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Abstract
Linguistic analysis is a core task in the pro-
cess of documenting, analyzing, and describing
endangered and less-studied languages. In ad-
dition to providing insight into the properties
of the language being studied, having tools to
automatically label words in a language for
grammatical category and morphological fea-
tures can support a range of applications useful
for language pedagogy and revitalization. At
the same time, most modern NLP methods for
these tasks require both large amounts of data
in the language and compute costs well beyond
the capacity of most research groups and lan-
guage communities.

In this paper, we present a gloss-to-gloss (g2g)
model for linguistic analysis (specifically, mor-
phological analysis and part-of-speech tagging)
that is lightweight in terms of both data require-
ments and computational expense.

The model is designed for the interlinear
glossed text (IGT) format, in which we expect
the source text of a sentence in a low-resource
language, a translation of that sentence into a
language of wider communication, and a de-
tailed glossing of the morphological properties
of each word in the sentence. We first produce
silver standard parallel glossed data by auto-
matically labeling the high-resource translation.
The model then learns to transform source lan-
guage morphological labels into output labels
for the target language, mediated by a struc-
tured linguistic representation layer. We test the
model on both low-resource and high-resource
languages, and find that our simple CNN-based
model achieves comparable performance to a
state-of-the-art transformer-based model, at a
fraction of the computational cost.

1 Introduction

Linguistic analysis is a core task in the documenta-
tion, analysis, and description of endangered and
less-studied languages. One frequent goal of lan-
guage documentation projects is to produce a cor-
pus of interlinear glossed texts, or IGT (Figure 1

Figure 1: Example of IGT: Uspanteko (usp) sentence.

shows an example from the Mayan language Us-
panteko). IGT can take many different forms, but
canonically consists of the target language sen-
tence, morphological segmentation of each word,
glossing of each word with its stem translation and
any relevant morphosyntactic features, and a trans-
lation into a language of wider communication.
In addition to providing insight into the proper-

ties of the language being studied, the linguistic
information in IGT can support a range of applica-
tions useful for language teaching and revitaliza-
tion. Modern NLP methods typically require both
large amounts of annotated data in the target lan-
guage and compute resources beyond the capacity
of most research groups and language communities.
In this paper we address the task of lightweight
morpheme labeling in context (McCarthy et al.,
2019), developing a model which achieves reason-
able accuracy with minimal requirements for both
labeled data and computational expense.
Following previous work (Moeller and Hulden,

2021; Moeller et al., 2021; McMillan-Major, 2020;
Zhao et al., 2020; Baldridge and Palmer, 2009,
among others), we aim to predict the parts of
speech (POS) and morphosyntactic features for
each word in the target sentence, producing the
third line of Figure 1, with stem translations re-
placed by POS labels. This model can produce
a first-pass labeling for correction by human ex-
perts working on the documentation project, saving
large amounts of time (as shown by Baldridge and
Palmer, 2009) and freeing experts to work on more
complex aspects of linguistic analysis.
To match the language documentation context,
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where we often have a transcription and translation
of the text before any other labeled data, we model
morpheme labeling as a translation task. Specifi-
cally, the model should learn to transform labels for
the high-resource translation into labels for the tar-
get language; hence the name gloss-to-gloss (g2g).
For initial model development, we use data la-

beled in the UniMorph1 format, so that we can test
the model’s performance on a range of languages.
Next, we test the same model on Uspanteko data
from a language documentation project (Pixabaj
et al., 2007), which involves the steps of:

a) Converting the morpheme labels from the Us-
panteko IGT into the UniMorph format, which
includes mapping Uspanteko-specific labels
into the UniMorph tag set;

b) Replacing stem translations (e.g. ropa
(clothes)) with part-of-speech labels;

c) Translating the Spanish translations of the Us-
panteko sentences into English, then automati-
cally labeling the English text with UniMorph
labels;

d) Using our g2g model to predict labels for the
Uspanteko sentences.

For step (a), the expected UniMorph representation
for the Uspanteko sentence above might be:

xk’amch ritz’iq
V;PFV;ALL N;ERG;3;PL

For example, the tag COM (completive aspect)
from the Uspanteko IGT is mapped to the Uni-
Morph label PFV (perfective aspect), and the tag
E3 (ergative 3rd person plural) is converted to the
UniMorph trio of ERG, 3, and PL.

Step (c) creates pseudo-parallel English data for
the texts. For Figure 1, this step yields the follow-
ing (noisy) morphological analysis:

[they]PRO;3;PL [brought]V;PST
[clothes]N;PL

Even in this simple example, we see that the mor-
phological information expressed in the two lan-
guages is similar but not identical, and the morpho-
logical features are distributed differently across
the words. Our model additionally incorporates a
layer that maps morpheme labels to their linguis-
tic dimensions, following the dimensions defined

1https://unimorph.github.io/

by the UniMorph schema (Sylak-Glassman, 2016).
Mapping to linguistic dimension is a first step to-
ward incorporating linguistic knowledge for the
task of morpheme glossing in context.
In step (d), we concatenate a vector of the En-

glish morpheme labels with static word embed-
dings for the English lexical items; this combined
representation serves as input to the final classifica-
tion layers, whose task is to produce the appropriate
labels for the target language.
To keep computational demands low, we use a

rather simple CNN-based architecture, and com-
pare to a fine-tuned BERT (Devlin et al., 2019)
model. On standard evaluations, the CNN model
achieves performance comparable to the BERT
model, at a fraction of the computational expense.
The contributions of this work are:

1. A lightweight (low computational expense,
reasonable data requirements) model for mor-
pheme labeling in context, with an architec-
ture designed for a modified IGT (interlinear
glossed text) format;

2. A simple structured linguistic representation
in the form of linguistic dimensions, used to
guide predictions;

3. Evaluation of the model on language docu-
mentation data (IGT) for the Mayan language
Uspanteko, and additional evaluations on a
range of high-resource languages.

We described related work in Section 2, our ap-
proach to data representation in Section 3, and
the model architecture in Section 4. Section 5
describes results for the high-resource language
development experiments, and Section 6 presents
our core results on IGT for Uspanteko. We wrap
up with discussion and conclusions.

2 Background and related work

One goal of this work is to develop time-saving
tools for use in the language documentation con-
text. Specifically, we aim to support the production
of interlinear glossed text (IGT) with a lightweight
model that can be run on a standard laptop, us-
ing whatever previously-produced IGT might be
available for the target language.

2.1 Computational support for IGT
IGT is a standard format for representing rich lin-
guistic information associated with text. It is a
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common representation in linguistic literature and
a frequent product of language documentation and
description projects.
At the same time, creating IGT is a time-

consuming and expertise-demanding process,
bringing together a collection of skilled tasks. De-
pending on the original data source, IGT produc-
tion may require transcription and translation of
recorded audio or video, as well as morphologi-
cal segmentation and morphological analysis. An
increasing amount of research effort has recently
been devoted to finding low-resource solutions for
each stage of the process, with work in transcription
(for example, Adams et al., 2017; Wisniewski et al.,
2020), translation (see Haddow et al. (2022) for
a survey), and segmentation (Ruokolainen et al.,
2013; Eskander et al., 2019; Mager et al., 2020,
among others) tasks. Work on automatic morpho-
logical inflection for low-resource languages is also
related, though it approaches the task from a differ-
ent direction (Anastasopoulos and Neubig, 2019;
Liu and Hulden, 2021; Muradoglu and Hulden,
2022; Wiemerslage et al., 2022, among others).

Representing IGT. Early computational efforts
in this area focused on defining data formats for
representing the complex relationships between the
various tiers of IGT (Hughes et al., 2003, 2004;
Palmer and Erk, 2007). The Xigt project (Goodman
et al., 2015) improves upon and modernizes previ-
ous formats, offering an easily-serializable repre-
sentation for IGT. In this study we take a different
approach, extracting the morpheme labels from the
IGT and clustering the labels for morphemes asso-
ciated with a particular word into a UniMorph-style
format (Batsuren et al., 2022). By using UniMorph,
we depart from an important property of IGT: the
direct and ordered association of labels with the
morphemes they describe.

Morpheme glossing. The task of automatically
producing IGT is the focus of a current (2023)
shared task competition at SIGMORPHON.2 Given
a paired source text and translation, participants
in the competition are asked to output, for each
word, the appropriate stem translation and mor-
pheme labels. Data are provided for seven different
low-resource languages.
The earliest work on this task we are aware

of (Baldridge and Palmer, 2009; Palmer et al.,

2https://github.com/sigmorphon/
2023GlossingST

2009, 2010) takes segmented data as input and
outputs part-of-speech labels and morpheme la-
bels, ignoring the stem translation part of the task.
Samardžić et al. (2015) break the task down into
two steps, starting with part-of-speech and mor-
pheme labels and then filling in stem translations
using dictionary resources, with predicted labels
helping to disambiguate. Sequence labeling ap-
proaches, including Conditional Random Fields
(CRFs), Hidden Markov Models, and Recurrent
Neural Networks are explored by Barriga Martínez
et al. (2021) for the Otomi language, and Moeller
and Hulden (2018) consider both neural and non-
neural sequence labeling approaches for several
endangered languages. McMillan-Major (2020),
who merge the outputs of two CRF models, one
training on the source text, the other on the transla-
tion. Zhao et al. (2020) also leverage the translation
signal for glossing.
In this work, we draw inspiration from earlier

work in our focus on the morpheme labels (leaving
aside the stem translation) and in our use of the
translation to guide learning. We use a CNN to
capture relationships between the source and tar-
get morpheme labels, combined with static word
embeddings for the translated task to boost the se-
mantic signal. The combination of these elements
gives us a low-compute solution.

2.2 CNNs, and treating language as images

Convolutional Neural Networks (CNNs) have been
used to some degree in NLP for static classification
tasks and to capture latent structures in text. Before
attention-based models became the standard ap-
proach to sequential prediction, CNNs were shown
to achieve results that were comparable to other
traditional language models such as RNNs and
LSTMs. Pham et al. (2016) show that CNNs can
be effective for dynamic sequence prediction tasks
where both local and long-range dependency infor-
mation needs to be captured. Their CNN model for
statistical language modeling has a perplexity score
comparable to popular RNN-based approaches.
A radically different approach to image-driven

NLP is taken by Rust et al. (2023) to overcome vo-
cabulary bottlenecks in languages. Their encoder
approach (PIXEL) renders text as images and mod-
els orthographic similarity between languages. Al-
though their approach does match BERT’s perfor-
mance on syntactic and semantic language tasks,
PIXEL proves to be a more robust option for noisy

80

https://github.com/sigmorphon/2023GlossingST
https://github.com/sigmorphon/2023GlossingST


In 1923 she became a member of the Lägerdorf ADGB action committee.
[adp, num, 3;fem;nom;pro;sg, pst;ind;fin;v, det;indf, n;sg, adp, det;def, n;sg,

sg;propn, n;sg, n;sg, _]

1923 wurde sie Mitglied des Lägerdorfer ADGB - Aktionsausschusses.
[num, ind;3;v;sg;pst;fin;pass, 3;fem;sg;pro;nom, n;neut;sg;nom, gen;sg;def;det;masc,

propn, sg;gen;masc;propn, _, n;sg;gen;masc, _]

Table 1: Example of fully-prepared pseudo-parallel data. The source text is automatically-translated and glossed
English; the target text is German.

text inputs. Kim et al. (2015) use a CNN cou-
pled with an LSTM at the character level to per-
form language modeling. Although their model
has 60% fewer parameters than popular LSTM ar-
chitectures of the time, it outperforms word-level
and morpheme-level LSTM baselines. Our work
differs from this approach in that we encode both
word order and morpheme-level information in two
dimensions instead of using character-level repre-
sentations.

3 Data and its representation

For model development, we start with data from
the 2019 SIGMORPHON shared task on morpho-
logical analysis in context.3 Once the model has
been developed and tested, we apply it to a true
low-resource language (Section 6.)

The shared task data is a collection of datasets of
varying sizes, from 68 different languages and/or
varieties, with sentence level morphological anal-
ysis in the UniMorph (Batsuren et al., 2022; Mc-
Carthy et al., 2020) style. Here we report results
for 9 languages, selected for diversity of morpho-
logical systems. For each language, we select the
first 10,000 sentences from the corpus and use a
train/dev/test split of 60/20/20.

3.1 UniMorph data
The UniMorph (Universal Morphological Feature)
schema is a set of morphological feature labels.
This set of labels is intended to serve as an inter-
lingua for annotation of (mostly) inflectional mor-
phology, providing a universal schema into which
any tag set can be mapped. The data consists of
sentences, with lemmas and morphological labels
assigned to each word within the sentence.

Pseudo-parallel data. Recall that our model
treats morphological analysis as a translation task,
“translating” the source-side labels into labels for

3https://sigmorphon.github.io/
sharedtasks/2019/task2/

the target-side sentence, assuming semantic equiv-
alence. The UniMorph-labeled texts described
above are not parallel, and we are not aware of any
parallel texts with UniMorph-style labels. There-
fore, we produce pseudo-parallel data by automati-
cally translating each dataset into English and then
labeling the English sentences with a morphologi-
cal labeler trained on English UniMorph data. An
instance of the fully prepared source data appears
in Table 1.4 We use the Google Translate API5 to
back-translate target text to English, our choice of
high-resource anchor (source) language. We train
a 64-unit BiLSTM model (Figure 8) with categor-
ical cross-entropy loss to generate morphological
labels for each word in the source language. We
also trained a GRU model for the same purpose,
but found that the BiLSTM is superior in terms of
F1, as shown in Table 2.

3.2 Linguistic dimensions (LDs)

UniMorph’s more than 200 individual labels are
grouped into 23 linguistic dimensions, ranging
from Aktionsart to voice, and including domains
such as information structure and politeness (see
Sylak-Glassman for details). For example, the
marker PFV on the Uspanteko verb indicates com-
pletive aspect and can be mapped to the dimension
of ASPECT. The marker PST on the Spanish verb
indicates past tense, mapped to the linguistic di-
mension TENSE. We use the UniMorph linguistic
dimensions in our model.

4Further preprocessing involves removal of punctuation
and conversion to all-lowercase letters.

5https://cloud.google.com/translate/
docs

Model Loss Accuracy F1
Bidirectional LSTM 0.111 0.969 0.922
GRU 0.126 0.963 0.876

Table 2: Performance of English glossing models.
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Figure 2: Multi-hot encoding for morpheme labels.

3.3 Structured representation for
morphological features

Prior to encoding, the dataset consists of tokenized
sentence and gloss pairs for the source and target
languages. Each word in a sentence is naturally
associated with one or more morphological fea-
tures. This presents a multi-class encoding prob-
lem that is solved by using a categorical heat-map
representation (Section 4), in which each column
represents a single label (morphological feature
or part-of-speech), and each row represents one
word in the sentence. Considering the first three
words in the sentence shown in Table 1, the en-
coding would be: [In]->[adp], [1923]->[num],
[she]->[3,fem,nom,pro,sg]. The input to the model
is a full 2-D binary representation where the col-
umn headers are the set of all possible individual
morpheme labels and the rows consist of all words,
with additional padding to standardize the input
format. An example of the binary multi-hot encod-
ing is shown in Figure 2. The gloss labels are then
mapped to their linguistic dimensions (LDs).

4 Gloss-to-gloss (g2g) model

Figure 3 shows the architecture of the g2g system,
and Figure 4 schematizes the model’s workflow for
one sample input sentence. Gloss labels for both
source and target text are mapped to their linguis-
tic dimensions (LDs) and encoded as heat maps,
transforming the problem of glossing to an image-
to-image prediction problem. The CNN generates
heat maps with expectations over output gloss la-
bels. These heat maps can be seen be seen as binary
images, or alternately as sparse tensors. The heat
maps, concatenated with pre-trained word2vec em-
beddings for the source language text, serve as
inputs to shallow three-layer network for final la-
beling. The model’s output prediction is a 2-D
tensor of the same dimensions containing values
that represent the probability of each morpheme
label for each word in the sentence. We do not per-
form extensive parameter search, instead adopting
standard settings (Appendix B).

4.1 Motivation

We assume parallel meaning between the source
and target language texts. We also expect variabil-
ity in how that meaning is expressed. Transla-
tional divergence can include challenges like dif-
ferences in the structures employed by the two lan-
guages, differences in the morphological systems
and their inventories, and variation with respect to
what types of grammatical resources the languages
use to convey the intended meaning. From a lin-
guistic perspective, it is optimistic to expect a g2g
approach to yield accurate target language glosses.
At the same time, we know that there are reg-

ularities to these divergences, and we expect our
model to learn some of these mappings. To boost
performance, we use word embeddings to capture
meaning; these embeddings may also encode some
information about morphology (Schwartz et al.,
2022; Avraham and Goldberg, 2017; Soricut and
Och, 2015). We use LDs to abstract away from
particular labels into linguistic categories, and we
use an extra probabilistic component (Section 4.3)
to decide when to stop predicting labels.

4.2 Morphological representation and
training

Before the morphological data is fed into the pri-
mary CNN model, we prime the representation
with established classes/dimensions. For instance,
we classify labels such as ACC, NOM, and DAT
into the CASE category. This mapping reduces
the count of label types by 60% on average for all
source-target language pairs, consequently improv-
ing model accuracy and preventing mistakes that
pertain to multiple category labels being predicted
for the same word.
The heat map representation allows us to trans-

form the sequence learning problem into a 2D
image-based learning problem. The input is a bi-
nary image and the model output is a heat map
that represents the probability values for the pos-
sible morpheme labels for each word in the sen-
tence. Using this encoding format, we can create
lightweight CNN models that can take inputs of
any arbitrary padding (rows) and morphological
feature (column) size. Due to the relatively small
number of parameters, we can train a unique model
for each language pair.

The input heat map images are fed to a standard
convolutional neural network (CNN).6 We obtain

6Further model details in Appendix B.
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Figure 3: Architecture of g2g system.

a discretized output of linguistic dimension pre-
dictions by setting a threshold and assigning hard
categories to each cell (0 or 1). The threshold is
considered a pipeline parameter for each language
pair and is set by performing an optimal parameter
search that maximizes the F1 score post-facto. The
threshold for German, for instance, is set at 0.35.

4.3 Adding lexical information and
probabilistic length modeling

To capture lexical semantics, we concatenate w2v
embeddings (Mikolov et al., 2013) for the source
side words with the penultimate dense layer of the
CNN.We then train a shallow network with 3 dense
layers on the concatenated vectors, outputting a
flattened version of the heat map of target glosses.
This one-dimensional representation is then trans-
formed back into a 2D representation and decoded
to obtain the target language gloss.
One challenge of the heat map approach is un-

certainty about when to stop predicting labels. Sen-
tence lengths vary, but the model always predicts
a standard 40-word heat map. To address this is-
sue, we use the sentence length of the target text
(without lexical information; Zhao et al., 2020 use

a similar approach) and a probabilistic model that
determines the likelihood of a combination of mor-
pheme labels occurring together and drops low-
probability combinations (such as PRPN;PL (plu-
ral proper noun) for English) from the output heat
map until the number of rows matches the num-
ber of words in the target language sentence. The
selection is based on the joint probabilities of co-
occurring morphological labels drawn from a likeli-
hood lookup table constructed using the frequency
of various possible morphological combinations in
our training sets.

4.4 Training an LLM for morphological
labeling - BERT

Since there is no easily available baseline for par-
allel text glossing, we train a BERT model to act
as a comparable computationally-expensive base-
line. Pre-trained cased weights are used since our
common source language for all target languages
is English. The possible gloss combinations in the
target language form their own separate vocabulary
and are together treated as a language of their own.
The problem is reduced to a standard translation
problem where English is the source and the gloss
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Figure 4: Workflow of g2g system for the sample input from Table 1.

morpheme F1 LD F1 POS acc.
BERT CNN BERT CNN BERT CNN

Basque 0.75 0.69 0.87 0.86 0.91 0.86
Finnish 0.81 0.77 0.86 0.84 0.92 0.84
French 0.81 0.83 0.85 0.89 0.95 0.91
German 0.78 0.75 0.91 0.79 0.88 0.83
Italian 0.79 0.75 0.84 0.82 0.94 0.91
Russian 0.82 0.73 0.89 0.78 0.88 0.84
Spanish 0.73 0.65 0.88 0.87 0.96 0.92
Turkish 0.78 0.66 0.79 0.78 0.87 0.80
English 0.84 0.82 0.95 0.89 0.95 0.89

Table 3: Performance of CNN and BERT models
across languages. Morpheme-level=F1 over all la-
bels, LD-level=F1 over linguistic dimension categories,
POS=accuracy. F1 is computed following SIGMOR-
PHON 2019 shared task metric.

vocabulary is the target. Concatenating the source
language morphology vector with the BERT em-
bedding did not significantly affect the output, so
we use only contextual and positional embeddings
to fine-tune the model, with a separate fine-tuned
model for each source-target language pair.

5 Experiments, results, and discussion

To evaluate performance of the model, we test it
on nine different language pairs (see Table 3). For
all non-English languages, we back-translate to En-
glish. For English, our source language is German.
As a baseline, we fine-tune a pre-trained BERT

model for the morpheme labeling task, using the
same data and splits, but in a standard supervised

learning set-up (i.e. no parallel data and no LDs).
The CNN model experiments were run on a 2.6

GHz Intel(R) Core(TM) CPU, taking an average of
8.5 minutes to train. The BERT baseline experi-
ments were run on a multi-GPU cluster, taking an
average of 3.5 hours to train.

Evaluation. Table 3 shows results for both mod-
els across all languages, with accuracy for POS
labels and, for morpheme labels and linguistic di-
mensions, F1 as defined for the SIGMORPHON
2019 shared task: true positives are the set inter-
section of the gold and predicted labels for a word,
and false positives are labels in the predicted set
but not the gold.7 All measures are computed at the
heatmap level for each row (sentence) and averaged
over the full dataset.

Results. Some patterns hold across most lan-
guage pairs. For the most part, the CNN does
not quite match the performance of the transformer.
Crucially, though, the CNN trains on a single lap-
top in under 10 minutes, where the transformer
needs a compute cluster and multiple hours to train.
The CNN performance is generally within 5 per-
centage points of the BERT model, and this may be

7NOTE: although we use the same data and evaluation as
the shared task, our CNN results are not directly comparable,
because, unlike almost all participating teams, we do not use
target language lexemes or labels as training input.

84



an acceptable performance in most documentation
contexts - an empirical question for future work.
The POS score represents the proportion of the

part of speech predictions that were correct. Be-
cause there are latent associations between POS cat-
egory and morpheme labels (for example, it would
be highly unusual to see aspectual features marked
on nouns), the POS score should be directly pro-
portional to the final F1 scores that we obtain for
each language. This is reflected across our results.
While both models struggle with Turkish and Rus-
sian, the CNN also performs poorly on Basque.
At the LD level, the model’s performance is

somewhat similar across the three Romance lan-
guages we considered (Spanish, French and Ital-
ian). While the CNN fails to perform better than
the transformer in most scenarios, it is interesting
to note that the CNN performs marginally better
than the transformer on French. However, both
models show a significant performance dip when it
comes to Spanish.

The CNN’s F1 dips to 0.66 for Turkish and 0.73
for Russian. This may be due to their high morpho-
logical complexity.

6 Applying the model to language
documentation data

Finally, we apply our model to data from theMayan
language Uspanteko (Pixabaj et al., 2007), using
the train/dev/test splits defined for the SIGMOR-
PHON 2023 shared task: training on 21 texts (9774
sentences), and using one text each for dev and test
(around 200 sentences each). The model’s perfor-
mance on language documentation data parallels
the results for high-resource languages.

Experimental setup and data preparation
Translations of the Uspanteko sentences are avail-
able in Spanish. To remain consistent, we translate
the Spanish sentences to English using the Google
Translate API.

It is important to note that this translation step
adds compounding errors to the model’s final gloss
output.

IGT to UniMorph Mapping The labels used
in the Uspanteko IGT belong to the glossing con-
ventions selected by the language documentation
project. The label set is particular to the linguistic
properties of the language, and as such they make
some different distinctions than those encoded by
UniMorph. Some of the mappings between Uni-

Model F1
BERT Linguistic Dimension Level 0.80
CNN Linguistic Dimension Level 0.76
BERT Morpheme Level 0.71
CNN Morpheme Level 0.63

Table 4: Performance of models on Uspanteko data.

Morph and IGT are shown in Table 9. The custom
mapping table that we built to convert IGT to Uni-
Morph are available in our repository.8

Results and Discussion As seen in Table 4, the
model performance on Uspanteko is comparable to
its performance on morphologically complex high-
resource languages like Turkish. This leads us to
believe that our computationally efficient approach
can indeed be used in the low-resource language
documentation context to produce a first pass la-
beling, thus reducing the time an expert needs to
spend on labeling. To better understand the sys-
tem’s errors, we show the label distribution for
false positives output by the CNN model (Figure 5)
at the level of linguistic dimension. 33% of these
are the unk (unknown) label, which occurs when
the model fails to make a confident prediction on
the linguistic dimension. These are precisely the
cases where the human expert should intervene.

We note that the model is not over-predicting
the LD of part-of-speech, despite the fact that 42%
of gold labels in the test set are part-of-speech la-
bels. Instead, the model makes more errors for the
categories of case, person, and number. We ex-
pect that the prevalence of case errors comes from
the fact that Uspanteko uses an ergative-absolutive
case system, with patterning entirely different from
the rather impoverished nominative-accusative case
system of English. Uspanteko also uses a number
of grammatical categories not present in English,
such as directionals and relational nouns (Tyers
and Henderson, 2021). Looking at particular parts
of speech, the model does well on conjunctions
(84% accuracy), and struggles with adverbs and
adjectives. 24% of adverb predictions are confused
with adjective tags and about 13% of adverbs and
adjectives are labeled ‘unknown’.

8https://github.com/bhargav-ns/G2G_
Conversion
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Figure 5: CNN: distribution of false positive predictions
at the linguistic dimension level for Uspanteko.

7 Conclusion

We have presented the g2g model, a new architec-
ture for morphological analysis that dramatically
reduces compute time by modeling the task as, es-
sentially, an image-to-image translation task. The
model incorporates knowledge of linguistic cate-
gories by mapping labels to their linguistic dimen-
sions, with the effect of narrowing the space of
possible outputs. These strategies result in an enor-
mous reduction of compute time and a system more
suitable for use in low-resource scenarios than the
large language models currently achieving top per-
formance for this and similar tasks.

Model variants and future work. Working with
language documentation data adds several layers of
complexity. In this work, our model’s output lacks
the ordered association with individual morphemes
typical of most IGT. We use an unordered set of
labels to describe the morphological features of a
word, as shown in Table 1.

In addition, there is wide variability in both
the label sets and the glossing scheme across lan-
guage documentation projects. One widely-used
scheme is encoded in the Leipzig Glossing Rules
(Bernard Comrie, 2008); Table 5 shows an example
of a German phrase glossed according to Leipzig
conventions. In future work we aim to produce out-
puts that mimic the glossing conventions used in
the original data, including the order of the labels,
the nature of the labels, and the glossing syntax.

The Sigmorphon 2023 shared task on interlinear
glossing9 hews closer to this goal. In this shared

9https://github.com/sigmorphon/
2023glossingST

unser- n Väter- n
our- DAT.PL father DAT.PL
"To our fathers."

Table 5: German phrase labeled using Leipzig Glossing
Rules.

task, the source language text and target language
text are used as inputs to obtain the target language
glosses in Leipzig format. This is fundamentally
different from our input format, as we attempt to
obtain the target language glosses without the target
language text. Instead, we use all the information
available from the high-resource source language
(text and glosses) as inputs to the model.

Our next step is to work directly with documen-
tary linguists to evaluate whether and how such
tools can be usefully deployed by field linguists
and/or language community members. Another
planned direction is to work on more sophisticated
approaches to incorporating linguistic knowledge.

Limitations and ethical considerations. First,
the system’s performance is constrained by the use
of automated systems to produce pseudo-parallel
data. Errors in translation and morpheme labeling
on the high-resource side propagate to the output
and cause mistakes in target side labeling. We
have not yet performed the extensive error analyses
needed to understand how much error propagation
might be affecting the system.

Second, we have not yet tested the system in an
actual documentation project. When working on
NLP with endangered and/or indigenous languages
in mind, there is a clear risk of perpetuating existing
oppression (Bird, 2020; Schwartz, 2022). We hope
to avoid some of these harms by using data from a
wide range of non-threatened languages first, wait-
ing to involve language community members and
documentary linguists until we have a system with
good enough results that we expect it could actually
be helpful in real world contexts. We have already
developed collaborations with several speakers of
endangered languages and linguists working on
documentation projects, and we look forward to
continuing this work with their guidance and in-
volvement.
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A Dataset Preparation Details

Truncation and padding. Since 95% of the sam-
ple sentences in the dataset had fewer than 40
words per sentence, we set the padding/truncation
limit to 40, thus making each feature map to be a
40x40 pixel heat-map that encodes the labels for
all the words in a sentence.

Heat maps. The entire source and target mor-
phological data is represented as a 3-dimensional
cuboidal heat map. Each sentence (entry) in
the dataset is a single 2-D slice of the cuboid,
the dimensions of which are [Padding Length] x
[Number of Morpheme Categories]. The English-
German pair, for example, has a sentence map di-
mension of [40 x 20]. Padding length is manu-
ally set based on the 95th percentile of sentence
lengths across the dataset. Each row in the heat
map would represent the morphological labels for
a single word within the larger sentence. An exam-
ple heat map excerpt is shown in figure 6.

B Details of the CNN model

A sequential convolutional network with 3 blocks
of standard Convolution - Max Pool - Dropout -
Batch Norm layers are used in the network. Relu
activation and ‘same’ padding are used for all of
the convolutional layers and a pool size of (2,2)
is used for each MaxPooling2D layer. A fixed
dropout of 0.2 is applied after each pooling layer
in the three blocks. The output of the third block is
up-sampled and flattened into a single-dimensional
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Figure 6: Heat map representation

Figure 7: Sample output prediction

vector of length [categories x padding size]. A
sigmoid activation is used in the final dense layer
to facilitate the prediction of a probability score for
every possible linguistic dimension of a word. The
model is compiled with MSE as the loss function.
A sample output prediction is shown in figure 7

C Fine-grained evaluations

Evaluation metrics of different granularities were
explored to evaluate the model’s performance.
All the measures are computed at the heatmap
level for each row (sentence) and averaged out
over the entire dataset. We take standard ac-
curacy, precision, and F1 scores for the flat-
tened feature map vectors of the gold and pre-
dicted labels. Each feature map is originally
of size padding cut-off times number of
linguistic dimensions . Each unit of the
predicted vector is independently compared with
its corresponding gold label vector unit to evaluate
the model output for different languages.
To get a more fine-grained sense of the model’s

performance, we explore two additional evaluation
measures:

1. Proportion of missing labels

2. Proportion of extra labels

Tables 6 and 7 show fine-grained evaluations for
both models. The missing label score represents the
ratio of labels that are present in the gold gloss set
but are absent in the model predictions. Similarly,
the excess label score is the fraction of labels that
have been wrongly predicted by the model.

D Variable training data experiments

Table 8 show results from experiments varying the
amount of training data used.
Certain language families seem to demonstrate

a significantly higher threshold for variance ex-
plainability based on dataset size. Spanish, French,
and Italian (all romance languages) show massive
jumps in accuracy from 20% to 40% training data
but improve less drastically beyond the 60% train-
ing data mark. On the other hand, German and
English show a rise in accuracy from 60% to 100%
training data. Russian and Finnish demonstrate
large jumps from 40% to 60% training data. Since
the datasets’ size was normalized before training,
we might be able to conclude that these patterns
are endemic to language families. For instance,
it might be possible to conclude that the model
requires significantly lesser training data to reach
peak performance for romance languages as com-
pared to Germanic languages. This generaliza-
tion cannot be drawn from our small subset of
languages and morphological tests, and therefore
requires further investigation.

E Bi-directional LSTM for English
Glossing

Figure 8 shows the model architecture for the Bi-
directional LSTM that was used to gloss our source
data and generate our source dataset for training
purposes. The data was encoded with static w2v
embeddings and the model was trained for 20
epochs (until convergence) on an English dataset
containing UniMorph tags from the 2019 SIG-
MORPHON shared task referenced earlier. Model
performance is detailed in table 2.
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CNN - Proportion of
Missing Labels

CNN - Proportion of
Extra Labels CNN - POS Accuracy

Spanish 0.234 0.243 0.92
French 0.23 0.17 0.91
Basque 0.38 0.33 0.86
Italian 0.27 0.26 0.91
German 0.236 0.238 0.83
English 0.23 0.24 0.89
Turkish 0.39 0.32 0.8
Russian 0.36 0.33 0.84
Finnish 0.24 0.13 0.92

Table 6: CNN - Morpheme Tagging Scores, fine-grained evaluation

Figure 8: LSTM Model for English Text Glossing - Pseudo-parallel data generation
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BERT - Missing Labels BERT - Extra Labels BERT - POS Accuracy
Spanish 0.17 0.19 0.96
French 0.21 0.22 0.95
Basque 0.27 0.13 0.91
Italian 0.2 0.16 0.94
German 0.18 0.2 0.88
English 0.17 0.09 0.95
Turkish 0.25 0.13 0.87
Russian 0.24 0.28 0.88
Finnish 0.18 0.09 0.92

Table 7: BERT Morpheme Tagging Scores, fine-grained evaluation

Limited Train
Data - F1 Score 20% 40% 60% 80%

Spanish 0.38 0.48 0.55 0.63
French 0.46 0.52 0.62 0.76
Basque 0.36 0.37 0.49 0.52
Italian 0.41 0.45 0.59 0.68
German 0.49 0.56 0.64 0.72
English 0.49 0.59 0.68 0.73
Turkish 0.33 0.38 0.52 0.58
Russian 0.39 0.4 0.64 0.71
Finnish 0.47 0.53 0.71 0.73

Table 8: Variable Training Data - Results

IGT Abbreviation UniMorph Abbreviation
??? Unk
A1P [’ABS’, ’1’, ’PL’]
A1S [’ABS’, ’1’, ’SG’]
A2P [’ABS’, ’2’, ’PL’]
A2S [’ABS’, ’2’, ’SG’]
ADJ ADJ
ADV ADV
AFE V
AFI POS
AGT AGFOC
AP ANTIP
APLI APPL
ART ART, INDF
CAU CAUS
CLAS CLF
COM PRF
COND COND
CONJ CONJ

Table 9: IGT to UniMorph Mappings
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