N1+k and N1i < N1M(i|1)/2 in

Bf we get

E
[
1{Bf}∆i

]

= E

[
1{Bf}M(i|1) log

(
M(i|1)(N1 + k)

N1i + 1

)]

+ E

[
1{Bf}

(
N1i + 1

N1 + k
− M(i|1)

)]

f E
[
1{Bf}M(i|1) log (M(i|1)(N1 + k))

]

+ E

[
1{Bf}

(
N1i

N1
− M(i|1)

)]
+ E

[
1{Bf}

N1

]

≲ E
[
1{Bf}M(i|1) log (M(i|1)(N1 + k))

]
+

1

n
(81)

where the last inequality followed as E
[
1{Bf}/N1

]
≲

P[Xn = 1]/nÃ1 = 1
n . Note that for any event B and

any function g,

E
[

g(N1)1{N1≥t0,B}

]

= g(t0)P[N1 ≥ t0, B] +
n
∑

t=t0+1

(g(t) − g(t − 1)) P[N1 ≥ t, B].

Applying this identity with t0 = +(n − 1)Ã1/2,,

we can bound the expectation term in (81) as

E

[

1{Bf}M(i|1) log (M(i|1)(N1 + k))
]

= M(i|1) log (M(i|1)(t0 + k))

P

[

N1 ≥ t0, N1i ≤
nπ1M(i|1)

4
, Xn = 1

]

+M(i|1)

n−1
∑

t=t0+1

log

(

1 +
1

t − 1 + k

)

P

[

N1 ≥ t + 1, N1i ≤
nπ1M(i|1)

4
, Xn = 1

]

≤ π1M(i|1) log (M(i|1)(t0 + k))

P

[

M(i|1)N1 − N1i ≥
M(i|1)t0

4

∣

∣

∣

∣

Xn = 1

]

+
M(i|1)

n

n−1
∑

t=t0+1

P

[

M(i|1)N1 − N1i ≥
M(i|1)t

4

∣

∣

∣

∣

Xn = 1

]

(82)

where last inequality uses log
(
1 + 1

t−1+k

)
f 1

t ≲
1

nÃ1
for all t g t0. Using Markov inequality

P [Z > c] f c−4
E
[
Z4
]

for c > 0, Lemma 16(ii) and

x + x4 f 2(1 + x4) with x =
√

M(i|1)/µ∗

P

[
M(i|1)N1 − N1i g

M(i|1)t

4

∣∣∣∣Xn = 1

]

≲
(nÃ1M(i|1))2 + M(i|1)2

µ4
∗

(tM(i|1))
4 .

In view of above continuing (82) we get

E
[
1{Bf}M(i|1) log (M(i|1)(N1 + k))

]

≲

(
(nÃ1M(i|1))2 +

M(i|1)
2

µ4
∗

)

(
Ã1M(i|1) log(M(i|1)(nÃ1 + k))

(nÃ1M(i|1))4

+
1

n(M(i|1))3

n∑

t=t0+1

1

t4

)

≲


 (nÃ1M(i|1))2 + M(i|1)2

µ4
∗

n




(
log(nÃ1M(i|1) + kM(i|1))

(nÃ1M(i|1))3
+

1

(nÃ1M(i|1))3

)

≲
1

n

(
(nÃ1M(i|1))2 +

M(i|1)
2

µ4
∗

)

(
log(nÃ1M(i|1) + kM(i|1))

(nÃ1M(i|1))3

)

≲
1

n

(
log(nÃ1M(i|1) + kM(i|1))

nÃ1M(i|1)

+
M(i|1) log(nÃ1M(i|1) + k)

nÃ1µ4
∗(nÃ1M(i|1))2

)

(a)

≲
1

n

{
nÃ1M(i|1) + kM(i|1)

nÃ1M(i|1)

+
M(i|1) log(nÃ1M(i|1))

nÃ1µ4
∗(nÃ1M(i|1))2
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+
M(i|1) log k

nÃ1µ4
∗(nÃ1M(i|1))2

}

(b)

≲
1

n

(
1 + kM(i|1) +

M(i|1) log k

rµ4
0

)

where (a) followed using x + y f xy for x, y g
2 and (b) followed as nÃ1 g r, nÃ1M(i|1) g 10 and

log(nÃ1M(i|1)) f nÃ1M(i|1). In view of (81) this

implies

k∑

i=1

E

[
1{Bf}∆i

]
≲

k∑

i=1

1

n

(
1 + kM(i|1)

(
1 +

log k

rkµ4
0

))

≲
k

n

(
1 +

log k

rkµ4
0

)
. (83)

II. Bound on E
[
1{B>}∆i

]
:

Using the inequality (78)

E
[
1{B>}∆i

]

f E

[
1{B>} (M(i|1)N1 − N1i + M(i|1)k − 1)2

(N1 + k) (N1i + 1)

]

(a)

≲
E
[
1{B>}

{
(M(i|1)N1 − N1i)

2}]+
{

k2Ã1M(i|1)2

+Ã1

}

(nÃ1 + k)(nÃ1M(i|1) + 1)

≲
Ã1E

[
(M(i|1)N1 − N1i)

2
∣∣Xn = 1

]

(nÃ1 + k)(nÃ1M(i|1) + 1)
+

kM(i|1)

n

where (a) follows using properties of the set B> along

with (x+y+z)2 f 3(x2+y2+z2). Using Lemma 16(i)

we get

E
[
1{B>}∆i

]
≲

nÃ1M(i|1) +
(
1 + M(i|1)

µ2∗

)

n(nÃ1M(i|1) + 1)

+
kM(i|1)

n
≲

1 + kM(i|1)

n
+

M(i|1)

nµ2
0

.

Summing up the last bound over i ∈ [k] and using (83) we

get for nÃ1 > r, nÃ1M(i|1) > 10

E

[
1{A>}D(M(·|1)∥M̂+1(·|1))

]

=

k∑

i=1

[
E
[
1{Bf}∆i

]
+ E

[
1{B>}∆i

]]

≲
k

n

(
1 +

1

kµ2
0

+
log k

rkµ4
0

)
.

Combining this with (80) we obtain

E

[
1{A>}D(M(·|1)∥M̂+1(·|1))

]

≲
k

n

(
1

kµ2
0

+ r +
log k

rkµ4
0

)
≲

k

n

(
1 +

√
log k

kµ4
0

)

where we chose r = 10+
√

log k
kµ4

0
for the last inequality. In view

of (77) this implies the required bound. □
Remark 5: We explain the subtlety of the concentration

bound in Lemma 16 based on fourth moment and why

existing Chernoff bound or Chebyshev inequality falls short.

For example, the risk bound in (77) relies on bounding the

probability that N1 is atypically small. To this end, one

may use the classical Chernoff-type inequality for reversible

chains (see [19, Theorem 1.1] or [18, Proposition 3.10 and

Theorem 3.3])

P

[
N1 f (n − 1)Ã1

2
|X1 = 1

]
≲

e−Θ(nÃ1µ∗)

√
Ã1

; (84)

in contrast, the fourth moment bound in (76) yields

P [N1 f (n − 1)Ã1/2|X1 = 1] = O( 1
(nÃ1µ∗)2 ). Although the

exponential tail in (84) is much better, the pre-factor 1√
Ã1

, due

to conditioning on the initial state, can lead to a suboptimal

result when Ã1 is small. (As a concrete example, consider

two states with M(2|1) = Θ( 1
n ) and M(1|2) = Θ(1).

Then Ã1 = Θ( 1
n ), µ = µ∗ ≈ Θ(1), and (84) leads to

P [N1 f (n − 1)Ã1/2, Xn = 1] = O( 1√
n
) as opposed to the

desired O( 1
n ).)

In the same context it is also insufficient to use sec-

ond moment based bound (Chebyshev), which leads to

P [N1 f (n − 1)Ã1/2|X1 = 1] = O( 1
nÃ1µ∗

). This bound is too

loose, which, upon substitution into (76), results in an extra

log n factor in the final risk bound when Ã1 and µ∗ are large.

Proof of Theorem 3(ii):

Proof: Let k g (log n)6 and µ0 g (log(n+k))2

k . We prove

a stronger result using the spectral gap as opposed to the

absolute spectral gap. Fix M such that µ g µ0. Denote its

stationary distribution by Ã. For absolute constants Ä > 0 to

be chosen later and c0 as in Lemma 17 below, define, with

i = 1, . . . , k,

ϵ(m) =
2k

m
+

c0(log n)3
√

k

m
, cn = 100Ä2 log n

nµ
,

n±
i = nÃi ± Ä max

{
log n

nµ
,

√
Ãi log n

nµ

}
, (85)

Let Ni be the number of visits to state i as in (4). We bound the

risk by accounting for the contributions from different ranges

of Ni and Ãi separately:

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]

=
∑

i:Ãigcn

E

[
1{Xn=i,n−

i fNifn+
i }D

(
M(·|i)∥M̂+1(·|i)

)]

+
∑

i:Ãigcn

E

[
1{Xn=i,Ni>n+

i or Ni<n−
i }

D
(
M(·|i)∥M̂+1(·|i)

)]

+
∑

i:Ãi<cn

E

[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]

f log(n + k)
∑

i:Ãigcn

P

[
D(M(·|i)∥M̂+1(·|i))

> ϵ(Ni), n
−
i f Ni f n+

i

]

+
∑

i:Ãigcn

E

[
1{Xn=i,n−

i fNifn+
i }ϵ(Ni)

]

+ log(n + k)
∑

i:Ãigcn

[
P
[
Ni g n+

i

]
+ P

[
Ni f n−

i

]]

+
∑

i:Ãifcn

Ãi log(n + k)
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≲ log(n + k)
∑

i:Ãigcn

P

[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni),

n−
i f Ni f n+

i

]

+
∑

i:Ãigcn

Ãi max
n−

i fmfn+
i

ϵ(m)

+ log(n + k)
∑

i:Ãigcn

(
P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

])

+
k (log(n + k))

2

nµ
. (86)

where the first inequality uses the worst-case bound (75) for

add-one estimator. We analyze the terms separately as follows.

For the second term, given any i such that Ãi g cn, we have,

by definition in (85), n−
i g 9nÃi/10 and n+

i − n−
i f nÃi/5,

which implies
∑

i:Ãigcn

Ãi max
n−

i fmfn+
i

ϵ(m)

f
∑

i:Ãigcn

Ãi

(
2k

0.9nÃi
+

10

9

c0(log n)3
√

k

nÃi

)

≲
k2

n
+

(log n)3k3/2

n
. (87)

For the third term, applying [9, Lemma 16] (which, in turn,

is based on the Bernstein inequality in [18]), we get

P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

]
f 2n

−Ä2

4+10Ä .

To bound the first term in (86), we follow the method in [5]

and [9] of representing the sample path of the Markov chain

using independent samples generated from M(·|i) which we

describe below. Consider a random variable X1 ∼ Ã and an

array W = {Wiℓ : i = 1, . . . , k and ℓ = 1, 2, . . .} of indepen-

dent random variables, such that X and W are independent

and Wiℓ
iid∼M(·|i) for each i. Starting with generating X1 from

Ã, at every step i g 2 we set Xi as the first element in

the Xi−1-th row of W that has not been sampled yet. Then

one can verify that {X1, . . . , Xn} is a Markov chain with

initial distribution Ã and transition matrix M . Furthermore,

the transition counts satisfy Nij =
∑Ni

ℓ=1 1{Wiℓ=j}, where Ni

be the number of elements sampled from the ith row of W .

Note the conditioned on Ni = m, the random variables

{Wi1, . . . ,Wim} are no longer iid. Instead, we apply a union

bound. Note that for each fixed m, the estimator

M̂+1(j|i) =

∑m
ℓ=1 1{Wiℓ=j} + 1

m + k
≜ M̂+1

m (j|i), j ∈ [k]

is an add-one estimator for M(j|i) based on an iid sample of

size m. Lemma 17 below provides a high-probability bound

for the add-one estimator in this iid setting. Using this result

and the union bound, we have

∑

i:Ãigcn

P

[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i f Ni f n+

i

]

f
∑

i:Ãigcn

(
n+

i − n−
i

)
max

nifmfn+
i

P

[
D(M(·|i)∥M̂+1

m (·|i))
> ϵ(m)

]

f
∑

i:Ãigcn

1

n2
f k

n2

where the second inequality applies Lemma 17 with t = n g
n+

i g m and uses n+
i − n−

i f nÃi/5 for Ãi g cn.

Combining the above with (87), we continue (86) with

Ä = 25 to get

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]

≲
k2

n
+

(log n)3k3/2

n
+

k(log(n + k))2

nµ

which is O
(

k2

n

)
whenever k g (log n)6 and µ g (log(n+k))2

k .

□
Lemma 17 (KL risk bound for add-one estimator): Let

V1, . . . , Vm
iid∼ Q for some distribution Q = {Qi}k

i=1

on [k]. Consider the add-one estimator Q̂+1 with Q̂+1
i =

1
m+k (

∑m
j=1 1{Vj=i} + 1). There exists an absolute constant

c0 such that for any t g m,

P

[
D(Q∥Q̂+1) g 2k

m
+

c0(log t)3
√

k

m

]
f 1

t3
.

Proof: Let Q̂ be the empirical estimator Q̂i =
1
m

∑m
j=1 1{Vj=i}. Then Q̂+1

i = mQ̂i+1
m+k and hence

D(Q∥Q̂+1)

=

k∑

i=1

(
Qi log

Qi

Q̂+1
i

− Qi + Q̂+1
i

)

=

k∑

i=1

(
Qi log

Qi(m + k)

mQ̂i + 1
− Qi +

mQ̂i + 1

m + k

)

=

k∑

i=1

(
Qi log

Qi

Q̂i + 1
m

− Qi + Q̂i +
1

m

)

+

k∑

i=1

(
Qi log

m + k

m
− kQ̂i

m + k
− k

m(m + k)

)

f
k∑

i=1

(
Qi log

Qi

Q̂i + 1
m

− Qi + Q̂i +
1

m

)
+

k

m
(88)

with last equality following by 0 f log
(

m+k
m

)
f k/m.

To control the sum in the above display it suffices to

consider its Poissonized version. Specifically, we aim to show

P



∑k

i=1

(
Qi log Qi

Q̂poi

i + 1
m

− Qi + Q̂poi
i + 1

m

)

> k
m + c0(log t)3

√
k

m


 f 1

t4
(89)

where mQ̂poi
i , i = 1, . . . , k are distributed independently

as Poi(mQi). (Here and below Poi(¼) denotes the Poisson

distribution with mean ¼.) To see why (89) implies the desired

result, letting w = k
m + c0(log t)3

√
k

m and Y =
∑k

i=1 mQ̂poi
i ∼
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Poi(m), we have

P

[
k∑

i=1

(
Qi log

Qi

Q̂i + 1
m

− Qi + Q̂i +
1

m

)
> w

]

(a)
= P

[
k∑

i=1

(
Qi log Qi

Q̂poi

i + 1
m

−Qi + Q̂poi
i + 1

m

)
> w

∣∣∣∣∣

k∑

i=1

Qpoi
i = 1

]

(b)

f 1

t4P[Y = m]
=

m!

t4e−mmm

(c)

≲

√
m

t4
f 1

t3
. (90)

where (a) followed from the fact that conditioned on their

sum independent Poisson random variables follow a multino-

mial distribution; (b) applies (89); (c) follows from Stirling’s

approximation.

To prove (89) we rely on concentration inequalities for

sub-exponential distributions. A random variable X is called

sub-exponential with parameters Ã2, b > 0, denoted as

SE(Ã2, b) if

E

[
e¼(X−E[X])

]
f e

¼2Ã2

2 , ∀|¼| <
1

b
. (91)

Sub-exponential random variables satisfy the following prop-

erties [50, Sec. 2.1.3]:

• If X is SE(Ã2, b) for any t > 0

P [|X − E[X]| g v] f
{

2e−v2/(2Ã2), 0 < v f Ã2

b

2e−v/(2b), v > Ã2

b .

(92)

• Bernstein condition: A random variable X is SE(Ã2, b)
if it satisfies

E

[
|X − E[X]|ℓ

]
f ℓ!Ã2bℓ−2

2
, ℓ = 2, 3, . . . . (93)

• If X1, . . . , Xk are independent SE(Ã2, b), then
∑k

i=1 Xi

is SE(kÃ2, b).

Define Xi = Qi log Qi

Q̂poi

i + 1
m

− Qi + Q̂poi
i + 1

m , i ∈ [k]. Then

Lemma 18 below shows that Xi’s are independent SE(Ã2, b)

with Ã2 = c1(log m)4

m2 , b = c2(log m)2

m for absolute constants

c1, c2, and hence
∑k

i=1 (Xi − E[Xi]) is SE(kÃ2, b). In view

of (92) for the choice c0 = 8(c1 + c2) this implies

P

[
k∑

i=1

(Xi − E[Xi]) g c0
(log t)3

√
k

m

]

f 2e−
c20k(log t)6

2m2Ã2 + 2e−
c0

√
k(log t)3

2mb f 1

t3
. (94)

Using 0 f y log y−y+1 f (y−1)2, y > 0 and E

[
¼

Poi(¼)+1

]
=

∑∞
v=0

e−¼¼v+1

(v+1)! = 1 − e−¼

E

[
k∑

i=1

Xi

]
f E




k∑

i=1

(
Qi −

(
Q̂poi

i + 1
m

))2

Q̂poi
i + 1

m




=

k∑

i=1

mQ2
i E

[
1

mQ̂poi
i + 1

]
− 1 +

k

m

=

k∑

i=1

Qi

(
1 − e−mQi

)
− 1 +

k

m
f k

m
.

Combining the above with (94) we get (89) as required. □
Lemma 18: There exist absolute constants c1, c2 such that

the following holds. For any p ∈ (0, 1) and nY ∼ Poi(np),

X = p log p
Y + 1

n

− p + Y + 1
n is SE

(
c1(log n)4

n2 , c2(log n)2

n

)
.

Proof: Note that X is a non-negative random

variable. Since E

[
(X − E[X])

ℓ
]

f 2ℓ
E
[
Xℓ
]
,

by the Bernstein condition (93), it suffices to show

E[Xℓ] f
(

c3ℓ(log n)2

n

)ℓ

, ℓ = 2, 3, . . . for some absolute

constant c3. guarantees the desired sub-exponential behavior.

The analysis is divided into following two cases for some

absolute constant c4 g 24.

I. p ≥ c4ℓ log n

n
:

Using Chernoff bound for Poisson [51, Theorem 3]

P [|Poi(¼) − ¼| > x] f 2e−
x2

2(¼+x/3) , ¼, x > 0, (95)

we get

P

[
|Y − p| >

√
c4ℓp log n

4n

]

f 2 exp

(
− c4nℓp log n

8np + 2
√

c4nℓp log n

)

f 2 exp

(
− c4ℓ log n

8 + 2
√

c4ℓ log n/np

)
f 1

n2ℓ
(96)

which implies p/2 f Y f 2p with probability at least

1 − n−2ℓ. Since 0 f X f (Y −p+ 1
n )2

Y + 1
n

,

we get E[Xℓ] ≲

(√
c4ℓp log n/4n

)2ℓ

(p/2)ℓ + nℓ

n2ℓ ≲
(

c4ℓ log n
n

)ℓ

.

II. p < c4ℓ log n

n
:

• On the event {Y > p}, we have X f Y + 1
n f 2Y ,

where the last inequality follows because nY takes

non-negative integer values. Since X g 0, we have

Xℓ1{Y >p} f (2Y )ℓ1{Y >p} for any ℓ g 2.

Using the Chernoff bound (95), we get Y f 2c4ℓ log n
n

with probability at least 1 − n−2ℓ, which implies

E
[
Xℓ1{Y gp}

]

f E

[
(2Y )ℓ1{Y >p,Y f 2c4ℓ log n

n }
]

+ E

[
(2Y )ℓ1{Y >p,Y >

2c4ℓ log n
n }

]

f
(

4c4ℓ log n

n

)ℓ

+2ℓ

(
E[Y 2ℓ]P

[
Y >

2c4ℓ log n

n

]) 1
2

f
(

c5ℓ log n

n

)ℓ

for absolute constant c5. Here, the last inequality

follows from Cauchy-Schwarz and using the Poisson

moment bound [52, Theorem 2.1]:3 E[(nY )2ℓ] f
3For a result with less precise constants, see also [52, Eq. (1)] based on

[53, Corollary 1].
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(
2ℓ

log(1+ 2ℓ
np )

)2ℓ

f (c6ℓ log n)
2ℓ

for some absolute

constant c6, with the second inequality applying the

assumption p < c4ℓ log n
n .

• As X1{Y fp} f p log n + 1
n ≲ ℓ(log n)2

n , we get

E
[
Xℓ1{Y fp}

]
f
(

c7ℓ(log n)2

n

)ℓ

for some absolute

constant c7.

□
1) Proof of Corollary 4: We show the following mono-

tonicity result of the prediction risk. In view of this result,

Corollary 4 immediately follows from Theorem 2 and

Theorem 3(i). Intuitively, the optimal prediction risk is mono-

tonically increasing with the number of states; this, however,

does not follow immediately due to the extra assumptions of

irreducibility, reversibility, and prescribed spectral gap.

Lemma 19: Riskk+1,n(µ0) g Riskk,n(µ0) for all µ0 ∈
(0, 1), k g 2.

Proof: Fix an M ∈ Mk(µ0) such that µ∗(M) > µ0.

Denote the stationary distribution Ã such that ÃM = Ã. Fix

¶ ∈ (0, 1) and define a transition matrix M̃ with k + 1 states

as follows:

M̃ =

(
(1 − ¶)M ¶1
(1 − ¶)Ã ¶

)

One can verify the following:

• M̃ is irreducible and reversible;

• The stationary distribution for M̃ is Ã̃ = ((1 − ¶)Ã, ¶)

• The absolute spectral gap of M̃ is µ∗(M̃) = (1 −
¶)µ∗(M), so that M̃ ∈ Mk+1(µ0) for all sufficiently

small ¶.

• Let (X1, . . . , Xn) and (X̃1, . . . , X̃n) be stationary

Markov chains with transition matrices M and M̃ ,

respectively. Then as ¶ → 0, (X1, . . . , Xn) converges

to (X̃1, . . . , X̃n) in law, i.e., the joint probability mass

function converges pointwise.

Next fix any estimator M̂ for state space [k + 1]. Note that

without loss of generality we can assume M̂(j|i) > 0 for all

i, j ∈ [k+1] for otherwise the KL risk is infinite. Define M̂ trunc

as M̂ without the k + 1-th row and column, and denote by

M̂ ′ its normalized version, namely, M̂ ′(·|i) = M̂ trunc(·|i)
1−M̂ trunc(k+1|i)

for i = 1, . . . , k. Then

EX̃n

[
D(M̃(·|X̃n)∥M̂(·|X̃n))

]

¶→0−−−→ EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]

g EXn

[
D(M(·|Xn)∥M̂ ′(·|Xn))

]

g inf
M̂

EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]

where in the first step we applied the convergence in law of

X̃n to Xn and the continuity of P 7→ D(P∥Q) for fixed

componentwise positive Q; in the second step we used the

fact that for any sub-probability measure Q = (qi) and its

normalized version Q̄ = Q/³ with ³ =
∑

qi f 1, we have

D(P∥Q) = D(P∥Q̄) + log 1
³ g D(P∥Q̄). Taking the supre-

mum over M ∈ Mk(µ0) on the LHS and the supremum over

M̃ ∈ Mk+1(µ0) on the RHS, and finally the infimum over M̂
on the LHS, we conclude Riskk+1,n(µ0) g Riskk,n(µ0). □

V. HIGHER-ORDER MARKOV CHAINS

In this section we extend our spectral gap-independent

results in Section II and III to higher-order chains. While the

upper bound is mostly a straightforward application of the

risk-redundancy relationship in Lemma 6, the lower bound

exhibits some distinction. First, there is no separation between

the k = 2 case and k g 3 case: even for the second-order

Markov chain with k = 2, the number of free parameters

is 4 which allows for similar lower bound construction (but

more difficult computation) as those in the proof of Theorem 8.

Second, to apply the mutual information based arguments, the

counterpart of Lemma 12 in higher-order chains no longer

follows from the simple mixing condition, as the first-order

chain {Xt, · · · , Xt+m−1}n−m+1
t=1 is typically not reversible.

To this end, we carefully construct the prior and lower bound

a more challenging quantity - the pseudo spectral gap. The

high-level idea is to add laziness to the chain motivated by

[29, Corollary 1.15], which in turn exhibits a simple proof in

our construction shown in Lemma 31.

A. Basic Setups

We start with some basic definitions for higher-order

Markov chains. Let m g 1. Let X1, X2, . . . be an mth-

order Markov chain with state space S and transition matrix

M ∈ R
Sm×S so that P

[
Xt+1 = xt+1|Xt

t−m+1 = xt
t−m+1

]
=

M(xt+1|xt
t−m+1) for all t g m. Clearly, the joint distri-

bution of the process is specified by the transition matrix

and the initial distribution, which is a joint distribution for

(X1, . . . , Xm).
A distribution Ã on Sm is a stationary distribution if {Xt :

t g 1} with (X1, . . . , Xm) ∼ Ã is a stationary process, that

is,

(Xi1+t, . . . , Xin+t)
law
= (Xi1 , . . . , Xin

), ∀n, i1, . . . , in, t∈N.
(97)

It is clear that (97) is equivalent to (X1, . . . ,

Xm)
law
= (X2, . . . , Xm+1). In other words, Ã is the solution to

the linear system:

Ã(x1, . . . , xm)

=
∑

x0∈S
Ã(x0, x1, . . . , xm−1)M(xm|x1, . . . , xm−1), (98)

for all x1, . . . , xm ∈ S. Note that this implies, in particular,

that Ã as a joint distribution of m-tuples itself must satisfy

those symmetry properties required by stationarity, such as all

marginals being identical, etc.

Next we discuss reversibility. A random process {Xt} is

reversible if for any n,

Xn law
= Xn, (99)

where Xn ≜ (Xn, . . . , X1) denotes the time reversal of Xn =
(X1, . . . , Xn). Note that a reversible mth-order Markov chain

must be stationary. Indeed,

(X2, . . . , Xm+1)
law
= (Xm, . . . , X1)

law
= (X1, . . . , Xm), (100)
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where the first equality follows from (X1, . . . ,

Xm+1)
law
= (Xm+1, . . . , X1). The following lemma gives

a characterization for reversibility:
Lemma 20: An mth-order stationary Markov chain is

reversible if and only if (99) holds for n = m + 1, namely

Ã(x1, . . . , xm)M(xm+1|x1, . . . , xm)

= Ã(xm+1, . . . , x2)M(x1|xm+1, . . . , x2), (101)

for all x1, . . . , xm+1 ∈ S
Proof: First, we show that (99) for n = m + 1 implies

that for n f m. Indeed,

(X1, . . . , Xn)
law
= (Xm+1, . . . , Xm−n+2)

law
= (Xn, . . . , X1)

(102)

where the first equality follows from (X1, . . . ,

Xm+1)
law
= (Xm+1, . . . , X1) and the second applies stationarity.

Next, we show (99) for n = m + 2 and the rest follows

from induction on n. Indeed,

P [(X1, . . . , Xm+2) = (x1, . . . , xm+2)]

= Ã(x1, . . . , xm)M(xm+1|x1, . . . , xm)

M(xm+2|x2, . . . , xm+1)

(a)
= Ã(xm+1, . . . , x2)M(x1|xm+1, . . . , x2)

M(xm+2|x2, . . . , xm+1)

(b)
= Ã(x2, . . . , xm+1)M(x1|xm+1, . . . , x2)

M(xm+2|x2, . . . , xm+1)

(c)
= Ã(xm+2, . . . , x3)M(x2|xm+2, . . . , x3)

M(x1|xm+1, . . . , x2)

= P [(X1, . . . , Xm+2) = (xm+2, . . . , x1)]

= P [(Xm+2, . . . , X1) = (x1, . . . , xm+2)] .

where (a) and (c) apply (99) for n = m + 1, namely, (101);

(b) applies (99) for n = m. □
In view of the proof of (100), we note that any distribution Ã

on Sm and mth-order transition matrix M satisfying Ã(xm) =
Ã(xm) and (101) also satisfy (98). This implies such a Ã is a

stationary distribution for M . In view of Lemma 20 the above

conditions also guarantee reversibility. This observation can

be summarized in the following lemma, which will be used to

prove the reversibility of specific Markov chains later.

Lemma 21: Let M be a km×k stochastic matrix describing

transitions from Sm to S. Suppose that Ã is a distribution on

Sm such that Ã(xm) = Ã(xm) and Ã(xm)M(xm+1|xm) =

Ã(xm+1
2 )M(x1|xm+1

2 ). Then Ã is the stationary distribution

of M and the resulting chain is reversible.

For mth-order stationary Markov chains, the optimal pre-

diction risk is defined as as

Riskk,n,m ≜ inf
M̂

sup
M

E[D(M(·|Xn
n−m+1)∥M̂(·|Xn

n−m+1))]

= inf
M̂

sup
M

∑

xm∈Sm

E

[
D(M(·|xm)∥M̂(·|xm))

1{Xn
n−m+1=xm}

]

(103)

where the supremum is taken over all km × k stochastic

matrices M and the trajectory is initiated from the stationary

distribution. In the remainder of this section we will show

the following result, completing the proof of Theorem 5

previously announced in Section I.

Theorem 22: For all m g 2, there exist a constant Cm >
0 such that for all 2 f k f n

1
m+1 /Cm,

km+1

Cmn
log
( n

km+1

)
f Riskk,n,m f Cmkm+1

n
log
( n

km+1

)
.

Furthermore, the lower bound holds even when the Markov

chains are required to be reversible.

B. Upper Bound

We prove the upper bound part of the preceding theorem,

using only stationarity (not reversibility). We rely on tech-

niques from [22, Chapter 6, Page 486] for proving redundancy

bounds for the mth-order chains. Let Q be the probability

assignment given by

Q(xn) =
1

km

∏

am∈Sm

∏k
j=1 Namj !

k · (k + 1) · · · (Nam + k − 1)
, (104)

where Namj denotes the number of times the block amj

occurs in xn, and Nam =
∑k

j=1 Namj is the number of times

the block am occurs in xn−1. This probability assignment

corresponds to the add-one rule

Q(j|xn) = M̂+1
xn (j|xn

n−m+1) =
Nxn

n−m+1j + 1

Nxn
n−m+1

+ k
. (105)

Then in view of Lemma 6, the following lemma proves the

desired upper bound in Theorem 22.

Lemma 23: Let Red(QXn) be the redundancy of the mth-

order Markov chain, as defined in Section II-A, and Xm be

the corresponding observed trajectory. Then

Red(QXn) f 1

n − m

{
km(k − 1)

[
log

(
1+

n − m

km(k − 1)

)
+ 1

]

+m log k}

Proof: We show that for every Markov chain with

transition matrix M and initial distribution Ã on Sm, and every

trajectory (x1, · · · , xn), it holds that

log
Ã(xm

1 )
∏n−1

t=m M(xt+1|xt
t−m+1)

Q(x1, · · · , xn)

f km(k − 1)

[
log

(
1 +

n − m

km(k − 1)

)
+ 1

]
+ m log k,

(106)

where M(xt+1|xt
t−m+1) the transition probability of going

from xt
t−m+1 to xt+1. Note that

n−1∏

t=m

M(xt+1|xt
t−m+1) =

∏

am+1∈Sm+1

M(am+1|am)Nam+1

f
∏

am+1∈Sm+1

(Nam+1/Nam)Nam+1 ,
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where the last inequality follows from∑
am+1∈S

Nam+1

Nam
log

Nam+1

Nam M(am+1|am) g 0 for each am,

by the non-negativity of the KL divergence. Therefore,

we have

Ã(xm
1 )
∏n−1

t=m M(xt+1|xt
t−m+1)

Q(x1, · · · , xn)

f km ·
∏

am∈Sm

k · (k + 1) · · · · · (Nam + k − 1)

NNam

am

∏

am+1∈S

N
Nam+1

am+1

Nam+1 !
. (107)

Using (33) we continue (107) to get

log
Ã(x1)

∏n−1
t=m M(xt+1|xt)

Q(x1, · · · , xn)

f m log k +
∑

am∈Sm

log
k · (k + 1) · · · · · (Nam + k − 1)

Nam !

= m log k +
∑

am∈Sm

Nam∑

ℓ=1

log

(
1 +

k − 1

ℓ

)

f m log k +
∑

am∈Sm

∫ Nam

0

log

(
1 +

k − 1

x

)
dx

= m log k +
∑

am∈Sm

(
(k − 1) log

(
1 +

Nam

k − 1

)

+Nam log

(
1 +

k − 1

Nam

))

(a)

f km(k − 1) log

(
1 +

n − m

km(k − 1)

)
+ km(k − 1)

+ m log k,

where (a) follows from the concavity of x 7→ log x,∑
am∈Sm Nam = n − m + 1, and log(1 + x) f x. □
Remark 6: The computational complexity of the estimator

M+1(·|Xn
n−m+1) for any given value of m is O(nmk). This

is because given any realization xn
n−m+1 of Xn

n−m+1, for any

j ∈ [k] and t = 1, . . . , n−m, it takes O(m) time to check if

Xt+m
t equals xn

n−m+1j. Summing over t, j the O(nmk) time

complexity follows.

C. Lower Bound

The lower bound proof is divided into two cases: m g
2, k = 2 and m g 2, k g 3. The idea for m g 2, k = 2 is

similar to the proof of Theorem 8. Same as before, it turns

out that we can achieve the desired lower bound even with

the smaller risk regime of squared error loss. We use the

Bayesian strategy, with a prior that has the uniform stationary

distribution on the second-order state space {11, 12, 21, 22},

and identify the key trajectories with a significant contribution.

Remember that the proof in the k = 3 case for the first-order

chains uses the following trajectory set

X = ∪n−1
t=1

{
xn : x1 = · · · = xt = 1, xi ∈ {2, 3} ,

i = t + 1, . . . , n

}
,

and study the probabilities related to it. A similar analysis

using the transitions between the states {2, 3} as in the above

trajectories is the key difficulty for the binary states space,

which is where we modify our approach. In the current setup,

we use the trajectory set

V =

{
1n−tzt : z1 = z2 = zt = 2, zi+1

i ̸= 11,

i ∈ [t − 1], t = 4, . . . , n − 2

}
. (108)

The prior distribution class we study is uniform on the set

one-parametric family of transition matrices

M̃ =





Mp =




1 2

11 1 − 1
n

1
n

21 1
n 1 − 1

n

12 1 − p p

22 p 1 − p




: 0 f p f 1





.

We show that the zt part of the trajectories in (108) can be

represented using the transitions between the coupled states

{22, 212}, which is similar to the transition between the

states {2, 3} in the first-order chain analysis. Given the above,

we achieve trajectory probabilities similar to (36), enabling us

to imitate similar analyses of the first-order case.

The proof technique for k g 3 closely follows a similar

strategy of using mutual information based lower bound as

in Theorem 3, with the following characteristics in the con-

structed chain:

• the transition matrix is reversible;

• the trajectory initializes on the m-tuple state 1m with a

constant probability that depends only on m;

• the transition matrix includes an embedded matrix on the

states space {2, . . . , k} that is a counterpart of the sym-

metric matrix T in (42). We show that a sufficient condi-

tion on a (k − 1)m × (k − 1) dimensional Markov chain

T is T (xm+1|xm) = T (x1|xm+1
2 ) for every xm+1 ∈

{2, . . . , k}m
, where xm−1

2 = (xm, xm−1, · · · , x2) is the

time reversal.

Similar to Section III-B, for the purpose of achieving the

risk lower bound we only focus on the trajectories in

X = ∪n−1
t=mXt,

Xt = {xn : x1, . . . , xt = 1, xt+1, . . . , xn ̸= 1} .

Conditioned on each trajectory set Xt one can show that the

smaller chain (Xt+1, . . . , Xn) has the same distribution as a

length-(n − t) trajectory of a stationary mth-order Markov

chain with state space {2, . . . ,m}. Given this we demonstrate

a mutual information based minimax risk lower bound (cf.

Lemma 29)

Riskk,n,m ≳
cm

n

(
I(T ;Y n−m) − m log(k − 1)

)
, (109)

for some absolute constant cm depending on m and Y n is a

stationary mth-order Markov chain on {2, . . . , k}. We proceed

to lower bound the mutual information, which in turn asks

for an upper bound of the mean squared error of a certain

estimator similar to Lemma 12. However, the key difficulty

in mimicking the previous proof is the first-order chain{
Y m

1 , Y 1+m
2 , . . . , Y n

n−m+1

}
is not reversible, and, as a result,
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the analysis based on spectral decomposition and absolute

spectral gap fails. To resolve this issue, we introduce the

pseudo spectral gap. Although much more complicated to

compute in general, we carefully add laziness to the prior

construction of T so that the pseudo spectral gap could be

easily controlled (cf. Lemma 31). This enables us to derive

good estimation guarantees on T based on the trajectory Y n,

providing us with the desired lower bound.

Below we provide the details of the proofs.

Proof of the Lower Bound:

1) Special Case: m = 2, k = 2: The transition matrix for

second-order chains is given by a k2 × k stochastic matrices

M that gives the transition probability from the ordered pairs

(i, j) ∈ S × S to some state ℓ ∈ S:

M(ℓ|ij) = P [X3 = ℓ|X1 = i, X2 = j] . (110)

Our result is the following.

Theorem 24: Risk2,n,2 = Θ
(

log n
n

)
.

Proof: The upper bound part has been shown in

Lemma 23. For the lower bound, consider the following

one-parametric family of transition matrices (we replace S by

{1, 2} for simplicity of the notation)

M̃ =





Mp =




1 2

11 1 − 1
n

1
n

21 1
n 1 − 1

n

12 1 − p p

22 p 1 − p




: 0 f p f 1





(111)

and place a uniform prior on p ∈ [0, 1]. One can verify that

each Mp has the uniform stationary distribution over the set

{1, 2} × {1, 2} and the chains are reversible.

Next we introduce the set of trajectories based on which

we will lower bound the prediction risk. Analogous to the

set X = ∪n
t=1Xt defined in (35) for analyzing the first-order

chains, we define

V =

{
1n−tzt : z1 = z2 = zt = 2, zi+1

i ̸= 11,

i ∈ [t − 1], t = 4, . . . , n − 2

}
¢ {1, 2}n.

(112)

In other words, the sequences in V start with a string of 1’s

before transitioning into two consecutive 2’s, are forbidden to

have no consecutive 1’s thereafter, and finally end with 2.

To compute the probability of sequences in V , we need the

following preparations. Denote by · the the operation that

combines any two blocks from {22, 212} via merging the last

symbol of the first block and the first symbol of the second

block, for example, 22 · 212 = 2212, 22 · 22 · 22 = 2222.

Then for any xn ∈ V we can write it in terms of the initial all-1

string, followed by alternating run of blocks from {22, 212}
with the first run being of the block 22 (all the runs have

positive lengths), combined with the merging operation ·:

xn = 1 . . . 1︸ ︷︷ ︸
all ones

22 · 22 · · · · 22︸ ︷︷ ︸
p1 many 22

· 212 · 212 · · · · 212︸ ︷︷ ︸
p2 many 212

· 22 · 22 · · · · 22︸ ︷︷ ︸
p3 many 22

· 212 · 212 · · · · 212︸ ︷︷ ︸
p4 many 212

·22 · . . . .

(113)

Let the vector (q22→22, q22→212, q212→22, q212→212) denotes

the transition probabilities between blocks in {22, 212} (recall

the convention that the two blocks overlap in the symbol 2).

Namely, according to (111),

q22→22 = P [X3 = 2, X2 = 2|X2 = 2, X1 = 2]

= M(2|22) = 1 − p

q22→212 = P [X4 = 2, X3 = 1, X2 = 2|X2 = 2, X1 = 2]

= M(2|21)M(1|22) =

(
1 − 1

n

)
p

q212→22 = P [X4 = 2, X3 = 2|X3 = 2, X2 = 1, X1 = 2]

= M(2|12) = p

q212→212 = P

[
X5 = 2, X4 = 1,

X3 = 2

∣∣∣∣
X3 = 2, X2 = 1,

X1 = 2

]

= M(2|21)M(1|12) =

(
1 − 1

n

)
(1 − p).

Given any xn ∈ V we can calculate its probability

under the law of Mp using frequency counts F (xn) =
(F111, F22→22, F22→212, F212→22, F212→212), defined as

F111 =
∑

i

1{xi=1,xi+1=1,xi+2=1},

F22→22 =
∑

i

1{xi=2,xi+1=2,xi+2=2},

F22→212 =
∑

i

1{xi=2,xi+1=2,xi+2=1,xi+3=2},

F212→22 =
∑

i

1{xi=2,xi+1=1,xi+2=2,xi+3=2},

F212→212 =
∑

i

1{xi=2,xi+1=1,xi+2=2,xi+3=1,xi+4=2}.

Denote µ(xn|p) = P [Xn = xn|p]. Then for each xn ∈ V with

F (xn) = F we have

µ(xn|p)

= P(XF111+2 = 1F111+2)M(2|11)M(2|12)
∏

a,b∈{22,212}
qFa→b

a→b

=
1

4

(
1 − 1

n

)F111 1

n
· p · pF212→22

{
p

(
1 − 1

n

)}F22→212

(1 − p)F22→22

{
(1 − p)

(
1 − 1

n

)}F212→212

=
1

4

(
1 − 1

n

)F111+F22→212+F212→212 1

n
py+1(1 − p)f−y

(114)

where y = F212→22 + F22→212 denotes the number of times

the chain alternates between runs of 22 and runs of 212, and
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f = F212→22 + F22→212 + F212→212 + F22→22 denotes the

number of times the chain jumps between blocks in {22, 212}.

Note that the range of f includes all the integers in between

1 and (n − 6)/2. This follows from the definition of V and

the fact that if we merge either 22 or 212 using the operation

· at the end of any string zt with zt = 2, it increases the

length of the string by at most 2. Also, given any value of f
the value of y ranges from 0 to f .

Lemma 25: The number of sequences in V corresponding

to a fixed pair (y, f) is
(
f
y

)
.

Proof: Fix xn ∈ V and let that p2i−1 is the length of the

i-th run of 22 blocks and p2i is the length of the i-th run of

212 blocks in xn as depicted in (113). The pi’s are all non-

negative integers. There are total y + 1 such runs and the pi’s

satisfy
∑y+1

i=1 pi = f +1, as the total number of blocks is one

more than the total number of transitions. Each positive integer

solution to this equation {pi}y+1
i=1 corresponds to a sequence

xn ∈ V and vice versa. The total number of such sequences

is
(
f
y

)
. □

We are now ready to compute the Bayes estimator and risk.

For any xn ∈ V with a given (y, f), the Bayes estimator of p
with prior p ∼ Uniform[0, 1] is

p̂(xn) = E[p|xn] =
E[p · µ(xn|p)]

E[µ(xn|p)]

(114)
=

y + 2

f + 3
.

Note that the probabilities µ(xn|p) in (114) can be bounded

from below by 1
4enpy+1(1− p)f−y . Using this, for each xn ∈

V with given y, f we get the following bound on the integrated

squared error for a particular sequence xn

∫ 1

0

µ(xn|p)(p − p̂(xn))2dp

g 1

4en

∫ 1

0

py+1(1 − p)f−y

(
p − y + 2

f + 3

)2

dp

=
1

4en

(y + 1)!(f − y)!

(f + 2)!

(y + 2)(f − y + 1)

(f + 3)2(f + 4)
(115)

where the last equality followed by noting that the integral

is the variance of a Beta(y + 2, f − y + 1) random variable

without its normalizing constant.

Next we bound the risk of any predictor by the Bayes error.

Consider any predictor M̂(·|ij) (as a function of the sample

path X) for transition from ij, i, j ∈ {1, 2}. By the Pinsker’s

inequality, we conclude that

D(M(·|12)∥M̂(·|12)) g 1

2
∥M(·|12) − M̂(·|12)∥2

ℓ1

g 1

2
(p − M̂(2|12))2 (116)

and similarly, D(M(·|22)∥M̂(·|22)) g 1
2 (p − M̂(1|22))2.

Abbreviate M̂(2|12) ≡ p̂12 and M̂(1|22) ≡ p̂22, both

functions of X . Using (115) and Lemma 25, we have

3∑

i,j=1

E[D(M(·|ij)∥M̂(·|ij)))1{Xn
n−1=ij}]

g 1

2
E


 (p − p̂12)

21{Xn
n−1=12,Xn∈V}

+(p − p̂22)21{Xn
n−1=22,Xn∈V}




g 1

2

∫ 1

0




∑
F

∑
xn∈V:F (xn)=F

µ(xn|p)

(
(p−p̂12)21{xn

n−1
=12}

+(p−p̂22)21{xn
n−1

=22}

)


 dp

g 1

2

∫ 1

0


∑

F

∑

xn∈V:F (xn)=F

µ(xn|p)(p − p̂(xn))2


 dp

g 1

2

n−6
2∑

f=1

f∑

y=0

(
f

y

)
1

4en

{
(y + 1)!(f − y)!

(f + 2)!

(y + 2)(f−y+1)

(f+3)2(f + 4)

}

g 1

8en

n−6
2∑

f=1

f∑

y=0

y + 1

(f + 2)(f + 1)

(y + 2)(f − y + 1)

(f + 3)2(f + 4)

g Θ

(
1

n

) n−6
2∑

f=1

f
3∑

y= f
4

1

f2
= Θ

(
log n

n

)
. (117)

□
2) General Case: m g 2, k g 3: We will prove the

following.

Theorem 26: For absolute constant C, we have

Riskk,n,m

g 1

2m+4

(
1

2
− 2m − 2

n

)(
1 − 1

n

)n−2m+1
(k − 1)m+1

n

log

(
1

22m+8 · 3Ãe(m + 1)
· n − m

(k − 1)m+1

)
.

For ease of notation let S = {1, . . . , k}. Denote S̃ =
{2, . . . , k}. Consider an mth-order transition matrix M of the

following form (with b = 1
2 − 2m−2

n ):

M(s|xm)

Starting string xm Next state

s = 1 s ∈ {2, . . . , k}

1m 1 − 1

n

1

n(k − 1)

1xm−1,
xm−1∈S̃m−1 1 − b

b

(k − 1)

xm ∈ S̃m 1

n

(
1 − 1

n

)
T (s|xm)

xm /∈
{

1m, 1S̃m−1,

S̃m

}
1

2

1

2(k − 1)

.

(118)

Here T is a (k − 1)m × (k − 1) transition matrix for an

mth-order Markov chain with state space S̃, satisfying the

following property:
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(P) T (xm+1|xm) = T (x1|xm+1
2 ), ∀xm+1 ∈ S̃m+1.

Lemma 27: Under the condition (P), the transition matrix

T has a stationary distribution that is uniform on S̃m. Fur-

thermore, the resulting mth-order Markov chain is reversible

(and hence stationary).

Proof: We prove this result using Lemma 21. Let Ã
denote the uniform distribution on S̃m, i.e., Ã(xm) = 1

(k−1)m

for all xm ∈ S̃m. Then for any xm ∈ S̃m the condition

Ã(xm) = Ã(xm) follows directly and Ã(xm)T (xm+1|xm) =

Ã(xm+1
2 )T (x1|xm+1

2 ) follows from the assumption (P). □
Next we address the stationarity and reversibility of the

chain with the bigger transition matrix M in (118):

Lemma 28: Let M be defined in (118), wherein the tran-

sition matrix T satisfies the condition (P). Then M has a

stationary distribution given by

Ã(xm) =





1
2 xm = 1m

b
(k−1)m xm ∈ S̃m

1
n(k−1)d(xm) otherwise

(119)

where d(xm) ≜
∑m

i=1 1{xi∈S̃} and b = 1
2 − 2m−2

n as in

(118). Furthermore, the mth-order Markov chain with initial

distribution Ã and transition matrix M is reversible.

Proof: Note that the choice of b guarantees that∑
xm∈Sm Ã(xm) = 1. Next we again apply Lemma 21

to verify stationarity and reversibility. First of all, since

d(xm) = d(xm), we have Ã(xm) = Ã(xm) for all xm ∈
Sm. Next we check the condition Ã(xm)M(xm+1|xm) =

Ã(xm+1
2 )M(x1|xm+1

2 ). For the sequence 1m+1 the claim is

easily verified. For the rest of the sequences we have the

following.

• Case 1 (xm+1 ∈ S̃m+1): Note that xm+1 ∈ S̃m+1 if and

only if xm, xm+1
2 ∈ S̃m. This implies

Ã(xm)M(xm+1|xm) =
b

(k − 1)m

(
1 − 1

n

)
T (xm+1|xm)

=
b

(k − 1)m

(
1 − 1

n

)
T (x1|xm+1

2 )

=Ã(xm+1
2 )M(x1|xm+1

2 ).

• Case 2 (xm+1 ∈ 1S̃m or xm+1 ∈ S̃m1): By symmetry

it is sufficient to analyze the case xm+1 ∈ 1S̃m. Note

that in the sub-case xm+1 ∈ 1S̃m, xm ∈ 1S̃m−1 and

xm+1
2 ∈ S̃m. This implies

Ã(xm) =
1

n(k − 1)m−1
, M(xm+1|xm) =

b

k − 1
,

Ã(xm+1
2 ) =

b

(k − 1)m
, M(x1|xm+1

2 ) =
1

n
. (120)

In view of this we get

Ã(xm)M(xm+1|xm) = Ã(xm+1
2 )M(x1|xm+1

2 ).

• Case 3 (xm+1 /∈ 1m+1 ∪ S̃m+1 ∪ 1S̃m ∪ S̃m1):

Suppose that xm+1 has d many elements from S̃. Then

xm, xm+1
2 /∈

{
1m, S̃m

}
. We have the following sub-

cases.

– If x1 = xm+1 = 1, then both xm, xm+1
2 have exactly

d elements from S̃. This implies Ã(xm) = Ã(xm+1
2 ) =

1
n(k−1)d and M(xm+1|xm) = M(x1|xm+1

2 ) = 1
2 .

– If x1, xm+1 ∈ S̃, then both xm, xm+1
2 have exactly d−

1 elements from S̃. This implies Ã(xm) = Ã(xm+1
2 ) =

1
n(k−1)d−1 and M(xm+1|xm) = M(x1|xm+1

2 ) =
1

2(k−1) .

– If x1 = 1, xm+1 ∈ S̃, then xm has d − 1 elements

from S̃ and xm+1
2 has d elements from S. This

implies Ã(xm) = 1
n(k−1)d−1 , Ã(xm+1

2 ) = 1
n(k−1)d and

M(xm+1|xm) = 1
2(k−1) , M(x1|xm+1

2 ) = 1
2 .

– If x1 ∈ S̃, xm+1 = 1, then xm has d elements from S̃
and xm+1

2 has d − 1 elements from S then Ã(xm) =
1

n(k−1)d , Ã(xm+1
2 ) = 1

n(k−1)d−1 and M(xm+1|xm) =
1
2 , M(x1|xm+1

2 ) = 1
2(k−1) .

For all these sub-cases we have Ã(xm)M(xm+1|xm) =

Ã(xm+1
2 )M(x1|xm+1

2 ) as required.

This finishes the proof. □
Let (X1, . . . , Xn) be the trajectory of a stationary Markov

chain with transition matrix M as in (118). We observe the

following properties:

(R1) This Markov chain is irreducible and reversible. Further-

more, the stationary distribution Ã assigns probability
1
2 to the initial state 1m.

(R2) For m f t f n − 1, let Xt denote the collections

of trajectories xn such that x1, x2, · · · , xt = 1 and

xt+1, · · · , xn ∈ S̃. Then using Lemma 28

P(Xn ∈ Xt)

= P(X1 = · · · = Xt = 1) · P(Xt+1 ̸=1|Xt
t−m+1 = 1m)

·
m−1∏

i=2

P(Xt+i ̸=1|Xt
t−m+i = 1m−i+1, Xt+i−1

t+1 ∈S̃i−1)

· P(Xt+m ̸= 1|Xt = 1, Xt+m−1
t+1 ∈ S̃m−1)

·
n−1∏

s=t+m

P(Xs+1 ̸= 1|Xs
s−m+1 ∈ S̃m)

=
1

2
·
(

1 − 1

n

)t−m

· b

n2m−2
·
(

1 − 1

n

)n−m−t

=
b

n2m−1

(
1 − 1

n

)n−2m

. (121)

Moreover, this probability does not depend of the choice

of T ;

(R3) Conditioned on the event that Xn ∈ Xt, the trajectory

(Xt+1, · · · , Xn) has the same distribution as a length-

(n−t) trajectory of a stationary mth-order Markov chain

with state space S̃ and transition probability T , and the

uniform initial distribution. Indeed,

P [Xt+1 = xt+1, . . . , Xn = xn|Xn ∈ Xt]

=




1
2 ·
(
1 − 1

n

)t−m · b
n2m−2(k−1)m

b
n2m−1

(
1 − 1

n

)n−2m


 ·
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n−1∏

s=t+m

(
1 − 1

n

)
T (xs+1|xs

s−m+1)

=
1

(k − 1)m

n−1∏

s=t+m

T (xs+1|xs
s−m+1).

a) Reducing the Bayes prediction risk to mutual informa-

tion: Consider the following Bayesian setting, we first draw

T from some prior satisfying property (P), then generate the

stationary mth-order Markov chain Xn = (X1, . . . , Xn) with

state space [k] and transition matrix M in (118) and stationary

distribution Ã in (119). The following lemma lower bounds the

Bayes prediction risk.

Lemma 29: Conditioned on T , let Y n = (Y1, . . . , Yn)
denote an mth-order stationary Markov chain on state space

S̃ = {2, . . . , k} with transition matrix T and uniform initial

distribution. Then

inf
M̂

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn
n−m+1)))]

]

g b(n − 1)

n22m−1

(
1 − 1

n

)n−2m (
I(T ;Y n−m) − m log(k − 1)

)
.

Proof: We first relate the Bayes estimator of M and

T (given the X and Y chain respectively). For each m f
t f n, denote by M̂t = M̂t(·|xt) the Bayes estimator of

M(·|xt
t−m+1) given Xt = xt, and T̂t(·|yt) the Bayes estima-

tor of T (·|yt
t−m+1) given Y t = yt. For each t = 1, . . . , n −

1 and for each trajectory xn = (1, . . . , 1, xt+1, . . . , xn) ∈ Xt,

recalling the form (21) of the Bayes estimator, we use the

relation between M and T to get, for each j ∈ S̃,

M̂n(j|xn)

=
P
[
Xn+1 = (xn, j)

]

P [Xn = xn]

=
(1− 1

n )E[ 1
(k−1)m

∏n−1
s=t+m T (xs+1|xs

s−m+1)T (j|xn
n−m+1)]

E[ 1
(k−1)m

∏n−1
s=t+m T (xs+1|xs

s−m+1)]

=

(
1 − 1

n

)
P
[
Y n−t+1 = (xn

t+1, j)
]

P
[
Y n−t = xn

t+1

]

=

(
1 − 1

n

)
T̂n−t(j|xn

t+1).

Furthermore, since M(1|xm) = 1/n for all xm ∈ S̃ in

the construction (118), the Bayes estimator also satisfies

M̂n(1|xn) = 1/n for xn ∈ Xt and t f n−m. In all, we have

for xn ∈ Xt, t f n − m

M̂n(·|xn) =
1

n
¶1 +

(
1 − 1

n

)
T̂n−t(·|xn

t+1). (122)

with ¶1 denoting the point mass at state 1, which parallels the

fact that

M(·|ym) =
1

n
¶1 +

(
1 − 1

n

)
T (·|ym), ym ∈ S̃m. (123)

By (R2), each event {Xn ∈ Xt} occurs with probability at

least b
n2m−1

(
1 − 1

n

)n−2m
, and is independent of T . Therefore,

ET

[
E[D(M(·|Xn−1Xn)∥M̂(·|Xn))]

]

g b

n2m−1

(
1 − 1

n

)n−2m n−m∑

t=m

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn))|Xn ∈ Xt]
]
. (124)

By (R3), the conditional joint law of (T, Xt+1, . . . , Xn) on

the event {Xn ∈ Xt} is the same as the joint law of

(T, Y1, . . . , Yn−t). Thus, we may express the Bayes prediction

risk in the X chain as

ET

[
E[D(M(·|Xn

n−m+1)∥M̂(·|Xn))|Xn ∈ Xt]
]

(a)
=

(
1 − 1

n

)
· ET

[
E[D(T (·|Y n−t

n−t−m+1)∥T̂ (·|Y n−t))]
]

(b)
=

(
1 − 1

n

)
· I(T ;Yn−t+1|Y n−t), (125)

where (a) follows from (122), (123), and the fact that for

distributions P,Q supported on S̃, D(ϵ¶1 + (1 − ϵ)P∥ϵ¶1 +
(1 − ϵ)Q) = (1 − ϵ)D(P∥Q); (b) is the mutual information

representation (20) of the Bayes prediction risk. Finally, the

lemma follows from (124), (125), and the chain rule

n−m∑

t=m

I(T ;Yn−t+1|Y n−t)

=I(T ;Y n−m) − I(T ;Y m) g I(T ;Y n−m) − m log(k − 1),

as I(T ;Y m) f H(Y m) f m log(k − 1). □
b) Prior construction and lower bounding the mutual

information: We assume that k = 2k0+1 for some integer k0.

For simplicity of notation we replace S̃ by Y = 1, . . . , k − 1.

This does not affect the lower bound. Define an equivalent

relation on |Y|m−1 given by the following rule: xm−1 and

ym−1 are related if and only if xm−1 = ym−1 or xm−1 =
ym−1. Let Rm−1 be a subset of Ym−1 that consists of exactly

one representative from each of the equivalent classes. As each

of the equivalent classes under this relation will have at

most two elements the total number of equivalent classes is

at least
|Y|m−1

2 , i.e., |Rm−1| g (k−1)m−1

2 . We consider the

following prior: let u =
{
uixm−1j

}
ifj∈[k0],xm−1∈Rm−1

be iid

and uniformly distributed in [1/(4k0), 3/(4k0)] and for each

i f j, xm−1 ∈ Rm−1 define ujxm−1i, uixm−1j
, u

jxm−1i
to be

same as uixm−1j . Let the transition matrix T be given by

T (2j − 1|2i − 1, xm−1) = T (2j|2i, xm−1) = uixm−1j ,

T (2j|2i − 1, xm−1) = T (2j − 1|2i, xm−1) =
1

k0
− uixm−1j ,

i, j ∈ Y, xm−1 ∈ Ym−1. (126)

One can check that the constructed T is a stochastic matrix and

satisfies the property (P), which enforces uniform stationary

distribution. Also each entry of T belongs to the interval

[ 1
2(k−1) ,

3
2(k−1) ].

Next we use the following lemma to derive estimation

guarantees on T .
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Lemma 30: Suppose that T is an ℓm × ℓ transition matrix,

on state space Ym with |Y| = ℓ, satisfying T (xm+1|xm) =

T (x1|xm+1
2 ), ∀xm+1 ∈ [ℓ]m+1 and T (ym+1|ym) ∈ [ c1

ℓ , c2

ℓ ]
with 0 < c1 < 1 < c2 for all ym+1 ∈ [ℓ]m+1. Then there is an

estimator T̂ based on stationary trajectory Y n simulated from

T such that

E[∥T̂−T∥2
F] f

4c2m+3
1 (m + 1)ℓ2m

c2(n − m)
,

where

∥T̂−T∥F =

√∑

ym+1

(T̂ (ym+1|ym) − T (ym+1|ym))2

denotes the Frobenius norm.

For our purpose we will use the above lemma on T with

ℓ = k−1, c1 = 1
2 , c2 = 3

2 . Therefore it follows that there exist

estimators T̂ (Y n) and û(Y n) such that

E[∥û(Y n) − u∥2
2] fE[∥T̂ (Y n)−T∥2

F]

f4c2(m + 1)(k − 1)2m

c2m+3
1 (n − m)

. (127)

Here and below, we identify u =
{
uixm−1j

}
ifj,xm−1∈Rm−1

and û =
{
ûixm−1j

}
ifj,xm−1∈Rm−1

as
|Rm−1|k0(k0+1)

2 =
|Rm−1|(k2−1)

8 -dimensional vectors.

Let h(X) =
∫
−fX(x) log fX(x)dx denote the dif-

ferential entropy of a continuous random vector X with

density fX w.r.t the Lebesgue measure and h(X|Y ) =∫
−fXY (xy) log fX|Y (x|y)dxdy the conditional differential

entropy (cf. e.g. [44]). Then

h(u) =
∑

ifj∈[k0],xm−1∈Rm−1

h(uixm−1j)

= − |Rm−1|(k2 − 1)

8
log(k − 1). (128)

Then

I(T ;Y n)
(a)
= I(u;Y n)

(b)

g I(u; û(Y n)) = h(u) − h(u|û(Y n))

(c)

g h(u) − h(u − û(Y n))

(d)

g |Rm−1|(k2 − 1)

16

log

(
c2m+3
1 |Rm−1|(k2 − 1)(n − m)

64Ãec2(m + 1)(k − 1)2m+2

)

g (k − 1)m+1

32
log

(
n − m

cm(k − 1)m+1

)
.

for constant cm = 128Ãec2(m+1)

c2m+3
1

, where (a) is because u

and T are in one-to-one correspondence by (126); (b) fol-

lows from the data processing inequality; (c) is because

h(·) is translation invariant and concave; (d) follows from

the maximum entropy principle [44]: h(u − û(Y n)) f
|Rm−1|(k2−1)

16 log
(

2Ãe
|Rm−1|(k2−1)/8 · E[∥û(Y n) − u∥2

2]
)

, which

in turn is bounded by (127). Plugging this lower bound into

Lemma 29 completes the lower bound proof of Theorem 22.

3) Proof of Lemma 30 via Pseudo Spectral Gap: In view

of Lemma 27 we get that the stationary distribution of T is

uniform over Ym, and there is a one-to-one correspondence

between the joint distribution of Y m+1 and the transition

probabilities

P
[
Y m+1 = ym+1

]
=

1

ℓm
T (ym+1|ym). (129)

Consider the following estimator T̂ : for ym+1 ∈ [ℓ]m+1, let

T̂ (ym+1|ym) = ℓm ·
∑n−m

t=1 1{Y t+m
t =ym+1}

n − m
.

Clearly E[T̂ (ym+1|ym)] = ℓm
P [ym+1|ym] = T (ym+1|ym).

Next we observe that the sequence of random variables{
Y t+m

t

}n−m

t=1
is a first-order Markov chain on [ℓ]m+1.

Let us denote its transition matrix by Tm+1 and note

that its stationary distribution is given by Ã(am+1) =
ℓ−mT (am+1|am), am+1 ∈ [ℓ]m+1. For the transition matrix

Tm+1, which must be non-reversible, the pseudo spectral gap

µps(Tm+1) is defined as

µps(Tm+1) = max
rg1

µ((T ∗
m+1)

rT r
m+1)

r
,

where T ∗
m+1 is the adjoint of Tm+1 defined as

T ∗
m+1(b

m+1|am+1) = Ã(bm+1)T (am+1|bm+1)/Ã(am+1).
With these notations, the concentration inequality of [18,

Theorem 3.2] gives the following variance bound:

Var(T̂ (ym+1|ym)) fℓ2m · 4P
[
Y m+1 = ym+1

]

µps(Tm+1)(n − m)

fℓ2m · 4T (ym+1|ym)ℓ−m

µps(Tm+1)(n − m)
.

The following lemma bounds the pseudo spectral gap from

below.

Lemma 31: Let T ∈ R
ℓm×ℓ be the transition matrix of an

m-th order Markov chain (Yt)tg1 over a discrete state space

Y with |Y| = ℓ, and assume that

• all the entries of T lie in the interval [ c1

ℓ , c2

ℓ ] for some

absolute constants 0 < c1 < c2;

• T has the uniform stationary distribution on [ℓ]m.

Let Tm+1 ∈ R
ℓm+1×ℓm+1

be the transition matrix of the

first-order Markov chain ((Yt, Yt+1, · · · , Yt+m))tg1. Then we

have

µps(Tm+1) g
c2m+3
1

c2(m + 1)
.

Consequently, we have

E[∥T̂−T∥2
F] =

∑

ym+1∈[ℓ]m+1

Var(T̂ (ym+1|ym))

f
∑

ym+1∈[ℓ]m+1

4c2(m + 1)ℓm

c2m+3
1

· T (ym+1|ym)

n − m

=
4c2(m + 1)ℓ2m

c2m+3
1 (n − m)

,

completing the proof.
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Proof of Lemma 31: As Tm+1 is a first-order

Markov chain, the stochastic matrix Tm+1
m+1 defines the

probabilities of transition from (Yt, Yt+1, · · · , Yt+m) to

(Yt+m+1, Yt+m+2, · · · , Yt+2m+1). By our assumption on T

min
a2m+2∈Y2m+2

Tm+1
m+1 (a2m+2

m+2 |am+1)

g
m∏

t=0

T (a2m+2−t|a2m+1−t
m+2−t ) g cm+1

1

ℓm+1
. (130)

Given any am+1, bm+1 ∈ Ym+1, using the above inequality

we have

(T ∗
m+1)

m+1(bm+1|am+1)

=
∑

y1∈Ym+1,...,ym∈Ym+1

T ∗
m+1(b

m+1|ym)

·
{

m−1∏

t=1

T ∗
m+1(ym−t+1|ym−t)

}

· T ∗
m+1(y1|am+1)

=
∑

y1∈Ym+1,...,ym∈Ym+1

Ã(bm+1)Tm+1(ym|bm+1)

Ã(ym)

·
{

m−1∏

t=1

Ã(ym−t+1)Tm+1(ym−t|ym−t+1)

Ã(ym−t)

}

· Ã(y1)Tm+1(a
m+1|y1)

Ã(am+1)

=
Ã(bm+1)

Ã(am+1)

∑

y1∈Ym+1,...,ym∈Ym+1

Tm+1(ym|bm+1)

·
{

m−1∏

t=1

Tm+1(ym−t|ym−t+1)

}
Tm+1(a

m+1|y1)

=
Ã(bm+1)

Ã(am+1)
Tm+1

m+1 (am+1|bm+1)

=
Ã(bm)T (bm+1|bm)

Ã(bm)T (am+1|am)
Tm+1

m+1 (am+1|bm+1) g c1

c2
· cm+1

1

ℓm+1
.

(131)

Using (130),(131) we get

min
am+1,bm+1∈Ym+1

{
(T ∗

m+1)
m+1Tm+1

m+1

}
(bm+1|am+1)

g
∑

dm+1∈Ym+1

(
min

am+1,dm+1∈Ym+1
(T ∗

m+1)
m+1(dm+1|am+1)

)

(
min

bm+1,dm+1∈Ym+1
Tm+1

m+1 (bm+1|dm+1)

)

g
∑

dm+1∈Ym+1

c2m+3
1

c2ℓ2m+2
g c2m+3

1

c2ℓm+1
. (132)

As (T ∗
m+1)

m+1Tm+1
m+1 is an ℓm+1 × ℓm+1 stochastic matrix,

we can use Lemma 32 to get the lower bound on its spectral

gap µ((T ∗
m+1)

m+1Tm+1
m+1 ) g c2m+3

1

c2
. Hence we get

µps(Tm+1) g
µ((T ∗

m+1)
m+1Tm+1

m+1 )

m + 1
g c2m+3

1

c2(m + 1)
(133)

as required. A more generalized version of Lemma 32 can be

found in from [54].

Lemma 32: Suppose that A is a d × d stochastic matrix

with mini,j Aij g ϵ. Then for any eigenvalue ¼ of A other

than 1 we have |¼| f 1 − dϵ.

Proof: Suppose that ¼ is an eigenvalue of A other than 1

with non-zero left eigenvector v, i.e. ¼vj =
∑d

i=1 viAij , j =
1, . . . , d. As A is a stochastic matrix we know that

∑
j Aij =

1 for all i and hence
∑d

i=1 vi = 0. This implies

|¼vj | =

∣∣∣∣∣

d∑

i=1

viAij

∣∣∣∣∣ =
∣∣∣∣∣

d∑

i=1

vi(Aij − ϵ)

∣∣∣∣∣

f
d∑

i=1

|vi(Aij − ϵ)| =

d∑

i=1

|vi|(Aij − ϵ) (134)

with the last equality following from Aij g ϵ. Summing over

j = 1, . . . d in the above equation and dividing by
∑d

i=1 |vi|
we get |¼| f 1 − dϵ as required. □

□

VI. EXTENSIONS TO OTHER LOSS FUNCTIONS

As mentioned in Section I-A, standard arguments based on

concentration inequalities inevitably rely on mixing conditions

such as the spectral gap. In contrast, the risk bound in

Theorem 1, which is free of any mixing condition, is enabled

by powerful techniques from universal compression which

bound the redundancy by the pointwise maximum over all

trajectories combined with information-theoretic or combina-

torial argument. This program only relies on the Markovity of

the process rather than stationarity or spectral gap assumptions.

The limitation of this approach, however, is that the reduction

between prediction and redundancy crucially depends on the

form of the KL loss function in (1), which allows one to use

the mutual information representation and the chain rule to

relate individual risks to the cumulative risk.

In this section we present some preliminary results where

the prediction risk are measure by other f -divergences. Let us

first mention that for certain f -divergences the minimax risk

is infinite. For example, consider the reverse KL loss, where

the prediction loss is assessed by D(M̂(·|Xn)∥M(·|Xn)) as

opposed to D(M(·|Xn)∥M̂(·|Xn)) in (1). This is somewhat

surprising because for iid data, it is easy to show that the

optimal rate of the reverse KL risk is Θ( k
n ) for k = O(n),

achieved simply by the empirical distribution. To see why

for Markov chains the reserve KL risk is infinite, consider

a chain which visits state 1 at time n for the first time, which

happens with some positive probability, and we are tasked to

estimate the first row of the transition matrix P (·) ≡ M(·|1),
despite that no sample from P is available whatsoever. Since

supP inf P̂ D(P̂∥P ) = ∞, the worst-case reverse KL loss is

also infinite. In contrast, supP D(P∥Uniform([k])) = log k <
∞, and the add-one estimator (5) will precisely output uniform

if the state 1 was never observed previously; as such, the usual

KL prediction loss is finite, as characterized

Next, we focus on the total variation and the Ç2-divergence.

For simplicity, we focus on stationary reversible first-order

Markov chains.
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A. Total Variation

Consider the counterpart for the minimax risk (1), when

we replace the KL prediction loss by squared total variation,

namely,

RiskTV
k,n ≜ inf

M̂
sup
Ã,M

E[TV(M̂(·|Xn), M(·|Xn))2]

= inf
M̂

sup
Ã,M

k∑

i=1

E[TV(M(·|i), M̂(·|i))21{Xn=i}],

(135)

where for distributions P,Q on [k], TV(P,Q) =
1
2

∑k
i=1 |P (i) − Q(i)|. The following bounds on the optimal

total variation risk are readily obtainable from the characteri-

zation of the KL risk: For all 3 f k ≲
√

n,

log n

n
≲ RiskTV

k,n ≲
k2

n
log
( n

k2

)
. (136)

Indeed, the upper bound follows from Theorem 1 plus

Pinsker’s inequality. For the lower bound, we apply the

construction for k = 3 states from Section III-A and simply

notice from (40) that the lower bound therein is shown for the

squared error of estimating individual transition probabilities

and hence applies to the squared total variation.

The bound (136) shows that for small state space with 3 f
k = O(1), the optimal prediction risk measured in squared

total variation is Θ( log n
n ), which is strictly slower than Θ( 1

n )
for iid processes on small alphabets. Determining the optimal

rate in total variation for binary or large state space is an

outstanding question. In particular, the lower bound strategy

in Section III-B based on embedding a (k − 1)-state chain in

a k-state chain is no longer viable due to the lack of chain

rule for total variation.

B. Ç2-Loss

Next we extend the spectral gap dependent bound in The-

orem 3 to for the Ç2-divergence loss. Given any two discrete

distributions P = (P1, . . . Pk) j Q = (Q1, . . . Qk) on [k],
their Ç2-divergence is defined as

Ç2(P∥Q) =
k∑

i=1

(Pi − Qi)
2

Qi
(137)

and ∞ if P ̸j Q. Let Risk
Ç2

k,n(µ0) denote the counterpart of

(9) with Ç2-loss, namely

Risk
Ç2

k,n(µ0) ≜ inf
M̂

sup
M∈Mk(µ0)

E

[
Ç2(M(·|Xn)∥M̂(·|Xn))

]

(138)

where the supremum is taken over all reversible Markov chains

with absolute spectral gap at least µ0. Then we have the

following result.

Theorem 33: Given any k g 2, Risk
Ç2

k,n(µ0) f C
µ4
0

k2

n .

Proof: The proof is similar to that of Theorem 3(i). Fix

µ0 ∈ (0, 1). Assuming the chain terminates in state 1 we

bound the risk of estimating the first row by the add-one

estimator M̂+1(j|1) =
N1j+1
N1+k with O

(
k
n

)
. By symmetry then

the overall risk bound becomes O
(

k2

n

)
. In particular, under

the absolute spectral gap condition of µ∗ g µ0, we show

E

[
1{Xn=1}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]
≲

k

nµ4
0

. (139)

We decompose the left hand side in (139) based on N1 as

E

[
1{Xn=1}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]

= E

[
1{Af}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]

+ E

[
1{A>}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]

where the atypical set Af and the typical set A>are defined

as before in (74)

Af ≜ {Xn = 1, N1 f (n − 1)Ã1/2} ,

A> ≜ {Xn = 1, N1 > (n − 1)Ã1/2} .

For the atypical case, note the following deterministic property

of the add-one estimator. Let Q̂ be an add-one estimator

with sample size n and alphabet size k of the form Q̂i =
ni+1
n+k , where

∑
ni = n. Since Q̂ is bounded below by 1

n+k
everywhere, for any distribution P , we have

Ç2(P∥Q̂) f (n + k). (140)

Applying this bound on the event Af, we have for any s > 0

E

[
1{Af}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]

f (nÃ1 + k) P [Xn = 1, N1 f (n − 1)Ã1/2]

(a)

f 1{nÃ1µ∗fs}Ã1 (nÃ1 + k)

+ 1{nÃ1µ∗>s}Ã1 (nÃ1 + k)
E

[
(N1 − (n − 1)Ã1)

4 |Xn = 1
]

n4Ã4
1/16

(b)

≲ 1{nÃ1µ∗fs}
s

nµ∗

(
s

µ∗
+ k

)

+ 1{nÃ1µ∗>s} (nÃ1 + k)

(
1

n2Ã1µ2
∗

+
1

n4Ã3
1µ4

∗

)

(c)

≲
1

n

{
s2

µ2
∗

+
sk

µ∗

}
+

1{nÃ1µ∗>s}
n

(
1

µ2
∗

+
1

n2Ã2
1µ4

∗

+
k

nÃ1µ2
∗

+
k

n3Ã3
1µ4

∗

)

≲
1

n

{
s2

µ2
∗

+
sk

µ∗
+

1

µ2
∗

+
1

s2µ2
∗

+
k

sµ∗
+

k

s3µ∗

}

where we got (a) from Markov inequality, (b) from

Lemma 16(iii). Plugging s = 10 we get

E

[
1{Af}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]
≲

k

nµ2
∗
f k

nµ2
0

. (141)

Next we bound E

[
1{A>}Ç

2
(
M(·|1)∥M̂+1(·|1)

)]
. Define

∆i =
(M(i|1)N1 − N1i + M(i|1)k − 1)

2

(N1 + k) (N1i + 1)
.

As Ç2(M(·|1)∥M̂+1(·|1)) =
∑k

i=1 ∆i it suffices to bound

E
[
1{A>}∆i

]
for each i. For some r g 1 to be optimized

later consider the following cases separately
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(a) nπ1 ≤ r or nπ1M(i|1) ≤ 10: We have

E

[

1{A>}∆i

]

= E

[

1{A>} (M(i|1)N1 − N1i + M(i|1)k − 1)2

(N1 + k) (N1i + 1)

]

(a)

≲
E

[

1{A>} (M(i|1)N1 − N1i)
2
]

+ k2π1M(i|1)2 + π1

nπ1 + k

(b)

≲
π1E

[

(M(i|1)N1 − N1i)
2
∣

∣

∣
Xn = 1

]

nπ1 + k
+

1 + rkM(i|1)

n
(142)

where (a) follows from N1 > (n−1)Ã1

2 in A> and the

fact that (x + y + z)2 f 3(x2 + y2 + z2); (b) uses the

assumption that either nÃ1 f r or nÃ1M(i|1) f 10.

Applying Lemma 16(i) and the fact that x + x2 f 2(1 +

x2), with x =

√
M(i|1)
µ∗

continuing the last display we get

E
[
1{A>}∆i

]
≲

nπ1M(i|1) +
(
1 + M(i|1)

γ2∗

)

n
+

1 + rkM(i|1)

n

≲
1 + rkM(i|1)

n
+

M(i|1)

nγ2
0

.

Hence

E

[
1{A>}Ç

2(M(·|1)∥M̂+1(·|1))
]

=

k∑

i=1

E
[
1{A>}∆i

]
≲

rk

n
+

1

µ2
0

. (143)

(b) nπ1 > r and nπ1M(i|1) > 10:

We decompose A> based on count of N1i into atypical

part Bf and typical part B>

B≤≜ {Xn = 1, N1 > (n − 1)π1/2, N1i ≤ (n − 1)π1M(i|1)/4}

B>≜ {Xn = 1, N1 > (n − 1)π1/2, N1i > (n − 1)π1M(i|1)/4}

and bound each of E
[
1{Bf}∆i

]
and E

[
1{B>}∆i

]
sep-

arately.

(i) Bound on E
[
1{Bf}∆i

]
: We have

E
[
1{Bf}∆i

]

=E

[
1{Bf} (M(i|1)N1−N1i+M(i|1)k − 1)

2

(N1+k) (N1i+1)

]

≲
E

[
1{Bf}

{
(M(i|1)N1−N1i)

2
+k2M(i|1)

2
}]

+Ã1

nÃ1+k

≲
Ã1E

[
1{Bf} (M(i|1)N1 − N1i)

2
∣∣∣Xn = 1

]

n

+
k2Ã1M(i|1)2P[Bf|Xn = 1]

nÃ1 + k
+

1

n

≲
E

[
1{Bf} (M(i|1)N1 − N1i)

2
∣∣∣Xn = 1

]

n

+ kÃ1M(i|1)2P[Bf|Xn = 1] +
1

n
. (144)

For the set Bf, using the fourth moment bound from

Lemma 16(ii) and Markov inequality

P[Bf|Xn = 1]

f P

[
N1M(i|1) − N1i >

(n − 1)Ã1M(i|1)

4
|Xn = 1

]

f 256E
[
(N1M(i|1) − N1i)

4|Xn = 1
]

((n − 1)Ã1M(i|1))4
. (145)

We use the following bound on the above fourth

moment from Lemma 16(ii) with the inequality x +

x4 f 2(1 + x4), with x =

√
M(i|1)
µ∗

E
[
(N1M(i|1) − N1i)

4|Xn = 1
]

≲ (nÃ1M(i|1))2 +

√
M(i|1)

µ∗
+

M(i|1)
2

µ4
∗

f (nÃ1M(i|1))2 + 2

(
1 +

M(i|1)
2

µ4
∗

)
. (146)

Then, for the first term in (144), using Cauchy-Schwarz

inequality, (145), and (146) we get

E

[
1{Bf} (M(i|1)N1 − N1i)

2
∣∣∣Xn = 1

]

f
√

P[Bf|Xn = 1]
√

E

[
(M(i|1)N1 − N1i)

4 |Xn = 1
]

≲
E

[
(M(i|1)N1 − N1i)

4 |Xn = 1
]

(nÃ1M(i|1))2
≲ 1 +

1

r2µ4
∗

(147)

For the second term, using Markov’s inequality with

the second moment to bound P[Bf|Xn = 1] we get

Ã1M(i|1)P[Bf|Xn = 1]

≲ Ã1M(i|1)
E

[
(M(i|1)N1 − N1i)

2 |Xn = 1
]

(nÃ1M(i|1))2

≲
1

n

(
1 +

1

rµ2
∗

)
. (148)

Combining (147) and (148), in view of (144) we get

E
[
1{Bf}∆i

]

≲
1

n

(
1 +

1

r2µ4
∗

)
+

kM(i|1)

n

(
1 +

1

rµ2
∗

)

≲
1 + kM(i|1)

n

(
1 +

1

r2µ4
0

)
(149)

(ii) Bound on E
[
1{B>}∆i

]
: We have

E
[
1{B>}∆i

]

= E

[
1{B>} (M(i|1)N1 − N1i + M(i|1)k − 1)

2

(N1 + k) (N1i + 1)

]

(a)

≲
E

[
1{B>}

{
(M(i|1)N1 − N1i)

2
}]

(nÃ1 + k)(nÃ1M(i|1) + 1)

+
k2Ã1M(i|1)

2
+ Ã1

(nÃ1 + k)(nÃ1M(i|1) + 1)
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≲
Ã1E

[
(M(i|1)N1 − N1i)

2
∣∣∣Xn = 1

]

(nÃ1 + k)(nÃ1M(i|1) + 1)
+

kM(i|1)

n

where (a) follows using properties of the set B> along

with (x+y+z)2 f 3(x2+y2+z2). Using Lemma 16(i)

we get

E
[
1{B>}∆i

]

≲
nÃ1M(i|1) +

(
1 + M(i|1)

µ2
∗

)

n(nÃ1M(i|1) + 1)
+

kM(i|1)

n

≲
1 + kM(i|1)

n
+

M(i|1)

nµ2
0

.

Combining the last bound and (149) and summing

them over i ∈ [k], we get for nÃ1 > r, nÃ1M(i|1) >
10

E

[
1{A>}χ

2(M(·|1)∥M̂+1(·|1))
]

=
k∑

i=1

[
E

[
1{Bf}∆i

]
+ E

[
1{B>}∆i

]]
≲

k

n

(
1 +

1

rγ4
0

)
.

Combining this with (143) we obtain

E

[
1{A>}Ç

2(M(·|1)∥M̂+1(·|1))
]

≲
k

n

(
r +

1

rµ4
0

)
.

where we chose r = 10 for the last inequality. In view of

(141) this implies the required bound.

□

VII. DISCUSSIONS AND OPEN PROBLEMS

We discuss the assumptions and implications of our results

as well as related open problems.

a) Very large state space: Theorem 1 determines the

optimal prediction risk under the assumption of k ≲
√

n.

When k ≳
√

n, Theorem 1 shows that the KL risk is bounded

away from zero. However, as the KL risk can be as large as

log k, it is a meaningful question to determine the optimal

rate in this case, which, thanks to the general reduction in

(11), reduces to determining the redundancy for symmetric and

general Markov chains. For iid data, the minimax pointwise

redundancy is known to be n log k
n + O(n2

k ) [48, Theorem 1]

when k k n. Since the average and pointwise redundancy

usually behave similarly, for Markov chains it is reasonable

to conjecture that the redundancy is Θ(n log k2

n ) in the large

alphabet regime of k ≳
√

n, which, in view of (11), would

imply the optimal prediction risk is Θ(log k2

n ) for k k √
n.

In comparison, we note that the prediction risk is at most log k,

achieved by the uniform distribution.

b) Stationarity: As mentioned above, the redundancy

result in Lemma 7 (see also [26], [27]) holds for nonstationary

Markov chains as well. However, our redundancy-based risk

upper bound in Lemma 6 crucially relies on stationarity.

It is unclear whether the result of Theorem 1 carries over to

nonstationary chains.

APPENDIX A

MUTUAL INFORMATION REPRESENTATION

OF PREDICTION RISK

The following lemma justifies the representation (22) for

the prediction risk as maximal conditional mutual information.

Unlike (17) for redundancy which holds essentially without

any condition [45], here we impose certain compactness

assumptions which hold finite alphabets such as finite-state

Markov chains studied in this paper.

Lemma 34: Let X be finite and let Θ be a compact subset

of R
d. Given {PXn+1|¹ : ¹ ∈ Θ}, define the prediction risk

Riskn ≜ inf
QXn+1|Xn

sup
¹∈Θ

D(PXn+1|Xn,¹∥QXn+1|Xn |PXn|¹),

(150)

Then

Riskn = sup
P¹∈M(Θ)

I(¹;Xn+1|Xn). (151)

where M(Θ) denotes the collection of all (Borel) probability

measures on Θ.

Note that for stationary Markov chains, (22) follows from

Lemma 34 since one can take ¹ to be the joint distribution of

(X1, . . . , Xn+1) itself which forms a compact subset of the

probability simplex on Xn+1.

Proof: It is clear that (150) is equivalent to

Riskn

= inf
QXn+1|Xn

sup
P¹∈M(Θ)

D(PXn+1|Xn,¹∥QXn+1|Xn |PXn,¹). (152)

By the variational representation (14) of conditional mutual

information, we have

I(¹;Xn+1|Xn)

= inf
QXn+1|Xn

D(PXn+1|Xn,¹∥QXn+1|Xn |PXn,¹). (153)

Thus (151) amounts to justifying the interchange of infimum

and supremum in (150). It suffices to prove the upper bound.

Let |X | = K. For ϵ ∈ (0, 1), define an auxiliary quantity:

Riskn,ϵ ≜ inf
QXn+1|Xng ϵ

K

sup
P¹∈M(Θ)

D(PXn+1|Xn,¹∥QXn+1|Xn |PXn,¹), (154)

where the constraint in the infimum is pointwise, namely,

QXn+1=xn+1|Xn=xn g ϵ
K for all x1, . . . , xn+1 ∈ X . By defi-

nition, we have Riskn f Riskn,ϵ. Furthermore, Riskn,ϵ can be

equivalently written as

Riskn,ϵ

= inf
QXn+1|Xn

sup
P¹∈M(Θ)

D(PXn+1|Xn,¹∥(1 − ϵ)QXn+1|Xn + ϵU |PXn,¹), (155)

where U denotes the uniform distribution on X .

We first show that the infimum and supremum in (155)

can be interchanged. This follows from the standard minimax

theorem. Indeed, note that D(PXn+1|Xn,¹∥(1−ϵ)QXn+1|Xn +
ϵU |PXn,¹) is convex in QXn+1|Xn , affine in P¹, continuous
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in each argument, and takes values in [0, log K
ϵ ]. Since M(Θ)

is convex and weakly compact (by Prokhorov’s theorem) and

the collection of conditional distributions QXn+1|Xn is convex,

the minimax theorem (see, e.g., [55, Theorem 2]) yields

Riskn,ϵ

= sup
Ã∈M(Θ)

inf
QXn+1|Xn

D(PXn+1|Xn,¹∥(1 − ϵ)QXn+1|Xn + ϵU |PXn,¹). (156)

Finally, by the convexity of the KL divergence, for any P on

X , we have

D(P∥(1 − ϵ)Q + ϵU) f(1 − ϵ)D(P∥Q) + ϵD(P∥U)

f(1 − ϵ)D(P∥Q) + ϵ log K, (157)

which, in view of (153) and (156), implies

Riskn f Riskn,ϵ f sup
P¹∈M(Θ)

I(¹;Xn+1|Xn) + ϵ log K.

By the arbitrariness of ϵ, (151) follows. □

APPENDIX B

PROOF OF LEMMA 16

Recall that for any irreducible and reversible finite states

transition matrix M with stationary distribution Ã the follow-

ings are satisfied:

1) Ãi > 0 for all i.
2) M(j|i)Ãi = M(i|j)Ãj for all i, j.

The following is a direct consequence of the Markov

property.

Lemma 35: For any 1 f t1 < · · · < tm < · · · < tk and any

Z2 = f (Xtk
, . . . , Xtm) , Z1 = g

(
Xtm−1 , . . . , Xt1

)
we have

E
[
Z21{Xtm=j}Z1|X1 = i

]

= E [Z2|Xtm = j] E
[
1{Xtm=j}Z1|X1 = i

]
(158)

For t g 0, denote the t-step transition probability by

P [Xt+1 = j|X1 = i] = M t(j|i), which is the ijth entry of

M t. The following result is standard (see, e.g., [17, Chap. 12]).

We include the proof mainly for the purpose of introducing

the spectral decomposition.

Lemma 36: Define ¼∗ ≜ 1 − µ∗ = max {|¼i| : i ̸= 1}. For

any t g 0, |M t(j|i) − Ãj | f ¼t
∗

√
Ãj

Ãi
.

Proof: Throughout the proof all vectors are column

vectors except for Ã. Let DÃ denote the diagonal matrix

with entries DÃ(i, i) = Ãi. By reversibility, D
1
2
Ã MD

− 1
2

Ã ,

which shares the same spectrum with M , is a symmetric

matrix and admits the spectral decomposition D
1
2
Ã MD

− 1
2

Ã =∑k
a=1 ¼auau¦

a for some orthonormal basis {u1, . . . , uk}; in

particular, ¼1 = 1 and u1i =
√

Ãi. Then for each t g 1,

M t =

k∑

a=1

¼t
aD

− 1
2

Ã uau¦
a D

1
2
Ã = 1Ã +

k∑

a=2

¼t
aD

− 1
2

Ã uau¦
a D

1
2
Ã .

(159)

where 1 is the all-ones vector. As ua’s satisfy
∑k

a=1 uau¦
a = I

we get
∑k

a=2 u2
ab = 1 − u2

a1 f 1 for any b = 1, . . . , k. Using

this along with Cauchy-Schwarz inequality we get

∣∣M t(j|i) − Ãj

∣∣ f
√

Ãj

Ãi

k∑

a=2

|¼a|t |uaiuaj |

f ¼t
∗

√
Ãj

Ãi

(
k∑

a=2

u2
ai

) 1
2
(

k∑

a=2

u2
aj

) 1
2

f ¼t
∗

√
Ãj

Ãi

as required. □
Lemma 37: Fix states i, j. For any integers a g b g 1,

define for s = 1, 2, 3, 4

hs(a, b) =
∣∣E
[
1{Xa+1=i}

(
1{Xa=j} − M(j|i)

)s |Xb = i
]∣∣ .

Then

(i) h1(a, b) f 2
√

M(j|i)¼a−b
∗

(ii) |h2(a, b) − ÃiM(j|i)(1 − M(j|i))| f 4
√

M(j|i)¼a−b
∗ .

(iii)

h3(a, b), h4(a, b)

f ÃiM(j|i)(1 − M(j|i)) + 4
√

M(j|i)¼a−b
∗ .

Proof: We apply Lemma 36 and time reversibility:

(i)

h1(a, b) = |P [Xa+1 = i, Xa = j|Xb = i]

−M(j|i)P [Xa+1 = i|Xb = i]|
=
∣∣M(i|j)Ma−b(j|i) − M(j|i)Ma−b+1(i|i)

∣∣
f M(i|j)

∣∣Ma−b(j|i) − Ãj

∣∣
+ M(j|i)

∣∣Ma−b+1(i|i) − Ãi

∣∣

f ¼a−b
∗ M(i|j)

√
Ãj

Ãi
+ M(j|i)¼a−b+1

∗

= ¼a−b
∗
√

M(j|i)M(i|j) + M(j|i)¼a−b+1
∗

f 2
√

M(j|i)¼a−b
∗ .

(ii)

|h2(a, b) − ÃiM(j|i)(1 − M(j|i))|
=
∣∣∣E
[
1{Xa+1=i,Xa=j}|Xb = i

]
− ÃiM(j|i)

+ (M(j|i))2 (E
[
1{Xa+1=i}|Xb = i

]
− Ãi)

− 2M(j|i)(E
[
1{Xa+1=i,Xa=j}|Xb = i

]
− ÃiM(j|i))

∣∣∣
f |P [Xa+1 = i, Xa = j|Xb = i] − ÃjM(i|j)|

+ (M(j|i))2 |P [Xa+1 = i|Xb = i] − Ãi|
+ 2M(j|i) |P [Xa+1 = i, Xa = j|Xb = i]−ÃjM(i|j)|

= M(i|j)
∣∣Ma−b(j|i) − Ãj

∣∣
+ (M(j|i))2

∣∣Ma−b+1(i|i) − Ãi

∣∣
+ 2M(j|i)M(i|j)

∣∣Ma−b(j|i) − Ãj

∣∣

f M(i|j)
√

Ãj

Ãi
¼a−b
∗ + (M(j|i))2¼a−b+1

∗

+ 2M(j|i)M(i|j)
√

Ãj

Ãi
¼a−b
∗
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f ¼a−b
∗


√M(i|j)

√
M(i|j)Ãj

Ãi
+ (M(j|i))2

+2M(j|i)
√

M(i|j)
√

M(i|j)Ãj

Ãi




f 4
√

M(j|i)¼a−b
∗ .

(iii) h3(a, b), h4(a, b) f h2(a, b).

□
Proof of Lemma 16(i): For ease of notation we use c0 to

denote an absolute constant whose value may vary at each

occurrence. Fix i, j ∈ [k]. Note that the empirical count

defined in (4) can be written as Ni =
∑n−1

a=1 1{Xn−a=i} and

Nij =
∑n−1

a=1 1{Xn−a=i,Xn−a+1=j}. Then

E

[
(M(j|i)Ni − Nij)

2 |Xn = i
]

= E



(

n−1∑

a=1

1{Xn−a=i}

(
1{Xn−a+1=j}
−M(j|i)

))2
∣∣∣∣∣∣
Xn = i




(a)
= E



(

n−1∑

a=1

1{Xa+1=i}

(
1{Xa=j}
−M(j|i)

))2
∣∣∣∣∣∣
X1 = i




(b)
=

∣∣∣∣∣∣

∑

a,b

E [¸a¸b|X1 = i]

∣∣∣∣∣∣
f 2

∑

agb

|E [¸a¸b|X1 = i]| ,

where (a) is due to time reversibility; in (b) we defined

¸a ≜ 1{Xa+1=i}
(
1{Xa=j} − M(j|i)

)
. We divide the sum-

mands into different cases and apply Lemma 37.

A. Case I: Two Distinct Indices

For any a > b, using Lemma 35 we get

|E [¸a¸b|X1 = i]| = |E [¸a|Xb+1 = i]| |E [¸b|X1 = 1]|
= h1(a, b + 1)h1(b, 1) (160)

which implies

∑∑

n−1ga>bg1

|E [¸a¸b|X1 = i]|

=
∑∑

n−1ga>bg1

h1(a, b + 1)h1(b, 1)

≲ M(j|i)
∑∑

n−1ga>bg1

¼a−2
∗ ≲

M(j|i)
µ2
∗

.

Here the last inequality (and similar sums in later deductions)

can be explained as follows. Note that for µ∗ g 1
2 (i.e. ¼∗ f

1
2 ), the sum is clearly bounded by an absolute constant; for

µ∗ < 1
2 (i.e. ¼∗ > 1

2 ), we compare the sum with the mean (or

higher moments in other calculations) of a geometric random

variable.

B. Case II: Single Index

n−1∑

a=1

E
[
¸2

a|X1 = i
]

=

n−1∑

a=1

h2(a, 1)

≲ nÃiM(j|i)(1 − M(j|i)) +

√
M(j|i)
µ∗

. (161)

Combining the above we get

E

[
(Nij − M(j|i)Ni)

2 |Xn = i
]

≲ nÃiM(j|i)(1 − M(j|i)) +

√
M(j|i)
µ∗

+
M(j|i)

µ2
∗

as required. □
Proof of Lemma 16(ii): We first note that due to reversibility

we can write (similar as in proof of Lemma 16(i)) with ¸a =
1{Xa+1=i}

(
1{Xa=j} − M(j|i)

)

E
[
(M(j|i)Ni − Nij)

4 |Xn = i
]

= E




(

n−1∑

a=1

1{Xa+1=i}
(
1{Xa=j} − M(j|i)

)
)4
∣∣∣∣∣∣
X1 = i





=

∣∣∣∣∣∣

∑

a,b,d,e

E [ηaηbηdηe|X1 = i]

∣∣∣∣∣∣

f
∑

a,b,d,e

|E [ηaηbηdηe|X1 = i]| ≲
∑

a≥b≥d≥e

|E [ηaηbηdηe|X1 = i]| .

(162)

We bound the sum over different combinations of a g b g
d g e to come up with a bound on the required fourth moment.

We first divide the ¸’s into groups depending on how many

distinct indices of ¸ there are. We use the following identities

which follow from Lemma 35: for indices a > b > d > e

• |E [¸a¸b¸d¸e|X1 = i]| = h1(a, b+1)h1(b, d+1)h1(d, e+
1)h1(e, 1)

• For s1, s2, s3 ∈ {1, 2}, |E [¸s1
a ¸s2

b ¸s3

d |X1 = i]| =
hs1

(a, b + 1)hs2
(b, d + 1)hs3

(d, 1)
• For s1, s2 ∈ {1, 2, 3}, |E [¸s1

a ¸s2

b |X1 = i]| = hs1(a, b +
1)hs2(b, 1)

• E
[
¸4

a|X1 = 1
]

= h4(a, 1)

and then use Lemma 37 to bound the h functions.

C. Case I: Four Distinct Indices

Using Lemma 37 we have

∑∑∑∑

n−1≥a>b>d>e≥1

|E [ηaηbηdηe|X1 = i]|

=
∑∑∑∑

n−1≥a>b>d>e≥1

h1(a, b + 1)h1(b, d + 1)h1(d, e + 1)h1(e, 1)

f M(j|i)2
∑∑∑∑

n−1≥a>b>d>e≥1

λ
a−4
∗ ≲

M(j|i)2

γ4
∗

.

D. Case II: Three Distinct Indices

There are three cases, namely ¸2
a¸b¸d, ¸a¸2

b¸d and ¸a¸b¸
2
d.
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1) Bounding
∑∑∑

n−1ga>b>dg1

∣∣E
[
¸2

a¸b¸d|X1 = i
]∣∣:

∑∑∑

n−1ga>b>dg1

∣∣E
[
¸2

a¸b¸d|X1 = i
]∣∣

=
∑∑∑

n−1ga>b>dg1

h2(a, b + 1)h1(b, d + 1)h1(d, 1)

≲
∑∑∑

n−1ga>b>dg1

(ÃiM(j|i)(1 − M(j|i))

+
√

M(j|i)¼a−b−1
∗

)
M(j|i)¼b−2

∗

≲
M(j|i)

µ2
∗

nÃiM(j|i)(1 − M(j|i)) +
M(j|i)

3
2

µ3
∗

≲ (nÃiM(j|i)(1 − M(j|i)))2 +
M(j|i)

3
2

µ3
∗

+
M(j|i)2

µ4
∗

where the last inequality followed by using xy f x2+y2.

2) Bounding
∑∑∑

n−2ga>b>dg1

∣∣E
[
¸a¸2

b¸d|X1 = i
]∣∣:

∑∑∑

n−2ga>b>dg1

∣∣E
[
¸a¸2

b¸d|X1 = i
]∣∣

=
∑∑∑

n−2ga>b>dg1

h1(a, b + 1)h2(b, d + 1)h1(d, 1)

≲
∑∑∑

n−2ga>b>dg1

(ÃiM(j|i)(1 − M(j|i))

+
√

M(j|i)¼b−d−1
∗

)
M(j|i)¼a−b+d−2

∗

≲
M(j|i)

µ2
∗

nÃiM(j|i)(1 − M(j|i)) +
M(j|i) 3

2

µ3
∗

≲ nÃiM(j|i)(1 − M(j|i))2 +
M(j|i) 3

2

µ3
∗

+
M(j|i)2

µ4
∗

.

3) Bounding
∑∑∑

n−2ga>b>dg1

∣∣E
[
¸a¸b¸

2
d|X1 = i

]∣∣:

∑∑∑

n−2ga>b>dg1

∣∣E
[
¸a¸b¸

2
d|X1 = i

]∣∣

=
∑∑∑

n−2ga>b>dg1

h1(a, b + 1)h1(b, d + 1)h2(d, 1)

≲
∑∑∑

n−2ga>b>dg1

(ÃiM(j|i)(1 − M(j|i))

+
√

M(j|i)¼d−1
∗

)
M(j|i)¼a−d−2

∗

≲
M(j|i)

µ2
∗

nÃiM(j|i)(1 − M(j|i)) +
M(j|i)

3
2

µ3
∗

≲ (nÃiM(j|i)(1 − M(j|i)))2 +
M(j|i)

3
2

µ3
∗

+
M(j|i)2

µ4
∗

.

E. Case III: Two Distinct Indices

There are three different cases, namely ¸2
a¸2

b , ¸3
a¸b and ¸a¸3

b .

1) Bounding
∑∑

n−2ga>bg1

∣∣E
[
¸2

a¸2
b |X1 = i

]∣∣:
∑∑

n−2≥a>b≥1

E
[

η2
aη2

b |X1 = i
]

=
∑∑

n−2≥a>b≥1

h2(a, b + 1)h2(b, 1)

≲
∑∑

n−2≥a>b≥1

(

πiM(j|i)(1 − M(j|i)) +
√

M(j|i)λa−b−1
∗

)

(

πiM(j|i)(1 − M(j|i)) +
√

M(j|i)λb−1
∗

)

≲
∑∑

n−2≥a>b≥1

{

πiM(j|i)(1 − M(j|i))
√

M(j|i)(λa−b−1
∗ + λb−1

∗ )

+ (πiM(j|i)(1 − M(j|i)))2 + M(j|i)λa−2
∗

}

≲ (nπiM(j|i)(1 − M(j|i)))2

+

√

M(j|i)

γ∗
nπiM(j|i)(1 − M(j|i)) +

M(j|i)

γ2
∗

≲ (nπiM(j|i)(1 − M(j|i)))2 +
M(j|i)

γ2
∗

.

2) Bounding
∑∑

n−2ga>bg1

∣∣E
[
¸3

a¸b|X1 = i
]∣∣:

∑∑

n−2≥a>b≥1

∣∣E
[
η
3
aηb|X1 = i

]∣∣

=
∑∑

n−2≥a>b≥1

h3(a, b + 1)h1(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1 − M(j|i)) +

√
M(j|i)λa−b−1

∗

)

√
M(j|i)λb−1

∗

≲

√
M(j|i)

γ∗
nπiM(j|i)(1 − M(j|i)) +

M(j|i)

γ2
∗

≲ (nπiM(j|i)(1 − M(j|i)))2 +
M(j|i)

γ2
∗

.

3) Bounding
∑∑

n−2ga>bg1

∣∣E
[
¸a¸3

b |X1 = i
]∣∣:

∑∑

n−2ga>bg1

∣∣E
[
¸a¸3

b |X1 = i
]∣∣

=
∑∑

n−2ga>bg1

h1(a, b + 1)h3(b, 1)

≲
∑∑

n−2ga>bg1

(
ÃiM(j|i)(1 − M(j|i))+

√
M(j|i)¼b−1

∗

)

√
M(j|i)¼a−b−1

∗

≲

√
M(j|i)
µ∗

nÃiM(j|i)(1 − M(j|i)) +
M(j|i)

µ2
∗

≲ (nÃiM(j|i)(1 − M(j|i)))2 +
M(j|i)

µ2
∗

.

F. Case IV: Single Index

Bounding
∑n−1

a=1 E[¸4
a|X1 = i]:

n−1∑

a=1

E
[
¸4

a|X1 = i
]

=

n−1∑

a=1

h4(a, 1)fnÃiM(j|i)(1 − M(j|i)) +

√
M(j|i)
µ∗

.
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Combining all cases we get

E

[
(M(j|i)Ni − Nij)

4 |Xn = i
]

≲ (nÃiM(j|i)(1 − M(j|i)))2 +

√
M(j|i)
µ∗

+
M(j|i)

µ2
∗

+
M(j|i) 3

2

µ3
∗

+
M(j|i)2

µ4
∗

≲ (nÃiM(j|i)(1 − M(j|i)))2 +

√
M(j|i)
µ∗

+
M(j|i)2

µ4
∗

as required. □
Proof of Lemma 16(iii): Throughout our proof we repeatedly

use the spectral decomposition (159) applied to the diagonal

elements:

M t(i|i) = Ãi +
∑

vg2

¼t
vu2

vi,
∑

vg2

u2
vi f 1.

Write Ni − (n − 1)Ãi =
∑n−1

a=1 Àa where Àa = 1{Xa=i} − Ãi.

For a g b g d g e,

E [ÀaÀbÀdÀe|X1 = i]

= E

[
ÀaÀb

(
1{Xd=i,Xe=i} − Ãi1{Xd=i}

−Ãi1{Xe=i} + Ã2
i

)∣∣∣∣X1 = i

]

= E
[
ÀaÀb1{Xd=i,Xe=i}|X1 = i

]

− ÃiE
[
ÀaÀb1{Xd=i}|X1 = i

]

− ÃiE
[
ÀaÀb1{Xe=i}|X1 = i

]
+ Ã2

i E [ÀaÀb|X1 = i]

= E [ÀaÀb|Xd = i] P [Xd = i|Xe = i] P[Xe = i|X1 = i]

− ÃiE [ÀaÀb|Xd = i] P[Xd = i|X1 = i]

− ÃiE [ÀaÀb|Xe = i] P[Xe = i|X1 = i]

+ Ã2
i E [ÀaÀb|X1 = i]

= E [ÀaÀb|Xd = i]
{
Md−e(i|i)Me−1(i|i) − ÃiM

d−1(i|i)
}

−
{
ÃiE [ÀaÀb|Xe = i]Me−1(i|i) − Ã2

i E [ÀaÀb|X1 = i]
}

(163)

Using the Markov property for any d f b f a, we get
∣∣∣∣∣∣
E[ÀaÀb|Xd = i] − Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣
=
∣∣E
[
1{Xa=i,Xb=i} − Ãi1{Xa=i} − Ãi1{Xb=i} + Ã2

i |Xd = i
]

−Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣
=
∣∣Ma−b(i|i)M b−d(i|i) − ÃiM

a−d(i|i) − ÃiM
b−d(i|i)

+Ã2
i − Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣

=

∣∣∣∣∣∣


Ãi +

∑

vg2

u2
vi¼

a−b
v




Ãi +

∑

vg2

u2
vi¼

b−d
v




−Ãi


Ãi +

∑

vg2

u2
vi¼

a−d
v


− Ãi


Ãi +

∑

vg2

u2
vi¼

b−d
v




+Ã2
i − Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣

=

∣∣∣∣∣∣


∑

vg2

u2
vi¼

a−b
v




∑

vg2

u2
vi¼

b−d
v


− Ãi

∑

vg2

u2
vi¼

a−d
v

∣∣∣∣∣∣

f ¼a−d
∗


∑

vg2

u2
vi




∑

vg2

u2
vi


+ ¼a−d

∗ Ãi

∑

vg2

u2
vi f 2¼a−d

∗ .

(164)

We also get for d g e
∣∣Md−e(i|i)Me−1(i|i) − ÃiM

d−1(i|i)
∣∣

=

∣∣∣∣∣∣


Ãi +

∑

vg2

u2
vi¼

d−e
v




Ãi +

∑

vg2

u2
vi¼

e−1
v




−Ãi


Ãi +

∑

vg2

u2
vi¼

d−1
v



∣∣∣∣∣∣

=

∣∣∣∣∣∣
Ãi

∑

vg2

u2
vi¼

e−1
v + Ãi

∑

vg2

u2
vi¼

d−e
v

+


∑

vg2

u2
vi¼

e−1
v




∑

vg2

u2
vi¼

d−e
v


− Ãi

∑

vg2

u2
vi¼

d−1
v

∣∣∣∣∣∣
f 2¼d−1

∗ + Ãi¼
e−1
∗ + Ãi¼

d−e
∗ . (165)

This implies

|E [ÀaÀb|Xd = i]|
∣∣Md−e(i|i)Me−1(i|i) − ÃiM

d−1(i|i)
∣∣

f


Ãi

∑

vg2

u2
vi¼

a−b
v + 2¼a−d

∗


(2¼d−1

∗ + Ãi¼
e−1
∗ + Ãi¼

d−e
∗
)

f
(
Ãi¼

a−b
∗ + 2¼a−d

∗
) (

2¼d−1
∗ + Ãi¼

e−1
∗ + Ãi¼

d−e
∗
)

f 4
[
Ã2

i ¼a−b+d−e
∗ + Ã2

i ¼a−b+e−1
∗

+Ãi

(
¼a−b+d−1
∗ + ¼a−d+e−1

∗ + ¼a−e
∗
)

+ ¼a−1
∗
]

(166)

Using (164) along with Lemma 36 for any e f b f a we get
∣∣ÃiE [ÀaÀb|Xe = i]Me−1(i|i) − Ã2

i E [ÀaÀb|X1 = i]
∣∣

f Ãi |E [ÀaÀb|Xe = i]|
∣∣Me−1(i|i) − Ãi

∣∣

+ Ã2
i

∣∣∣∣∣∣
E [ÀaÀb|Xe = i] − Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣
(167)

+ Ã2
i

∣∣∣∣∣∣
E [ÀaÀb|X1 = i] − Ãi

∑

vg2

u2
vi¼

a−b
v

∣∣∣∣∣∣

f Ãi


Ãi

∑

vg2

u2
vi¼

a−b
v + 2¼a−e

∗


 2¼e−1

∗ + 2Ã2
i ¼a−e

∗ + 2Ã2
i ¼a−1

∗

f 2Ã2
i ¼a−b+e−1

∗ + 4Ã2
i ¼a−e

∗ + 4Ã2
i ¼a−1

∗ . (168)

This together with (166) and (163) implies

|E [ÀaÀbÀdÀe|X1 = i]| ≲ Ã2
i

(
¼a−b+d−e
∗ + ¼a−b+e−1

∗
)

+ ¼a−1
∗

+ Ãi

(
¼a−b+d−1
∗ +¼a−d+e−1

∗ +¼a−e
∗
)
.

(169)
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To bound the sum over n−1 g a g b g d g e g 1, we divide

the analysis according to the number of distinct ordered indices

related variations in terms.

G. Case I: four Distinct Indices

We sum (169) over all possible a > b > d > e.

• For the first term,

Ã2
i

∑∑∑∑

n−1ga>b>d>eg1

¼a−b+d−e
∗ ≲

nÃ2
i

µ∗

∑∑

n−1ga>bg3

¼a−b
∗

≲
n2Ã2

i

µ2
∗

.

• For the second term,

Ã2
i

∑∑∑∑

n−1ga>b>d>eg1

¼a−b+e−1
∗

≲
nÃ2

i

µ∗

∑∑

n−1ga>bg3

¼a−b
∗ ≲

n2Ã2
i

µ2
∗

.

• For the third term,

∑∑∑∑

n−1ga>b>d>eg1

¼a−1
∗ ≲

∑

n−1gag4

a3¼a−1
∗ ≲

1

µ4
∗
.

• For the fourth term,

πi

∑∑∑∑

n−1≥a>b>d>e≥1

λ
a−b+d−1
∗ f

πi

γ2
∗

∑∑

n−1≥a>b≥3

λ
a−b
∗ ≲

nπi

γ3
∗

.

• For the fifth term,

Ãi

∑∑∑∑

n−1ga>b>d>eg1

¼a−d+e−1
∗

≲
Ãi

µ∗


 ∑∑

n−1ga>bg3

¼a−b
∗






b−1∑

dg2

¼b−d
∗


 ≲

nÃi

µ3
∗

.

• For the sixth term,

πi

∑∑∑∑

n−1≥a>b>d>e≥1

λ
a−e
∗

≲ πi




∑∑

n−1≥a>b≥3

λ
a−b
∗








b−1∑

d≥2

λ
b−d
∗








d−1∑

e≥1

λ
d−e
∗



 ≲
nπi

γ3
∗

.

Combining the above bounds and using the fact that ab f
a2 + b2, we obtain

∑∑∑∑

n−1ga>b>d>eg1

|E [ÀaÀbÀdÀe|X1 = i]|

≲
n2Ã2

i

µ2
∗

+
nÃi

µ3
∗

+
1

µ4
∗

≲
n2Ã2

i

µ2
∗

+
1

µ4
∗
. (170)

H. Case II: Three Distinct Indices

There are three cases, namely, ÀaÀ2
b Àe, ÀaÀbÀ

2
e , and À2

aÀbÀe.

1) Bounding
∑∑∑

n−1ga>b>eg1

∣∣E
[
ÀaÀ2

b Àe|X1 = i
]∣∣:

We specialize (169) with b = d to get

∣∣E
[
ÀaÀ2

b Àe|X1 = i
]∣∣ ≲ Ãi

(
¼a−b+e−1
∗ + ¼a−e

∗
)

+ ¼a−1
∗ .

Summing over a, b, e we have
∑∑∑

n−1≥a>b>e≥1

∣∣E
[
ξaξ

2
b ξe|X1 = i

]∣∣

≲
∑∑∑

n−1≥a>b>e≥1

{
πi

(
λ

a−b+e−1
∗ + λ

a−e
∗

)
+ λ

a−1
∗

}

≲
πi

γ∗

∑∑

n−1≥a>b≥2

λ
a−b
∗

+πi




∑∑

n−1≥a>b≥2

λ
a−b
∗








b−1∑

e≥1

λ
b−e
∗



+
∑

n−1≥a≥3

a
3
λ

a−1
∗

≲
nπi

γ2
∗

+
1

γ3
∗

≲
n2π2

i

γ2
∗

+
1

γ3
∗

(171)

with last inequality following from xy f x2 + y2.

2) Bounding
∑∑∑

n−1ga>b>eg1

∣∣E
[
ÀaÀbÀ

2
e |X1 = i

]∣∣:
We specialize (169) with e = d to get

∣∣E
[
ÀaÀbÀ

2
e |X1 = i

]∣∣
≲ Ã2

i ¼a−b
∗ + Ãi

(
¼a−b+e−1
∗ + ¼a−e

∗
)

+ ¼a−1
∗ .

Summing over a, b, e and applying (171), we get
∑∑∑

n−1ga>b>eg1

∣∣E
[
ÀaÀbÀ

2
e |X1 = i

]∣∣

≲
∑∑∑

n−1ga>b>eg1

{
Ã2

i ¼a−b
∗ + ¼a−1

∗
+Ãi

(
¼a−b+e−1
∗ + ¼a−e

∗
)
}

≲ nÃ2
i

∑∑

n−1ga>bg2

¼a−b
∗ +

nÃi

µ2
∗

+
1

µ3
∗

≲
n2Ã2

i

µ∗
+

nÃi

µ2
∗

+
1

µ3
∗

≲
n2Ã2

i

µ2
∗

+
1

µ3
∗
. (172)

3) Bounding
∑∑∑

n−1ga>b>eg1

∣∣E
[
À2
aÀbÀe|X1 = i

]∣∣:
Specializing (169) with a = b we get

∣∣E
[
À2
b ÀdÀe|X1 = i

]∣∣
≲ Ã2

i

(
¼d−e
∗ + ¼e−1

∗
)

+ ¼b−1
∗ + Ãi

(
¼d−1
∗ + ¼b−d+e−1

∗ + ¼b−e
∗
)
,

which is equivalent to
∣∣E
[
À2
aÀbÀe|X1 = i

]∣∣
≲ Ã2

i

(
¼b−e
∗ + ¼e−1

∗
)

+ ¼a−1
∗ + Ãi

(
¼b−1
∗ + ¼a−b+e−1

∗ + ¼a−e
∗
)
.

For the first, second and fourth terms
∑∑∑

n−1ga>b>eg1

{
Ã2

i

(
¼b−e
∗ + ¼e−1

∗
)

+ Ãi¼
b−1
∗
}

≲
Ã2

i

µ∗

∑∑

n−1ga>bg2

1 +
nÃi

µ2
∗

≲
n2Ã2

i

µ∗
+

nÃi

µ2
∗

,

and for summing the remaining terms we use (171),

which implies
∑∑∑

n−1ga>b>eg1

∣∣E
[
À2
aÀbÀe|X1 = i

]∣∣

≲
n2Ã2

i

µ∗
+

nÃi

µ2
∗

+
1

µ3
∗

≲
n2Ã2

i

µ2
∗

+
1

µ3
∗
. (173)
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I. Case III: Two Distinct Indices

There are three cases, namely, ¸2
a¸2

e , ¸a¸3
e and ¸3

a¸e.

1) Bounding
∑∑

n−1ga>eg1 E
[
À2
aÀ2

e |X1 = i
]
: Specializ-

ing (169) for a = b and e = d we get

E
[
À2
aÀ2

e |X1 = i
]

≲ Ã2
i + Ãi

(
¼e−1
∗ + ¼a−e

∗
)

+ ¼a−1
∗ .

Summing up over a, e we have
∑∑

n−1ga>eg1

E
[
À2
aÀ2

e |X1 = i
]

≲
∑∑

n−1ga>eg1

{
Ã2

i + Ãi

(
¼e−1
∗ + ¼a−e

∗
)

+ ¼a−1
∗
}

≲ n2Ã2
i +

nÃi

µ∗
+

1

µ2
∗
. (174)

2) Bounding
∑∑

n−1ga>eg1

∣∣E
[
ÀaÀ3

e |X1 = i
]∣∣: Special-

izing (169) for e = b = d we get
∣∣E
[
ÀaÀ3

e |X1 = i
]∣∣ ≲ Ãi¼

a−e
∗ + ¼a−1

∗

which sums up to
∑∑

n−1ga>eg1

∣∣E
[
ÀaÀ3

e |X1 = i
]∣∣

≲ Ãi

∑∑

n−1ga>eg1

¼a−e
∗ +

∑∑

n−1ga>eg1

¼a−1
∗ ≲

nÃi

µ∗
+

1

µ2
∗
.

(175)

3) Bounding
∑∑

n−1ga>eg1

∣∣E
[
À3
aÀe|X1 = i

]∣∣: Specializ-

ing (169) for a = b = d we get
∣∣E
[
À3
aÀe|X1 = i

]∣∣ ≲ Ãi

(
¼a−e
∗ + ¼e−1

∗
)

+ ¼a−1
∗

which sums up to
∑∑

n−1≥a>e≥1

∣∣E
[
ξ
3
aξe|X1 = i

]∣∣

≲
∑∑

n−1≥a>e≥1

{
πi

(
λ

a−e
∗ + λ

e−1
∗

)
+ λ

a−1
∗

}
≲

nπi

γ∗
+

1

γ2
∗
.

(176)

J. Case IV: Single Distinct Index

We specialize (169) to a = b = d = e to get

E
[
À4
a|X1 = i

]
≲ Ãi + ¼a−1

∗ .

Summing the above over a

n−1∑

a=1

E
[
À4
a|X1 = i

]
≲ nÃi +

1

µ∗
. (177)

Combining (170)–(177) and using nÃi

µ∗
≲ n2Ã2

i

µ2
∗

+ 1
µ4
∗

, we get

E

[
(Ni − (n − 1)Ãi)

4 |X1 = i
]

≲
n2Ã2

i

µ2
∗

+
1

µ4
∗
.

□
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