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Optimal Prediction of Markov Chains With and
Without Spectral Gap

Yanjun Han

Abstract— We study the following learning problem with
dependent data: Observing a trajectory of length n from a
stationary Markov chain with k states, the goal is to predict the
next state. For 3 < k < O(+/n), using techniques from univer-
sal compression, the optimal prediction risk in Kullback-Leibler
divergence is shown to be @(% log k%), in contrast to the
optimal rate of @(bg'%) for K = 2 previously shown in
Falahatgar et al. (2016). These rates, slower than the parametric
rate of O(’c ), can be attributed to the memory in the data,
as the spectral gap of the Markov chain can be arbitrarily
small. To quantify the memory effect, we study irreducible
reversible chains with a prescribed spectral gap. In addition to
characterizing the optimal prediction risk for two states, we show
that, as long as the spectral gap is not excessively small, the
prediction risk in the Markov model is O(%z), which coincides
with that of an iid model with the same number of parameters.
Extensions to higher-order Markov chains are also obtained.

Index Terms— Markov chains, prediction, redundancy, spec-
tral gap, mixing time, Kullback Leibler risk, higher-order
Markov chains.

I. INTRODUCTION

EARNING distributions from samples is a central ques-

tion in statistics and machine learning. While significant
progress has been achieved in property testing and estimation
based on independent and identically distributed (iid) data, for
many applications, most notably natural language processing,
two new challenges arise: (a) Modeling data as indepen-
dent observations fails to capture their temporal dependency;
(b) Distributions are commonly supported on a large domain
whose cardinality is comparable to or even exceeds the sample
size. Continuing the progress made in [1] and [2], in this paper
we study the following prediction problem with dependent
data modeled as Markov chains.
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Suppose X1, Xo, ... is a stationary first-order Markov chain
on state space [k] = {1,...,k} with unknown statistics.
Observing a trajectory X™ 2 (Xi,...,X,), the goal is to
predict the next state X,,,; by estimating its distribution
conditioned on the present data. We use the Kullback-Leibler
(KL) divergence as the loss function: For dlstrlbutlons P =
[pla"wpk] 5@ - [Q17"'7qk]’ (PHQ) - Zz 1p210g oif
p; = 0 whenever ¢; = 0 and D(P||Q) = oo otherwise. “The
minimax prediction risk is given by

Risky , £ inf sup E[D(M (- X,,) || M (-] X0))]
M m,M
= inf ]E M 1 1
1}\1/[:}1]\85 [))[|M(-|i)1ix, =] (D

where the supremum is taken over all stationary distributions 7
and transition matrices M (row- stochastlc) such that oM =,
the infimum is taken over all estimators M = M (X1,...,Xn)
that are proper Markov kernels (i.e. rows sum to 1), and
M (-|i) denotes the ith row of M. Our main objective is to
characterize this minimax risk within universal constant factors
as a function of n and k.

The prediction problem (1) is distinct from the parameter
estimation problem such as estimating the transition matrix
[3], [4], [5], [6] or its properties [7], [8], [9], [10] in
that the quantity to be estimated (conditional distribution
of the next state) depends on the sample path itself. This
is precisely what renders the prediction problem closely
relevant to natural applications such as autocomplete and
text generation. In addition, this formulation allows more
flexibility with far less assumptions compared to the esti-
mation framework. For example, if certain state has very
small probability under the stationary distribution, consis-
tent estimation of the transition matrix with respect to
usual loss function, e.g. squared risk, may not be possible,
whereas the prediction problem is unencumbered by such rare
states.

In the special case of iid data, the prediction problem
reduces to estimating the distribution in KL divergence. In this
setting the optimal risk is well understood, which is known to
be £-1(140(1)) when k is fixed and n — oo [11] and ©(£)

for k = O(n) [12], [13].! Typical in parametric models, this
rate % is commonly referred to the “parametric rate”, which
leads to a sample complexity that scales proportionally to the

'Here and below =<, <, > or ©(-), O(+), Q(+) denote equality and inequal-

~)

ities up to universal multiplicative constants.
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number of parameters and inverse proportionally to the desired
accuracy.

In the setting of Markov chains, however, the prediction
problem is much less understood especially for large state
space. Recently the seminal work [1] showed the surprising
result that for stationary Markov chains on two states, the
optimal prediction risk satisfies

2

log1
Risks,, — O <0g0gn> ,

n

which has a nonparametric rate even when the problem has
only two parameters. The follow-up work [2] studied general
k-state chains and showed a lower bound of Q(%) for
uniform (not necessarily stationary) initial distribution; how-
ever, the upper bound O(I“Qk’g%) in [2] relies on implicit
assumptions on mixing time such as spectral gap conditions:
the proof of the upper bound for prediction (Lemma 7 in the
supplement) and for estimation (Lemma 17 of the supplement)
is based on Berstein-type concentration results of the empirical
transition counts, which depend on spectral gap. The following
theorem resolves the optimal risk for k-state Markov chains:

Theorem 1 (Optimal rates without spectral gap): There
exists a universal constant C' > 0 such that for all 3 < k£ <
Vn/C,

2 2

% log (%) < Riskg,n, < CTk log (%) . 3)
Furthermore, the lower bound continues to hold even if the
Markov chain is restricted to be irreducible and reversible.

Remark 1: The optimal prediction risk of O(% log 7%) can
be achieved by an average version of the add-one estimator
(i.e. Laplace’s rule of succession).

Given a trajectory z" = (x1,...,2,) of length n, denote
the transition counts (with the convention V; = N;; = 0 if
n=20,1)

n—1 n—1
N; = Z lg,=iy, Nij= Z Vai=iwep=jy- 4
=1 =1

The add-one estimator for the transition probability M (j|i) is
given by

Nij+1
N; + k ’
which is an additively smoothed version of the empirical
frequency. Finally, the optimal rate in (3) can be achieved by
the following estimator M defined as an average of add-one
estimators over different sample sizes:

ML) £ 5)

1<xn+1|mn)- (6)

n—t4

— Al e —~ .

Mo (Tpg1|2n) = - ;Mxn
In other words, we apply the add-one estimator to the most
recent ¢ observations (X, _¢41,...,X,) to predict the next
X1, then average over t = 1,...,n. Such Cesaro-mean-
type estimators have been introduced before in the density
estimation literature (see, e.g., [14]). It remains open whether
the usual add-one estimator (namely, the last term in (6) which
uses all the data) or any add-c estimator for constant ¢ achieves
the optimal rate. In contrast, for two-state chains the optimal
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risk (2) is attained by a hybrid strategy [1], applying add-
c estimator for ¢ = loén for trajectories with at most one
transition and ¢ = 1 otherwise. Also note that the estimator in

(6) can be computed in O(nk) time. To derive this first note
that given any j € [k] calculating M;,},l (j|zn—1) takes O(n)

1

(j|zn—1) we need O(1) time to

time and given any M +71171

. T —t4+1
calculate MtL, (j|xrn—1). Summing over all ; we get the

€T
algorithmic cg)fﬁf)fexity upper bound.

Theorem 1 shows that the departure from the parametric
rate of %2, first discovered in [1] and [2] for binary chains,
is even more pronounced for larger state space. As will
become clear in the proof, there is some fundamental dif-
ference between two-state and three-state chains, resulting in
Risks,,, = @(logT”) > Risks ,, = @(logi#). It is instructive
to compare the sample complexity for prediction in the iid
and Markov model. Denote by d the number of parameters,
which is k—1 for the iid case and k(k—1) for Markov chains.
Define the sample complexity n*(d, €) as the smallest sample
size n in order to achieve a prescribed prediction risk e. For
e = O(1), we have

d iid
n*(d,e) < glog log% Markov with 2 states @)
glog% Markov with k& > 3 states.

At a high level, the nonparametric rates in the Markov
model can be attributed to the memory in the data. On the
one hand, Theorem 1 as well as (2) affirm that one can
obtain meaningful prediction without imposing any mixing
conditions;> such decoupling between learning and mixing has
also been observed in other problems such as learning linear
dynamics [15], [16]. On the other hand, the dependency in
the data does lead to a strictly higher sample complexity than
that of the iid case; in fact, the lower bound in Theorem 1
is proved by constructing chains with spectral gap as small
as O(%) (see Section III). Thus, it is conceivable that with
sufficiently favorable mixing conditions, the prediction risk
improves over that of the worst case and, at some point,
reaches the parametric rate. To make this precise, we focus
on Markov chains with a prescribed spectral gap.

It is well-known that for an irreducible and reversible chain,
the transition matrix M has k real eigenvalues satisfying 1 =
AM>A> > -1

The absolute spectral gap of M, defined as

Ve &1 —max {|\;| :i # 1}, (8)

quantifies the memory of the Markov chain. For example, the
mixing time is determined by 1/4* (relaxation time) up to
logarithmic factors. As extreme cases, the chain which does
not move (M is identity) and which is iid (M is rank-one)
have spectral gap equal to 0 and 1, respectively. We refer the
reader to [17] for more background. Note that the definition of
absolute spectral gap requires irreducibility and reversibility,
thus we restrict ourselves to this class of Markov chains (it is

2To see this, it is helpful to consider the extreme case where the chain does
not move at all or is periodic, in which case predicting the next state is in
fact easy.
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possible to use more general notions such as pseudo spectral
gap to quantify the memory of the process, which is beyond
the scope of the current paper). Given v9 € (0,1), define
M. (v0) as the set of transition matrices corresponding to
irreducible and reversible chains whose absolute spectral gap
exceeds vp. Restricting (1) to this subcollection and noticing
the stationary distribution here is uniquely determined by M,
we define the corresponding minimax risk:

Riski,(70) 2 inf sup B [D(M(|X,)[M(X,))]

M MeMy (’yo)
)

Extending the result (2) of [1], the following theorem
characterizes the optimal prediction risk for two-state chains
with prescribed spectral gaps (the case vy = 0 corresponds to
the minimax rate in [1] over all binary Markov chains):

Theorem 2 (Spectral gap dependent rates for binary chain):
For any v € (0,1)

1 1
Riska., (70) = - max {1, log log <min {n, %}) } .

Theorem 2 shows that for binary chains, parametric rate
O(%) is achievable if and only if the spectral gap is nonvanish-
ing. While this holds for bounded state space (see Corollary 4
below), for large state space, it turns out that much weaker
conditions on the absolute spectral gap suffice to guarantee
the parametric rate O(%Z) achieved by the add-one estimator
applied to the entire trajectory. In other words, as long as
the spectral gap is not excessively small, the prediction risk
in the Markov model behaves in the same way as that of
an iid model with equal number of parameters. A similar
conclusion has been established previously for the sample
complexity of estimating the entropy rate of Markov chains
in [9, Theorem 1].

Theorem 3: The add-one estimator in (5) achieves the
following risk bound.

() For any k > 2, Riskg »n(70) S
(logh)i/a,

(ii) In addition, for k > (logn)®, Riskk..(v0) < %2 provided
that vg 2> 7(1%(7?’“))2.

Corollary 4: For any fixed k > 2, Riski (70) = O(+) if
and only if vo = Q(1).

Remark 2 (The role of reversibility): The main reason
why we require reversibility in Theorems 2 and 3 is to
make use of the absolute spectral gap, which might not be
well-defined without reversibility. For non-reversible chains,
a related notion is the pseudo spectral gap (used later in
Lemma 31), which is technically more involved. The result
of Theorem 3(ii) is still true under the pseudo spectral gap,
using the concentration inequality for non-reversible chains
[18, Theorem 3.4]. As for other results in Theorems 2 and 3(i),
currently we do not know whether they can be extended to the
pseudo spectral gap.

Next, we address the optimal prediction risk for higher-order
Markov chains:

Theorem 5: There is a constant C,,, depending on m such
that for any 2 < k < nﬁ/Cm and constant m > 2 the

%‘2 provided that vy >
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minimax prediction rate for m™-order Markov chains with
stationary initialization is ©,, (%ﬂ log knﬂa .

Notably, for binary states, it turns out that the optimal rate
© (logl%) for first-order Markov chains determined by [1]
is something very special, as we show that for second-order

chains the optimal rate is © (k’%)

Finally, we discuss some basic results for the prediction
problem with stationary reversible chains when other f-
divergences are considered. For the spectral gap independent
results, our general proof techniques for the KL-based predic-
tion strongly depend on the reduction to redundancy, which is
usually unavailable for other general divergences. As a result,
the corresponding risk bounds do not directly follow, and one
needs to resort to other techniques. Nevertheless, we show
that for the specific case of the squared total variation loss

our results can establish a O, (loﬂ) when k£ > 3 (cf. (136)).

n
On the other hand, we investigate the prediction risk for the
stronger loss function given by the Chi-square divergence for
the spectral gap dependent results. We show that whenever the
absolute spectral gap is non-vanishing in n, k, we can achieve
the parametric error rate (cf. Theorem 33).

A. Proof Techniques

The proof of Theorem 1 deviates from existing approaches
based on concentration inequalities for Markov chains. For
instance, the standard program for analyzing the add-one
estimator (5) involves proving concentration of the empirical
counts on their population version, namely, N; ~ nm; and
N;; =~ nm;M(j|i), and bounding the risk in the atypical
case by concentration inequalities, such as the Chernoff-type
bounds in [19] and [18], which have been widely used in recent
work on statistical inference with Markov chains [2], [6], [8],
[9], [10]. However, these concentration inequalities inevitably
depends on the spectral gap of the Markov chain, leading to
results which deteriorate as the spectral gap becomes smaller.
For two-state chains, results free of the spectral gap are
obtained in [1] using explicit joint distribution of the transition
counts; this refined analysis, however, is difficult to extend to
larger state space as the probability mass function of (IV;;)
is given by Whittle’s formula [20] which takes an unwieldy
determinantal form.

Eschewing concentration-based arguments, the crux of our
proof of Theorem 1, for both the upper and lower bound,
revolves around the following quantity known as redundancy:

Redy , £ inf sup D(Pxn||Qx»)
Qxn Pyn

Pxn (Z‘n)
Qxn (™)

Here the supremum is taken over all joint distributions of
stationary Markov chains X" on k states, and the infimum
is over all joint distributions Q) x~». A central quantity which
measures the minimax regret in universal compression, the
redundancy (10) corresponds to minimax cumulative risk
(namely, the total prediction risk when the sample size ranges
from 1 to n), while (1) is the individual minimax risk at sample

= inf su Pxn(z™) 1o 10
Qx"PXI:; X( ) & (10
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size n — see Section II for a detailed discussion. We prove the
following reduction between prediction risk and redundancy:

1 log k . 1
~ “n—1

Redg p (11)
where Red™™ denotes the redundancy for symmetric Markov
chains. The upper bound is standard: thanks to the convexity of
the loss function and stationarity of the Markov chain, the risk
of the Cesaro-mean estimator (6) can be upper bounded using
the cumulative risk and, in turn, the redundancy. The proof
of the lower bound is more involved. Given a (k — 1)-state
chain, we embed it into a larger state space by introducing a
new state, such that with constant probability, the chain starts
from and gets stuck at this state for a period time that is
approximately uniform in [n], then enters the original chain.
Effectively, this scenario is equivalent to a prediction problem
on k — 1 states with a random (approximately uniform)
sample size, whose prediction risk can then be related to the
cumulative risk and redundancy. This intuition can be made
precise by considering a Bayesian setting, in which the (k—1)-
state chain is randomized according to the least favorable prior
for (10), and representing the Bayes risk as conditional mutual
information and applying the chain rule.

Given the above reduction in (11), it suffices to show
both redundancies therein are on the order of % log 7.
The redundancy is upper bounded by pointwise redundancy,
which replaces the average in (10) by the maximum over all
trajectories. Following [21] and [22], we consider an explicit
probability assignment defined by add-one smoothing and
using combinatorial arguments to bound the pointwise redun-
dancy, shown optimal by information-theoretic arguments.

The optimal spectral gap-dependent rate in Theorem 2 relies
on the key observation in [1] that, for binary chains, the
dominating contribution to the prediction risk comes from
trajectories with a single transition, for which we may apply
an add-c estimator with ¢ depending appropriately on the
spectral gap. The lower bound is shown using a Bayesian
argument similar to that of [2, Theorem 1]. The proof of
Theorem 3 relies on more delicate concentration arguments as
the spectral gap is allowed to be vanishingly small. Notably,
for small k, direct application of existing Bernstein inequalities
for Markov chains in [19] and [18] falls short of establishing
the parametric rate of O(%) (see Remark 5 in Section I'V-B for
details); instead, we use a fourth moment bound which turns
out to be well suited for analyzing concentration of empirical
counts conditional on the terminal state.

For large k, we further improve the spectral gap condition
using a simulation argument for Markov chains using inde-
pendent samples [S], [9]. A key step is a new concentration
inequality for D(P||P;'}), where P} is the add-one estimator
based on n iid observations of P supported on [k]:

~ k lyl “Vk 1
™ n n poly(n)

12)

for some absolute constant ¢ > 0. Note that an application
of the classical concentration inequality of McDiarmid would
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result in the second term being polylog(n)//n, and (12)
crucially improves this to polylog(n)-v/k/n. Such an improve-
ment has been recently observedA by [23], [24], and [25] in
studying the similar quantity D(P,||P) for the (unsmoothed)
empirical distribution P,;; however, these results, based on
either the method of types or an explicit upper bound of the
moment generating function, are not directly applicable to (12)
in which the true distribution P appears as the first argument
in the KL divergence.

The nonasymptotic spectral gap-independent analysis of the
prediction rate for higher-order chains with large alphabets is
based on a similar redundancy-based reduction as the first-
order chain. However, the nonasymptotic redundancy lower
bound for higher-order chains is more challenging. The main
technical difficulty is that even if {X;}}_, is a reversible m-th
order chain, the first-order chain {(X, ..., X 1m_1)} 2"
is usually not reversible. Consequently, as also noted in [26],
existing analysis in [27, Sec III] based on simple mixing
conditions from [28] leads to suboptimal results on large
alphabets. To bypass this issue, we show the pseudo spectral
gap [18] of the transition matrix of the first-order chain
{(Xtyo oy, Xtpm—1) ?;1’”“ is at least a constant. This is
accomplished by a careful construction of a prior on mt"-
order transition matrices with © (kmﬂ) degrees of freedom.
The high-level idea is to add laziness to the first-order chain
{(Xt,. oy Xegm_1) /=" so that its pseudo spectral gap
is of the same order of the Poincaré’s constant [29, Corol-
lary 1.15], a property which requires reversibility without
laziness.

B. Related Work

While the exact prediction problem studied in this paper
has recently been in focus since [1] and [2], there exists a
large body of literature on relate works. As mentioned before
some of our proof strategies draws inspiration and results
from the study of redundancy in universal compression, its
connection to mutual information, as well as the perspective
of sequential probability assignment as prediction, dating back
to [21], [30], [31], [32], and [33]. Asymptotic characterization
of the minimax redundancy for Markov sources, both average
and pointwise, were obtained in [27], [34], and [35], in the
regime of fixed alphabet size k and large sample size n. Non-
asymptotic characterization was obtained in [27] for n >
k?logk and recently extended to n = k2 in [26], which
further showed that the behavior of the redundancy remains
unchanged even if the Markov chain is very close to being iid
in terms of spectral gap v* =1 — o(1).

The current paper adds to a growing body of literature
devoted to statistical learning with dependent data, in par-
ticular those dealing with Markov chains. Estimation of the
transition matrix [3], [4], [5], [36] and testing the order of
Markov chains [7] have been well studied in the large-sample
regime. More recently attention has been shifted towards large
state space and nonasymptotics. For example, [6] studied
the estimation of transition matrix in /o, — /{o induced
norm for Markov chains with prescribed pseudo spectral gap
and minimum probability mass of the stationary distribution,
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and determined sample complexity bounds up to logarithmic
factors. Similar results have been obtained for estimating prop-
erties of Markov chains, including mixing time and spectral
gap [10], entropy rate [8], [9], [37], graph statistics based
on random walk [38], as well as identity testing [39], [40],
[41], [42]. Most of these results rely on assumptions on the
Markov chains such as lower bounds on the spectral gap
and the stationary distribution, which afford concentration for
sample statistics of Markov chains. In contrast, one of the
main contributions in this paper, in particular Theorem 1,
is that optimal prediction can be achieved without these
assumptions, thereby providing a novel way of tackling these
seemingly unavoidable issues. This is ultimately accomplished
by information-theoretic and combinatorial techniques from
universal compression.

C. Notations and Preliminaries

Forn € N, let [n] £ {1,...,n}. Denote 2" = (21,...,2y)
and z} = (x4,...,x,). The distribution of a random variable
X is denoted by Px. In a Bayesian setting, the distribution of
a parameter 6 is referred to as a prior, denoted by FPy. We recall
the following definitions from information theory [43], [44].
The conditional KL divergence is defined as as an average of
KL divergence between conditional distributions:

D(Papl|Qas|Ps) £ Epepy [D(PapllQap)]
:/PB(db)D(PA|B:b||QA|B:b)-
(13)

The mutual information between random variables A and B
with joint distribution Pap is I(A; B) £ D(Pg 4| Ps|Pa);
similarly, the conditional mutual information is defined as

I(A; B|C) £ D(Ppjacl||Pgic|Pa,c)-

The following variational representation of (conditional)
mutual information is well-known

I(A;B) = rgin D(Ppall@B|Pa),
B

I(A; B|C) Zgllgi‘lé D(Ppjacll@pclPac).  (14)

The entropy of a discrete random variables X is H(X) =

D. Organization

The rest of the paper is organized as follows. In Section II
we describe the general paradigm of minimax redundancy and
prediction risk and their dual representation in terms of mutual
information. We give a general redundancy-based bound on
the prediction risk, which, combined with redundancy bounds
for Markov chains, leads to the upper bound in Theorem 1.
Section III presents the lower bound construction, starting
from three states and then extending to & states. Spectral-
gap dependent risk bounds in Theorems 2 and 3 are given
in Section IV. Section V presents the results and proofs for
m"-order Markov chains. In Section VI we discuss prediction
risks assessed by other loss functions than the KL divergence.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Section VII discusses the assumptions and implications of our
results and related open problems.

II. TWO GENERAL PARADIGMS

A. Redundancy, Prediction Risk, and Mutual Information
Representation

For n € N, let P = {Pxn+19 : 6 € O} be a collection of
joint distributions parameterized by 6.

1) “Compression”:  Consider a sample X" 2
(X1,...,X,) of size n drawn from Pxnjy for some
unknown 6 € ©. The redundancy of a probability assignment
(joint distribution) @ x~ is defined as the worst-case KL risk
of fitting the joint distribution of X", namely

Red(Qx~) £ glelgD(PXn\9|\QX")~ (15)

Optimizing over ) x~, the minimax redundancy is defined as

Red,, £ inf Red, (Qx=), (16)
Qxn

where the infimum is over all joint distribution ) x~. This
quantity can be operationalized as the redundancy (i.e. regret)
in the setting of universal data compression, that is, the excess
number of bits compared to the optimal compressor of X ™ that
knows 6 [44, Chapter 13].

The capacity-redundancy theorem (see [45] for a very
general result) provides the following mutual information
characterization of (16):

Red,, =supI(0; X"),
Py

a7

where the supremum is over all distributions (priors) P on ©.
In view of the variational representation (14), this result can
be interpreted as a minimax theorem:

Redn = inf SupD(PXn‘GHQXn
Qxn p,

Py)
= sup inf D(Pxnp||Qxn|Ps).
P, Qxn

Typically, for fixed model size and n — oo, one expects that
Red,, = 4logn(1 + o(1)), where d is the number of param-
eters; see [31] for a general theory of this type. Indeed, on a
fixed alphabet of size k, we have Red,, = £ logn(140(1))
for iid model [30] and Red,, = Wlogn(l + o(1)) for
m"-order Markov models [46], with more refined asymptotics
shown in [47] and [48]. For large alphabets, nonasymptotic
results have also been obtained. For example, for first-order
Markov model, Red,, < k?log % provided that n > k* [26].

2) “Prediction”: Consider the problem of predicting the
next unseen data point X,;; based on the observations
X1,...,Xn, where (Xi,...,X,41) are jointly distributed
as Pxn+1)g for some unknown ¢ € ©. Here, an estimator
is a distribution (for X,,4;) as a function of X", which,
in turn, can be written as a conditional distribution @ x 1] X7
As such, its worst-case average risk is

RISk(QXn+1|Xn) £ zugD(PXTL+1‘X”10||QXTL+1‘Xn|PX"|0)’
€

(18)

Authorized licensed use limited to: Yale University. Downloaded on September 04,2024 at 05:40:53 UTC from IEEE Xplore. Restrictions apply.



HAN et al.: OPTIMAL PREDICTION OF MARKOV CHAINS WITH AND WITHOUT SPECTRAL GAP

where the conditional KL divergence is defined in (13). The
minimax prediction risk is then defined as

Risk, = inf  Risk,(Qx, ,,|1x"),

X1 X

19)

While (16) does not directly correspond to a statistical estima-
tion problem, (19) is exactly the familiar setting of “density
estimation”, where Qx, ,|x» is understood as an estimator
for the distribution of the unseen X, based on the available
data Xq,...,X,.

In the Bayesian setting where 6 is drawn from a prior Py,
the Bayes prediction risk coincides with the conditional mutual
information as a consequence of the variational representa-
tion (14):

inf  Eg[D(Px, ., |x»0l@x, 1 1x7Pxn)]
XpiqlXT

= I(0; Xn1]|X™). (20)

Furthermore, the Bayes estimator that achieves this infimum
takes the following form:
f PXn+1|9 dPg

=P =2 7 (2]

At X Pyntg APy
known as the Bayes predictive density [30], [49]. These
representations play a crucial role in the lower bound proof
of Theorem 1. Under appropriate conditions which hold for
Markov models (see Lemma 34 in Appendix A), the minimax
prediction risk (19) also admits a dual representation analo-
gous to (17):

Bayes
Xn+1 |Xn

Risk,, = sup I(0; X,,+1|X™),
O~

which, in view of (20), show that the principle of
“minimax=worst-case Bayes” continues to hold for prediction
problem in Markov models.

The following result relates the redundancy and the predic-
tion risk.

Lemma 6: For any model P,

(22)

n—1

Red,, < Z Risk;.

t=0

(23)

In addition, suppose that each Pxng € P is stationary and
mt-order Markov. Then for all n > m + 1,

Red,,

Risk,, < Risk,,_1 < .
n—m

(24)

Furthermore, for any joint distribution Q) x~ factorizing as
Qx» =[[,Q X,|xt-1, the prediction risk of the estimator

A n—1\ & - n
QXTL|X”*1(1:R“I )= n—m - %162}(,5 | X (In|$n t+1)
(25)
is bounded by the redundancy of QQx~ as
L 1
R|Sk(QX”|Xn—1) S Red(QXn). (26)
n—m

Remark 3: Note that the upper bound (23) on redun-
dancy, known as the “estimation-compression inequality” [1],
[13], holds without conditions, while the lower bound (24)
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relies on stationarity and Markovity. For iid data, the
estimation-compression inequality is almost an equality; how-
ever, this is not the case for Markov chains, as both sides
of (23) differ by an unbounded factor of ©(loglogn) for
k =2 and O(logn) for fixed k > 3 — see (2) and Theorem 1.
On the other hand, Markov chains with at least three states
offers a rare instance where (24) is tight, namely, Risk, =<
Re—f" (cf. Lemma 7).
Proof: The upper bound on the redundancy follows from

the chain rule of KL divergence:

n
= D(Px,xt-1,6l|Qx,xt—1 | Pxt—1).

t=1

D(Pxn9]|Q@xn)
27)
Thus

sup D(Pxnol|Qxn) < Z sup D(PXt\Xt*1,9‘|QXt\Xt*1 |Pxi-1).
E) i 0€0

Minimizing both sides over QQx~ (or equivalently, Qx, x¢-1
fort=1,...,n) yields (23).

To upper bound the prediction risk using redundancy, fix
any Qxn, which gives rise to Qx, x¢-1 for t = 1,...,n.
For clarity, let use denote the ¢*" estimator as Pt( lzt=1) =
Qx,|xt-1=gt-1. Consider the estimator QXn‘ xn—1 defined
in (25), namely,
~ A1 n
Qx, | xn—1=gn-1 = P — Z

Pt("xn—t-&-la e ’l‘n—l)-

(28)

That is, we apply 13:& to the most recent ¢ — 1 symbols prior
to X,, for predicting its distribution, then average over t. We
may bound the prediction risk of this estimator by redundancy
as follows: Fix 6 € O. To simplify notation, we suppress the
dependency of 6 and write Pxn|g = Pxn. Then

D(PXnIXn_l HQX ‘X"—l ‘Pxn—l)
=)

@ D( ZPt

E

Xan 1

n—m

(b) 1 n

< —— 3 E[D(Py,xo IPCIXITH))]
t= m+1
Y B[Py IPOX)]
t m+1

(d) Z

= DPthf 1||Qxfxf 1|Pxf 1)

n_mt m41
1 n

< .D P t—1 t t— P t—1

—n_m; (Px, xt-1[|@xt xt-1|Pxe-1)

(e) 1

= —— D(Pxn[|@xn),
n—m

where (a) uses the m'P-order Markovian assumption;
(b) is due to the convexity of the KL divergence;
(c) uses the crucial fact that for all ¢t = 1,...,n — 1,
(Xnety- .- 7Xn,l)law(Xl, e 72(}), thanks to stationarity;

(d) follows from substituting Py(-]z'™1) = Qx,|xt-1-4t-1,
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the Markovian assumption Py IximL = = Px, xt—1, and rewrit-
ing the expectation as conditional KL divergence; (e) is by
the chain rule (27) of KL divergence. Since the above holds

for any 0 € O, the desired (26) follows which implies that

Risk,_1 < Redu Finally, Risk,_; > Risk, follows from
E[D(Px, ., ix,|Pa(X3))] = E[D(Px,x, , [|P(X7)),
since (Xo,...,X,) and (X1,...,X,,—1) are equal in law. OJ

Remark 4: Alternatively, Lemma 6 also follows from
the mutual information representation (17) and (22). Indeed,
by the chain rule for mutual information,

1(6; X™) =Y I(6; X, X" ™) (29)
t=1
taking the supremum over 7 (the distribution of 6) on
both sides yields (17). For (22), it suffices to show that
I(0; X¢| X1 is decreasing in ¢: for any 0 ~ T,

n+1|Xn

1(0; Xp1| X™) = Elog

Xnt1|Xn
PX7L+1 ‘X;

)
PXﬂ+1‘Xn

PX71+1\X",9

= Elog + Elog

PXn+1 |X2n
—I(X1;Xn41|X3)
and the first term is

PXn+1\X",9 PX'rL+1|X:Z;m+179

Elog = Elog

X1 | X7 Px, .\ ixp

P n—1
Xl X070 = I1(6; X,,| X" 1)

= Elog
PXTL|X71,71

where the first and second equalities follow from the m'"-
order Markovity and stationarity, respectively. Taking supre-
mum over 7 yields Risk, < Risk,_;. Finally, by the chain
rule (29), we have

I(0; X™) > (n—m)I(6; X, | X" 1),

1<Red
n—m"'

yielding Risk,,

B. Proof of the Upper Bound Part of Theorem 1

Specializing to first-order stationary Markov chains with &
states, we denote the redundancy and prediction risk in (16)
and (19) by Redy, ,, and Risky, ., the latter of which is precisely
the quantity previously defined in (1). Applying Lemma 6
yields Risky, ,, < ﬁ Redy. .. To upper bound Redy, ,,, consider
the following probability assignment:

1

—

M @y |ze)

n

(30)

=

Q(ml’...

7xn) =

t=1

where M*! is the add-one estimator defined in ).

This Q factorizes as Q(z1) = 1 and Q(zyqq1]2') =
M\;l(xtﬂut). The following lemma bounds the redundancy
of Q:

Lemma 7:

Red(Q) < k(k — 1) {log (1 + k(k—ll)> + 1] +logk.
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Combined with Lemma 6, Lemma 7 shows that Risky, ,, <
cE *log 7% for all k < y/n/C and some universal constant C
achleved by the estimator (6), which is obtained by applying
the rule (25) to (30).

It remains to show Lemma 7. To do so, we in fact
bound the pointwise redundancy of the add-one probabil-
ity assignment (30) over all (not necessarily stationary)
Markov chains on £ states. The proof is similar to those of
[22, Theorems 6.3 and 6.5], which, in turn, follow the argu-
ments of [21, Sec. III-B].

Proof: We show that for every Markov chain with
transition matrix M and initial distribution 7, and every
trajectory (1, -+ , %), it holds that

m(z1) H;L:_f M (241|2¢)
Q1+, xp)

< k(k—1) {log (1+k(k”1)) +1} tlogk ()

log

where we abbreviate the add-one estimator M
defined in (5) as M*+1(zyy1|zy).

To establish (31), note that Q(z1, - ,z,) could be equiva-
lently expressed using the empirical counts N; and NN;; in (4)
as

($t+1|$t)

k k
1 Nyl
Q(mla"'vxn):*H H] 1-Yge )

kizlk'(k+1) ----- (Ni+k—1)
Note that
n—1 E ok E kK
HM(ﬂft+1|93t):HHM §HH Nij /NN
t=1 i=1j=1 i=1j=1
where the inequality follows from Z Nij log 37 Nij/ N) > 0 for

each ¢, by the nonnegativity of the KL dlvergence Therefore,
we have

() [T M (o)
Q1+ ,7p)
k k Nij
ko (k1) (N; +k — 1) 14 N7
<k- . (32

We claim that: for ny, -+ ,nx € Z, and n = Zle n; €N,

it holds that
k , k
f1(2)" < B
n n!

=1

; (33)

with the understanding that (2)° = 0! =

claim to (32) gives

m(@) [T M
Q($17 -

k
glogk+Zlog

i=1

P& k—1
:10gk+ZZlog <1+£)

i=1 ¢=1

1. Applying this

(Tey1|e)
7In)

ko(k+1). - (Ni +k — 1)

log
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o k—1
Slogk—i—z log| 14+ —— ) dz
i=170 v

k N,
=1 —1)log (1 :
ogk—i—;((k‘ )og( +k1>
k—1
N;log (1
n og( +Eo ))
(a) 1

< k(k—1)log (Hk&_—l)

where (a) follows from the concavity of =z +—
Zle N; =n—1, and log(1 + z) < .

It remains to justify (33), which has a simple information-
theoretic proof: Let T" denote the collection of sequences "
in [k]™ whose type is given by (nq,...,ny). Namely, for each
a™ € T, i appears exactly n; times for each ¢ € [k]. Let

) +k(k — 1) + logk,

log x,

(X1,...,X,) be drawn uniformly at random from the set 7.
Then
n!
log —4—— = H(X1,...,Xn)
[Tizy ni!
(z) i:H(X ) (b) Zk:nil n
) =n)» —log—
— = J — n g ni7

where (a) follows from the fact that the joint entropy is at
most the sum of marginal entropies; (b) is because each X
is distributed as (7*,..., 7k). O

’'n

III. OPTIMAL RATES WITHOUT SPECTRAL GAP

In this section, we prove the lower bound part of Theorem 1,
which shows the optimality of the average version of the
add-one estimator (25). We first describe the lower bound
construction for three-state chains, which is subsequently
extended to k states.

A. Warmup: An Q(lo%) Lower Bound for
Three-State Chains

Theorem 8: Risks,, = Q (10%) )

To show Theorem 8, consider the following one-parameter
family of transition matrices:

_2 1 1
M=qMy=| & l-g-p p
0 A
1
0<p<l—-— (34)
n

Note that each transition matrix in M is symmetric (hence
doubly stochastic), whose corresponding chain is reversible
with a uniform stationary distribution and spectral gap @(7%);
see Fig. 1.

The main idea is as follows. Notice that by design, with
constant probability, the trajectory is of the following form:
The chain starts and stays at state 1 for ¢ steps, and then
transitions into state 2 or 3 and never returns to state 1, where
t=1,...,n—1. Since p is the single unknown parameter, the
only useful observations are visits to state 2 and 3 and each
visit entails one observation about p by flipping a coin with
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Lower bound construction for three-state chains.

Fig. 1.

bias roughly p. Thus the effective sample size for estimating
pis n—t—1 and we expect the best estimation error is of the
order of ﬁ However, t is not fixed. In fact, conditioned on
the trajectory is of this form, ¢ is roughly uniformly distributed
between 1 and n — 1. As such, we anticipate the estimation

error of p is approximately

n—1
1 1 logn
=0 .
n—lzn—t ( n )

i=1

Intuitively speaking, the construction in Fig. 1 “embeds” a
symmetric two-state chain (with states 2 and 3) with unknown
parameter p into a space of three states, by adding a “nuisance”
state 1, which effectively slows down the exploration of the
useful part of the state space, so that in a trajectory of length n,
the effective number of observations we get to make about p is
roughly uniformly distributed between 1 and n. This explains
the extra log factor in Theorem 8, which actually stems from

the harmonic sum in E[Wm([n])] We will fully explore

this embedding idea in Section III-B to deal with larger state
space.

Next we make the above intuition rigorous using a Bayesian
argument. Let us start by recalling the following well-known
lemma.

Lemma 9: Let ¢ ~ Uniform(0,1). Conditioned on ¢, let
N ~ Binom(m, ¢q). Then the Bayes estimator of ¢ given N is
the “add-one” estimator:

N+1
E[g|N] = ——
Nl =
and the Bayes risk is given by
El(q - ElglN)?) = ———
6(m+2)

Proof of Theorem 8: Consider the following Bayesian
setting: First, we draw p uniformly at random from [0, 1 — %]
Then, we generate the sample path X" = (X;,...,X,) of a
stationary (uniform) Markov chain with transition matrix M,
as defined in (34). Define fort =1,...,n—1

Xe={a":x1=...=x,=1z; £1,i=t+1,...,n},
X =UM ] X (35)
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Let pu(z"|p) = P[X = z™]. Then for ™ € X; we have Finally, note that conditioned on X™ € X, the probability of
X" € X, is close to uniform. Indeed, from (37) and (38) we

t—1
u(x"|p)=1 1_2 gpN(r") 1_1 —p |t NG getfort=1,...,n—1
3 n n n i
(36) ( _ L)

where N(2™) denotes the number of transitions from state P[X" € X;|X] = nl
2 to 3 or from 3 to 2. Then n—1,_ (1 )
P[X" € X]
) 5 i1 > .
3 ( n) Thus
n—t—1 n—t—1—k PR,
LS (” —t- 1>pk (1 1 p) E[(p — B(X ))21{X"6X}]
n k n

=P[X" e ZE [(p—P(X™)?|X™ € K]P[X" € X,|X]

n— -1 1 — 1 _ logn
_2(11) <1 ! ) (37) Zn—lgn—t—kl_@( n ) 39

Finally, we relate (39) formally to the minimax prediction

d h
and fiefice risk under the KL divergence. Consider any predictor M ( |4)
P[X" € X] (as a function of the sample path X) for the ith row of M,
n—1 1 =1,2,3. By Pinsker inequality, we conclude that
=Y PIX" € X
t=1 — 1 — 1 —
D(M(2)[IM(-2)) =2 5IM(|2) ~ M(2)[7, > 5 — M(3[2))*

_ n—2 n—1 2
= M <1 _ 1) (1 — (1 1 ) ) (38) (40)
3n n n—1 — —~

201 —1/e) and similarly, D(M (-[3)[|M(-|3)) > 3(p — M (2[3))?. Abbre-
= ——+0,(1). viate M (3]|2) = p2 and M (2|3) = ps, both functions of X.

i 3e . o Taking expectations over both p and X, the Bayes prediction
Consider the Bayes estimator (for estimating p under the ik can be bounded as follows

mean-squared error)

S0 — Elple — BP A" P)] D EDM([D)IM(18)1x,=i]
[(z"|p)] )
For 2™ € A}, using (36) we have (with notation p ~ > iE[(P P2) 1ix,=2) +(p- pg) l{Xn_gﬂ
Uniform (O7 ";1) and U ~ Uniform(0, 1)) 1 .
. n—t—1-N(z") 25 2 (@) (Ellp—P2)*|X = 2" 1z, =)
E [pN(“" )+ (1 — % fp) } TEX
ﬁ(ajn) = — 2 — n
E[pVem) (1 & - p)" Ve 1+]E (p = P3)°|1X = 2" |11z, =5})
n >3 p(z™)E[(p — p(a"™)*| X =2")(1(z, =2} +1{z,=3})
N(z™ nftflfN(:v ) {wn } {wn 3}
_n_lE{U e a-u) } 2
- n—t—1—-N(z™ 1 ~,
nOE([UNED (1 -yt =3 2 ula"El(p — ")) X = 2"
n—1N(z")+1 1“6" :
= 1 39 ogn
R — 3Bl - P T pren] 20 (1)),
where the last step follows from Lemma 9. From (36), we con-
clude that conditioned on X™ € AX; and on p, N(X") ~ 0
Binom(n — t — 1,q), where ¢ = %+ ~ Uniform(0,1).
Applying Lemma 9 (with m =n — ¢ ~Tand N = N(x™)), B k-State Chains
we get The lower bound construction for 3-state chains in

~ vn n Section III-A can be generalized to k-state chains.
E[(p — pX"))*| X" € X The high-level argu%nent is again to augment a (k — 1)-state
_(n—1 2 E N(z™)+1 2 chain into a k-state chain. Specifically, we partition the state
- < n > <q— n—t+1 ) space [k] into two sets S; = {1} and Sy = {2,3,--- ,k}.
9 Consider a k-state Markov chain such that the transition
— <n _ 1) 1 ) probabilities from S; to Ss, and from Ss to Sy, are both very
n 6(n—t+1) small (on the order of ©(1/n)). At state 1, the chain either
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1—

3929

1
n

Fig. 2. Lower bound construction for k-state chains. Solid arrows represent transitions within S; and Sz, and dashed arrows represent transitions between
S1 and Sa. The double-headed arrows denote transitions in both directions with equal probabilities.

stays at 1 with probability 1 — 1/n or moves to one of the
states in So with equal probability ﬁ; at each state in So,
the chain moves to 1 with probability %; otherwise, within
the state subspace So, the chain evolves according to some
symmetric transition matrix 7". (See Fig. 2 in Section III-B.1
for the precise transition diagram.)

The key feature of such a chain is as follows. Let X be the
event that X1, Xo,--- ,X; € §; and Xi41,---, X, € Sa. For
each t € [n — 1], one can show that P(X;) > ¢/n for some
absolute constant ¢ > (0. Moreover, conditioned on the event
X:, (Xig1,...,X,) is equal in law to a stationary Markov
chain (Y3,---,Y,,_:) on state space Sy with symmetric tran-
sition matrix 7. It is not hard to show that estimating M and
T are nearly equivalent. Consider the Bayesian setting where
T is drawn from some prior. We have

inf B [ELD(M (- X,) | (X)) %]
M

~ ir%fIET [E[D(T(|Yn—f)|‘f(|Yn—f))]}
=I(T;Yp—t41|Y"),

where the last equality follows from the representation (20)
of Bayes prediction risk as conditional mutual information.
Lower bounding the minimax risk by the Bayes risk, we have

Risky.»
> inf B [E[D(M (1) M (1 X))

> inf 3" Eay [EID(M(1X,)[FTC1X,))1%] - B(0)]

M =1
n—1
c . i
> £ S ey [EID( (X[ (X))
n—1
~ S ZI(T; Yoi41]Y™ )
n t=1
= Lomy) - 115 v). “0

Note that I(T;Y7) < H(Y1) < log(k — 1) since Y] takes
values in Sp. Maximizing the right hand side over the prior
Pr and recalling the dual representation for redundancy in
(17), the above inequality (41) leads to a risk lower bound
of Riskgn 2 5(Red)™ = — logk), where Red?™ = =
sup I(T;Y1) is the redundancy for symmetric Markov chains
with k—1 states and sample size n. Since symmetric transition
matrices still have ©(k?) degrees of freedom, it is expected
that Red))} < k*log & for n 2 k?, so that (41) yields the
desired lower bound Risky, , = Q(% log 7%) in Theorem 1.
Next we rigorously carry out the lower bound proof
sketched above: In Section III-B.1, we explicitly construct
the k-state chain which satisfies the desired properties in
Section III-B. In Section III-B.2, we make the steps in (41)
precise and bound the Bayes risk from below by an appropriate
mutual information. In Section III-B.3, we choose a prior
distribution on the transition probabilities and prove a lower
bound on the resulting mutual information, thereby completing
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the proof of Theorem 1, with the added bonus that the
construction is restricted to irreducible and reversible chains.

1) Construction of the k-State Chain: We construct a
k-state chain with the following transition probability matrix:

1 1 1 1 1
o k=1 n(k—D n(k—1)
1/n
M=|1/n (1 _ l) T . @)
1/n

where T € RS2%S2 is a symmetric stochastic matrix to be
chosen later. The transition diagram of M is shown in Figure 2.
One can also verify that the spectral gap of M is @(%) Let
(X1,...,X,) be the trajectory of a stationary Markov chain
with transition matrix M. We observe the following properties:

(P1) This Markov chain is irreducible and reversible, with
stationary distribution (3, 2(k1—1) YT Q(kl—l));
(P2) For t € [n — 1], let X; denote the collections of

trajectories «™ such that zy,x9,---,2; € & and
Tiqg1, " ,Tn € 82. Then
P(X" € X})
=P(X;=-=X;=1) - P(Xpy1 #1|X: = 1)
n—1
I P(Xan #11X, #1)
s=t+1
1 1 t—1 1 n—1—t
_ L (1_> ..(1_1>
2 n n n
> 1 43)
— 2en

Moreover, this probability does not depend of the choice
of T

(P3) Conditioned on the event that X™ € X}, the trajectory
(X¢41,- -+, X,) has the same distribution as a length-
(n—t) trajectory of a stationary Markov chain with state
space So = {2,3,--- ,k} and transition probability T,
and the uniform initial distribution. Indeed,

P [Xt+1 =T4i1,y.. -, Xn = In|Xn S Xt]
5 (-0 iy s M(aanle:)
- t—1 n—1—t
(=) 5 (1=3)

n—1
I T@ealzs).

s=t+1

1
k-1

2) Reducing the Bayes Prediction Risk to Redundancy: Let
MP™ be the collection of all symmetric transition matrices
on state space Sy = {2,...,k}. Consider a Bayesian setting
where the transition matrix M is constructed in (42) and the
submatrix 7" is drawn from an arbitrary prior on M;"™,. The
following lemma lower bounds the Bayes prediction risk.

Lemma 10: Conditioned on T, let Y™ = (Y31,...,Y,)

denote a stationary Markov chain on state space Sy with

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

transition matrix 7" and uniform initial distribution. Then
inf Ep [E[D(M(1X0) | M (| Xa))]
M

>

(I(T;Y™) — log(k — 1))

2en?
Lemma 10 is the formal statement of the inequality (41)
presented in the proof sketch. Maximizing the lower bound
over the prior on 7' and in view of the mutual information
representation (17), we obtain the following corollary.
Corollary 11: Let Risk’, denote the minimax prediction
risk for stationary irreducible and reversible Markov chains on
k states and RedSym the redundancy for stationary symmetric
Markov chains on k states. Then
21 (R dzyml ,n

Ris krev 2 5 —log(k —1)).

en

We make use of the properties (P1)—(P3) in Section III-B.1
to prove Lemma 10.

Proof of Lemma 10: Recall that in the Bayesian setting,
we first draw T from some prior on M3’ b 1, then generate
the stationary Markov chain X" = (Xy,...,X,,) with state
space [k] and transition matrix M in (42), and (Y3,...,Y,)
with state space So = {2,...,k} and transition matrix 7T

We first relate the Bayes estimator of M and 7" (given the X
and Y chain respectively). For clarity, we spell out the explicit
dependence of the estimators on the input trajectory. For each
t € [n], denote by Mt Mt( |z!) the Bayes estimator of

M(:|z;) give X* = &', and T,(-|y") the Bayes estimator of

T(-|y;) give Yt = y*. Foreach t = 1,...,n — 1 and for each
trajectory z" = (1,...,1, Z¢y1, ... ,xn) € X,, recalling the
form (21) of the Bayes estimator, we have, for each j € So,

M (jl")
B P [Xn+1 — (J}n,j)]
P[X" = z"]

E [%M(lll)t_lM(Itﬂ\1)M(wt+2\1t+1)m}

- E [%I\l(1|1)t*1M(zt+1\1)N[(zt+2\xt+1)...}

M(zn ‘znfl)

— <1 _ 1> E[T(xt+2|35t+1) ..
E[T(z¢so|t41) - T(wp|Tn_1)]

1 el on
= <1 - n> Tn—t(]‘xt-i-l)a

where we used the stationary distribution of X in (P1) and
the uniformity of the stationary distribution of Y, neither of
which depends on 7. Furthermore, by construction in (42),
Mn(l\x ) = 1 is deterministic. In all, we have

— 1 1\ ~
M, (-|z"™) = n51—|—(1 — n) To—i(-lxfy ), 2" € X (44)

with d; denoting the point mass at state 1, which parallels the
fact that

1

M(~|x):%51+ <l_n) T(-|z), =€ Ss. (45)
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By (P2), each event {X™ € X;} occurs with probability at
least 1/(2en), and is independent of T'. Therefore,

Er [E[D(M(-\XH)HZ\/Z X))

= en ZET {

M(X)IM(IX™) X" € ]|

(46)

By (P3), the conditional joint law of (T, X;y1,...,X,) on
the event {X" € X;} is the same as the joint law of
(T,Y1,...,Y,_+). Thus, we may express the Bayes prediction
risk in the X chain as

Er [E[D(M(1X,) [M(1X™)|X" € ]

(1 - 1) Ex [BID(T(Ya ) ITCY" )]

n

—
o
=

—~
=

= <1 - 7]:L> : I(T’ Yn—t-‘rllynit)a (47)
where (a) follows from (44), (45), and the fact that for
distributions P, @ supported on Sy, D(ed; + (1 — €)P|led; +
(1 -6)Q) = (1-¢)D(P|Q); (b) is the mutual information
representation (20) of the Bayes prediction risk. Finally, the
lemma follows from (46), (47), and the chain rule

n—1

Z I(T; YY"

t=1

=I(T;Y") = I(T; Y1) > I(T;Y™") — log(k — 1),

as I(T; Y1) < H(Y7) <log(k —1). O

3) Prior Construction and Lower Bounding the Mutual
Information: In view of Lemma 10, it remains to find a prior
on MP™ for T, such that the mutual information I(T;Y™) is
large. We make use of the connection identified in [21], [27],
and [31] between estimation error and mutual information
(see also [22, Theorem 7.1] for a self-contained exposition).
To lower the mutual information, a key step is to find a good
estimator T(Y”) of T'. This is carried out in the following
lemma.

Lemma 12: In the setting of Lemma 10, suppose that T' €
ME™ with Ty; € (5, 2] for all 4, j € [k]. Then there is an
estimator 7' based on Y™ such that

16k2
BT T3 <~
where || T—T||F = le(ﬁg — T;;)? denotes the Frobenius
norm.

We show how Lemma 12 leads to the desired lower bound
on the mutual information I(7;Y™). Since k > 3, we may
assume that £ — 1 = 2k is an even integer. Consider the
following prior distribution 7 on T": let u = (s ;); je[ko],i<j
be iid and uniformly distributed in [1/(4ko), 3/(4ko)], and

u;j = uj; for i > j. Let the transition matrix 7T" be given
by
Toi—1,2j—1 = T2i 25 = Us 5,
1
Tai 1,25 = Toi2j- 1= T Ui (48)
0

Vi, j € [k].
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It is easy to verify that T is symmetric and a stochastic

matrix, and each entry of 7' is supported in the interval
[1/(4ko), 3/(4ko)]. Since 2kg = k — 1, the condition of

Lemma 12 is fulfilled, so there exist estimators T(Y") and
u(Y™) such that

64k2

-1
Here and below, we identify u and u as W—dimensional
vectors.

Let h(X) J —Fx(x)log fx(z)dz denote the dif-
ferential entropy of a continuous random vector X with
density fx wrt the Lebesgue measure and h(X|Y) =
J —fxv(zy)log fx|y (xz|y)dxdy the conditional differential
entropy (cf. e.g. [44]). Then

E[[a(y") — ul3] <E[|IT(Y")-TI}] < (49)

ko(ko + 1)

hu)= Y hlu,)=- 5 log(2ko).  (50)
i.j€lkol,i<i

Then

I(T;Y™)

@ (s y")

(b)

> I(uw;u(Y™)) = h(u) — h(ulu(Y™))

S hu) - hlu— a(v™)

(;)ko(ko—f—l)lo n—1 chl n—1
=T S\ 1024rekZ ) = 16 % \ 256mek? ) -

where (a) is because v and 7" are in one-to-one correspondence
by (48); (b) follows from the data processing inequality; (c) is
because h(-) is translation invariant and concave; (d) follows
from the maximum entropy principle [44]: h(u — @(Y™)) <
bt log (i zs - Ellar™) - ul3).
bounded by (49). Plugging this lower bound into Lemma 10
completes the lower bound proof of Theorem 1.

Proof of Lemma 12: Since T is symmetric, the sta-
tionary distribution is uniform, and there is a one-to-one
correspondence between the joint distribution of (Y7, Y>) and
the transition probabilities. Motivated by this observation,
consider the following estimator 7°: for i, j € [k], let

which in turn is

e Wyimiven =5

n—1 ’
Clearly E[T};] = k- P(Yy = i,Ys = j) = Ti;. The following
variance bound is shown in [26, Lemma 7, Lemma 8] using
the concentration inequality of [18]:

8Tk~ !

(T)(n—1)’
where 7, (T') is the absolute spectral gap of T' defined in (8).
Note that T = k~1J + A, where J is the all-one matrix
and each entry of A lying in [—1/(2k),1/(2k)]. Thus the
spectral radius of A is at most 1/2 and thus ~.(7T) > 1/2.
Consequently, we have

T, =k

ij

Var(ﬁj) <K%

16KT;; 16k?
BIT-TIR = > VarlT) < 3. S =17,
i,j€[k] i,j€[K]
completing the proof. (|
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IV. SPECTRAL GAP-DEPENDENT RISK BOUNDS
A. Two States

The proof for the spectral gap dependent result in the
specific case of two states chain follow closely along the
techniques presented in [1]. More specifically, let us consider
the sequences in {1,2}" which have exactly one transition,
either from 1 to 2 or from 2 to 1

S={f1f 12t 1< <n—1}. (51)

Then [1, Lemma 6,7] and its supplemental results establish that

the add half estimator M*3 (j]i) = ]\ITVJL% achieves O (1)
risk upper bound over the trajectory set S. This implies that
analyzing the risk bound for § is sufficient for detecting any
non-parametric rate.

For establishing a minimax upper bound on parameter space
M (7o) we consider the following estimator: if 2™ = 2"~ 1,

we use the estimator

M(2]1) = 1/(log(1/70)),  Me(1]1) =1 — M(2|1).

and symmetrically construct the estimator for 1"~‘2¢. Note
that this is similar to the estimator used in [1, Equation 5],
which we modified specifically to serve our purpose. For this
estimator, we show that the desired minimax rate is achieved
for a strictly larger parameter space that consists of binary
Markov chains with the spectral gap being at least g, instead
of the absolute spectral gap. We analyze the risk individually
for every trajectory in S and add them up to achieve the
result.

For establishing the minimax lower bound we consider a
Bayesian strategy. We provide here a short description of the
analysis when loglog(1/v9) > 0, the rest of the analysis
has been provided later. We use the prior distribution that is
uniformly distributed over the following class binary Markov
chains for oo = log(1 /o)

1 1
M= {M s M(1)2) = E’M(Z‘l) = —

)
am

meNﬂ({m;aw5h£;J>}'

This prior is similar to the prior used in [2, Section 3], and
so is the proof strategy, which we modified specifically to fit
our setup. We analyze the Bayes risk for trajectories over the
set S. For each M € M with M(2[1) = -L- we consider

] <<
|a™ log «]. We show that for each such trajectory the expected
contribution to the risk is significantly big which sum up to
the desired risk lower bound.

We now present the entire proof in detail.

Proof of Theorem 2: To show Theorem 2, let us prove a
refined version. In addition to the absolute spectral gap defined

in (8), define the spectral gap

trajectories of the form 27 ‘1¢ such that {

TEL- X (52)

and M/, (7o) the collection of transition matrices whose spec-
tral gap exceeds . Paralleling Risk (7o) defined in (9),
define Risk%ﬁn(%) as the minimax prediction risk restricted to

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

M € Mj () Since 7 > 7, we have Mx(70) C Mj(70)
and hence Riskj, ,,(70) > Risky »(70). Nevertheless, the next
result shows that for £ = 2 they have the same rate:

Theorem 13 (Spectral gap dependent rates for binary
chain): For any ~yo € (0,1)

Riska,n (70) < Risks_,, (70)

1 . 1
=< —max ¢ 1,loglog [ min ¢ n, — .
n 7o

We first prove the upper bound on Riskéﬁn. Note that it is
enough to show
- loglog (1/70)

Risky , (Y0) S ——

. if n 0% < qp < e . (53)

Indeed, for any vy < n~9, the upper bound O (loglogn/n)
proven in [1], which doei not depend on the spectral gap,
suffices; for any vy > e_f( , by monotonicity we can use the
upper bound Risk} ,, (e7¢").

We now define an estimator that achieves (53). Follow-
ing [1], consider trajectories with a single transition, namely,
{2”’215, ot 1< i<n— 1}, where 27 ¢1¢ denotes the
trajectory (1, - ,&,) with 1 = -+ = z,_y = 2 and
Tp_ptr1 = -+ = T = 1. We refer to this type of 2™ as
step sequences. For all non-step sequences x™, we apply the

add-3 estimator similar to (5), namely

—~ N +1
Mz”(]|2): ]\;J+127
3

where the empirical counts N; and V;; are defined in (4); for
step sequences of the form 2"~ ¢1¢, we estimate by

i,j €{1,2},

M, (2[1) = 1/(Clog(1/70)),  Me(1]1) = 1 — My(2]1).
(54)

The other type of step sequences 1"~ ¢2¢ are dealt with by
symmetry.

Due to symmetry it suffices to analyze the risk for sequences
ending in 1. The risk of add—% estimator for the non-step
sequence 1™ is bounded as

E [1(x0mtn DO Mia (1)

o {452

+M(1]1) log (m)}

< (1— M)t {2M(2|1)2n + log (

=k

where the last step followed by using (1 — z)" 122 < n=2
with z = M (2|1) and logxz < x—1. From [1, Lemma 7,8] we
have that the total risk of other non-step sequences is bounded
from above by O (1) and hence it is enough to analyze the
risk for step sequences, and further by symmetry, those in
{27=f1¢:1 < ¢ < n — 1}. The desired upper bound (53) then
follows from Lemma 14 next.

A
S |-
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Lemma 14: For any n=%% < ~o < <", M,(-|1) in (54)

satisfies
sup ZE[ {xngn-e1ey DM (1) My(-]1))
MGM 'YO)@ 1
< loglog(1/70)

~

n
Proof: For each ¢ using log (ﬁ) < 27,2 < £ with
T = oty
D(M(-[1)||M(]1))
=wwmn%<1(””>+M@1bm (211)log(1/7))
Llog(1/~0)
S zﬂi£§;7;55 + M(2]1) log(M (2[1)6) + M (2]1) log log(1/70)

1

< m + M(2[1)log, (M

(211)€) + M (2[1)loglog(1/70),
(55)

where we define log, () = max{1,logz}. Recall the follow-
ing Chebyshev’s sum inequality: for a; < as < --- < a, and
by > by > --- > b, it holds that

i=1 i=1 i=1

The following inequalities are thus direct corollaries: for z,y €
[0, 1],

n—1
z(l— )" ly(L—y) !
(=1
1 n—1 n—1
< (1 x)"‘“) < y(l—y)H)
n=1 ((’:1 =1
1
<7 (56)
n—1
z(1— )" ly(1 - )" log, (ty)
=1
1 n—1
Sn_]_(z:x(l x)nll)
=1
n—1
(Z y(1—y)~ 10g+(€y)>
=1
1 n—1
gn_12;m1—w“%1+@>§—jq, (57)

where in (57) we need to verify that £ — y(1—y)*~!log, (¢y)
is non-increasing. To verify it, w.l.o.g. we may assume that
(£+ 1)y > e, and therefore

y(1—y)log, (L+1)y) (1 —y)log((£+ 1)y)

y(1 —y)~tlog, (y) log, (¢y)
e 10g(1+1/€))
<(1-— 1+ —=
- ( £—|—1> ( + log, (%y)
e 1 1 e
<(1- - <1
_<1 £+1>(1+£)<1+£ <l
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Therefore,
n—1 .
> E [Lixcnzan-rn DOMCID [ Me(- 1))
=1
n—1
<3 M@E) T MAR) M)
=1
D(M (1) My (-]1))
(a)
< 3 MER)IMAR)MAN) !
=1
oatizsoy + M(2]1) log, (M(2]1)0)
+M (2[1) log log(1/0)
() G~ M(2[2)" T M (2)M (1)
= (log(1/0)
2 + loglog(1
+ log log( /70), 58)
n—1

where (a) is due to (55), (b) follows from (56) and (57) applied
to x = M(1|2),y = M(2|1). To deal with the remaining sum,
we distinguish into two cases. Sticking to the above definitions
of z and y, if y > 70/2, then

x)n%ﬂ (1 . y)lfl
{

(B (0
=1

) =1
_ log(2/70)
- n-—1

~

»—lMi
8

<

)

where the last step has used that Y, /=1 /¢ = log(1/(1-t))
for [t| < 1. If y < 40/2, notice that for two-state chain the
spectral gap is given explicitly by v = M (1|2) + M (2|1) =
x + y, so that the assumption v > 7o implies that = > ~,/2.
In this case,

- néll_ -1
Z_: g( y)

)

1— x)n—é—l

< 1 — g)n/2-1 x(

< -4 > w3
£<n/2 >n)2

< Pet/2-1m0 4 2 < 1

- 2 n™~n’

thanks to the assumption 7o > n =%, Therefore, in both cases,
the first term in (58) is O(1/n), as desired. O

Next we prove the lower bound on Risky .. It is enough
to show that Risks (7o) 2 L loglog (1/70) for n™! < 7o <
e Indeed, for vo > e‘es, we can apply the result in the
iid setting (see, e.g., [11]), in which the absolute spectral gap
is 1, to obtain the usual parametric-rate lower bound €2 (%),
for 7o < n~!, we simply bound Riskz (7o) from below by
Riska, n,(n~1). Define

o =log(1/50), f= { (59)

a
5loga |’
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and consider the prior distribution

A = Uniform(M),
1

n

M= {M : M(1]12)=
(60)

Then the lower bound part of Theorem 2 follows from the
next lemma.
Lemma 15: Assume that n= 99 < Yo < e”
(i) v+ > 7o for each M € M;

(ii) the Bayes risk with respect to the prior .Z is at least

Q ( loglog(1/70) )

” Then

Proof: Part (i) follows by noting that absolute spectral
gap for any two states matrix M is 1—|1 — M (2|1) — (1|2)|
and for any M € M, M(2[1) € (a=?,a7F) C (70,70/ ) C
(70,1/2) which guarantees v, = M (1|2) + M(2|1) > vo.

To show part (ii) we lower bound the Bayes risk
when the observed trajectory X™ is a step sequence in
{27=%1¢:1 < ¢ < n — 1}. Our argument closely follows that
of [2, Theorem 1]. Since 7o > n~!, for each M € M, the
corresponding stationary distribution 7 satisfies

M(2|1) 1

Ty = > —.

M)+ M(1]2) ~ 2
Denote by Risk(.#) the Bayes risk with respect to the prior
# and by ME(:|1) the Bayes estimator for prior .# given

X" =2"€1¢ Note that
IP) [X’n — 277,741[]
1\"t1 1
— 1—= ML) > —— M (1)t
m(1-2) LTz soMa
(61)
Then
Risk(.#)
n—1
> Ennn ZE {1{Xn—2n—flf}D(M('|1)||MeB('|1))H
=1
n—1
M(1]1)! =
SIS (2'673D<M<~|1>||ME<-1>>]
=1
-1 . 7B/,
- ZEMN% M DO DIRC))]

(62)
Recalling the general form of the Bayes estimator in (21)
and in view of (61), we get
Enrv.n [M(11) M (2[1)]
Epma M1
MP(1]1) =1 - MP(2]1).

M (2]1) =
(63)
Plugging (63) into (62), and using

D((.’L‘, 1- $)||(y> 1- y))

1
::clogg—l-(l—x)logl

—* meax{(),logx—l},
-y Y

M(2|1):O[1m:meNﬂ(ﬂ,5ﬁ)}.
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we arrive at the following lower bound for the Bayes risk:

Risk(.#
1 n—1
% Gon 2= Enmor [M(111)7TM(2]1)
M@2[1) - Enen [M(A[1) TN
max{o’l"g(EMM[Muu)f—lM(zl)J il
(64)
Under the prior .#, M(2]1) = 1 — M(1]1) = a~™ with

B <m<50.
We further lower bound (64) by summing over an appro-
priate range of ¢. For any m € [, 3(], define

am
aom = [ 2] ) = o togal.
Since v9 < e‘es, our choice of o ensures that the intervals

{[1(m), l2(m)]} s<m<3p are disjoint. We will establish the
following claim: for all m € [3,35] and ¢ € [¢1(m), l2(m)],
it holds that
a”~ ™. EMN//[[
Evna |

MDY log(1/70)
M(1[1)*~1M(2[1)] ™ loglog(1/70)

We first complete the proof of the Bayes risk bound assum-
ing (65). Using (64) and (65), we have

(65)

Risk(.#)
1 38  L2(m)
218 LS Y a1 - a ™)L loglog(1/%)
m=0 t=£, (m)
38
_ log IOg(l/’yO) —m\£1(m)-1 —m\ {2 (m)
—47152_:6{(1‘@ N
(a) OglOg 1/70 343 @ 1 —1+log a
s -0)
m=03 €
S loglog(l/%)
~ n )
with (a) following from 1 < (1 — z)7 < 1if z < 1, and

_m<a_5<71/5<%.

Next we prove the claim (65). Expanding the expectation
in (60), we write the LHS of (65) as

MO X+ A+ By

a—m . EMNJ//[

Enima M1 IM(2/1)] — X+ Co+ Dy’
where
X, = (1 —a ™" Z 1 —a~
58 »
B, = Z (1 — Oé_J) ,
j=m+1
m— 58
Z 1 -« j a™ I, Dy= Z (1—a_j)€am_j.
Jj=B j=m+1
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We bound each of the terms individually. Clearly, X, €
(0,1) and Ay > 0. Thus it suffices to show that By = 3 and
Cy, Dy <1, for m € [3,30] and ¢1(m) < £ < {2(m). Indeed,

e For j > m+ 1, we have

(1—a ) > (1 —a)=m™

£3(m)

2y

> (1/4) % 2 1/4,

where in (a) we use the inequality (1 — x)*/* > 1/4 for
x < 1/2. Consequently, By > (3/2;
e For j <m — 1, we have
. . m (b) o m—j—1
(17047J)Z§ (17047.])@1( ) S e—m :'YO log o ,
where (b) follows from (1 — z)'/* < 1/e and the
definition of ¢;(m). Consequently,

m—j o4

a m—2 1
T m—j I
Ce <™ ) o™ +ay™*
Jj=B
2 e
< efil(f‘ga+(2ﬁ+1)loga +€10ga7710;a < 27

where the last step uses the definition of (3 in (59);
e« D) < Z?imH a™ 7 < 1, since o = log,y—l0 > e,
Combining the above bounds completes the proof of (65). [

B. k States

We first present a high-level proof strategy for the add-one
estimator to achieve the spectral gap dependent risk bounds
when £ is large. Given any realization of transition matrix M
and add-one estimator M *! the expected risk is

k
E | D Lx, = D (MM |z>)] ,
=1
— Nij +1
M+1 i) — YW
Ul =57 (66)
As M1 > n%_k we get
D(M(-[i)| M+ (i) < log(n + k),i € [K].  (67)

Let v be the spectral gap of M. For absolute constants
to be chosen later we define

ap, iy .. -
aok  a,(logn)®VEk logn
e(m):i-kl(g)f) n:2g,
m m ny
1 [ 1
nf:nmiagmax{Ogn, 7r0gn}7 (68)
ny ny
where ¢ = 1,...,k. For each ¢ € [k] we bound

E {l{xn,:i}D (M(\Z)HM\HHZ)” based on the following
cases.
o m; < c¢,: We bound the expected loss by log(n + k)c,,.
o m; > c,: We further divide this case as
- N; <n; or N; > nj The probability of the event
can be made O(n~*) by properly _choosing az, a3
-n; < N; <nf and D(M(-|i)||MTL(:13)) > e(N;):
The probability of the event can be made O(-%) by
properly choosing ag, a1, az, as
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and  D(M ()M (1i) <
the expected loss by

-—n. < N’i S 7’L+

e(N;):  We bound
T MAX, oy <yt €(NV7).
Summing up the bounds from the above cases and further
summing over i € [k] we get

k
E [_Z Lix, -y D (M(w‘)nH“(-w))]

k
k _4 —
< klog(n + k) (cn + 2 +n ) + ;:1 mie(n; )

k> N (logn)3k3/2 N k:(log(n+k))2.
n n ny

S (69)
As k > (logn)% we get the desired result.

As evident from the above, we need a different analysis
when k < (logn)®. To this end, we work with the spectral
structure and deduce a more detailed concentration guarantees
for both IN; and N;;. The concentration results use the
following moment bounds which uses the absolute spectral
gap. The proofs are deferred to Appendix B.

Lemma 16: Finite reversible and irreducible chains observe
the following moment bounds:

() E[(Ny = oM 1 Xn =3 S amM@)(Q -
| M@Gli) | M9
M(jli) + Y5+ MY
i) E |(Nyy = NaM(31i)" X0 =i] S (oM (311 —
. M(j|%) i13)2
M)+ S50 + M
Gii) B [(N; = (n— )m)* [ X, = 1] S 5 + &

When 7, is high this shows that the moments behave as if
for each ¢ € [k], Ny is approximately Binomial(n — 1, ;) and
N;; is approximately Binomial(N;, M (j|i)), which happens
in case of iid sampling.

The above results imply that N; is highly con-
centrated around (n — 1)m; and N;; — N;M(jli) is
highly concentrated around 0. Using this, we bound
E {1{Xn:i}D (M(|z)||ﬂ+1(|z))} for each i € [k] based on
the following cases.

o N; < (=D, We bound the expected loss by
e log(nm + k)P {Nl < % X; = Z:|
o« N; > % We further divide expected loss for each

i as 2?21 A; where A; is defined as

3, tog (MUY £ )

Nij—f—l

(70)

We bound E |:1{Xn=i,N,;>("_2l)"i }Aj] for each j € [k].

— When either of the expected transition counts
nm;n, nm; M (j]i) are small we use
M(i|1)Ny — Ny; + M(i[1)k — 1)
A, < QIGN, = Moy MEDE-1?

(N1 + k) (N1 + 1)
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show that

E [I{Xn_i,qu>("21)” }A‘]

(M (jli)N; = Nij)®

<E|1;x. - |, 72
N [ {(Xn=i} p— (72)
Then we use Lemma 16 to bound

(7)) N: — Niz)?].

— When both nm;, nm; M (j|i) are big we consider two
sub-cases. If N;; > M we use (71)
and second moment bound to control the expected
risk. Otherwise, if N;; < M, we get
|N;M(jli) — Nyj| > M The probability

pertaining to this event can be controlled using a

concentration result based on the fourth moment bound

in Lemma 16(ii). Furthermore, controlling A; by
log (M (j]7)(N; 4+ k)) and using the above probabilis-
tic results we bound the related expected risk.

Combining the above bounds we show that whenever the
absolute spectral gap of the underlying chain satisfies v, > 7o,

we have
k log k
<= <1 SR ek ) .
n ko

(73)
Summing over ¢ € [k] we get the desired Risky (7)) S
k2 log k
=~ (1 + kfg ).
The technical details of the proof of Theorem 3 are given
below.
Proof of Theorem 3(i):
Proof: The

E (10,2 D (MCDIM (1) )]

analysis  for E[l{xn:i}D(M(~|i)||
M +1(|z))} is identical for each i € [k], so we only consider
the case ¢+ = 1 and show the bound in (73). We split the risk

based on N7 as

(1)
()]

+E 1040y D (MO IFT ()]

B [1(x, 20y D (MDA

—E [1{A§}D ( N aste

where the typical set A~ and atypical set AS are defined as

1)m/2},
1)m1/2} .

Analysis for the atypical set A= : For the atypical case, note
the following deterministic property of the add-one estimator.
Let Q be an add-one estimator with sample size n and alphabet
size k of the form Ql = ’;jkl where > n; = n. Since Q is
bounded below by +k everywhere, for any distribution P,

we have

AS 20X, =1,N, < (n—

>A0X,=1,N, > (n— (74)

D(P||Q) < log(n + k). (75)
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Applying this bound on the event A<, we have

E[1(4ey D (MCDIFT ()]

<log(nm + k)P[X,, =1, N1 < (n—1)m /2]
(a)

S ]-{nTrl'y*SlO}ﬂ-l log (7'L7T1 + k)

E[(N1 — (n—1)m)* [Xn = 1]

+1{n7‘rl’y*>10}ﬂ'1 log (nﬂ'l + k‘)

niri
(76)
(b) 10 10
< Lnmiasio) - log <§ + k)
+1 log (nm1 + k) ;+#
{nm1y.>10} 108 (N1 n?my? | nimind
1 log(1/7.) + log k
S o {hnrmgw}T
1 1
+1{n7r1'y*>10} (Tl7T1 + log k) nﬂl’yg + m
1 1 log k
S {hmmsw} <? T >
1 log k 1 log k
il < -
+1{n7r1’y*>10} (73 + 7s )} ~ ']’L’}/g + 0 . (77)
where we got (a) from Markov inequality, (b) from
Lemma 16(iii) and (c) using z +y < zy,x,y > 2.
Analysis for the typical set A~: Next we bound
E [1{A>}D (M(-|1)||M+1(-|1))] Define

A; = M(i]1) log <]\/j\f(1%(|11|)1)

As D(M(-|1)|M*+1(-]1)) = SF | A, it suffices to bound
E [1{A>}Ai] for each ¢. For some r > 1 to be optimized
later consider the following cases separately.

) — M(i|]1) + M*'(i1).

e nmwy < ror nwyM(¢|1) < 10:

Using the fact ylog(y) —y+ 1 < (y — 1)? with y =

MG MG[L)(Nitk)
TG = Al we get
M(i|1)N; — Ny; + M(i|Dk — 1)2
AZ_g( (4[1) Ny — Ny; + M (d[1) ) (78)

This implies

E [1{A>}Az]

<E 1{A>} (M(z\l)Nl — Ny; + M(Z‘
- (N1 + k) (Ny; + 1)

Dk — 1)2]

@ E [1{A>} (M(i|1)Ny — NU)Q] R M (i) + m

nm + k
(b)mE[( (i|1)Ny — N1;) ’X —1} 1+rkM(|1)

A

nmy + k n
(79

where (a) follows from N; > w in A~ and the
fact that (z +y + 2)? < 3(2% + y* + 22); (b) uses the

assumption that either nm < r or nmM(i|1) < 10.
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Applying Lemma 16(i) and the fact that z + 22 < 2(1 +

x?), continuing the last display we get

E [1(4>)A]
nm M) + (14 240 | L kMG

<
~ n n
1+ rkM((i|l M(i|1
< (i), MGl
n nyg
Hence

E [1045) DM (1) AT (]1))]

Eoo1
E 14 A S =+ . (80)
1 o

I

e nmwy > r and nwy M (¢|1) > 10:

We decompose A~ based on count of Ny; into atypical
part BS and typical part B>

BS2{(X,=1,N; >
Niy;<(n-1

B> 2{X,=1,N;, >
Ny >(n-1

n— 1) /2,

m M (i|1)/4}
n—1)m /2,
m M (i|1)/4}

~— o~ — —

and bound each of E[1;5<,A;] and E[1p>3A]
separately.

I. Bound on E [1{BS}A1‘}1

Using M+1(i|1) > o
B< we get

and Ny; < NlM(l|1)/2 in

E [1(p<)Ai] ,
—E l:l{BS}M(iH)lOg (W)]

Ny +1 .

< E [1(p<yM(i[1)log (M (i|1)(N1 + k))]
+E [1{B<} (Nn B M(i|1))] +E {1{135

S E 1<y M(i]1)log (M (i|1)(Ny + k))] + -

—~
I

where the last inequality followed as E [1,5<y/N1]| <

P[X,, = 1]/nm = L. Note that for any event B and
any function g,

E [g(Nl)l{N12t0 B}}

GBIV > 10, B+ > (o(t) — gt — 1) B[Ny > £, B].
t=tg+1

Applying this identity with t¢ = [(n—1)m /2],
we can bound the expectation term in (81) as

E (1452 M(il1) log (M(il1)(N1 + k)]

— M(i|1) log (M(i|1)(to + k))

M(i|1
P {Nl > o, Nyy < MO 1}
Z log (1+ )
t=to+1 —1+k
M(z|1
P {Nl >t41,Ny; < "’”f(”),xn = 1}
< m M(i|1) log (M(i|1) (to + k)
M (z]1)¢,
P {M(i\l)Nl — Ny; > % X, = 1]

M(Z|1) Z [ (i]1)Ny — Nlizw‘){nzl}
t=to+1 4 ®2)

where last inequality uses log (1 + ﬁ) <1<

<33
L for all t > to. Using Markov inequality

nmy i

P [Z > ] < ¢ *E [Z*] for ¢ > 0, Lemma 16(ii) and
x4+t <2(1 +2*) with x = /M (i|1) /.
M(i|1)t

M(i|1)Ny — Ny; > ‘an]

. 2
_ (omM(i[1))? + A
- (¢M(i]1))"
In view of above continuing (82) we get

E [1 <) M(i[1) log (M(il1)(N: + &))]
. 2
< <<an<z'|1>>2 T M;'”)

<7r1M(i|1) log(M (i|1)(nm + k))
(WHM(ZH))

1 1
EEIGINE Z t4>

t=to+1

( (nmy M (i 24 7M(A:L1)2

( g(nm M (i|1) + kM (i|1)) 1 )
(nm1M(i[1))? (nmiM(i1))?

o3 (s 20
~n Ve
(log (nmiM(4]1) + kM (i1 ))>
(nm M(TT))?
1 <10g nm M (i]1) + kM (i]1))
~n nm M (i|1)
M (i]1) log(nm M (i]1) + k))
nmyyE(nm M(i]1))?2
@ 1 {an(i|1)+kM(i|1)
~ nm M (i|1)
M (i|1)log(nmy M(i[1))
nmyyE(nm M(i]1))?2

n
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M (i|1) log k }
i (nm M (i[1))?

(b) 1

S - (1 + kM) + MU logk logk>

’I"’Yg

where (a) followed using x +y < xy for z,y >
2 and (b) followed as nmy > r,nm M(i|1) > 10 and
log(nmi M (i|1)) < nmyM(i|1). In view of (81) this
implies

S e [igpeyals 2 (1w (14124

(83)

II. Bound on E [1{B>}Ai]:
Using the inequality (78)
E [1{B>}Ai]

< |y (AN — Ny + MLk — 1)2}

(N1 4+ k) (N +1)

(2) E [1{B>} {(M(Z|1)N1 _ le)2}] + {kﬂwlf:(li‘lh}

~ (nm + k) (nm M (i]1) + 1)
. mE [(M(i[1)N1 — Nui)®| X = 1] kM(i|1)
(nm1 4+ k)(nmM>i|]1) + 1) n

where (a) follows using properties of the set B~ along
with (z+y+2)? < 3(22+y*+22). Using Lemma 16(i)
we get
nm M(i|1) + (1 n %)
n(nmiM(i]1) + 1)
kMG|1) _ 1+ kM(ill)

+
n ~ n

E [1{B>}Ai},§
L MG

2
nYyo

Summing up the last bound over ¢ € [k] and using (83) we
get for nmy > rynm M (i|1) > 10

E [1045) DML IFT (1))

[
M=

[E [1(p3Ai] +E [1{p>}Ad]]
1

1 log k)
1+ — + .
( kg kg

Combining this with (80) we obtain

A
SHESRT

E [1045) DM 1) R (]1))]

1)

k(1 log k k
§<2+r+ Og4>§<1+

n \ kg kg n

log k
kYo
where we chose 7 = 10+ lzif for the last inequality. In view

of (77) this implies the requiréd bound. (]

Remark 5: We explain the subtlety of the concentration
bound in Lemma 16 based on fourth moment and why
existing Chernoff bound or Chebyshev inequality falls short.
For example, the risk bound in (77) relies on bounding the
probability that N; is atypically small. To this end, one
may use the classical Chernoff-type inequality for reversible

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

chains (see [19, Theorem 1.1] or [18, Proposition 3.10 and
Theorem 3.3])

e—O(nmiyy)

Vi
in contrast, the fourth moment bound in (76) yields
P [Ny < (n—1)m/2[X1 = 1] = O(57577)- Although the
exponential tail in (84) is much better, the pre-factor \/%, due
to conditioning on the initial state, can lead to a suboptimal
result when 7 is small. (As a concrete example, consider
two states with M(2[1) = ©(L) and M(12) = O(1).
Then m = ©O(1),7y = v =~ ©(1), and (84) leads to
PNy < (n—1)m/2,X,=1] = O(\/lﬁ) as opposed to the
desired O(1).)

In the same context it is also insufficient to use sec-
ond moment based bound (Chebyshev), which leads to
PINi <(n—1)m /2| X1 =1]= O(m&,y* ). This bound is too
loose, which, upon substitution into (76), results in an extra
log n factor in the final risk bound when 7; and -, are large.

Proof of Theorem 3(ii):

Proof: Let k > (logn)® and v > W. We prove
a stronger result using the spectral gap as opposed to the
absolute spectral gap. Fix M such that v > 7. Denote its
stationary distribution by 7. For absolute constants 7 > 0 to
be chosen later and ¢y as in Lemma 17 below, define, with
i=1,...,k,

-1
P[Nlﬁ(n2)ﬂ-1|X1:1 S (84)

2k 1 3VEk I
e(m) = 2 collogn)’VE o ologn
m m ny
] i1
nii:nm:tTmax{ ogn7 T ogn}7 (85)
ny ny

Let V; be the number of visits to state ¢ as in (4). We bound the
risk by accounting for the contributions from different ranges
of N; and 7; separately:

E [Zf: Lix,=iyD (M(-i)llf\?“(-u))]
= 2 E[l{xﬁmzﬁmgnj}D (M('V)HJ\//-?H(-M))}

* _z: £ [I{Xn:i,Ni>n3' or N;y<nj }
D (MDA ()]
+ 2 E [1{xn:¢}D(M(-\i)lll\?“(-m)}

l D(M(-[3)|| M+ (-]i)) ]
> €(N;),n; <N; <nj

<log(n + k) Z P

T > Cpy
+ Z E {1{XW,:i»nf§N1§nj}€(Ni)}
LT > Cpy
+ log(n + k) Z [IP) []\fz > nj] 4+ P [Nz < n:”
81T > Cy

+ Z m; log(n + k)

i <cp,
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< log(n + k) Z P

1T >Cn

+ Z m  max €(m)

n; <m<n

D(M <|>M+1<|>>>e<zv>]

n,; SNzSnl

9T >Cpy

+log(n+k) Y (P[N:>nf]+P[N; <n;])
T >Cn
k (log(n + k))*
o
ny
where the first inequality uses the worst-case bound (75) for
add-one estimator. We analyze the terms separately as follows.
For the second term, given any ¢ such that m; > c,,, we have,
by definition in (85), n; > 9nm;/10 and n] — n; < nm;/5,
which implies

Z m;  max +e(m)

n; <m<n;
< Z - < 2k N IOCO(logn)‘S\/E>

P O.9n7ri 9 nm;

2 31.3/2
k* n (logn)3k3/ .

n
For the third term, applying [9, Lemma 16] (which, in turn,
is based on the Bernstein inequaliQty in [18]), we get
P [N; > nf] +P[N; < n; ]| < 2n7¥ior,

To bound the first term in (86), we follow the method in [5]
and [9] of representing the sample path of the Markov chain
using independent samples generated from M (-|i) which we
describe below. Consider a random variable X; ~ 7 and an
array W ={W;y:i=1,...,kand £ =1,2,...} of indepen-
dent random variables, such that X and W are independent
and W;,PS M (+|¢) for each 4. Starting with generating X; from
m, at every step ¢ > 2 we set X; as the first element in
the X;_1-th row of W that has not been sampled yet. Then
one can verify that {Xy,...,X,} is a Markov chain with
initial distribution 7 and transition matrix M. Furthermore,
the transition counts satisfy IV;; = Zé\’:il 1w,,—jy, where N;
be the number of elements sampled from the ¢th row of W.

Note the conditioned on N; = m, the random variables
{Wi1, ..., Win} are no longer iid. Instead, we apply a union
bound. Note that for each fixed m, the estimator

27;1 l{WiZ:j} +1
m+k

is an add-one estimator for M (j|i) based on an iid sample of
size m. Lemma 17 below provides a high-probability bound
for the add-one estimator in this iid setting. Using this result
and the union bound, we have

S P [D(M

;> Cn

(86)

9T >Cp,

<

~

87)

M (jli) =

2 M), ek

CH)IB 1) > e(No), - < No < |

K2

max
ni Smgn:r

b [D(M(-H)Ill\/éfntl('ﬁ))}

> e(m)

<2
Ti>cn

1k
Z;S*z
T >Cn
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where the second inequality applies Lemma 17 with t =n >
nj' > m and uses n;" —n; <nm/5 for m; > c,.
Combining the above with (87), we continue (86) with

T =25 to get

[Zl{x 4D (M<-|z'>||z\7+1<-|z'>)]

12 37.3/2
< K logn) k

~

n k(log(n + k))?
ny

. . k2 log(n+k))?
which is O (7) whenever k > (logn)® and v > M.

O
Lemma 17 (KL risk bound for add-one estimator): Let
Vi,oo oy Vin i @ for some distribution Q = {Q }Z 1

on [k]. Cons1der the add-one estimator Q! with Q+1 =
mik (ijl 1¢v,=i} + 1). There exists an absolute constant
co such that for any ¢ > m,

P [p(@@“) > 2k CO(log”%] <L
m m t3

Proof:  Let Q be the empirical estimator Ql =
- > i1 1gv,=i}. Then Q;rl = mrgf,;l and hence
D(QIIQ™)
k
Qi
i=1 i
k
im+k m@; + 1
=y QilOgQ(A ) Qi @ -
i=1 m@; +1 m+
k
-3 (Q,-log 9 —Q1+Qz+>
i=1 i m
k
m+k kQ; k
il —
+§<Q © m m+k m(m+k)>
: Q:
<Z<QilogA —Qi+Qi+ >+ (88)
i=1 7 m

with last equality following by 0 < log (mT““) < k/m.
To control the sum in the above display it suffices to
consider its Poissonized version. Specifically, we aim to show

S (Qz log =&+ R - Qi+
co(logt)3\/g

QPOI m
") <L (s9)

o~

>k

m

where mAﬁ’Oi,i = .,k are distributed independently

as Poi(m@;). (Here and below Poi(\) denotes the Poisson
distribution with mean \.) To see why (89) implies the desired

. ' 0 (log t)3 k Apoi
result, letting w = % + W and Y =37, meE;* ~
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Poi(m), we have
k
Qi
P Qilog =———
Qilog = on. + 1
QPOI 1
1 m!
< =
T HPY =m]  ttemm™m
where (a) followed from the fact that conditioned on their
sum independent Poisson random variables follow a multino-
mial distribution; (b) applies (89); (c) follows from Stirling’s
approximation.
To prove (89) we rely on concentration inequalities for
sub-exponential distributions. A random variable X is called

sub-exponential with parameters ¢2,b > 0, denoted as
SE(0?,b) if

E {eA(X—E[X])] <

Sub-exponential random variables satisfy the following prop-
erties [50, Sec. 2.1.3]:
o If X is SE(02,b) for any t > 0

1 Q1+Qz > >w]
" k

> = 1]

i=1

—

l2<

(b

=

—~
]

N

A

m
< (90)

1
VA< 1)

26—112/(20'2) O<v< o?
_ ’ — b
P[|X — E[X]| > ] < {26_1}/(%), .

92)

o Bernstein condition: A random variable X is SE(0?2,b)
if it satisfies

E|IX -EX]] < =5

o If X1,..., X}, are independent SE(o2,b), then % | X;

is SE(ko?,b).
Define X; = Q;log onl+ - — Qi+ Q" + L i € [k]. Then
Lemma 18 below shows that X;’s are mdependent SE(0?,b)

_ ci(logm)* h — co(logm)?
- m?2 T m

flo2pt—2

L 0=2,3,.... (93)

with o2 for absolute constants

¢1, ¢z, and hence ZZ L (X; —E[X;]) is SE(ko?,b). In view
of (92) for the choice ¢y = 8(c1 + ¢2) this implies

k
(logt)3Vk
P X; - E[Xi]) > co—"—
[g X 2 ¢80
ogt 6 c ogt 3
< 2~ ;,Ejzaz) + 2~ O\/;rlmg : < tl?, 94)
Using 0 < ylogy—y+1 < (y—1)%,y > 0and E [ Boi(\) +1] =
0o e Myvtl -
> v=0 (114;\1)! =1—e?
2 (Q (QPO' ))2
E Xz S E — m
[z: g QA+
k
1 k
-y mate| |k
i=1 Q1 +1 m
k
k k
=D Qi(l-em) —14 — <
pat m = m
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Combining the above with (94) we get (89) as required. [
Lemma 18: There exist absolute constants cj,co such that
the following holds. For any p € (0,1) and nY ~ Poi(np),

X = plog L2 —p+ Yy + is SE (cl(logn)4 c2(log n)2)
Y+ ’ :

n

Proof:  "Note that X is a non-negative random
variable. ~ Since  E [(X - E[X])q < 2E[xY,
by the Bernstein condition (93), suffices to show

N
E[XY < (M 0 = 2,3,... for some absolute

constant cs. guarantees the desired sub-exponential behavior.
The analysis is divided into following two cases for some
absolute constant ¢y > 24.

Llogmn
L p> % .
Using Chernoff bound for Poisson [51, Theorem 3]

22
P[|Poi(A) — A| > ] < 2e” 205+e73)

calplogn
Yy _ Arr e
Y —pl >\ — ]

cantplogn
8np + 2+/cynlplogn

x>0, (95)

we get

< 2exp (—
c4llogn

1
< 2exp 7 (96)
8+ 2/ cqllogn/np

which implies p/2 < Y < 2p with probability at least
142
1—n=2 Since 0 < X < &pta)

v+1
3%

\/calplogn/dn cillosn L

we get E[X*] < —( . Z()p/i)z ) +7:2ee < (74%&); ) .

21 .
I p < &2z %8n sgn :

e On the event {Y > p}, we have X <Y + %L <?2Y,
where the last inequality follows because nY takes
non-negative integer values. Since X > 0, we have
Xél{y>p} < (2Y>Z]_{Y>p} for any { > 2.

Using the Chernoff bound (95), we get Y < %
with probability at least 1 — n~2¢, which implies

E [X1ysp]
é ]E |:(2Y)E1{Y>p,YS 2(;4Z;ogn}:|

+E[(2V) 11y, s 2eatinn |
¢
< (4C4€logn> 49
n
< (c%logn)é
n

for absolute constant cs. Here, the last inequality
follows from Cauchy-Schwarz and using the Poisson
moment bound [52, Theorem 2.1]:* E[(nY)%] <

’ (E[Y%]IP [Y N 2¢4flog n})
n

3For a result with less precise constants, see also [52, Eq. (1)] based on
[53, Corollary 1].

Authorized licensed use limited to: Yale University. Downloaded on September 04,2024 at 05:40:53 UTC from IEEE Xplore. Restrictions apply.



HAN et al.: OPTIMAL PREDICTION OF MARKOV CHAINS WITH AND WITHOUT SPECTRAL GAP

20
20 2¢
(h)g(1+”)> < (cgllogm)™ for some absolute

constant cg, with the second inequality applying the

assumption p < %.

2
e As Xlyye,y < plogn + ;5 < fEnk
E[Xye,] < (ctent

- n
constant cy.

, we get

¢
) for some absolute

O
1) Proof of Corollary 4: We show the following mono-
tonicity result of the prediction risk. In view of this result,
Corollary 4 immediately follows from Theorem 2 and
Theorem 3(i). Intuitively, the optimal prediction risk is mono-
tonically increasing with the number of states; this, however,
does not follow immediately due to the extra assumptions of
irreducibility, reversibility, and prescribed spectral gap.
Lemma 19: Riskgy1.n(v0) > Riskgn(v0) for all vy €
(0,1),k > 2.
Proof: Fix an M € My(vo) such that . (M) > ~o.
Denote the stationary distribution 7 such that 7M = . Fix
d € (0,1) and define a transition matrix M with k + 1 states

as follows: (1_8M 6
M= ((1 — &) 5)
One can verify the following:

« M is irreducible and reversible;

« The stationary distribution for M i [is 7= ((1—d)m,0)

o The absolute spectral gap of M is (M) = (1 —
)y« (M), so that M € My41(y0) for all sufficiently
small 9.

o Let (Xy,...,X,) and ()N(l, e ,)}n) be stationary
Markov chains with transition matrices M and M,
respectively. Then as 6 — 0, (Xi,...,X,,) converges
0 ()~(17 . ,)?n) in law, i.e., the joint probability mass
function converges pointwise.

Next fix any estimator M for state space [k + 1]. Note that

without loss of generality we can assume M (jli) > 0 for all
i,j € [k+1] for otherwise the KL risk is infinite. Define /"""

as M without the k + 1-th row and column, and denote by
M (-]i)

M its normalized version, namely, M (]d) = T
erunc(k._;’_l‘z)

fori=1,...,k. Then
Eg. [DOTCIZ) 1M (1%,))]

=2 M X0) IV (1 X0))]

)
220 B [D(M(

> Exn [ DOM(1X,) I3 (1X,)]

> inf B [DOM(1X,)| M (1X,))

where in the first step we applied the convergence in law of
X™ to X™ and the continuity of P — D(P||Q) for fixed
componentwise positive (); in the second step we used the
fact that for any sub-probability measure Q = (¢;) and its
normalized version Q = Q/a with a = > ¢; < 1, we have

D(P|Q) = D(P||Q) +log 2 > D(P||Q). Taking the supre-
mum over M € My (7o) on the LHS and the supremum over
M e Mi.11(v0) on the RHS, and finally the infimum over M
on the LHS, we conclude Risky11,(70) > Riskg n(v0). O
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V. HIGHER-ORDER MARKOV CHAINS

In this section we extend our spectral gap-independent
results in Section II and III to higher-order chains. While the
upper bound is mostly a straightforward application of the
risk-redundancy relationship in Lemma 6, the lower bound
exhibits some distinction. First, there is no separation between
the k = 2 case and k > 3 case: even for the second-order
Markov chain with k& = 2, the number of free parameters
is 4 which allows for similar lower bound construction (but
more difficult computation) as those in the proof of Theorem 8.
Second, to apply the mutual information based arguments, the
counterpart of Lemma 12 in higher-order chains no longer
follows from the simple mixing condition, as the first-order
chain {X;, -+, Xtpm_1}r2;" " is typically not reversible.
To this end, we carefully construct the prior and lower bound
a more challenging quantity - the pseudo spectral gap. The
high-level idea is to add laziness to the chain motivated by
[29, Corollary 1.15], which in turn exhibits a simple proof in
our construction shown in Lemma 31.

A. Basic Setups

We start with some basic definitions for higher-order
Markov chains. Let m > 1. Let X;, X5,... be an m®-
order Markov chain with state space S and transition matrix
M eRS" S sothat P [Xy41 = 21| X pn =20 =
M (2441 |2f_,, 1) for all ¢ > m. Clearly, the joint distri-
bution of the process is specified by the transition matrix
and the initial distribution, which is a joint distribution for
(X1,...,Xm)

A distribution 7 on 8™ is a stationary distribution if {X :
t > 1} with (Xq,...,X,,) ~ 7 is a stationary process, that
is,

X)) 2 (X in, tEN.

o7
It is clear that (97) is (X1,...,
Xm )law(Xg7 ..oy Xm+1). In other words, 7 is the solution to
the linear system:

(Xi1+t7~~~7 Xin)a Vn,il,...,

equivalent to

(X1, .oy Ton)

= Z T(Zo, T1y .- -y

ToES

(98)

$m_1)M(.’Em|J)1, . ,.’I,‘m_l),

for all z1,...,x,, € S. Note that this implies, in particular,
that 7 as a joint distribution of m-tuples itself must satisfy
those symmetry properties required by stationarity, such as all
marginals being identical, etc.

Next we discuss reversibility. A random process {X;} is
reversible if for any n,

X' X, (99)
where X™ £ (X,,,..., X1) denotes the time reversal of X" =
(X1,...,X,). Note that a reversible m"-order Markov chain

must be stationary. Indeed,

(Xas oo Xns )2 (X X2 (X0, .., X)), (100)
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where the first equality follows from

X)) 2 (Xpst,..., X1). The following
a characterization for reversibility:

Lemma 20: An mW"-order stationary Markov chain is
reversible if and only if (99) holds for n = m + 1, namely

(Xla sy
lemma gives

(1, oy ) M (Timg1]1, -0 Tm)
=7(Tmt1, .- o) M (1| T, ..., x2), (101)
for all z1,..., 241 €S

Proof: First, we show that (99) for n = m + 1 implies
that for n < m. Indeed,

Xm—n+2)lgv(Xna v aXl)
(102)

law
(X1, ., Xn) = (Xmaty - -

where the first follows from (Xjy,...,

XmH)IgN(Xerl7 ..., X1) and the second applies stationarity.
Next, we show (99) for n = m + 2 and the rest follows
from induction on n. Indeed,

equality

P[ Xl, e Xm+2) = (ml, . ,Im+2)]
= ( )M(xm-‘rl‘xla-"vxm)
M($m+2\$€2, ey Ty1)
@ T( Tty - T2) M (21 |Tmg1, - -, T2)
M(xm-‘rQ‘-rQa ] 7xm+1)
Y @, i) M (@[, 22)
M (Zmq2|T2,- - Tmg1)
D @y, .. S x3)M(z2|Tmya, - .. 23)
M($1\$m+17 Y
[(Xh .- m+2) ($m+2, cee 7331)]
[( m—+2y .- Xl) (.131,...71'm+2)].

where (a) and (c) apply (99) for n = m + 1, namely, (101);
(b) applies (99) for n = m. O

In view of the proof of (100), we note that any distribution 7
on 8™ and m™M-order transition matrix M satisfying (™) =
m(2™) and (101) also satisfy (98). This implies such a 7 is a
stationary distribution for M. In view of Lemma 20 the above
conditions also guarantee reversibility. This observation can
be summarized in the following lemma, which will be used to
prove the reversibility of specific Markov chains later.

Lemma 21: Let M be a k™ x k stochastic matrix describing
transitions from 8™ to S. Suppose that 7 is a distribution on
S™ such that w(z™) = w(a™) and w(x™)M (Tpi1|2™) =
m(z M (21|25 ™). Then r is the stationary distribution
of M and the resulting chain is reversible.

For m!"-order stationary Markov chains, the optimal pre-
diction risk is defined as as

RiSkk,mméigfsupE[D(M( ‘X:LI m+1)||M( |Xn m+1)>]
M M
D(M( ™I M(-|2™
S 3 | PO
M M zmeSm {Xn m+1—zm}

(103)
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where the supremum is taken over all k™ Xx k stochastic
matrices M and the trajectory is initiated from the stationary
distribution. In the remainder of this section we will show
the following result, completing the proof of Theorem 5
previously announced in Section I.

Theorem 22: For all m > 23 there exist a constant C,,, >
0 such that for all 2 < k < nm+1 /Cyp,
k,m+1 n
lo ( )
Cmn & kmt1

Furthermore, the lower bound holds even when the Markov
chains are required to be reversible.

n . Ckmt!
IOg (W) < R|Skk:,n,m < n

B. Upper Bound

We prove the upper bound part of the preceding theorem,
using only stationarity (not reversibility). We rely on tech-
niques from [22, Chapter 6, Page 486] for proving redundancy
bounds for the m"-order chains. Let Q be the probability
assignment given by

Narn
k- (k Fle k 1’(104)
meSm, + ( am + - )
where N~ ; denotes the number of times the block a™j
occurs in ", and Nym = Z 1 Ngm j is the number of times

the block a’” occurs in z™~ 1 This probability assignment
corresponds to the add-one rule

Ngn

nfm,#»lj

= M2 (lan i) = Now +k
T —m+1

Q(jl=") (105)
Then in view of Lemma 6, the following lemma proves the
desired upper bound in Theorem 22.

Lemma 23: Let Red(Qx~) be the redundancy of the m®-
order Markov chain, as defined in Section II-A, and X™ be

the corresponding observed trajectory. Then

_1m {km(k 1) {log <1+m) +1}

+mlogk}

Red(Qx+) <

Proof: We show that for every Markov chain with
transition matrix M and initial distribution 7 on S™, and every
trajectory (z1,- -+ ,xp), it holds that

-1
m(z]") H?:m M (2441 |$§7m+1)

Qz1,- - an)

m n—m
Sk (k*l) |:10g(1+km(k_1))+1:|+m10gk,
(106)

log

where M (z¢41|x}_,,,,) the transition probability of going
from x_, ., to z¢41. Note that

n—1
H M(xt-i-l |xi—7n+1) = H M(am-i-l |am)Nam+1
t=m a7n+1 €S7n+1

IN

(Ngm+1 /]\fam)Na"lJrl ,

[1

am+tleSm+1
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follows from
Nam+1 am+1

ZaerleS e lgg.NamM(amH‘am) '2 0 for each a™,

by the non-negativity of the KL divergence. Therefore,

we have

n—1
m(z") H::m M (z441 |$§—m+1)

where the last inequality

Q(irh : 7xn)
k-(kE+1)----- Ngm +k—1
Cpr. [ BN (N b E )
amesm Na'm
Nyt 07
Na'm.+1' ( )
am+1€S

Using (33) we continue (107) to get
o (1) [To M (g1 |a)

Q(Ila T 7xn)
k-(k+1)-- - (Ngm +k—1)
<mlogk + Z log Nom]
amesm
Ngm k _ 1
= 1 _—
mlogk + Z Zlog(l—f— 7 )
ameS™ (=1
Nam k—1
<mlogk+ Z / 1og(l+>dx
anzeswn 0 Z
=mlogk+ Y ((k—1)log(1+ Nam
ames™ k—1

k—1
+Nym log (1 + Now >)
2 (k — 1) log (1 + "_m) R (k- 1)
= Kk — 1)
+ mlogk,

where (a) follows from the concavity of =z +— loguz,
Y amesm Nam =n —m+1, and log(1 + ) < . O

Remark 6: The computational complexity of the estimator
M*(|X7_,, 1) for any given value of m is O(nmk). This
is because given any realization =, .., of X7 ., for any
je[klandt=1,...,n—m, it takes O(m) time to check if
X, equals z”_,, 1 j. Summing over ¢, j the O(nmk) time
complexity follows.

C. Lower Bound

The lower bound proof is divided into two cases: m >
2,k =2and m > 2,k > 3. The idea for m > 2,k = 2 is
similar to the proof of Theorem 8. Same as before, it turns
out that we can achieve the desired lower bound even with
the smaller risk regime of squared error loss. We use the
Bayesian strategy, with a prior that has the uniform stationary
distribution on the second-order state space {11,12,21,22},
and identify the key trajectories with a significant contribution.
Remember that the proof in the k = 3 case for the first-order
chains uses the following trajectory set

-1 l‘":l‘lz---zxt:1,x‘€{2,3}7
X:U?‘l{ = t4l..n ’

and study the probabilities related to it. A similar analysis
using the transitions between the states {2, 3} as in the above
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trajectories is the key difficulty for the binary states space,
which is where we modify our approach. In the current setup,
we use the trajectory set

V: 17L—t2:t 121 =Ry =2t = 27Z2+1 ;é 11’ . (108)
ict—1],t=4,...,n—2

The prior distribution class we study is uniform on the set
one-parametric family of transition matrices

1 2
1mji-+ 1
— 1 1
M= M,= 21 n =% :0<p<1
12| 1—p P
22 p 1—p

We show that the 2! part of the trajectories in (108) can be
represented using the transitions between the coupled states
{22,212}, which is similar to the transition between the
states {2, 3} in the first-order chain analysis. Given the above,
we achieve trajectory probabilities similar to (36), enabling us
to imitate similar analyses of the first-order case.

The proof technique for £ > 3 closely follows a similar
strategy of using mutual information based lower bound as
in Theorem 3, with the following characteristics in the con-
structed chain:

« the transition matrix is reversible;

« the trajectory initializes on the m-tuple state 17" with a
constant probability that depends only on m;

« the transition matrix includes an embedded matrix on the
states space {2,...,k} that is a counterpart of the sym-
metric matrix 7" in (42). We show that a sufficient condi-
tion on a (k — 1)™ X (k — 1) dimensional Markov chain
T is T(xpyr|z™) = T(xi|2d ) for every z™F! €

m m—1
{2,...,k}", where 25" ™" = (T, Tm—1," "
time reversal.

,x2) is the

Similar to Section III-B, for the purpose of achieving the
risk lower bound we only focus on the trajectories in

X = U, X,

_ n . —
Xt—{l‘ .xl,...,xt—l,le,..

S Tn £ 1}

Conditioned on each trajectory set X; one can show that the
smaller chain (Xy41,...,X,,) has the same distribution as a
length-(n — t) trajectory of a stationary m‘"-order Markov
chain with state space {2,...,m}. Given this we demonstrate
a mutual information based minimax risk lower bound (cf.
Lemma 29)
RiSkk,n,m 2

~

%” (I(T;Y™™) —mlog(k — 1)),  (109)

for some absolute constant c,, depending on m and Y™ is a
stationary m'®-order Markov chain on {2, ..., k}. We proceed
to lower bound the mutual information, which in turn asks
for an upper bound of the mean squared error of a certain
estimator similar to Lemma 12. However, the key difficulty
in mimicking the previous proof is the first-order chain
{ym, Yt Y} is not reversible, and, as a result,
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the analysis based on spectral decomposition and absolute
spectral gap fails. To resolve this issue, we introduce the
pseudo spectral gap. Although much more complicated to
compute in general, we carefully add laziness to the prior
construction of 7' so that the pseudo spectral gap could be
easily controlled (cf. Lemma 31). This enables us to derive
good estimation guarantees on 7' based on the trajectory Y",
providing us with the desired lower bound.

Below we provide the details of the proofs.

Proof of the Lower Bound.:

1) Special Case: m = 2,k = 2: The transition matrix for
second-order chains is given by a k? x k stochastic matrices
M that gives the transition probability from the ordered pairs
(1,7) € S x S to some state £ € S:

M(l)ij) =P [X3 = (X1 =14, Xz =j]. (110)

Our result is the following.
Theorem 24: Risky 2 = O (=2
Proof: ~ The upper bound part has been shown in
Lemma 23. For the lower bound, consider the following
one-parametric family of transition matrices (we replace S by
{1,2} for simplicity of the notation)

logn

1 2
-+ 1
— 1 _1
M= M, = S 0<p<1% (111)
12| 1—p p
22 P 1—p

and place a uniform prior on p € [0, 1]. One can verify that
each M, has the uniform stationary distribution over the set
{1,2} x {1,2} and the chains are reversible.

Next we introduce the set of trajectories based on which
we will lower bound the prediction risk. Analogous to the
set X = U A} defined in (35) for analyzing the first-order
chains, we define

Vo 17t gy = 29 = 2 = 2,207 £ 11,
N ict—1),t=4,....,n—2

} c {1,2}™
(112)

In other words, the sequences in V start with a string of 1’s
before transitioning into two consecutive 2’s, are forbidden to
have no consecutive 1’s thereafter, and finally end with 2.
To compute the probability of sequences in V, we need the
following preparations. Denote by @ the the operation that
combines any two blocks from {22,212} via merging the last
symbol of the first block and the first symbol of the second
block, for example, 22 ¢ 212 = 2212,22 ¢ 22 ¢ 22 = 2222,
Then for any ™ € V we can write it in terms of the initial all-1
string, followed by alternating run of blocks from {22,212}
with the first run being of the block 22 (all the runs have
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positive lengths), combined with the merging operation &:

2" =1...122022---©220212®212--- ® 212

all ones p1 many 22 p2 many 212
©2022---92202120212--- H 2120226 .. ..
p3 many 22 p4 many 212

(113)

Let the vector (g22—22, G22—212, 21222, ¢212—212) denotes
the transition probabilities between blocks in {22,212} (recall
the convention that the two blocks overlap in the symbol 2).
Namely, according to (111),

g22—20 =P[X3 =2, X0 =2|Xy =2, X, =2]
— M(222)=1—p
g2—212 =P[Xy =2, X3 =1,X0 =2|X3 =2, X; =2]

1
= M(2[21)M (1]22) = (1 - ) P
n
Q1220 =P[Xy =2,X3 =2|X3=2,Xy =1,X; =2]
= M(2]12) = p
X5 =2,Xy = 1,' X3=2,X5= 1,}

— = ]P)
4212—212 Xy =2 X, =2

= M(2)21)M(1]12) = <1 - i) (1-p).

Given any 2™ € V we can calculate its probability
under the law of M, using frequency counts F(z") =
(Fi11, Fao—22, Faz 212, Fa1292, F212_.212), defined as

Fi = E ligi=taiii=1ai40=1}>
i

Foo 99 = E 1ipi=2.0i01=2,0i40=2}

?

Fys 012 = § :1{11':2y1i+1:27wi+2:17$i+3:2}’
7

Fh12 00 = E Lo, =22 1=1,0i 0=2,01413=2}>
i

F212—>212 = Z 1{IiZQ,Ii+1:1,Ii+2:2,$i+3:1,ﬂ?i+4:2}‘
i
Denote p(z"|p) = P[X™ = z™|p]. Then for each 2™ € V with
F(2") = F we have

(" p)
= P(Xx T+ = 1Pt r(2111) M (2]12)

| A
a,be{22,212}
Fi11 Faa_212
1 1 1 1
:4(1_n) n.p.pF212—>22{p<1_n>}
Fa12212
1
a-p{a-n (1- 1)}
n
1 Fi11+F22 212+ F212212 1
— (1 _ ) 7py+1<1 _ p)f—y

1
4 n n

(114)

where y = Fb12 .09 + Fba 012 denotes the number of times
the chain alternates between runs of 22 and runs of 212, and
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f = Faia—oa + Faa_919 + Fo1a.212 + Foa_,92 denotes the
number of times the chain jumps between blocks in {22,212}.

Note that the range of f includes all the integers in between
1 and (n — 6)/2. This follows from the definition of V and
the fact that if we merge either 22 or 212 using the operation
@ at the end of any string z! with z; = 2, it increases the
length of the string by at most 2. Also, given any value of f
the value of y ranges from O to f.

Lemma 25: The number of sequences in V' corresponding
to a fixed pair (y, f) is (g)

Proof: Fix ™ € V and let that py;_1 is the length of the
i-th run of 22 blocks and py; is the length of the ¢-th run of
212 blocks in x™ as depicted in (113). The p;’s are all non-
negative integers There are total y + 1 such runs and the p;’s
satisfy °YF ' p; = f+ 1, as the total number of blocks is one
more than the total number of transitions. Each positive integer
solution to this equation {pL 11 corresponds to a sequence
z" € V and vice versa. The total number of such sequences
is (). O

We are now ready to compute the Bayes estimator and risk.
For any 2™ € V with a given (y, f), the Bayes estimator of p
with prior p ~ Uniform|0, 1] is

~ony i) — B ")) e y £ 2

PO =B = T

Note that the probabilities p(z"|p) in (114) can be bounded
from below by 1-p¥* (1 —p)/~¥. Using this, for each 2™ €
V with given y, f we get the following bound on the integrated
squared error for a particular sequence =™

1
/0 (@) (p — Pla™))2dp
y+2> i

1 1
> Y+l — )y —
*4en/0p (1=p) P f+3

1+ DI -y w+2)(f—y+1)

den (f +2)! (f +3)2(f+4)
where the last equality followed by noting that the integral
is the variance of a Beta(y + 2, f — y + 1) random variable
without its normalizing constant.

Next we bound the risk of any predictor by the Bayes error.
Consider any predictor M (+]ij) (as a function of the sample
path X) for transition from ij, i,j € {1,2}. By the Pinsker’s
inequality, we conclude that

(115)

- 1 -
D(M([12)[M(:-]12)) > S[IM(-[12) = M([12)]7,

> Lp-ME)? a6

and similarly, D(M(22)|3(-22)) > 3(p — M(122))>.

Abbreviate M(2|12) = pi2 and M(1\22) = D22, both

functions of X. Using (115) and Lemma 25, we have
3

> EIDMCEpIM i) L x, i)

=1
=~ \2

>l (P=P12)"Lrxn 15 xmev)

- 2

+(p— 1’322)21{Xg_1:22,xnev}
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ZF Zx"EV:F(x”):F
dp
utanlp) 77 e
L +(P—P22)21{ 7L71722}

ZZ na

neV:F(z™)=F

> 1 I(y+1)!(fy)!(y+2)(fy+1)}
den|  (f+2)! (f+3)2(f +4)

Vv
| —
h

"lp)(p — P(z™))*| dp

Vv
N | =
ﬁ

\%

y+1
— (f+2)(f+1)

(y+2)(f—y+1)
(f+3)2(f+4)

Y

117

v
@
7N
S|
N———
“~
l‘ |
NN
=
I
©)
7N
3 |03
N
N———

O
2) General Case: m > 2,k > 3: We will prove the
following.
Theorem 26: For absolute constant C, we have

Riske n.m
1)m+1

Lo (1ol neEm
Somti\2 g T on

o 1 n—m
g 22m+8 . 37T€(m + 1) (k _ 1)m+1 :

For ease of notation let & = {1,...,k}. Denote S =
{2,...,k}. Consider an m"-order transition matrix M of the
following form (with b = % —2r=2y,

M (s]z™)

Next state

. . m
Starting string z 5€1{2,...,k}

1 1
1™ 1- - L
n n(k —1)

lz™ 1, b

an—legnL—l

" eSm

S|
RS
—

I
S|
N———
=
o
8
=

(118)

Here T'is a (k — 1) x (k — 1) transition matrix for an
th_order Markov chain with state space S, satisfying the
following property:
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() T(xmi1]2™) = T(a|ay ™), vam+l e S™HL

Lemma 27: Under the condition (P), the transition matrix
T has a stationary distribution that is uniform on S™. Fur-
thermore, the resulting m!™-order Markov chain is reversible
(and hence stationary).

Proof: We prove this result using Lemma 21. Let 7
denote the uniform distribution on 8™, i.e., w(a™) = W
for all 2™ € S™. Then for any ™ € S™ the condition
m(ax™) = w(xz™) follows directly and 7(z™)T (2 41|2™) =
7 (x5 )T (1 |25 ) follows from the assumption (P). [

Next we address the stationarity and reversibility of the
chain with the bigger transition matrix A in (118):

Lemma 28: Let M be defined in (118), wherein the tran-
sition matrix 7T satisfies the condition (P). Then M has a
stationary distribution given by

> ™ =1
m(z™) = ﬁ M e §m (119)
W otherwise
where d(s™) £ ST 1y, gy and b=~ 52 as in

(118). Furthermore, the m'"-order Markov chain with initial
distribution 7 and transition matrix M is reversible.

Proof: Note that the choice of b guarantees that
Y amesm T(x™) = 1. Next we again apply Lemma 21
to verify stationarity and reversibility. First of all, since
d(z™) = d(z™), we have w(2™) = w(z™) for all ™ €
S™. Next we check the condition 7(z™)M (Xpt1]z™) =
m(zy Y M (21|25 ™). For the sequence 1% the claim is
easily verified. For the rest of the sequences we have the
following.

o Case 1 (xm+1 € SmH) Note that z™+! € S™+1 if and
only if =™ m+1 € 8™. This implies

Aa™M (@ni1la™) = (1 3 ) Tamale™

e (- e

= (ay ) M (] y ).

o Case 2 (2! € 18™ or 2! € §™1): By symmetry
it is sufficient to analyze the case amtl ¢ 18™. Note
that in the sub-case 2™t € 18™, 2™ € 18™~! and
xy Tt € S™. This implies

1 b

@) = gy MEmale™) =
b 1
m+1 m+1
w5 ) = o M@l = 20
In view of this we get
(@™ M (2g1la™) = m(@g )M (1 |og ).
o Case 3 (zmF1 ¢ 1M+l y S U18™ U S™):

Suppose that x™*! has d many elements from S. Then
xm’xgn+1 ¢ {1m78m}
cases.

. We have the following sub-
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, x5 have exactly

™) = (2t =

M (zq]zith) = 1.

25" have exactly d—

") = (@) =

M (1|25 ) =

- If z; = 2,41 = 1, then both 2™
d elements from S. This implies 7(x

m and M~(xm+1|xm) =

- If 21,241 € S, then both 2™, z
1 elements from S. This implies 7 (z
W and M(x,41]2™) =
T _

-If 21 = L, zy41 € S, then 2™ has d — 1 elements

from S and xm“ has d elements from S. This
implies 7(z™) = 7n(k 11)4 r,m(ay ) = n(kil)d and
M(zpyr]|z™) = o= 1),M(x1|xm+1) %

- Ifxz € S ,Tm+1 = 1, then ™ has d elements from S
and $12n+1 has d — 1 elements from S then 7(z™) =

W,ﬂ'(l’?—‘rl) = W and M(l’m+1|$m) =
%a M(xl‘xm-H) = z(kl_l) .
For all these sub-cases we have w(z™)M (zy,41]2™) =
m(zy M (21|25 as required.
This finishes the proof. |
Let (X1,...,X,) be the trajectory of a stationary Markov

chain with transition matrix M as in (118). We observe the
following properties:

(R1) This Markov chain is irreducible and reversible. Further-
more, the stationary distribution 7 assigns probability
% to the initial state 1™.

(R2) For m <t < n — 1, let X; denote the collections
of trajectories x" such that zy,72, - ,2¢ = 1 and

g1, &y €S. Then using Lemma 28
P(X" € X})
—P(Xy = = Xy = 1) B A1X] g = 1)
m—1
: H P(Xt+i7£1|Xf—m+l 1= o ijr_{ ! giil)
i=2
P(Xppm # Xy = 1L, X[ e S™7)
n—1
[ PXorr #1IX5 4 €8™)
s=t+m
1 t—m n—m-—t
Y LA
2 n n2m-—2 n
b 1 n—2m
=—(1-—— . 121
n2m-1 ( n) (121

Moreover, this probability does not depend of the choice
of T

(R3) Conditioned on the event that X" € X}, the trajectory
(X¢41,- -+, X,) has the same distribution as a length-
(n—t) trajectory of a stationary m™-order Markov chain
with state space S and transition probability 7', and the
uniform initial distribution. Indeed,

P[Xt+1 = $t+17~-~7Xn = $n|Xn S Xt]

t7
(3 (1-3) e =
= —2
e (L=3)
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n—1 1
H <1 _ n> T($s+1|xi—m+1)
s=t+m

n—1

1 S
:W H T(zorr|2smir)-

s=t+m

a) Reducing the Bayes prediction risk to mutual informa-
tion: Consider the following Bayesian setting, we first draw
T from some prior satisfying property (P), then generate the
stationary m'"-order Markov chain X" = (X1, ..., X,,) with
state space [k]| and transition matrix M in (118) and stationary
distribution 7 in (119). The following lemma lower bounds the
Bayes prediction risk.

Lemma 29: Conditioned on T, let Y™ = (Y31,...,Y,)
denote an m*-order stationary Markov chain on state space
S = {2,...,k} with transition matrix 7" and uniform initial
distribution. Then

inf Er [E[D(M(1X] ) IM (X0 0))]
M

v

M (1_1) B ([(T;Y"—m)—mlog(k—l))-

n22m-1 n

Proof: We first relate the Bayes estimator of M and
T (given the X and Y chain respectively). For each m <
t < n, denote by M, = Mt( |z') the Bayes estimator of
M(-|z}_,, 1) given X' = z’, and Tt( |y*) the Bayes estima-
tor of T'(-|y;_,,41) given Y = y'. For each t = 1,...,n —
1 and for each trajectory " = (1,...,1, 241, .. .,xn) € Xy,
recalling the form (21) of the Bayes estimator, we use the
relation between M and T to get, for each j € S,

M, (jlz")
P [X"H = (2", )]
o P[X" = an]

n—1 s o)
(1_%)E[(k i)m HZ t+m T(x8+1|x:s—m+1)T(]|'rn—m+1)]

[(k ym Hs =t+m T(@st1|zs_mi1)]
_ <1 1> P Y™ = (a4, J)]
- n PYn—t =ap,,]

1 el on
= (1-3) Tuedlel).

Furthermore, since M (1]z™) = 1/n for all z™ € S in
th/\e construction (118), the Bayes estimator also satisfies
M, (1|z™) = 1/n for 2™ € X; and ¢t < n—m. In all, we have
for z" € Xy, t <n—m

1

— 1 ~
M, (-|z"™) = 551 + (1 — n) Toe (-2 q)- (122)

with §; denoting the point mass at state 1, which parallels the
fact that

1 1 ~
M(-|y™) = 551 + (1 — n) T(|ly™), y™e8™. (123)
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By (R2) each event {X™ € X;} occurs with probability at

least —t— (1 — %)n_2m, and is independent of 7'. Therefore,

Er [E[D(M (X1 X, |F(1X™)]

b 1 n—2mn—m
> 1- =
> (177) X

Er [E[D(M(]

By (R3), the conditional joint law of (T, X;y1,...,X,) on
the event {X" € AX;} is the same as the joint law of
(T,Y1,...,Y,—¢). Thus, we may express the Bayes prediction
risk in the X chain as

Er [BID(M (1X_ ) IM(1X™)|X" € 2]

G <1 _ i) Er [EDTCY DITCY™ )]

Xi DI CIX)IXT € K] (124)

—
Ny

—
=

= <1 - i) (T Yy a Y™, (125)
where (a) follows from (122), (123), and the fact that for
distributions P, @ supported on S, D(ed; + (1 — €)P||ed1 +
(1-6)Q) = (1—-¢)D(P||Q); (b) is the mutual information
representation (20) of the Bayes prediction risk. Finally, the
lemma follows from (124), (125), and the chain rule

Z (T; Yn—ta|Y" ")

I ) — KT 5 1Y) — mog(k— 1),
s I(T;Y™) < H(Y™) < mlog(k — 1). O

b) Prior construction and lower bounding the mutual
information: We assume that k = 2kq+1 for some integer ky.
For simplicity of notation we replace S by YV =1,...,k — 1.
This does not affect the lower bound. Define an equivalent
relation on |Y|™~! given by the following rule: ™! and
y™ 1 are related if and only if 2™ ! = y™~! or 2™ =
y™—1 Let R,,_1 be a subset of V™1 that consists of exactly
one representative from each of the equivalent classes. As each
of the equivalent classes under this relation will have at
most two elements the total number of equivalent classes is
at least Iylmil, ie, |Rm_1| > M. We consider the
following prior: let u = {uum Ui Ji<jelko],em 1€ R 1 be iid
and uniformly distributed in [1/(4ko),3/(4ko)] and for each
i<gamle Rm 1 define wj m-1;,u U, 1O be
same as u;,m-1;. Let the transition matrix 7" be given by

w1
T(2j — 1|20 — 1, 2™ 1) = T(24]2, ™) = wjpm—1
1
)=
0

g

e m—1y __ . - om—1
T(2j|2i — 1, 2™ ) =T(2j — 1|24,z — Ujgm—1j,

i,jey,amteymnt (126)

One can check that the constructed 7 is a stochastic matrix and
satisfies the property (P), which enforces uniform stationary
distribution. Also each entry of T belongs to the interval
=1y 2]

Next we use the following lemma to derive estimation
guarantees on 7.
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Lemma 30: Suppose that 7" is an ™ x { transition matrix,
on state space Y™ with |Y| = ¢, satisfying T(z,41|2™) =

T(arfag™h), Vam™+! € (7 and T(ypily™) € [, %]
with 0 < ¢; < 1 < ¢3 for all y™*1 € [¢(]™*1. Then there is an
estimator 7" based on stationary trajectory Y™ simulated from
T such that

433 (m 4 1) 2™

B2
BIIT-TIE) < <

b

where

17Tl =

>

m+1

Ym+1ly™) = T (Yms1ly™))?

denotes the Frobenius norm.

For our purpose we will use the above lemma on T with
{=k—1,c1 =5,c0 = 3 . Therefore it follows that there exist
estimators IA“(Y”) and u(Y”) such that

E[[la(y™) — ull3]) <E[|T(Y"™)-TII}]

deg(m +1)(k — 1)2m
< 127
= AP —m) (127)

Here and below, we identify u = {uiwm‘lj}igj,;cm—leRm,l

,\ ~ R 1 ko (ko+1
and U = {ummflj}i<j7xm71€Rm7l as %
) <
w dimensional vectors.
Let h(X) = [—fx(z)logfx(z)dx denote the dif-

ferential entropy of a continuous random vector X with
density fx wrt the Lebesgue measure and h(X|Y) =
J —fxv(zy)log fx |y (z|y)dzdy the conditional differential
entropy (cf. e.g. [44]). Then

M= b
1<j€lkol,x™ 1 E€Rm_1
- _ W log(k — 1). (128)
Then
1y @ Iy
2 Hwa(r™)) = hiw) — hula(r™))
D hw) — b — a(Y™))

(@) 2 _
D [ (K2 = 1)
- 16
(&R (R~ )0~ m)
& 64meca(m + 1)(k — 1)2m+2

- (k —1)m+! o n—m
g Cm(k _ 1)m+1 :

- 32
128mecy (m+1)
W

for constant c,, = , where (a) is because u

and T are in one-to-one correspondence by (126); (b) fol-
lows from the data processing inequality; (c) is because
h(-) is translation invariant and concave; (d) follows from
the maxgmum entropy principle [44]: h(u — u(Y™)) <
B oa | (W 21) 1o glijg;;l)/s CE[J[a(y™) — u||g]), which
in turn is bounded by (127). Plugging this lower bound into
Lemma 29 completes the lower bound proof of Theorem 22.
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3) Proof of Lemma 30 via Pseudo Spectral Gap: In view
of Lemma 27 we get that the stationary distribution of 7 is
uniform over Y™, and there is a one-to-one correspondence
between the joint distribution of Y™*! and the transition
probabilities

]P [Ym+1 — ym-i-l}

1
= o Tlmaly™.  (129)

Consider the following estimator T: for Yma1 € [, let

n—m 1
=1 {Yturm:ymﬂ}

n—m

Clearly E[T (ym11]y™)] = €"P[ym+1ly™] = T(ym+1ly™).
Next we observe that the sequence of random variables
{Y”m}n "™ is a first-order Markov chain on [(]™1,
Let us denote its transition matrix by 7,,;1; and note
that its stationary distribution is given by w(a™T!) =
7T (amg1la™), a™ T € [()™FL. For the transition matrix
T'n+1, which must be non-reversible, the pseudo spectral gap
Vos(Tm+1) is defined as

T(ym-‘rl‘ym) ="

_ 7((T72+1)7'T77ﬁ+1)
Yos (Tm1) = max . :
where T ., 1is the adjoint of T,,;; defined as

T;;H—l W(bm+1)T(a7"+1‘b7n+1)/71'(am+1).
With these notations, the concentration inequality of [18,

Theorem 3.2] gives the following variance bound:

AP [Ym—i-l — ym+1]
Yos(Tm+1)(n — m)
AT (Ymiay™) ™
'YpS(Tm+1)(n - m) .

The following lemma bounds the pseudo spectral gap from
below.

Lemma 31: Let T € RY"* be the transition matrix of an
m-th order Markov chain (Y;);>1 over a discrete state space
Y with |Y| = ¢, and assume that

o all the entries of 7' lie in the interval [%, %] for some

absolute constants 0 < ¢1 < ¢9;

o T has the uniform stationary distribution on [¢]™.

Let Tyhy1 € R e the transition matrix of the

first-order Markov chain ((Y;, Y41, -, Yi4m))t>1. Then we
have

(bm+1|am+1) —

Var(T (ym41ly™)) <™ -

£2m .

2m+3
G

Tm Z T AN
’YPS( +1) 02(m+ 1)

Consequently, we have

E[|T-T| =

< >

ymHlegm+t

_Aeg(m+ 1)

e

>

ymtie[gm+t

dea(m+ D™ T(Ym1ly™)

c%’”*g n—m

Var (T (Ym1]y™))

n—m)’

completing the proof.
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of Lemma 31: As T,4; is a first-order

Proof
Markov chain, the stochastic matrix Tﬁn"ill defines the
erter) to

probabilities of transition from (Y3, Yiyq,--

(Yitma1, Yitms2, 5 Yey2ms1). By our assumption on T
. m+1/ 2m—+2
min. T (a'm+2 |a

m+1)
a2m+2 cy2m+2

C7n-|—1
2m—+1—t 1
2 I |T A2m+2— t|a7n+2 t ) > fm+1°
t=0

(130)

Given any o™t pm+l € Y™+l using the above inequality
we have

(Tt

= > T
m+
y,EYmtl Ly eym+l

m—1

H 1 (Ym—t41Ym—t)

l)m—i-l (bm+1 ‘am—&-l)

L (0" y )

: Tm—i—l (yl |am+1)

y, Y™t Ly, eymtl
m—1
) H ﬂ-(ymft+1)Tm+1(ym*t|ym7t+1)
t=1 ’/T(ymft)
71'(yl)Tm-i-l(am—s_l|Z’J1)
(@m0
77([)7’L+1)
= w(amt) Z

Yy, EYFL Ly, €Yt

(0" ) L1 (Y,
T(Yun)

)

T 1 (Y0

m—1
. { H Terl(ymtymtJrl)} Tm+1(am+1|y1)

1
bm-&-l 41 1 1
Tm ( m |b7n )

)
am+1) m+1

T (0™ T (b1 [™) 1) st sty < €0
— Tm m m > =
w(bm)T(amH\am) m+1 ( |b ) = €m+1
(131)

Using (130),(131) we get

. * m-+1pm-+1 m+1; m+1
amﬁ’b{,{lgleynﬂ{(TmH) Tty } (0" Ha™ )

. * m+1/ ym+1| m+1
> ¥ Lomin (T ) @
am+1 gm+lgym+1
dm+1gym+1
( min e Gl ))
b7n+1$drn+1€y'm+l
2m—+3 2m—+3
‘1 ‘1
C2£2m+2 — 02€m+1

Y

(132)

dm+1lcym+1

As (T, )™ T is an 1 x ™+ stochastic matrix,

we can use Lemma 32 to get the lower bound on its spectral
2m+3
gap V(L) ™ T ) > S
2m—+43

* m m—+41
7((Tm+1) L+1Tmi1) > C1 (133)
m+1 co(m+1)

as required. A more generalized version of Lemma 32 can be
found in from [54].

Hence we get

Yps (Tny1) 2
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Lemma 32: Suppose that A is a d x d stochastic matrix
with min; ; A;; > €. Then for any eigenvalue A of A other
than 1 we have |A| <1 — de.

Proof: Suppose that A is an eigenvalue of A other than 1
with non-zero left eigenvector v, i.e. \v; = Zf 1 VA, =
;d. As A is a stochastic matrix we know that ), A;; =

1 for all % and hence Zl 1 v; = 0. This implies
d
= qu (A
i=1
d
== lul(Ay; — )
i=1

with the last equality following from A;; > e. Summing over
j=1,...d in the above equation and dividing by ijl |vs]
we get |\| <1 — de as required. O

O

|\vj| =

(134)

-
>

VI. EXTENSIONS TO OTHER LOSS FUNCTIONS

As mentioned in Section I-A, standard arguments based on
concentration inequalities inevitably rely on mixing conditions
such as the spectral gap. In contrast, the risk bound in
Theorem 1, which is free of any mixing condition, is enabled
by powerful techniques from universal compression which
bound the redundancy by the pointwise maximum over all
trajectories combined with information-theoretic or combina-
torial argument. This program only relies on the Markovity of
the process rather than stationarity or spectral gap assumptions.
The limitation of this approach, however, is that the reduction
between prediction and redundancy crucially depends on the
form of the KL loss function in (1), which allows one to use
the mutual information representation and the chain rule to
relate individual risks to the cumulative risk.

In this section we present some preliminary results where
the prediction risk are measure by other f-divergences. Let us
first mention that for certain f-divergences the minimax risk
is infinite. For example, consider the reverse KL loss, where
the prediction loss is assessed by D(M ( | Xn) || M (- X)) as
opposed to D(M (- |Xn)||M( | X)) in (1). This is somewhat
surprising because for iid data, it is easy to show that the
optimal rate of the reverse KL risk is ©(£) for k = O(n),
achieved simply by the empirical distribution. To see why
for Markov chains the reserve KL risk is infinite, consider
a chain which visits state 1 at time n for the first time, which
happens with some positive probability, and we are tasked to
estimate the first row of the transition matrix P(-) = M (-|1),
despite that no sample from P is available whatsoever. Since
supp inf 5 D(PHP) = 00, the worst-case reverse KL loss is
also 1nﬁn1te In contrast, sup p D(P||Uniform([k])) = logk <
00, and the add-one estimator (5) will precisely output uniform
if the state 1 was never observed previously; as such, the usual
KL prediction loss is finite, as characterized

Next, we focus on the fotal variation and the x2-divergence.
For simplicity, we focus on stationary reversible first-order
Markov chains.
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A. Total Variation

Consider the counterpart for the minimax risk (1), when
we replace the KL prediction loss by squared total variation,
namely,

Riskj %, 2 inf sup E[TV (M (| X,.), M (| X,))?

M 7m,M
k —
=infsup E[TV(M(:[i), M(-])*11x, =),
M omM i
(135)
where for distributions P,Q on [k], TV(P,Q) =

%Ele |P(i) — Q(7)|- The following bounds on the optimal
total variation risk are readily obtainable from the characteri-
zation of the KL risk: For all 3 < k < /n,

logn . k2 n

5 < Riski Y, < = log (ﬁ) .
Indeed, the upper bound follows from Theorem 1 plus
Pinsker’s inequality. For the lower bound, we apply the
construction for £ = 3 states from Section III-A and simply
notice from (40) that the lower bound therein is shown for the
squared error of estimating individual transition probabilities
and hence applies to the squared total variation.

The bound (136) shows that for small state space with 3 <
k = O(1), the optimal prediction risk measured in squared
total variation is @(loi ™), which is strictly slower than ©(1)
for iid processes on small alphabets. Determining the optimal
rate in total variation for binary or large state space is an
outstanding question. In particular, the lower bound strategy
in Section II1-B based on embedding a (k — 1)-state chain in
a k-state chain is no longer viable due to the lack of chain
rule for total variation.

(136)

B. x*-Loss

Next we extend the spectral gap dependent bound in The-
orem 3 to for the y2-divergence loss. Given any two discrete
distributions P = (Py,...P;) < Q = (Q1,...Q) on [k],
their y2-divergence is defined as

k 2
el -y Bt
i=1 g

(137)
. . 2

and oo if P % Q. Let Risky , (7o) denote the counterpart of

(9) with 2-loss, namely

. 2 . —
Risk), (v0) 2 inf sup B |x2(M(X,)[| M (|X))]
M MeMy(yo)

(138)

where the supremum is taken over all reversible Markov chains

with absolute spectral gap at least . Then we have the
following result. ,

Theorem 33: Given any k > 2, Riskzn(’yo) < %%

Proof: The proof is similar to that of Theorem 3(i). Fix

v € (0,1). Assuming the chain terminates in state 1 we

bound the risk of estimating the first row by the add-one

estimator M+1(j|1) = 1]\(]111:161 with O (£). By symmetry then
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the overall risk bound becomes O (%2) In particular, under
the absolute spectral gap condition of v, > 7y, we show

B [10c,-x® (MEDIAT ()] £ 2
We decompose the left hand side in (139) based on N; as
E |1, (MO () |
= E |10z (MEDITH )|
FE [10s ¢ (MO ()]

where the atypical set A< and the typical set A~are defined
as before in (74)

AS £{X, =1,N; < (n—1)m/2},

A> 2 {X, =1,N > (n— 1)m/2}.
For the atypical case, note the following deterministic property

of the add-one estimator. Let () be an add-one estimator
with sample size n and alphabet size k of the form @Q; =

(139)

’:ljkl where > n; = n. Since @ is bounded below by nik
everywhere, for any distribution P, we have
(PQ) < (n+k). (140)

Applying this bound on the event A<, we have for any s > 0
E[1paz ) (MODIT ()]

< (nm +k)P[X, =1,N; < (n—1)m/2]

(a)
< Lnmq.<sym (071 + F)

E [(N1 (= Dm)* X, = 1}
nint/16

+ l{nm%>s}7rl (nmy + k)

®) s (s
Stz (544)

1 1
+ Linmiy, >} (01 + k) n27m172 + nirdyA

©1 (s sk 1 1 1
S {2+}+{nm*>8}<2+224
n ’V* ,y* n ’Y* nﬂ—I’Y*

RN,
nmy: o ntmiyl

<l i+%+i+ 1 _|_i_|_ k
TnlyE o i PR s S

where we got (a) from Markov inequality, (b) from
Lemma 16(iii). Plugging s = 10 we get
— k
E{1 2(M-1 M“~1)}< as
e (MO )] £ 5 < 50 a4

Next we bound E [1{A>}x2 (M(\l)H]\/J\“(H)ﬂ Define
(M(i[1)Ny — Ny, + M(i|U)k — 1)°

(N1 + k) (N1 + 1)
As Y2(M(|D)||MFL(1)) = S°¥ | A; it suffices to bound

E [1{A>}A¢] for each ¢. For some » > 1 to be optimized
later consider the following cases separately

A=
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(a)

(b)

nmy < ror nmy M (4]1) < 10: We have

1 M (i|1)Ny — N1; + M(|1)k — 1)2

E[l{A>}A1} =K (a>y (MEDN ! Gy )
(N1 + k) (N1; + 1)

@ E [1{A>} (M(i]1)Ny — Nu)Q] T k2m M(i|1)2 +

~ nm1 + k

) mE [(M(m)J\r1 - Nli)2) Xp = 1]

<

~

1 kM (i1
L L kM)

nm1 + k
(142)

where (a) follows from N; > @ in A~ and the
fact that (z +y + 2)? < 3(2% + y* + 2?2); (b) uses the
assumption that either nmy < r or nm M (i|1) < 10.

Applying Lemma 16(i) and the fact that z + 22 < 2(1 +
VM)

2?), with x = -
continuing the last display we get

MG + (14 280) )y
n + n
L kMGl | MG

~ 2

n nyg

E [1{A>}Ai} <

Hence
E [1{A>}x2<M<-|1>||A7“<-|1>>}

rk 1
1{A>}A < i + 73

(143)

HM»

nm, > r and nmy M (4]1) > 10:
We decompose A~ based on count of Ny; into atypical
part BS and typical part B>

B2 (X, =1,N; > (n—
B2 {X,=1,N; > (n—

)m1/2,N1; <
1)7r1/2, Ny; >

(n — 1)m M(i[1)/4}
(n —1)m M(i[1)/4}

and bound each of E [1;5<,A;] and E [1;5>}4,] sep-
arately.
(i) Bound on E [1;5<,A;]: We have

E [1(p<)Ad]

_E 1ip<y (

M(i|1)Ny — Ny +M(i|1)k — 1)?
(N1+k) (N1;+1)

< {1{%} {(M(i|1)N1*Nu)2+k2M(i|1)2H T
~ nm +k
B mE [1{35} (M(i[1)N1 — Nu)Q‘ Xn = 1}

~

n
E2m M (i|1)?P[BS|X,, =1 1
| BmMGPIBX, = 1] | 1
nmy + k n

< E [I{Bg} (M(Z|1)N1 *Nli)2‘Xn = 1}

~

n

+ km M (i]1)*P[BS|X, = 1] + — (144)
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For the set B<, using the fourth moment bound from
Lemma 16(ii) and Markov inequality

P[BS|X, = 1]

<P [NlM(i|1) — Ny > wp{n -1
256E [(N1M(i[1) — Nij)*| X, = 1]

=T (- )mMGL) 4

We use the following bound on the above fourth
moment from Lemma 16(ii) with the inequality x +

rt <2(1 +2%), with . = ¥ Mfi‘l)
E [(N1 M (i[1) — N1;)*| X, = 1]
ML) M(i|1)?
S (nm M(il1)” + W“' )4 :L )

< (nmM(i[1))* +2 (1 + M:P) . (140

*

Then, for the first term in (144), using Cauchy-Schwarz
inequality, (145), and (146) we get

E [1{35} (M(i|1)N; — NU)Q‘ X, = 1}

< +/P[BS| X, = 1]

IE M@EN, — N X, = 1}

&

[( (i) Ny — Nli)4 | X, = 1}
< <1
~ (nmi M (i]1))? ~

T
(147)

For the second term, using Markov’s inequality with
the second moment to bound P[B=|X,, = 1] we get

71 M (i]1)P[BS|X,, = 1]
E[(M@1)N - Nii)? | X0 = 1]

SWIM(ZH) (717T1M(’L|1))2

1
S - <1 + 12> .
n Y5
Combining (147) and (148), in view of (144) we get
E [1{5<)Ai]

1 1 kM (i1 1
§<1+24>+ (|)<1+ 2)
n Y4 n TY%

|1
< L+ EM(iL) (1+ 14)
n

~ 2
™%

(i) Bound on E [1;5>1A;]: We have

E [1(5>)A]
_ g | Lz (MGIN — Nug + M1k — 1)?
a (N1 + k) (N + 1)

WE [1{B>} {(M(i|1)N1 - NU)Q}]
~ (nm+ k) (nm M3E1) 4+ 1)
k2m M (i[1)* +

(148)

(149)
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. 2 _ .
§ mE | (M(i[1)Ny — Ny;) ’X = 1} N kM (i]1)

~ (nm 4+ k)(nmi M (i]1) + 1) n

where (a) follows using properties of the set B~ along
with (z+y+2)? < 3(22+y*+22). Using Lemma 16(i)
we get
E [1(p>14]
nm M (i[1) + (1 + M)

< ) kM (i|1)
~ n(nm M (i|]1) + 1) n

< LHEM@L)  M(i[1)

~ n ng

Combining the last bound and (149) and summing
them over ¢ € [k], we get for nmy > r,nm M (i|1) >
10

E [1eas 1 (MG ()]
- i [E[1pey ] +E[15)A1] 5 % (1+ 74) '

i=1

Combining this with (143) we obtain

—~ k 1
E (10 p MDA )] $ 5 (r+ — )
s X (MCDIMTC)| S Tt
where we chose » = 10 for the last inequality. In view of
(141) this implies the required bound.
O

VII. DISCUSSIONS AND OPEN PROBLEMS

We discuss the assumptions and implications of our results
as well as related open problems.

a) Very large state space: Theorem 1 determines the
optimal prediction risk under the assumption of k < /n.
When k = /n, Theorem 1 shows that the KL risk is bounded
away from zero. However, as the KL risk can be as large as
log k, it is a meaningful question to determine the optimal
rate in this case, which, thanks to the general reduction in
(11), reduces to determining the redundancy for symmetric and
general Markov chains. For iid data, the minimax pointwise
redundancy is known to be nlog £ + O(%) [48, Theorem 1]
when k > n. Since the average and pointwise redundancy
usually behave similarly, for Markov chains it is reasonable
to conjecture that the redundancy is O(n log %2) in the large
alphabet regime of k¥ 2 \/n, which, in view of (11), would
imply the optimal prediction risk is ©(log %2) for k > /n.
In comparison, we note that the prediction risk is at most log k,
achieved by the uniform distribution.

b) Stationarity: As mentioned above, the redundancy
result in Lemma 7 (see also [26], [27]) holds for nonstationary
Markov chains as well. However, our redundancy-based risk
upper bound in Lemma 6 crucially relies on stationarity.
It is unclear whether the result of Theorem 1 carries over to
nonstationary chains.
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APPENDIX A
MUTUAL INFORMATION REPRESENTATION
OF PREDICTION RISK

The following lemma justifies the representation (22) for
the prediction risk as maximal conditional mutual information.
Unlike (17) for redundancy which holds essentially without
any condition [45], here we impose certain compactness
assumptions which hold finite alphabets such as finite-state
Markov chains studied in this paper.

Lemma 34: Let X be finite and let © be a compact subset
of R%. Given {Pxn+1jg : 0 € ©}, define the prediction risk

Risk,, = inf sup D(PXn,+1|X7L,9||QX7,,+1|X" PX7L|9),
QX7L+1‘X” 0cO
(150)
Then
Risk, = sup I(0;Xp41]X™). (151)

PyeM(O©)

where M (©) denotes the collection of all (Borel) probability
measures on ©O.

Note that for stationary Markov chains, (22) follows from
Lemma 34 since one can take 6 to be the joint distribution of
(X1,...,Xp41) itself which forms a compact subset of the
probability simplex on X"+1,

Proof: 1Tt is clear that (150) is equivalent to

Risky,

= inf sup
Qx,,111X" PyeM(O)

D(Px,  ,1xn0llQx, x| Pxn ). (152)

By the variational representation (14) of conditional mutual
information, we have

I(9§X71+1|Xn)

= inf
Qx,pq1xn

(153)

D(Px, ,1x»0llQx, x| Pxn0)

Thus (151) amounts to justifying the interchange of infimum

and supremum in (150). It suffices to prove the upper bound.
Let |X| = K. For € € (0,1), define an auxiliary quantity:

inf sup
QXn+1 X" 2% Py eM(O)

D(PXn+1 ‘Xn70||QXn+l | X" |PX"79)a

where the constraint in the infimum is pointwise, namely,
QXpir=2ns1|Xn=an = 7z forall xy, ..., xy1 € X. By defi-
nition, we have Risk,, < Risk,, .. Furthermore, Risk,, . can be
equivalently written as

Risky,

= inf sup
Qx, 111X" Pye M(O)

D(Px, ., |x»oll(1 —€)Qx,,,1x~» + €U|[Pxnp),

where U denotes the uniform distribution on X'.

We first show that the infimum and supremum in (155)
can be interchanged. This follows from the standard minimax
theorem. Indeed, note that D(Px,, ,|x» ll(1—€)Qx, ,|x» +
€U|Pxn ) is convex in Qx, ,,|x», affine in Py, continuous

Risky, ¢ £

(154)

(155)
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in each argument, and takes values in [0,log £]. Since M(0©)
is convex and weakly compact (by Prokhorov’s theorem) and
the collection of conditional distributions Qx| x~ is convex,
the minimax theorem (see, e.g., [55, Theorem 2]) yields

Risky, e

= sup inf
TEM(O) @y IX7

D(Px, ., 1x»oll(1 —€)Qx,,,|x» +€U|Pxng).  (156)

Finally, by the convexity of the KL divergence, for any P on
X, we have

D(P[|(1 - €)@+ eU) <(1 - €)D(P[Q) + eD(P||U)
<

(1-€e)D(P||Q) +elog K, (157)

which, in view of (153) and (156), implies

Risk,, < Risk, . < sup I(6;Xp4+1]|X") + elog K.

PyeM(©)

By the arbitrariness of ¢, (151) follows. ([l

APPENDIX B
PROOF OF LEMMA 16

Recall that for any irreducible and reversible finite states
transition matrix M with stationary distribution 7 the follow-
ings are satisfied:

1) m; > 0 for all 7.
2) M(jli)m; = M(i|j)m; for all 4, 5.
The following is a direct consequence of the Markov

property.

Lemma 35: Forany 1 <t <--- <t,, <--- <t and any

Zy=f(Xps--, X0,), Z1 =9 (Xtpy_1»- .- X1y ) We have
E [Zo1(x,, - 211X = i
=E|[2:|Xy,, = j]E [1(x,, = 21| X1 = 1] (158)

For ¢ > 0, denote the t¢-step transition probability by
P[X:y1 = j| X1 = 4] = M*'(j|i), which is the ijth entry of
M?. The following result is standard (see, e.g., [17, Chap. 12]).
We include the proof mainly for the purpose of introducing
the spectral decomposition.

Lemma 36: Define A\, = 1 — 7, = max {|\;| : i # 1}. For
any ¢ > 0, [M'(jli) — ;] < XL

Proof: Throughout the proof all vectors are column
vectors except for m. Let D, denote the diagonlal matrilx
with entries D, (i,7) = ;. By reversibility, DZM D, 2,
which shares the same spectrum with M, is a symmetrlc
matrix and admits the spectral decomposition D MD,
Z§=1 Aatiqu,] for some orthonormal basis {uy, ... ,uk}, in
particular, A\; = 1 and wuy; = \/m;. Then for each ¢t > 1,

k k
_1 1 1 1
=Y ADr2ugu) DF =17+ A Di*ugu) D2

a=1 a=2

(159)

3953
where 1 is the all-ones vector. As u,’s satisfy Za 1 Uqtty =1
we get SF_ w2, =1—u2 <1forany b=1,. k.Usmg

this along with Cauchy-Schwarz inequality we get

‘Mt (41%) _7TJ| < \ 7 Z‘)‘ ‘ |Uaitias]

o (5] (E0)

as required. (]
Lemma 37: Fix states i, j. For any integers a > b > 1,
define for s = 1,2,3,4

hs(a,b) = |E [1x, = (Lixa=sy — Ml0)" |Xp = ]|

Then

(i) hi(a,b) <2/M(jli)\e°
(i) |h2(a,b) — m; M (j]i)(1 —
(i)

D))l < 4/ATGTA.

hg(a, b), h4(a, b)
< mM(jli)(1 = M(j]8)) + 4/ M(jli) AL~
Proof: We apply Lemma 36 and time reversibility:
()
hi(a,b) = |P[Xap1 =1, Xoq = j| Xp = 1]
—M(j|i)P [Xot1 = i|Xp = ]|
= | M(i|) M (jli) — M(jli) M~ (il3) |
< M(il7) [ M°(jli) —
+ M(j|i) [ MO (i) — |
< XSTOM(il) | 2+ M(jli)Ae b
U
= N0V ML) M (6l 5) + M(Gli)ag =
<2/ M(jl)AL".
(ii)
|ha(a, b) —m M (j]i)(1 — M(jli))]
= ‘E (L, =i xamjy| Xo = i] — m M (ji)
+ (M(j10)° (B [1gx, =i | Xp = i] — )
= 2M (jli) (B [1yx,, =i, x0mj} | Xp = 1] — 7 M
<P [Xop1 =i, Xo = j|Xp = 1] — m; M(i7)]
+ (M(j]0))? P [Xag1 = i Xp = i] —
+ 2M(J|Z) |P[Xa+1 =i, Xq = ]|Xb = i}_
= M (il ) |M*~*(jli) — 7]
+ (M (jli))* | M (ili) — 7
+ 2M (jl8) M (il ) [M*~°(j|d) — ;]

M{il7) /XS0 4 (M(jli))2Ae 0+
U
+ 2M (Gli) M (ilj) | LN

(41%))

M{(il)|
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B. Case II: Single Index

S Wivin '” MU | (ar(jliy)?

n—1 n—1
M (i|j)m; 2 I
M (gli) /TG T S E[EX: =i = 3 ha(a.)
[ a=1 a=1
I o /MG
< 4/ MGIN. S nm M) - M) + Y e
(iii) hs(a,b), ha(a,b) < ho(a,d). Combining the above we get
O
. E [ N X, = }
Proof of Lemma 16(i): For ease of notation we use cq to ( M{jli)N. | !
denote an absolute constant whose value may vary at each < M M( j |z M
occurrence. Fix 4,7 € [k]. Note that the emplrlcal count S nmiM(jli)(1 72
defined in (4) can be written as INV; = Za 1 Yix,_,= and )
Nij =S 1y Then as required. O
“ a=1 H{Xn-a=tXn-at1=5}- Proof of Lemma 16(ii): We first note that due to reversibility
we can write (similar as in proof of Lemma 16(i)) with n, =
M (jli)N: — Nz]) | Xy = Z] Lix, . .= (1{Xa,:j} — M(]|Z)>
2
Lix, uii=j} . E [(M(jli)Ni — Nij)* | Xn = i]
e[ (B recs () o=
Z { =i} —M(jli) N 4 |
) Zl{xaH—Z} (Lixo=p = M(jl0) | | X1 =1
@) {Xa=3} _
(B () s
E [nanpnane| X1 = i
(b)
= ZE [Manp| X1 = i]| < 22 |E [nam| X1 = ]|, Z E[nanbndnele =il$ > [Enamnanel X1 =1]|.
a,b a>b b,d,e a>b>d>e

(162)

where (a) is due to time reversibility; in (b) we defined Wwe bound the sum over different combinations of a > b >

M = L{Xar1=i} (Lix,=j3 — M(jli)). We divide the sum- 7 > ¢ 1o come up with a bound on the required fourth moment.
mands into different cases and apply Lemma 37. We first divide the 7’s into groups depending on how many
distinct indices of 7) there are. We use the following identities
which follow from Lemma 35: for indices a > b >d > e
A. Case I: Two Distinct Indices o |E [namynane| X1 =1]| = h1(a,b+1)hy(b,d+1)hi(d, e+
1)h1 (6, 1)
e For S1, 82,53 € {132}? ‘E[% 771, nd3|X1 *Z” =
hsy(a, b+ 1)hs,(b,d+ 1)hs,(d, 1)

For any a > b, using Lemma 35 we get

|E [namp| X1 = i]| = |E [0a|Xp41 = 4]| [E [ X1 = 1]| « For s1,85 € {1,2,3}, |[E[n22 X1 = ]| = ha, (a,b +
= h(a,b+ 1)h(b,1) (160) Dhs, (b, 1)
o E[ni| X1 =1] = hy(a,1)
which implies and then use Lemma 37 to bound the A functions.
n%(};ﬂ [E [ | X1 =] C. Case I: Four Distinct Indices
_ ZZ hi(a, b+ 1)y (b, 1) Using Lemma 37 we have
notzazbl DN E ampnanel Xa = |
< M ]l ZZ )\a 2 < | ) n—1>a>b>d>e>1
n-1>a>b>1 7 = 337> hala,b+ Dha(b,d+ 1)ha(d,e + 1)ha(e, 1)

n—1>a>b>d>e>1
Here the last.mequahty (and similar sums in later deductions) < M(j}) Z Z Z Z Ae4 < | )
can be explained as follows. Note that for 7. > 5 (i.e. A\« <
%), the sum is clearly bounded by an absolute constant; for
Y < % (e Ay > %), we compare the sum with the mean (or
higher moments in other calculations) of a geometric random
variable. There are three cases, namely 727,74, o714 and 7,177

n—1>a>b>d>e>1

D. Case II: Three Distinct Indices
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3955
1) Bounding 3" 33", 15 0spsast |E [m2mnal X1 =d]|: 1) Bounding 333, 55 4sp51 |E [12051 X0 = 1] [:
.Y E[ninglXi =4
D> [E [mimnal Xo =] n-2zizb21
n—1>a>b>d>1 = > > ha(a,b+1)ha(b,1)
- ha(a,b+ 1)hy (b,d + 1)h(d, 1) nEe
n,zlng% S 20X (mMGIA - M) + VMGRAST)
n—2>a>b>1
< M (5]3) (1 — M (i » . —
~n;§§l(“ (I = M(j]7)) (=M (1 = MGl + /MG )
R e . < mM(Gli)(1 = M) VMG + AL
/TGN 1) MGl RRE
3 o o). 2 Sy ya—2
M54 N e M(j]i)? + (mM (1) (1= M(G1))? + M(jli)As—2}
< . _ i Co D
S g MG = M) + =2 < (nm MGl (1 — M(31i)))°
1) i1)2 M(jl7) - L MGl
< (M (li)(1 - M(Glay)y? + LU | M) MG (L= M) + =
3 Ve Ml
< b Gl — MG + 2.
where the last inequality followed by using zy < 22 +y2. _ 5 oL
2) Bounding 323" 3" osaspsasi |E [nanina X1 = i]|: 2) Bounding >0 3", 554up> ’E [mame| X1 = i]|:
SN IR mlxa =]
2> [ElnaminalXy =1 noazesbzl
n—2>a>b>d>1 = > > hs(a,b+1)ha(b,1)
n—2>a>b>1
_ hi(a,b+ 1)ha(b,d + 1)hy(d, 1) mehs N
négél S DY (mMGIO - MGl + VMG
n—2>a>b>1
< mM(jli)(1 — M(jli T —
~ n%;;);l( (l)( (j17)) \/Wﬂ 1
- - _b,d,1 S\ ya—btd—2 < M(]‘Z) . Sl _ -l M(]Il)
/MG )M(]|z))\* S AT em Ml = M) + =
M (j]i . L M(ji)? < (s MO — Milomn? o+ MUlD)
< gi Vb (31i) (1 — ba(iliy) + 2LU12 S (rm M1 (1 = M(Gli)* + =5
i) 3 i19)2 3) Bounding 250 E [nan?| X1 = i||:
S (1)1 - Ml0)? + I 4 U oz [E =)
>.> 0 [E Xy =]
3) Bounding >33 3", osospsast |E [namm3| X1 =] |: n—2>a>b>1

= 33" ha(ab+1)hs(b,1)
Z Z Z |E [nameni| X1 = ]| n—2>a>b>1

n—2>a>b>d>1 Y (mM(j|i)(1 —M(j|i))+,/M7(j|¢)Ag—1)
= hi(a,b+1)hy(b,d + 1)hy(d, 1) n—2za>bz1
St O IO .
< T i) (1 — ili M(j|i . . M(jl7
S 22,0, (MU - MGlo) < YU mar il - ar(i) + 2191
FVATGIN) MGl < (Gl (1 — mgliy? + 210
MG e M) *
~ox MU A v F. Case 1V: Single Index

M(jli)% M(jli)?
ala? | MG

Bounding 3" "_! B[54 X, = i:
gk 7

n—1
Z E [7]3|X1 = ’L]
a=1

< (nmM(jli) (1 — M (j]i)))* +

E. Case III: Two Distinct Indices M(jli)

= 3 e, Dm (Gl - dr(G1) + Y

There are three different cases, namely 212, n3n;, and 7,7} .
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Combining all cases we get
72 —m; Z ul \a~b

E [(M(j|i)N; — Nij)* | X, = Z} v>2
\/ |2 M

< (M) (1 — M(j Iy MU s apet ] (St ) - w3 e

3 . T ’Y* v>2 v>2 v>2

L Myl)E M (ji)?
g Vi \/; ST | (D oud | AT DY ul <2
.. ]7/ M ]| v>2 v>2 v>2
< ) _
as required. 0 We also get ford > e

Proof of Lemma 16(iii): Throughout our proof we repeatedly |Md (ild) M~ 1( i) — W-Md’l(i|z')|
use the spectral decomposition (159) applied to the diagonal ’

elements:
=||m+ Zum)\ﬁ T+ Zum)\i !
MUGili) = m+ > Mul, Y ul <1 V2 v>2
v>2 v>2
, ‘ d—1
Write N; — (n — 1)m; = 22;11 §a Where &, = 1¢x,—;) — ;. A Zuvl)‘v
Fora>b>d>e, v>2
— mz u2 N 4 WZZ u2 \i=¢
E [§a§b§d€e|X1 = 71} v>2 v>2

_E|eg, lix =i x. =i} — Til{x,=i} X, =i
¢ _’/Ti]-{Xe:i} +7TZ2

2 ye—1 d—e d—1
E um'/\v § uv'L)‘ _TrZE :UU1>\

=E [&a&1(x,mi x, =i} | X1 = 1] v22 v=22 v22
— mE [€a61 x4y | X1 = 1] <A+ AT+ mAle (165)
— mE [€a&olix. =iy | X1 = 1] + m7E [£&| X1 = i] This implies
= ElGabolXa =P [Xa = il Xe = PLXe =ilXs =d] | [g,6| Xy = )| | M2 6la) e 6ld) — m: M= (i)
— 7TZ'E [£a£b|Xd = Z] P[Xd = Z|X1 = Z]
— mE [£.&| Xe = i| P[X, = i|X) = 1] < m Y us ATt 2xe | (248 4 mAT + mAde)
E [£ap| X1 = 1] v22

= B (€6 Xg = i) { M=) M1 (ii) — mM4=1(6l)} < (M7 +20070) (AT + AT+ mal )
— {mE [y Xo = i] MY (i]i) — 72K [£aby| X1 = 1]} < 4 [r2agmbrd-e 4 p2ya-bhesd
(163) oy (ATETATL g \amdtel 4 yamey 4 xeT] (166)

Using the Markov property for any d < b < a, we get Using (164) along with Lemma 36 for any e < b < a we get
) | [€abp| Xe = i) M (ili) — 77K [£0&| X1 = 1|
El¢a&p|Xa =] = mi > ul Xy < i [E [€ab| Xe = il [ M1 (ili) — i)
v>2
2 .
= B [Lixa=ix=i — milic=y — Tl TmXa =1 422 Bl X =i —m > uZ A (167)
v>2
—WlZum)\g b
v=2 +7T E[€a§b|X1 =1 77”2“1)1)‘2])‘ ’
= [ MP (i) MO~ (ifi) — m M (ii) — m MO~ (il4) v>2
+7ri2 — Zum)\g b <m |m Zum)\ﬁ b4 2M$TE 208 s 27r2)\a ¢+ 27r2)\a 1
v>2 v>2
< o2 ambteml o gp2aame 4o g2 el (168)
_ _ a—b _ b—d
il 2 Xy || et 2 wN This together with (166) and (163) implies
Z = |E[€a£b£d§p|X1*Z]|<ﬂ- (Aa b+d— 8+Aa b+e— 1)+)\a 1
—1T; 7ri+Zum)\ﬁ d — T 7TZ'+Z’LLM>\Z d +7TZ' ()\Z btd— 1—’-)\2 d+e— 1+)\$ e).
v>2 v>2 (169)
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To bound the sumovern—1>a >b>d > ¢ > 1, we divide
the analysis according to the number of distinct ordered indices
related variations in terms.

G. Case I: four Distinct Indices

We sum (169) over all possible a > b > d > e.
e For the first term,

2 ZZZZ Ao—btd—e <

n—1>a>b>d>e>1
2.2

< nem;
72
e For the second term,

IEEE

n— 1>a>b>d>e>1

- D

7* n—1>a>b>3

ZZ )\ab

n—1>a>b>3

o For the third term,

2.2 D MR

n—1>a>b>d>e>1

> oantso
Vs

n—1>a>4
o For the fourth term,

253)3) %) SITEEIE IS 3) SSTSL

n—1>a>b>d>e>1

e For the fifth term,

IS W

n—1>a>b>d>e>1
S DI
~ *
T n—1>a>b>3 a>2 *

e For the sixth term,

DI IPBE

n—1>a>b>d>e>1

b—1
<m< S )\Z‘b> (Z/\Z‘d) (ZV ) ”7“.
n—1>a>b>3 d>2 e>1

Combining the above bounds and using the fact that ab <
a® + b?, we obtain

SINNTY T B[ €ate X =]

n—1>a>b>d>e>1

2,2 22

nem; nm; 1 nem; 1

< : L= (170)

~ o2 yvooye ™ 2 At

H. Case II: Three Distinct Indices

There are three cases, namely, £,&7E., £,6E2, and E26pE..

D Bounding 35330, 1zanpment B [G€lEc Xy =]
We specialize (169) with b = d to get
+ A2

|E [€aé2€c| X1 = 4] | S m (A270Femt 4 xe7e)

Summing over a, b, e we have

DO B[l xa = ]|

n—1>a>b>e>1

SN {m (Ai*”“*l + Ai*e) + Ai’l}

n— 1>u.>b>e>1

D2 N

n—1>a>b>2

—|—m< > Xi‘b> (b_zl/\’;“">+ D

fY*

n—1>a>b>2 e>1 n—1>a>3
) 2 2
gomy Lonm L (171)
Y Vi Y Y

with last inequality following from zy < 2% + y2.

2) Bounding 323030, 1saspnent |B [C&21 X0 =1][:
We specialize (169) with e = d to get

|E [€aép€2] X1 = ]|
STAT o (AT AT Al
Summing over a, b, e and applying (171), we get

NN [E (&gl X =il

n—1>a>b>e>1
2)\(1 b+>\a 1 }

zzz{ﬂvwﬂﬂw)

n—1>a>b>e>1

it S5 N

n—1>a>b>2
2, 2 ) 2_2
gy Loy 1 (172)
Y 2oy 2o

3) Bounding 353030, 1sanpnen B [8260€[ X0 =] :
Specializing (169) with ¢ = b we get
|E [&h€age| X1 = i]|
m (T AT

F AT o (AT ALt

+A79),
which is equivalent to
|E [€36c|1 X1 = ]|
S AT+ AT
AT oy (AU AeTben g ey
For the first, second and fourth terms

D2 D AR (A malt)

n— 1>a>b>e>1

DS

n—1>a>b>2

Us nm;

Ve y2’

Vx

and for summing the remaining terms we use (171),
which implies

2.0 D [Blgasdx =1
n—1>a>b>e>1
n’n?  nm 1 n’n? 1
S 2 73§ 2 ~3° (173)

Y Vi Vi Vi Vi
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1. Case III: Two Distinct Indices

There are three cases, namely, 1212, 7,12 and 127,

1) Bounding >3 1s,ses; E[€2€2[ X1 =i]: Specializ-
ing (169) for a = b and e = d we get

E[€282|X = 4] Sm?+m (AT +A27%) 4 aeh

Summing up over a, e we have

> E[eeX =]
n—1>a>e>1
ZZ {mf+m (AT HAT) + A
n—1>a>e>1
<22 4 nf 42 (174)

2) Bounding >_ )7, 15.seny |E [£a&3| X1 = i]|: Special-
izing (169) for e = b = d we get
|E [6&3|1 X1 = i]| S mAl™ e+ AL!
which sums up to

SN B [&gl Xy =]

n—1>a>e>1
n X e TF wtetmal
n—1>a>e>1 n—1>a>e>1 7*
(175)

3) Bounding >3, 15,2 |E [€3€| X1 = i]|: Specializ-
ing (169) for a = b = d we get

|E (€36 X1 = ]| S m (A0 4+ A7h) + xe !
which sums up to

YD E[EE]X =]

n—1>a>e>1

SN fm ey a1y

n—1>a>e>1 T+ T
(176)
J. Case 1V: Single Distinct Index
We specialize (169) to a = b = d = e to get
E [fé‘Xl = Z] 5 Uy + )\571.

Summing the above over a

n—1

ZE (a1 =] <n7r1—|—— (177)

a=1

Combining (170)~(177) and using %% < ™22 + L we get
n2ﬂ'2 1

v

~

E [(Ni (- D)m)t X = z}
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