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Abstract

This paper presents the findings of the SIG-
MORPHON 2023 Shared Task on Interlinear
Glossing. This first iteration of the shared task
explores glossing of a set of six typologically
diverse languages: Arapaho, Gitksan, Lezgi,
Natiigu, Tsez and Uspanteko. The shared task
encompasses two tracks: a resource-scarce
closed track and an open track, where partic-
ipants are allowed to utilize external data re-
sources. Five teams participated in the shared
task. The winning team Tii-CL achieved a
23.99%-point improvement over a baseline
RoBERTa system in the closed track and a
17.42%-point improvement in the open track.

1 Introduction

Roughly half of the world’s languages are currently
endangered (Seifart et al., 2018). As a result, lan-
guage preservation and revitalization have become
significant areas of focus in linguistic research.
Both of these endeavors require thorough documen-
tation of the language, which is crucial for creating
grammatical descriptions, dictionaries, and educa-
tional materials that aid in language revitalization.
However, traditional manual language documen-
tation is a time-consuming and resource-intensive
process due to the costs associated with collecting,
transcribing, and annotating linguistic data. There-
fore, there is a need to expedite the documenta-
tion process through the use of automated methods.
While these methods can never fully replace the
expertise of a dedicated documentary linguist, they
have the potential to greatly facilitate and acceler-
ate the annotation of linguistic data (Palmer et al.,
2009).

Linguistic annotation involves several intercon-
nected subtasks, including: (1) transcription of
speech recordings, (2) morphological segmenta-
tion of transcribed speech, (3) glossing of seg-
mented morphemes, and (4) translation of the tran-
scriptions into a matrix language, such as English.
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These processes result in a semi-structured output
known as an interlinear gloss, as demonstrated in
the Natiigu example below:
(1) ma yrkr-tx-o-kz-@ .
house finish-INTS-GDIR.DOWN-also-3MINIS .
Houses were gone too.

This paper presents the findings of the SIGMOR-
PHON 2023 Shared Task on Interlinear Glossing',
which focuses on automating step (3) of the lan-
guage documentation pipeline. Notably, this shared
task represents the first initiative specifically ded-
icated to interlinear glossing. Despite the preva-
lence of interlinear glossed text as a data format in
language documentation, the automatic generation
of glossed text remains relatively underexplored in
the field of natural language processing (NLP). We
hope that this shared task can help stimulate further
work in automated glossing.

2 Background

Existing work in data driven automated gloss-
ing has utilized both traditional feature-based
approaches like maximum entropy classifiers
(MEMM) (Ratnaparkhi, 1996) and conditional ran-
dom fields (CRF) (Lafferty et al., 2001) as well
as more recent neural models like LSTM encoder-
decoders (Sutskever et al., 2014) and transformers
(Vaswani et al., 2017). Palmer et al. (2009) investi-
gate active learning for interlinear glossing using
the MEMM architecture. McMillan-Major (2020)
incorporated translations as auxiliary supervision
in a CRF glossing model. Moeller and Hulden
(2018) and Barriga Martinez et al. (2021) com-
pare traditional feature-based models and LSTM
encoder-decoder models. Zhao et al. (2020) present
a modified multi-source transformer model which
incorporates translations as auxiliary supervision.
The current literature on automatic glossing ex-
hibits notable gaps, as several techniques that have

1https: //github.com/sigmorphon/2023glossingST
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proven valuable for other morphology tasks have
yet to be explored for glossing. There are several
intriguing directions for future research, including:

1. Crosslingual training (Coltekin, 2019; Anas-
tasopoulos and Neubig, 2019) has shown
promise for morphological inflection and
could be investigated for its potential in gloss-
ing.

2. Incorporating additional noisy training data
(Wiemerslage et al., 2023) can improve ac-
curacy for low-resource inflection and could
help improve the performance of glossing
models as well. In the context of interlinear
glossing, this data could come from large mul-
tilingual databases like ODIN (Lewis and Xia,
2010) which is automatically created with the
aid of web crawling and is known to be noisy.

3. Data augmentation techniques (Liu and
Hulden, 2021; Anastasopoulos and Neubig,
2019; Silfverberg et al., 2017) are now a well-
established technique in morphological inflec-
tion and could enhance the training process
for glossing models.

4. Hard attention models (Aharoni and Goldberg,
2017; Makarov et al., 2017) have delivered
strong performance for several morphology
tasks in low-resource settings and could also
be applied to interlinear glossing.

5. Multitask training (Rama and Coltekin, 2018)
and meta-learning (Kann et al., 2020) tech-
niques could be leveraged to enhance glossing
performance.

6. Finally, pretrained language models like By TS
(Xue et al., 2022) have demonstrated strong
performance in various morphology tasks, yet
their potential for interlinear glossing remains
unexplored.

The submissions in this shared task explore several
of these techniques, including the use of pretrained
language models, data augmentation, utilization of
external data, and the application of hard attention
models.

3 Tasks and Evaluation

3.1 Interlinear Glossed Text

Interlinear Glossed Text (IGT) serves as a means
to capture the syntactic and morphological charac-

teristics of words within a corpus. It is a semi-
structured format which lacks strict annotation
standards, leading to variations in annotation prac-
tices among different annotators. These variations
can be influenced by documentation requirements,
adopted theoretical frameworks, and other factors
(Palmer et al., 2009).

For this shared task, the data adheres to the
Leipzig glossing conventions (Lehmann, 1982).
The Leipzig format follows a three-line documen-
tation style, including morphological segmenta-
tion of the input tokens, glosses of individual mor-
phemes, and translations. Below is an example
from Arapaho, one of the languages used in the
shared task:

(2) nih-bii3ihi-noo nohkuseic

2S.PAST-eat-1S morning
I ate this morning.

In this example, the first line represents the mor-
phological segmentation, the second line provides
glosses for each morpheme, and the third line
presents the corresponding translation.

The transcription line (nih-bii3ihi-noo nohku-
seic in Example 2) gives the orthographic transcrip-
tion of a sentence, phrase or utterance in the source
language. The transcription may be segmented
with dashes to indicate morpheme boundaries.

The gloss line ("2S.PAST-eat-1S morning" in
Example 2) provides a linguistic gloss for each mor-
pheme in the transcription line. For glossing, mor-
phemes are grouped into two distinct categories:

1. Functional morphemes or grams include af-
fixes and functional words which do not carry
their own lexical meaning. Functional mor-
phemes are glossed using uppercase labels
like 1S (first-person singular affix) which in-
dicate grammatical category and/or syntactic
function. Portmanteau morphs, which denote
multiple functions, can be glossed using com-
pound labels like 2S.PAST. Gloss labels typ-
ically come from a fixed inventory like Uni-
Morph (Sylak-Glassman, 2016; Kirov et al.,
2018; Batsuren et al., 2022b), although con-
ventions are not standardized and are often
varied to fit the needs of the language.

2. In contrast to functional morphemes, lexical
morphemes or stems are open-class words and
stems which carry semantic meaning. These
are glossed in lowercase using their translation
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in a matrix language like English or Spanish;
thus, for example, bii3ihi is glossed as eat.

The translation line (I ate this morning.” in
Example 2) of an IGT entry provides a transla-
tion in a high-resource language such as English.
The tokens in the translation are not necessarily
aligned with specific words in the source language,
as languages often express equivalent concepts in
differing numbers of words.

3.2 The Interlinear Glossing Task

The objective of the shared task is to develop au-
tomated systems capable of predicting the gloss
of a given input utterance, using its orthographic
transcription and translation as input. The glossing
task presents several key challenges, such as disam-
biguation of ambiguous morphemes and accurate
translation of word stems. The shared task explores
two distinct resource settings, referred to as tracks,
which differ in terms of the supervision provided
during model training and at test-time.

The Closed Track (Track 1) In the closed track,
the input consists of the orthographic transcription
of the target utterance, for example, nihbii3ihinoo
nohkuseic (Arapaho), and its translation to a matrix
language like English: I ate this morning’ (note the
lack of morpheme boundaries in the transcription).
The aim is to generate a gloss 2S.PAST-eat-1S
morning. This setting poses a significant challenge
since the glossing model does not have access to a
morphological segmentation of the input utterance.
Therefore, it must infer the number of morphemes
and the identity of the component morphemes for
each input word without any supervision. The
closed setting draws inspiration from the work of
Zhao et al. (2020), which utilizes a similar setup.

The Open Track (Track 2) In a practical lan-
guage documentation setting, various types of re-
sources can be available as auxiliary supervision
when training glossing systems. These resources
may include manually glossed text, morphological
segmentations, dictionaries, raw text in the target
language, and more. The open track aims to ex-
plore the extent of glossing performance achiev-
able when participants are allowed to utilize aux-
iliary resources. In addition to the data provided
in the closed track, morphological segmentations
are provided in the open track. For instance, for
the Arapaho example mentioned earlier, a mor-
phological segmentation nih-bii3ihi-noo nohkuseic

would be included. Gold standard segmentations
are provided both for model training and at test-
time. Moreover, participants are encouraged to
make use of external data resources except for ad-
ditional glossed text in the target language.

3.3 Evaluation of Glossing Performance

We evaluate glossing performance with regard
to two metrics: word-level and morpheme-level
glossing accuracy. Word-level glossing accuracy
is defined as the fraction of words in the test
data which received a fully correct gloss like
2S.PAST-eat-1S:

Count(correctly glossed tokens)

pr— 1
Wace Count(all tokens) M

Note that all the individual morphemes in the
word have to be correctly glossed. In contrast,
morpheme-level glossing accuracy is defined as
the fraction of morphemes in the test data which
received the correct gloss:

Count(correctly glossed morphemes)

Mace = Count(all morphemes)

2

In the closed track, where gold standard mor-
phological segmentations are not provided, it may
happen that the system predicts too few or too many
glosses for an input word. This complicates compu-
tation of morpheme-level glossing accuracy. When
too few morphemes are predicted, we pad the pre-
dictions with NULL morphemes until the number
of morphemes corresponds to the gold standard
gloss (e.g. 2S.PAST-eat — 2S.PAST-eat-NULL).
When too many morphemes are predicted, we dis-
card extra morphemes at the end of the output (e.g.
2S.PAST-eat-1S-PL — 2S.PAST-eat-1S).

For the official shared task results, we compute
accuracy over multiple languages. We then report
micro average glossing accuracy across the differ-
ent languages. Micro average word-level glossing
accuracy is used for the official ranking of the par-
ticipating submissions.

3.4 Comparison to Other NLP Tasks

While interlinear glossing forms a distinct and inter-
esting NLP task in its own right, it has connections
to many commonly explored NLP tasks, particu-
larly part-of-speech (POS) tagging, lemmatization,
morphological tagging?, and morphological seg-
mentation (McCarthy et al., 2019; Cotterell and

2 Also known as morphological analysis in context.
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Heigold, 2017; Miiller et al., 2015; Batsuren et al.,
2022a). All of these tasks involve varying degrees
of grammatical analysis.

Interlinear glossing is particularly strongly con-
nected to morphological tagging as both involve
morphological annotation in context. However,
there are two major differences between the tasks:

1. In interlinear glossing, a morpheme-level an-
notation of the input sentence is generated.
The output of a glossing model provides the
order of various morphological elements in
the input tokens, indicating the position of
different affixal elements. In contrast, mor-
phological tagging provides a more abstracted
representation where the order of morphemes
is lost.

2. Another difference between morphological
tagging and interlinear glossing is related to
the treatment of lexical elements. In morpho-
logical tagging, it is common to return the
lemma of input words along with the associ-
ated grammatical information of the inflected
input word. In glossing, on the other hand,
it is common to annotate word forms with
a translation of the input lexeme in a matrix
language like English. This substantial differ-
ence between the tasks introduces elements of
machine translation into the morphology task.

Following the approaches of McMillan-Major
(2020) and Zhao et al. (2020), the shared task
datasets provide gold standard translations of the
input sentences as additional supervision during
both training and test time. Thus, the task of lex-
eme translation involves retrieving the lemma of
the correct lexemes from the provided translation.

4 Data
4.1 Languages and Glossed Data

Arapaho [arp] is an Algonquian language with
a few hundred speakers in Wyoming, USA. It
is highly agglutinating and polysynthetic, with
the verb carrying the heaviest morphological load
(Cowell and Moss, 2008). Polysynthesis in Ara-
paho includes noun incorporation, where special
forms of certain nouns become part of the verb.
The corpus used in this shared task contains narra-
tives and conversation that have been documented
starting in the 1880s until the present day, includ-
ing a few religious texts that are translations from

English. It is written in the popular Arapaho or-
thography. Much of the data is available through
the Endangered Languages Archive® or the Cen-
ter for the Study of Indigenous Languages of the
West?.

Gitksan [git] The Gitksan are one of the Indige-
nous peoples of the northern interior region of
British Columbia, Canada. Today, Gitksan is the
most vital Tsimshianic language, but is still criti-
cally endangered with an estimated 300-850 speak-
ers (Dunlop et al., 2018). The language has an
“analytic to synthetic”” morphology (Rigsby, 1986,
1989) and, unlike many Canadian Indigenous lan-
guages, it is not polysynthetic. It has a rich assort-
ment of derivational morphemes and substantial ca-
pacity for compounding; consequently, its degree
of word-complexity has been described as similar
to German (Tarpent, 1987). The data used for the
shared task were extracted from a paper containing
three stories by the Gitksan elders Barbara Sen-
not, Hector Hill and Vincent Gogag (Forbes et al.,
2017).

Lezgi [lez] (aka Lezgian) is a Nakh-
Daghestanian (Northeast Caucasian) language
spoken by over 500,000 speakers in Russia and
Azerbaijan (Eberhard et al., 2023). The corpus
used is from the Qusar dialect in Azerbaijan
(Donet, 2014). It is a highly agglutinative language
with overwhelmingly suffixing morphology
(Haspelmath, 1993). Noun cases are formed by
case-stacking which is a unique characteristic of
Nakh-Daghestanian languages. Instead of a unique
morpheme for each case, case-stacking composes
case inflections by “stacking” sequences of case
suffixes as illustrated in Table 1.

Natiigu [ntu] belongs to the Reefs-Santa Cruz
group in the Austronesian family. It is spoken by
about 4,000 people in the Temotu Province of the
Solomon Islands. It has primarily agglutinative
morphology with complex verb structures (Ashild
Ness and Boerger, 2008). The corpus used for the
shared task contains transcribed narratives and a
large written text.”

Tsez [ddo] (aka Dido) belongs to the Tsez-
Hinukh branch of the Nakh-Daghestanian family.

Shttps://elar.soas.ac.uk/Collection/MPI189644

4https ://www.colorado.edu/center/csilw/
arapaho-1language-archives

>Natqgu grammar and large text available at https: //www.
langlxmelanesia.com/tilp
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\t heetne'ii'P woowooyoo'ohk heet-ne'ii'cencei'soo’
\m heet-ne'ii'-P woo-wooyoo'-ohk heet-ne'ii'-cen-cei'soo-"'
\g FUT-that's.when-pause REDUP-new-SUBJ FUT-that's.when-very-different-0S

\l It will be , pretty soon it will all be different

[ from how it is now ].

Figure 1: A glossed Arapaho sentence in the official shared task format for the open track (i.e. track 2).

WORD FORM GLOSS

itim SG.ABS ‘man’

itim-ar PL.ABS ‘men’

itim-ar-di PL-ERG ‘men’

itim-di-k OBL-AD.ESS ‘near a man’
itim-di-k-di OBL-AD-DIR ‘toward a man’

itim-ar-di-k-ay = PL-OBL-AD-EL ‘from men’

Table 1: A simplified example of Lezgi case-stacking on
the noun root itim ‘man’. Absolutive (ABS) and essive
(ESS) cases and singular number (SG) are marked by
null morphemes. The plural suffix (PL) attaches directly
to the noun stem. The ergative (ERG) and the oblique
(OBL) suffixes attach after the number. The adessive
case (AD.ESS) attaches to the oblique suffix. The elative
(EL) and directive (DIR) cases are added in the fourth
slot after the root.

It has about 14,000 speakers in Daghestan, Russia.
It has a rich agglutinative, suffixing morphology.
The corpus is part of the Tsez Annotated Corpus
Project (Comrie et al., 2022; Abdulaev and Abdul-
laev, 2010).6

Tutrugbu [nyb] (aka Nyagbo, Nyangbo) is a
Niger-Congo language with a few thousand esti-
mated speakers in Ghana (Eberhard et al., 2023).
It is a highly agglutinative language that features
some reduplication (Essegbey, 2019). The corpus
from which the shared task data was extracted con-
tains a variety of spontaneous data supplemented
with elicited data collected with a range of docu-
mentary techniques.’

Uspanteko [usp] (aka Uspantek) belongs to the
K’ichean branch of the Mayan language family spo-
ken by as many as 6000 speakers in the Guatemalan
highlands and in diaspora communities (Bennett
et al., 2016). Uspanteko is a lightly agglutinative
language with complex verbal morphology and
ergative-absolutive alignment (Coon, 2016). Us-
panteko is unusual among Mayan languages for

6https ://tsezacp.clld.org/
"“Unpublished Nyangbo (Tutrugbu) texts’ compiled by Dr.
James Essegby

its use of contrastive lexical tone (Bennett et al.,
2022).% The texts were collected, transcribed, trans-
lated and annotated as part of an OKMA Mayan lan-
guage documentation project (Pixabaj et al., 2007)
and are currently accessible via the Archive of In-
digenous Languages of Latin America.” The cor-
pus includes oral histories, personal experience
texts, and stories; preprocessing of the corpus is
described in Palmer et al. (2010).

4.2 Shared Task Data

Shared task datasets were generated from origi-
nal glossed source data in various formats (LaTeX,
CLDF'? and Flex'!) using dedicated conversion
scripts. We aimed to make minimal changes to the
original glossed data while ensuring consistent an-
notation practices across languages. All morpheme
boundaries were converted to a unified format using
hyphens ("-"), all glossed word stems were lower-
cased (or titlecased in the case of proper nouns)
and all affix glosses were uppercased. Apart from
potential changes to casing, gloss symbols were not
modified. Portmanteau morphs, where morpheme-
boundaries cannot be identified, were glossed using
a period syntax (".") as in the examples here.it.is
and 2S5 .PAST.

An example of a glossed Arapaho sentence in
the official shared task format is given in Figure
1. This entry comes from the open track (track 2),
where morphological segmentations are provided.
The following lines are included in the gloss:

\t the orthographic representation,

\m the morphological segmentation of the ortho-
graphic representation,

\g the gloss of the orthographic representation
and

\t the English or Spanish translation.

8Tone is not, however, marked in the shared task dataset.
*https://ailla.utexas.edu
Ohttps://cldf.clld.org/

11https: //software.sil.org/fieldworks/
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The token counts in the transcription, segmenta-
tion and gloss of a given example have to match.
However, the token count in the translation line
is allowed to differ. Examples in the source data
which did not follow this restriction were filtered
out.

We split the datsets into non-overlapping train-
ing, development and test data. For languages
where there was a clear division into separate texts,
we aimed to use one complete text for development
and testing, respectively, and the rest of the data
for training. This was the case for Gitksan and
Arapaho.!? For the rest of the languages, we used
80% of the sentences for training, and 10% for de-
velopment and testing, respectively. Statistics on
data sizes are provided in Table 2. Note that the
table gives token counts, not sentence counts, and
the counts do not, therefore, exactly correspond to
an 80-10-10 split.

Data characteristics The shared task datasets
encompass a range of diverse data conditions. The
training data size, as shown in Table 2, varies from
approximately 140k tokens for Arapaho to a mere
261 tokens for Gitksan, with most languages hav-
ing between 2k and 15k tokens of training data.
With the potential exception of Arapaho and Us-
panteko, all the languages qualify as low-resourced
datasets. Additional characteristics of the datasets
are presented in Table 3:

1. Type-token-ratio (TTR) for most languages
falls within the 20-30% range with the notable
exception of Gitksan where TTR is 61.3%
which is likely to be related to the very small
size of the training set.

2. We compute out-of-vocabulary (OOV) rates
on the test set. For most languages, OOV rates
are below 30% with Gitksan once again being
a notable exception with OOV rate of 79.9%.
In general, these rates are high compared to
typical OOV rates for English text.

As a further analysis, we also report
morpheme-level OOV rates on the test set,
which can be more illuminating for morpho-
logically complex languages. These fall below
10% for most languages with the exception
of Gitksan, where morpheme-level OOV is

2For Arapaho, text 56 is used for development and text
63 for testing. For Gitksan, we used Hector Hill’s story for
development and Vincent Gogag’s story for testing.
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TRAIN DEvV  TEST
ARAPAHO 139714 17573 17597
GITKSAN 261 388 384
LEZGI 7029 992 886
NATUGU 10140 1280 1076
NYANGBO 8669 1093 1057
TSEZ 37458 4761 4701
USPANTEKO 41923 928 2405

Table 2: Token counts for shared task train, development
and test data. The counts are the same for both the open
and closed track.

41.2%, again due to the very small training
set.

In Table 3, we also report statistics related to the
morphological characteristics of the languages:

1. The average number of morphemes per word
can be computed based on the morphologi-
cal segmentations provided for track 2. For
training data, this ranges from 1.4, for Us-
panteko, to 2.0 for Tsez, meaning that many
multimorphemic words can be found in all of
the datasets.

. Finally, we also compute the gloss ambiguity,
that is, the average number of distinct glosses
that a morpheme receives in the training data.
For example, the English suffix -s is ambigu-
ous between two readings because it can be
both a number and tense marker. Glossing
ambiguity can be seen as one indicator of the
difficulty of a glossing task. For most of the
shared task languages, it is very close to 1.
The only exceptions are Gitksan (1.3) and Us-
panteko (1.2), both of which contain frequent
and ambiguous affixes.

The shared task datasets also provide English or
Spanish translations, which can be valuable when
glossing word stems. Table 4 presents statistics on
how often the correct stem translation can be found
in the utterance translation.!>. We present sepa-
rate statistics for in-vocabulary tokens, which have
been observed in the training set, and for out-of-
vocabulary (OOV) tokens, which are absent from
the training set. The coverage ranges from 37%
for Uspanteko (40% for OOV tokens) to 71% for

BTo compute these statistics, the translations in the test
set were first lemmatized using the Stanza toolkit (Qi et al.,
2020).



Tsez (72% for OOV tokens). This demonstrates
that translations are likely to contain valuable infor-
mation for the glossing task, particularly for OOV
tokens, which can be challenging to gloss without
access to stem translations.

5 Glossing Systems

5.1 The Baseline System

The baseline system utilizes the ROBERTa architec-
ture with default hyperparameters (Liu et al., 2019).
The glossing task is treated as a token classification
task, where words or morphemes form the input,
and the IGT gloss (or gloss compound) forms the
output label. In the closed track, we train word-
level models; in the open track, where morphologi-
cal segmentations are provided, morphemes form
the input units to the glossing model. The base-
line model is trained on the shared task training
data without pretraining. We train one model for
each language. For a detailed presentation of the
baseline system, please see Ginn (2023).14

A transformer-based architecture is an effective
choice for this task, as interlinear glossing often
involves disambiguating homonymous morphemes
based on context. For example, the English plural
morpheme -s is spelled the same as the present-
tense third-person singular verb morpheme, and the
correct label must be determined from the lexical
and sentence context. We decided to use a masked
architecture rather than a sequence-to-sequence
setup. During initial development, we also experi-
mented with a sequence-to-sequence architecture,
but this required more data to converge, and deliev-
ered inferior performance. Error analysis revealed
this to be due to isolated insertions and deletions
of morphemes. This is difficult to fix because there
exists no a priori restriction on the morpheme count
generated by the model.

The baseline system includes a number of known
limitations which leave room for improvement;
particularly, it can not effectively handle out-of-
vocabulary words or morphemes, does not perform
any segmentation in the closed track, and does not
make use of part-of-speech tags or other resources
in the open track. The system also does not utilize
translations.

“Code for the baeline system can be found in the
shared task repository https://github.com/sigmorphon/
2023glossingST/tree/main

5.2 Participant Systems

Here we describe the participating systems. Table
5 provides an overview of the strategies employed
by the different teams.

COATES (Coates, 2023) This system is based on
the LSTM encoder-decoder architecture (Sutskever
et al., 2014) and participated in the closed track of
the shared task. The input to the glossing system
consists of short context windows centered at the
target word. Windows of width 1 and 2 are used to
generate candidate predictions and the final output
prediction of the model is generated using weighted
voting among the output candidates.

LISNTEAM (Okabe and Yvon, 2023) This sub-
mission is a hybrid CRF-neural system and par-
ticipated in the open track of the shared task. The
system is a combination of two components: (1) An
unsupervised neural alignment system SimAlign
(Sabet et al., 2020) originally intended for machine
translation, and (2) A CRF sequence labeling sys-
tem Lost (Lavergne et al., 2011). The alignment
system is used during training to associate word
stems with lexemes in the translations. It uses co-
sine similarity of BERT representations (Devlin
et al., 2019) to score the association between lex-
emes in the translation and the word stems in the
gloss. Alignment allows the system to learn to
pick lexemes from the translation line for stems
which do not occur in the training data and thus
to gloss unseen word forms. The CRF model is
used to gloss the morphemes in the input sentence.
The team submitted two systems LISNTEAM; and
LISNTEAM2 which differ with regard to the fea-
turization of the CRF model.

SIGMOREFUN (He et al., 2023) This team sub-
mitted transformer-based systems and participated
in the open track of the shared task. The authors ex-
periment with the pretrained byte-level transformer
model ByT5 (Xue et al., 2022) and the multilingual
pretrained transformer XLM-RoBERTa (Conneau
et al., 2020) fine-tuned for glossing. Interestingly,
the ByT5 model falls behind the XLLM-RoBERTa
model in terms of glossing accuracy. To boost per-
formance, the team incorporate additional glossed
data from the ODIN database and, for Gitksan,
lexemes from a Gitksan morphological analyzer
(Forbes et al., 2021). The team also experiment
augmenting the gold standard training sets with ar-
tificially generated glossing data. This team incor-
porated both translations and segmentations into
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ARAPAHO  GITKSAN  LEzGI  NATUGU NYANGBO TSEZ  USPANTEKO
(1) TTR 31.9% 61.3% 27.0% 27.5% 22.3% 29.4% 21.9%
(2) OOV 25.8% 79.9% 15.2% 21.4% 84% 18.1% 20.5%
(3) MorrH OOV 3.6% 41.2% 4.9% 2.8% 1.1% 0.5% 5.3%
(4) MORPHS PER WORD 1.8 1.6 1.5 1.6 1.6 2.0 1.4
(5) GLOSSES PER MORPH 1.0 1.3 1.0 1.0 1.0 1.0 1.2

Table 3: Statistics concerning the shared task datasets: (1) TTR type-token-ratio in training data, (2) Amount of
OOV, or out-of-vocabulary, tokens in the test set, (3) Amount of OOV morphemes in the test set, (4) average number
of morphemes per word in the training data, and (5) Average number of possible glosses per morpheme in the

training data.

TOK. RECALL OOV TOK. RECALL

ARAPAHO 51.32 49.87
GITKSAN 44.29 44.13
LEZGI 4298 44.89
NATUGU 58.72 58.21
TSEZ 71.17 71.66
USPANTEKO 36.49 40.14

Table 4: Amount of stem glosses which are found in
the translation of the sentence. We present figures sep-
arately for all tokens and OOV tokens which are not
found in the training data. Nyangbo is missing from this
table because translations are not provided.

the model input using specialized prompts. The
team made four submissions to the shared task S1G-
MOREFUN; — SIGMORFUN, displaying different
combinations of model and data augmentation strat-

cgy.

TEAMSIGGYMORPH (Cross et al., 2023) This
team participate both in the open and closed track.
They investigate the performance of different input
and output representations: character-based, byte-
based and subword-based. For the closed track,
the team used a vanilla transformer model. For
the open track, they applied a BiILSTM encoder-
decoder model and the ByT5 byte-level transformer
model. The team accomplished stem-translation
using a heuristic approach which combines transla-
tion statistics computed from the training set and
copying of unseen stems, which often represent
proper names. Like team SIGMOREFUN, this team
also found that ByT5 underperformed compared to
other model architectures.

TU-CL (Girrbach, 2023) This team participated
both in the open and closed track of the shared task
(in fact, the team also participated in this year’s
SIGMORPHON inflection shared task using the
same model). The system uses straight-through

gradient estimation (Bengio et al., 2013) to train
a hard-attentional neural glossing model. For the
closed track submission, the system induces a shal-
low morphological segmentation of the input text.
This happens without any segmented training data
which is not available in the closed track. Mor-
pheme boundaries are assigned using the hard at-
tention weights learned by the model. For the open
track, gold standard segmentations are used. For
both tracks, gloss tags and stems are then predicted
for each morpheme using an MLP. This model de-
livers very strong performance while, surprisingly,
not utilizing translations in any way.

6 Results and Discussion

6.1 Closed track (track 1)

The official shared task results for the closed track
are presented in Table 6. Three teams participated
in the closed track and two of these teams presented
a complete submission for all shared task languages
and beat the baseline system. Only teams with a
complete submission (TU-CL and COATES) were
eligible to participate in the official shared task
evaluation. Of these two teams, TU-CL achieved
the best micro average word-level glossing accu-
racy 71.30% with their second submission TU-CLo.
Team TU-CL also delivering the best performance
for all individual languages in track 1.

It is noteworthy that both teams TU-CL and
COATES beat the shared task baseline by wide
margins: 23.99%-points for TU-CL and 12.24%-
points for COATES. This demonstrates that even
in the resource-scarce closed track setting, large
improvements in glossing accuracy are possible
over a baseline transformer system. All track 1
submissions strongly outperform the baseline for
Nyangbo. Likewise, we see great improvements
over the baseline for Lezgi and Natiigu.

Results for morpheme-level glossing accuracy
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HA | TRANSFORMER | BYTS | LSTM | CRF-HYBRID | USE TRANSL. | EXT. DATA | DATA AUG.
COATES X
LISNTEAM; X X
LISNTEAM, X X
SIGMOREFUN; X X X X X
SIGMOREFUNy X X X X X
SIGMOREFUN3 X X X X X
TEAMSIGGYMORPH X
TEAMSIGGYMORPH X X X X
TU-CL, X
TU-CLo X

Table 5: Summary of design features in the shared task systems: Hard attention (HA), use of transformer architecture
TRANSFORMER, use of the BYTS pretrained model, use of LSTM encoder-decoder architecture, use of a hybrid
CRF and neural model (CRF-HYBRID), use of the provided translations (USE TRANSL.), use of external data (EXT.
DATA), and use of data augmentation techniques (DATA AUG.).

WORD-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?
TU-CLy 78.79 8094 21.09 78.78 81.04 85.05 7339 71.30 YES
TU-CLy 7790 8096  4.69 78.10 80.20 8534 68.86 68.01 YES
COATES; 55.56 7445 6.51 65.69 70.63 77.01 6699 59.55 YES
BASELINE 71.14 7341 1693 49.66 42.01 5.96 72.06 47.31 YES
TEAMSIGGYMORPH; - 52.46 - 2291 4182 5922 5726 46.73
MORPHEME-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?
TU-CLy 7847 7395 11.72 62.10 56.32 8524 70.05 62.55 YES
TU-CLy 76.56  70.29 9.26 62.03 5638 86.74 6042 60.24 YES
TEAMSIGGYMORPH; - 53.19 - 28.13 31.86 6625 59.73 47.83

COATES; 4542 64.43 9.84  40.74 3755 72.82 56.02 46.69 YES
BASELINE 4419 51.23 854  41.62 1817 1422 5724 33.60 YES

Table 6: Word-level accuracy (above) and morpheme-level accuracy (below) for track 1. The AVG column gives the
micro average accuracy across languages. Averages are not comparable for partial submissions, where results for

some languages are missing.

largely mirror those of word-level accuracy. Again
TU-CL delivers the best performance for all lan-
guages. A general observation is that morpheme-
level accuracies in track 1 are lower than word-
level accuracies. This can be attributed to the fact
that multi-morphemic words are often difficult to
gloss correctly when the morphological segmen-
tation is not give. A single incorrectly identified
morpheme boundary will often result in several in-
correctly glossed morphemes. To see why this is
the case, consider the English past tense verb form
walked. If the word is incorrectly analyzed as a
monolithic adjective, both the stem walk and past
tense marker -ed will be incorrectly glossed. This
effect weighs down morpheme-level accuracy for
the closed track.

6.2 Open track (track 2)

The official shared task results for the open track
are presented in Table 7. In the open track, we
got submissions from four teams, two of which
presented complete submissions for all shared task
languages. Both of these teams beat the baseline
with regard to micro averaged word-level glossing
accuracy. Similarly as in the closed track, TU-CL
achieved the best overall performance and the best
performance for most languages. For Arapaho, the
SIGMORFUN team achieved the best performance
and, for Natiigu and Gitksan, LISNTEAM achieved
the best performance. TU-CL beat the baseline
system with regard to micro average word-level
glossing accuracy by a wide margin of 17.42%-
points.

Overall performance in the open track is, un-
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WORD-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?
TU-CLo 85.80 85.79 2656 8341 8792 8798 7846 76.56 YES
TU-CL, 85.12 85.68 13.80 8544 87.83 8590 7721 7443 YES
SIGMOREFUNy 8292 80.07 3125 7777 7872 8553 7751 73.39 YES
LISNTEAM; - 84.85 28.39 8341 88.85 - 76.30  72.36
SIGMOREFUN; 85.87 7377 2786 7415 8299 80.61 73.47 71.25 YES
TEAMSIGGYMORPH2 - 79.28 26,56  81.72 8773 7625 75.84 71.23
SIGMOREFUNy4 80.56  82.79  20.57 6377 7797 8259 7572 69.14 YES
LISNTEAM2 - - 31.51 8273  89.31 - - 67.85
BASELINE 8544 7571 1641 3454 41.08 8430 7655 59.14 YES
SIGMOREFUN3 73.27  62.37 4.17 38.60 55.11 69.25 70.85 53.38 YES

MORPHEME-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?
TU-CLo 91.37 92.01 5022 87.61 9232 9140 84.51 84.21 YES
SIGMOREFUNy 89.34  88.15 5239 8236 8553 8949 83.08 81.48 YES
LISNTEAM; - 9139 5080 87.17 92.60 - 8242 80.88
TEAMSIGGYMORPH2 - 88.36 47.76  86.59 92.10 82774 8222 79.96
SIGMOREFUN; 91.36 8435 4747 80.17 8835 8584 80.08 79.66 YES
TU-CL; 9093 91.16 17.08 83.45 90.17 89.96 8345 78.03 YES
LISNTEAM2 - - 51.09 86.52  92.77 - - 76.79
BASELINE 91.11 8534 2533 51.82 49.03 88.71 8248 67.69 YES
SIGMOREFUNy 80.81 7824 1274 50.00 6339 8530 7325 63.39 YES
SIGMOREFUN3 72.10 5793 2.60 2624 3562 70.01 67.73 47.46 YES

Table 7: Word-level accuracy (above) and morpheme-level accuracy (below) for track 2. The AVG column gives the
micro average accuracy across languages. Averages are not comparable for partial submissions, where results for
some languages are missing.
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derstandably, higher than in the closed track due
to the fact that gold standard morphological seg-
mentations were provided during training and test
time, and additional resources were allowed, which
some of the participants utilized. However, abso-
lute improvement over the baseline is lower in the
open track than the closed track. This may be a
consequence of the fact that the learning problem
in the open track is easier. It is also noteworthy that
morpheme-level performance is higher than word-
level performance for the open track, whereas the
opposite is true for the closed track. This is un-
derstandable because gold standard morphological
segmentations are provided and a single isolated
glossing error is less likely to ruin the gloss for the
complete word form in the open track.

6.3 Analysis of performance

We now present a more detailed analysis of the
shared task results. This analysis is related to
Figure 2 which presents average performance of
shared task systems on the different languages and
their relationship with training data size, out-of-
vocabulary (OOV) rate and type-token-ratio (TTR).

Impact of training data size The size of the
training set is one of the most influential factors
determining the performance of natural language
processing systems. This observation also holds
true for the shared task results. The training data
sizes vary from 261 tokens for Gitksan (git) to
139,714 tokens for Arapaho (arp). It is evident
that the highest micro average word-level gloss-
ing performance in the open track is achieved for
Arapaho, which benefits from the largest training
set. In the closed track, Arapaho stands among
the top three languages in terms of glossing accu-
racy, but the best performance is observed for Tsez
(ddo), which has approximately 37,000 training to-
kens. This places it among the higher-resourced
languages in the shared task. Conversely, Gitksan,
with the smallest training set, consistently exhibits
the lowest glossing performance. Overall, a clear
trend emerges, demonstrating an improvement in
glossing performance as the training data size in-
creases.

Impact of OOV rate While out-of-vocabulary
(OOV) rate computed on the test set is an important
predictor of performance in tasks like morphologi-
cal tagging (Miiller et al., 2015), it does not seem
to have a clear impact on system performance in
this shared task. While the highest OOV rate and

lowest performance are attained for Gitksan, this
is largely an artefact of its very small training data
size. If we disregard Gitksan, the impact of OOV
rate both for the open and closed track is unclear.
In fact, in the open track, the best average gloss-
ing performance is attained for Arapaho which has
the second-highest OOV rate. Nevertheless, Ara-
paho also has the largest training set. This might
seem like a surprising coincidence but we must
remember that Arapaho is highly morphologically
complex which tends to lead to higher OOV rates.

Impact of TTR Similarly to OOV, Type-token-
ratio in the training set can be seen a measure of
the diversity of the training data. We would expect
a higher TTR to improve glossing performance.
However, according to the statistics presented in
Figure 2, the trend is not very clear. While the
best performance in the closed track is attained for
Tsez, which has moderately high TTR, the second-
best performance is attained for Uspanteko with
the lowest TTR.

7 Future Directions

The submissions in this shared task have explored
several novel techniques that have not been previ-
ously applied to automatic interlinear glossing. Sur-
prisingly, pretrained language models like ByT5
did not perform as well as one might expect based
on their strong performance on other morphology
tasks. This unexpected outcome raises the need for
further investigation.

One interesting observation is that the winning
submission, TU-CL, completely disregards the pro-
vided translations. While this could suggest that
translations may not be as useful for the glossing
task, we believe there is still room for improvement
in this area. Incorporating large pretrained English
models as a reliable source of translated text could
potentially lead to additional enhancements.

Considering the availability of extensive mor-
phological resources for many languages, such as
those provided by UniMorph and similar projects,
multi-task learning holds promise for interlinear
glossing. Additionally, we encourage further explo-
ration of crosslingual approaches, leveraging the
ODIN database of interlinear glossed text, which
despite being noisy, offers a highly multilingual
resource for research purposes.
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Figure 2: Impact of different data characteristics (training data size, out-of-vocabulary rate and type-token-ratio) on
average word-level glossing accuracy. In addition to the average performance, we also plot the performance of each
individual system. Only complete complete submissions, for all shared task languages, are included in these plots.
Abbreviations refer to languages: Arapaho (arp), Tsez (ddo), Gitksan (git), Lezgi (lez), Natiigu (ntu), Nyangbo
(nyb) and Uspanteko (usp).

8 Conclusion provements over a baseline ROBERTa system. The
winning team TU-CL achieved a 23.99%-point im-
provement over the baseline in the closed track
and a 17.42%-point improvement in the open track
using a hard attention model.

The 2023 SIGMORPHON Shared Task on Interlin-
ear Glossing received submissions from five teams
which presented a wealth of interesting techniques
greatly expanding the field of automated interlinear
glossing. The submissions achieved substantial im-
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