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Abstract
Advances in materials science require leveraging past findings and data from the vast published literature. While some 
materials data repositories are being built, they typically rely on newly created data in narrow domains because extract-
ing detailed data and metadata from the enormous wealth of publications is immensely challenging. The advent of large 
language models (LLMs) presents a new opportunity to rapidly and accurately extract data and insights from the published 
literature and transform it into structured data formats for easy query and reuse. In this paper, we build on initial strategies 
for using LLMs for rapid and autonomous data extraction from materials science articles in a format curatable by materials 
databases. We presented the subdomain of polymer composites as our example use case and demonstrated the success and 
challenges of LLMs on extracting tabular data. We explored different table representations for use with LLMs, finding that a 
multimodal model with an image input yielded the most promising results. This model achieved an accuracy score of 0.910 
for composition information extraction and an F 

1
 score of 0.863 for property name information extraction. With the most 

conservative evaluation for the property extraction requiring exact match in all the details, we obtained an F 
1
 score of 0.419. 

We observed that by allowing varying degrees of flexibility in the evaluation, the score can increase to 0.769. We envision 
that the results and analysis from this study will promote further research directions in developing information extraction 
strategies from materials information sources.
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Introduction

In this paper, we examine the effect of using different input 
types for information extraction from tables in the polymer 
composite domain which will help scientists and engineers 

to easily find information without attempting to search 
through millions of relevant articles. It is important to con-
nect data from different resources in materials science, as 
existing data directs future discoveries and research. Peer-
reviewed research publications currently form the official 
source of reliable information on a large variety of materi-
als research. However, due to their unstructured nature and 
highly unique writing and presentation styles, it is difficult 
to utilize the vast majority of materials data locked in these 
journal articles and reports [1]. Moreover, sifting through 
the articles and determining the structure, processing steps, 
and properties of each material sample is tedious, time-
consuming, and error prone. Individuals cannot possibly 
read, understand and utilize the vast literature even in small 
subfields. Therefore, materials understanding and discover-
ies are handicapped. In this paper, we examine the effect of 
using different input types for information extraction from 
tables in the polymer composite domain which will help 
scientists or engineers to easily find information without 
attempting to search through millions of relevant articles. 
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It is important to connect data from different resources in 
materials science, as existing data directs future discoveries 
and research.

To connect data from different resources, robust struc-
tured data platforms to store, visualize, and analyze mate-
rials data are critical for downstream tasks of material 
discovery, process optimization and virtual metrology/
characterization [2], as recently demonstrated by Szyman-
ski et al [3]. NanoMine, part of MaterialsMine, focuses on 
collecting experimental data from literature on the specific 
material system of polymer composites that meets these 
needs. To date, NanoMine data have been collected manu-
ally and stored in an accessible and queryable knowledge 
graph framework [4]. However, due to challenges mentioned 
above, it is impractical to manually curate the data from 
more than 1 million published papers even in this relatively 
small subfield.

Therefore, automation of the data curation process has 
gained increasing attention to enable rapid growth of a 
robust repository of prior published data [2, 5–11]. Lever-
aging natural language processing (NLP) and large language 
models (LLMs) can make vital material information such as 
material identification, composition, properties, or experi-
mental details readily available in a machine-readable format 
[12–17]. Of the initial explorations of LLMs for information 
extraction from the scientific literature, most have focused 
on extraction from text only.

In recent works, we have also examined the use of LLMs 
to extract information from the text portions of materials 
papers [18, 19]. In these work, it became apparent that infor-
mation we can collect from text only is limited. In fact, in 
another preliminary analysis of materials science papers, 
Gupta et al. found that 85% of compositions and their associ-
ated properties are reported only in tables [20]. Thus, tables 
in the materials science domain contain rich information 
about the properties and composition of materials. Indeed, 
tables that contain composition and property information 
are available not only in the polymer composite field but in 
all materials subfields, and other fields including medicine, 
food and nutrition [20]. For this reason, information extrac-
tion from tables will be crucial in automated data curation as 
structured data is often presented in both tabular and other 
visual formats [21].

There have been a number of efforts to extract data such 
as compositions and properties of materials from tables. 
Zhang et al [22] parsed the tables and their captions in XML/
HTML files to extract fatigue data using a table extractor 
tool which was initially developed to extract zeolite syn-
thesis data [23]. Using the same tool to obtain raw XML 
tables and captions, Gupta et al. introduced the task of com-
position information extraction from tables and developed 
a graph neural network based pipeline to extract glass com-
positions [20]. Zaki et al. found that using advanced LLMs 

such as GPT-4 to extract composition performed worse than 
a graph neural network model [24] and suggested task spe-
cific prompting strategies and fine-tuning in domain-specific 
datasets. Oka et al. [25] also used XML versions of the arti-
cles to extract limited number of target polymer properties 
from the literature.

This prior work indicates that while tables can be an 
excellent form to present condensed information for human 
readers, automated extraction of information from them 
remains a challenging task. Even for trivial tasks such as 
detecting the table size, LLMs can fail although they have 
some structural understanding of tables [26]. Additionally, 
some tables in published articles and reports are not availa-
ble in XML format and are locked in PDF documents, neces-
sitating table extracting and parsing approaches. Finally, 
it is important to develop flexible approaches to extract a 
broad set of properties and conditions from the wide vari-
ety of tables appearing in materials papers efficiently and 
reliably. Toward this end, we complement the structural 
understanding capabilities of the off-the-shelf LLMs, and 
their understanding of basic materials vocabulary, by using 
unique prompting and input types and evaluation strate-
gies to explore viability of accurate and efficient knowledge 
extraction from tables in materials science papers.

Our study focuses on extracting polymer composite 
sample information, where each sample is identified by its 
composition (matrix name, filler name, composition frac-
tion, filler surface treatment) and is associated with property 
(output) details. Polymer nano- and microcomposites are a 
class of materials consisting of a polymeric matrix material 
in which one or more types of nanoparticle or microparticle 
fillers are embedded. These fillers often have surface chemi-
cal groups added to them in order to improve the dispersion 
and properties of the resulting composite [27, 28]. Although 
the details of composition and processing leading to given 
output properties are still poorly understood, these materi-
als show immense promise for numerous environmental and 
industrial applications [29]. Successful data extraction of 
composition and properties information together could allow 
for rapid new understanding and discoveries of functional 
composite materials.

We constructed a dataset with detailed, annotated ground 
truth from 37 tables and employed LLMs, namely GPT-4 
Turbo and GPT-4 Turbo with vision, for named entity rec-
ognition and relation extraction tasks in tables in the mate-
rials science subdomain of polymer composites. Our study 
confronted several challenges, detailed in Sect. 3.1, that 
underscore the complexity of this task. These challenges 
included (a) layout challenges, such as merging multiple 
rows, (b) entity classification challenges, like differentiating 
between filler names and particle surface treatments (PST), 
and (c) relationship classification challenges, specifically in 
associating properties with their names and metrological 
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parameters. To explore the effectiveness of these models in 
extracting information from tables, we investigated how dif-
ferent input formats, namely image, OCR (optical character 
recognition), and structured formats such as CSV, influence 
the extraction process. This aspect of our research aligns 
with the findings of Sui et al. [26], who highlighted the 
impact of input formats on LLMs’ ability to process complex 
data representations. Our findings contribute to the broader 
understanding of LLMs’ capabilities in information extrac-
tion within scientific contexts, demonstrating both their 
potential and the challenges.

Methods

Article and Dataset Preparation

The data for this study consist of tables with information 
about polymer nano- and microcomposite samples. The arti-
cles were selected from MaterialsMine [30]. MaterialsMine 
contains 240 manually curated articles on nanocomposites 
with a total of 2,512 samples. The detailed sample infor-
mation which includes properties, processing details and 
characterization methods is available in MaterialsMine. In 
this study, we focused on the composition and properties of 
the polymer nano- and microcomposites as extracted from 
tables. Two graduate students annotated 37 tables that came 
from 18 articles [31–48] to provide the ground truth. They 
read the same instructions that were provided to the LLMs. 

Within selected tables, each table has an average of approxi-
mately 4.9 samples with a minimum of 2 and a maximum of 
15 samples for a total of 182 samples. On average, there are 
3.1 properties in each table.

Choosing Inputs of Table Data

The next three subsections describe the approaches that were 
used for obtaining inputs of table data. All three methods 
leverage GPT-4, with one using GPT-4-Vision, and two 
approaches using digitization of the table, one in unstruc-
tured format using OCR, and the other using a structured 
tabular format. An example of different input types—image, 
OCR, structured format—and the ground truth for one of the 
samples of the same table can be seen in Fig. 1. In Sect. 3, 
the results obtained using these three input types are com-
pared to understand the accuracy of data extraction from 
tables for polymer nano- and microcomposites.

GPT‑4‑Vision on Table Image

Initially, we manually captured screenshots of the articles, 
ensuring that these images include both the tables and their 
corresponding captions. An example can be seen in Fig. 1, 
Part a. To extract and interpret the data from these table 
images, we utilized GPT-4 Turbo with vision capabilities.

Fig. 1   Example of the three 
different input types: a GPT-
4-Vision on sample table image 
(simulated table inspired by 
[36]) b GPT-4 on unstructured 
OCR given the table image in 
part a c GPT-4 on structured 
extracted table from the table 
image in part a d Example 
ground truth sample in JSON 
format
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GPT‑4 on Unstructured OCR Extraction from Table Image

For digitizing table content using OCR, we chose OCRSpace 
[49]. We provided image screenshots that include the cap-
tions to this platform, which enables the inclusion of table 
captions in the digitization process. However, it is impor-
tant to note that this method does not preserve the original 
table structure. An example can be found in Fig.  1, Part 
b. Despite this limitation, OCRSpace’s free API makes it 
a highly accessible and cost-effective solution for convert-
ing large volumes of data, with a rate limit of 500 requests 
within one day.

GPT‑4 on Structured Table Output from PDF

We utilized the ExtractTable tool [50] to extract tabular data 
from images and convert it into a structured, standardized 
format. This process cost $0.04 per PDF page. This tool gen-
erates CSV files, efficiently structuring the table fields. How-
ever, it initially does not include table captions. Although 
the tool does not include table captions, it does maintain 
the tabular format which makes information extraction effi-
cient. We generated two input files in structured format. 
The first one does not include the captions and the second 
one includes table captions that are manually added for fair 
comparison with the other input types which include table 
captions. Example can be found in Fig. 1, Part c.

Prompt Design

Based on our knowledge of polymer composite materials, 
the key differentiating fields are matrix, filler, composition 
and PST. Therefore, we picked this minimal set to define the 
composition information of the samples. For each sample 
there are sets of material properties reported in the tables, 
such as storage modulus, dielectric breakdown strength, 
and glass transition temperature. For each property, we 
captured the name of the property, its value, unit and, if 
reported, conditions at which the property is measured, such 
as temperature or pressure. Each condition has its own value 
and unit. Having the property details broken out as useful 
chunks (value, unit and conditions) is important because 
the extracted information can be easily added to the knowl-
edge graph, in this case to MaterialsMine. In the original 
MaterialsMine curation template, properties are curated 
with their units, values and, optionally, “other details.” The 
“other details” field can take any set of words or sentences 
and can refer to many types of information about the mate-
rial system. In our study, we leveraged the capabilities of 
LLMs to be precise in this “other details” field and instruct 
the GPT to extract conditions associated with the property 
measurement, broken down into type, value and unit (if for 
example a property is measured at a specific temperature 

(type) of 120 (value) degrees C (unit)). In this process, we 
enabled querying properties based on conditions associated 
with the properties which had not been possible before. The 
importance of accurately extracting contextual information, 
particularly conditions, is underscored by Hira et al [51]. 
They discovered that 9% of the materials science tables in 
their analysis of 100 tables included conditions.

We utilized the strength of few-shot prompting, which 
can perform well without any training data. The models 
extract the entities and find the relations simultaneously. 
The prompt included a template JSON file to be filled along 
with a description of the task. Based on the selected option 
as specified in Sect. 2.2, the type of input table to be incor-
porated in the prompt is determined. The prompt, which can 
be found in Appendix A, also includes two example samples 
to make the outputs more consistent.

Evaluation

Given the necessity of evaluating a large number of papers, 
having an automated pipeline for evaluation is crucial. For 
information extraction from text, in our previous work [18], 
we noticed that evaluating the task of sample extraction has 
several challenges as it requires determining the most accu-
rate alignment between each predicted sample and its cor-
responding ground truth sample, simultaneously taking into 
account all fields that describe the samples. One approach to 
address this issue is by utilizing a maximum weight bipartite 
matching algorithm, as outlined in our work on extracting 
composition information from text in full-length articles 
[19]. In our table extraction process, we observed that the 
sequence of samples extracted by the model usually aligns 
with the sequence in human-annotated data. Consequently, 
for evaluation purposes, we assumed a direct match in the 
ordering of samples, implying that each sample’s position 
in the model output corresponds to the same position in the 
human-annotated dataset.

We implemented an automated system for evaluating the 
accuracy of sample information extracted from tables. This 
evaluation focused on comparing the extracted data-obtained 
through the different input methods (Sect. 2.2)-image-based 
extraction, OCR, and structured data extraction-against the 
set of annotated ground truth tables. We have considered 
several factors affecting the evaluation:

•	 Data format and preprocessing: Both predicted and 
ground truth files were structured as JSON files. During 
preprocessing, any comments within the predicted files 
were ignored (the part that comes after “//” until the new 
line) to ensure that only valid JSON data was processed.

•	 Handling missing samples: To understand the models’ 
performance, we analyzed the output both by including 
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and excluding missing samples. This dual approach helps 
identify the source of differences in accuracy assess-
ments. 

a.	 Including missing samples: This method consid-
ers every sample in the ground truth. There were 
instances where ground truth tables contained more 
samples than the predictions provided, which we 
labeled as “missing samples.” Samples in the tables 
with no predictions or with predictions that have 
incorrect syntax in the LLMs predictions were also 
labeled as “missing samples.” Having no prediction 
means that there was no corresponding JSON(s) in 
the output for the missing sample(s). This rare error 
occurred in cases of incorrect syntax (such as extra 
commas) of the input table or the model gave an 
output similar to “The example JSON provided does 
not match the table data given below it. We would 
need a complete table that includes all the necessary 
details as per the JSON template provided.” instead 
of filling in the JSON with the provided informa-
tion and leaving the rest as “not specified.” Missing 
samples in the extracted data are assigned a score 
of zero, providing insight into the predictions’ com-
pleteness.

b.	 Excluding missing samples: Here, we focused only 
on the samples extracted, disregarding any that are 
missing. We also excluded the tables with no predic-
tions or those with predictions that have incorrect 
syntax. We called these tables “invalid tables.” This 
analysis method focused on the quality of the data 
that was actually extracted, disregarding the impact 
of the samples that were not extracted.

Composition Information

Composition information is considered correct if the values 
in the matrix, filler, composition, and PST fields matched the 
ground truth sample. Here, the key values of the JSON files 
are fixed: matrix name, filler name, composition (amount 
and type) and PST. An example of this composition informa-
tion can be seen in Fig. 2. Accuracy is used to evaluate the 
composition information. For each sample, we computed the 
accuracy by dividing the number of correct key-value pairs 
by the total number of key-value fields being checked. Then, 
we averaged these accuracies across all samples to find the 
accuracy of the table and report the average of all the tables.

The comparison functions are designed to be flexible in 
handling the following variations in the outputs as illustrated 
in Fig. 3:

•	 Sub-string comparison: In the case of PST, filler name 
and matrix name, we employed a sub-string comparison 
method, allowing either of the strings to be a subset of 
the other. For example, “vinylsilane treated” with “vinyl-
silane” and “epoxy resin” and “ether-bisphenol epoxy 
resin” are considered as matches.

•	 Case-insensitive string comparisons: For all non-
numeric fields, the comparison was case-insensitive, Fig. 2   Composition information example; highlighted in bold are the 

four key values compared between ground truth and LLM prediction

Fig. 3   Flowchart illustrating 
calculation of accuracy score 
for composition information 
considering matrix name (m), 
filler name (f), PST name (p) 
and composition (c). Note that 
some flexibility is allowed in 
matching m, f, and p in that sub-
string matches are allowed
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ensuring minor variations in text case did not skew the 
results.

•	 Partial accuracy calculation: We calculated partial accu-
racies for the composition field that includes “amount” and 
“type.” This means that if some aspects of the field match, 
the comparison reflects this partial accuracy instead of 
treating it as a complete mismatch. To illustrate, consider 
an example composition entry represented in the following 
structure:

 In this example, the “amount” is specified as “2%,” and 
the “type” is denoted as “wt,” which stands for weight. 
Under our approach, if a data entry correctly matches the 
“amount” as “2%” but inaccurately identifies the “type,” 
it is regarded as a partial match. Full correctness was 
assigned if both “amount” and “type” were correctly 
matched. Partial correctness was assigned if only one of 
the two components was correct. The composition was 
deemed incorrect if both components were inaccurate.

•	 Handling numeric values and percentages: For numeric 
values or percentages in the composition field, we first 
removed any whitespace and then converted these values 
into floats. We also chose to ignore the percentage symbol 
(“%” ) when comparing values.

•	 Managing control samples (unfilled samples with com-
position value = 0.0): If both the predicted and ground 
truth sample composition were 0, we did not consider filler 
name and PST in the accuracy calculation. See Fig. 3, the 
“no” branch.

Properties

Unlike the composition part where a small number of known 
fields consistently define the composite composition, property 
fields are not predefined and there are hundreds of possible 
properties that could be measured and reported. Each table 
can contain information of multiple properties that are studied 
in the article, and the exact number of these properties is also 
unknown. An example of the property field extraction and its 
variability can be seen in Fig. 4. While we could have pro-
vided the models with a list of possible properties, we elected 
to allow the models to interpret properties freely as a human 
curator would do, using the embedded material property 
understanding in the LLM. We evaluated the performance of 
GPT-4 using the F 

1
 metric for the extraction of properties for 

each sample. We take the average of F 
1
 scores for each sample 

in a given table and then report the average F 
1
 considering all 

the tables.

Precision, recall and F 
1
 are defined as:

where true positive (TP) is defined as the number of proper-
ties in the model output that are matched with a property in 
the ground truth, false positive (FP) is defined as properties 
in the model output that are not matched with a property 
in the ground truth and false negative (FN) is defined as 
the number of properties in the ground truth that are not 
matched with a property in the model output.

To match properties in the ground truth for each sample 
with the properties in the model output, we performed this 
analysis in two stages, where the first stage identified the 
match for the property name and the second stage consid-
ered the property value, unit and other conditions associated 
with the property measurement (for example, temperature at 
which the property was measured).

Stage 1: Considering property names to find property 
matches

In this initial stage, we first sought a match between the 
property names in the ground truth and the model predic-
tion. Given the wide variation available in property names, 
we did not require an exact match, but used the Levenshtein 
distance as described below. For instance, a property anno-
tated as “AC %decrease” in the ground truth data is referred 
to as “percentage decrease” in the predicted data in Fig. 9. In 
this first stage, the F 

1
 scores were only calculated based on 

the property name and did not include value, unit or condi-
tions of the properties.

To compare the similarity between predicted and ground 
truth data, we utilized the Levenshtein distance method 
[52]. For each property in both datasets, we first gener-
ated a property name string by extracting keys from the 
property entities; these keys represent the property names. 

(1)Precision =
TP

TP + FP
,

(2)Recall =
TP

TP + FN
,

(3)F
1
=

2 ⋅ Precision ⋅ Recall

Precision + Recall
,

Fig. 4   Property information example JSON illustrating a few of the 
wide variety of property names, parameters, and conditions appearing 
in tables containing material property information
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We then calculated the normalized Levenshtein distance 
between these strings. To identify the closest match, we 
compared each predicted property name with all names in 
the ground truth dataset, selecting the ground truth property 
that exhibited the smallest Levenshtein distance, as long as 
it was below a predefined threshold = 0.6. For example, 
normalized Levenshtein distance between “AC %decrease” 
and “percentage decrease” is 0.4375. For unique match-
ing, we maintained an index set of already matched ground 
truth properties. When a predicted property is successfully 
matched, the index of its corresponding ground truth prop-
erty is added to this set. In subsequent comparisons, we 
only considered those ground truth properties not already 
matched, as indicated by their absence from the index set.

Stage 2: Evaluating values, units and conditions of the 
properties

To take into account the details of the properties in F 
1
 

score, we needed a comprehensive and nuanced approach to 
compare entities’ values, units, and conditions of the proper-
ties to evaluate the performance. For each of the entities, we 
calculated a matching score. The final score for a property 
was an average of these individual scores. We employed 
a threshold to determine what is considered a match (true 
positive) for a property. It is important to note that F 

1
 scores 

obtained in stage 2 are affected by the performance of the 
match mechanism explained in stage 1 as we compared 
the values, units and conditions of the properties that are 
matched considering their names.

•	 Values: We used an equality check, where a score of 
1 is assigned for an exact match and 0 for a mismatch 

between “value” of the property in the ground truth and 
the predicted results.

•	 Units: Similar to values, units (such as K, min, etc.) are 
compared using an equality check.

•	 Conditions: Conditions are comprised of multiple enti-
ties: “type,” “value,” and “unit.” The similarity between 
conditions in the prediction and the ground truth was 
evaluated by comparing these entities. The conditions 
entity is a list because properties can be measured or 
reported under multiple additional conditions. For exam-
ple, the same property could be measured at different 
temperature values and different humidity values. We 
iterated through each condition in the predictions and 
identify the condition in the ground truth that had the 
highest match score without being previously matched. 
For each pair of conditions–one from the prediction and 
one from the ground truth–a match score was calculated 
based on the three entities: type, value, and unit. If an 
entity exactly matched, it scores 1, if not, it scores 0. 
However, we could use other methods such as similarity 
metric as we did to match the properties or sub-string 
comparison. The final match score for a condition pair 
is the average of these three scores, which means it can 
range from 0 (no match) to 1 (a perfect match). These 
highest match scores for all conditions in the prediction 
were then summed up to determine the total match score. 
Here, we aimed to ensure that each condition in the pre-
diction was matched with its most similar counterpart in 
the ground truth. To obtain the condition score, the total 
match score was then normalized by dividing it by the 
larger of the two condition counts either in the predic-
tions or the ground truth which we denote by N. Figure 5 

Fig. 5   Illustration of the process for calculating the condition score 
in a dataset. The method involves iterating through each condition 
in the predictions and matching it with the most similar condition in 
the ground truth. The match score for each pair is determined based 

on the comparison of three entities: type (T), value (V), and unit (U) 
The condition score is then computed by summing the highest match 
scores for all conditions in the prediction and normalizing this sum 
by the larger condition count in either the predictions or ground truth
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illustrates this process. The maximum value observed for 
this dataset is 2 although the evaluation metric is valid 
for any value of N. Therefore, the condition score here 
takes values in {0, 1∕6, 2∕6, 3∕6, 4∕6, 5∕6, 1} as there 
are three entities in each condition. This normalization 
adjusts the final score of the conditions to fall within a 
range between 0 and 1.

Results and Discussion

Table 1 provides a breakdown of valid table predictions and 
number of samples obtained through different input types. 
Details of calculations are explained under handling miss-
ing samples in Sect. 2.4. Note that we obtained lists of valid 
JSONs for all tables when the image was used as an input. 
However, when OCR and structured format were used as 
an input, in some cases predictions were missing or the 
obtained JSONs were invalid. In all input cases, there were 
some missing samples.

Composition Information

Table 2 shows the accuracy scores of composition infor-
mation. When the missing samples were not included, 
structured format with captions performed the best with 
an average accuracy score equal to 0.948. Image, OCR and 
structured format without captions have accuracy scores 
0.917, 0.890 and 0.890, respectively. When the missing sam-
ples were included, image, structured format without cap-
tions, structured format with captions and OCR gave accu-
racy scores of 0.910, 0.832, 0.816 and 0.790, respectively.

We found that the predicted samples, when structured for-
mat with captions were used, had the highest average accu-
racy with a score of 0.948. Here, there is no penalty for not 
making the predictions (excluding missing samples). When 
a complete list is desired, it is necessary to penalize for miss-
ing some samples in the predictions or not giving any valid 
predictions. In this case, the image input performed the best 
with a score of 0.910. We observed that the strength of the 
image model lies in producing only valid tables and generat-
ing fewer invalid samples. This results highlights potential 
areas for improvement in other models by modifying the 
prompts.

Property Information

For the matching of property names between predicted sam-
ples and ground truth samples considering property names 
as explained in Sect. 2.4.2, manual inspection showed that 
using Levenshtein distance with a threshold as a similarity 
metric generally worked very well. Notable examples of suc-
cessful matches through this method include “decomposition 
temperature” with “thermal decomposition temperature,” 
“real relative permittivity at low field” with “real relative 
permittivity,” and “dielectric permittivity” with “measured 
dielectric permittivity.” There were few instances where this 
method failed to identify matches with equivalent meanings. 
An example was the mismatch between “nitrogen content” 
in the predictions and “element analysis nitrogen” in the 
ground truth, where the terms refer to the same property 
but were not recognized as a match due to the significant 
lexical differences.

Table 3 shows the precision, recall and F 
1
 scores of prop-

erty name information extraction. Image input performed 
the best with image, structured format with captions, OCR 
and structured format without captions giving average 
F 
1
 scores of 0.863, 0.682, 0.666 and 0.576, respectively. 

We believe the superior performance of the image model 
may be due to its ability to incorporate both textual and 
visual cues from images, enhancing its understanding of the 
table’s structure and providing a richer context. For example, 

Table 1   Fraction of invalid tables and fraction of samples that are 
missing

Category/input type Image OCR Structured format

With captions Without captions

Invalid tables 0.0 0.081 0.135 0.054
Missing samples 0.016 0.137 0.126 0.120

Table 2   Accuracy scores of composition information extraction using 
OCR, image, and structured format as an input with their 95% confi-
dence intervals

The best performances are indicated in bold

Input type/Including missing samples No Yes

Image 0.917 ± 0.036 0.910 ± 0.037
OCR 0.890 ± 0.065 0.790 ± 0.107
Structured format (with captions) 0.948 ± 0.032 0.816 ± 0.113
Structured format (without captions) 0.890 ± 0.056 0.832 ± 0.089

Table 3   F
1
 , precision and recall scores of property name information 

extraction using image, OCR, and structured format as an input with 
their 95% confidence intervals for all tables

The best performances are indicated in bold

Input type Precision Recall F
1

Image 0.905 ± 0.074 0.844 ± 0.086 0.863 ± 0.078
OCR 0.740 ± 0.113 0.639 ± 0.122 0.666 ± 0.117
Structured 

format (with 
captions)

0.740 ± 0.131 0.662 ± 0.131 0.682 ± 0.129

Structured for-
mat (without 
captions)

0.627 ± 0.139 0.556 ± 0.135 0.576 ± 0.134
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hierarchies within the tables are often lost when converted 
to text. To assess the models’ ability to extract property 
names from tables, we categorized them as either simple 
or hard based on their layout. We analyzed 20 simple tables 
with straightforward layouts and 17 hard tables with more 
complex arrangements. As expected, the F 

1
 scores for the 

simple tables were higher, as detailed in Table 4. The gains 
in processing simple tables were similar for both the image 
and the structured format with captions. OCR, which does 
not maintain the structure, exhibited a significantly higher 
improvement on simple tables compared to hard ones. We 
observed minimal difference in performance for the struc-
tured format without captions. This likely stems from the 
frequent mention of property names in captions; omitting 
them can notably degrade performance in both of the cases. 
We also observed that the average precision values are 
higher than the recall values in all cases.

The inclusion of captions with the structured format 
increased the scores of both composition and property name 
stressing the importance of this inclusion in information 
extraction.

For property details such as value, unit and conditions 
(Stage 2 of Property evaluation), we determined the property 
matches between ground truth samples and the predicted 
samples. We used a threshold to determine which properties 
should count as a true positive considering its value, unit and 
conditions. This threshold approach allowed for some degree 
of variation in the predicted output, acknowledging that per-
fect matches are not always feasible. In Fig. 6, we reported 
F 
1
 scores demonstrating how well the details of the proper-

ties were extracted after the properties were matched with 
varying thresholds when all the samples were considered. 

The value of the threshold determines the acceptable aver-
age of the correctness scores of the three fields in properties: 
value, type and conditions as explained in Sect. 2.4.2. The 
higher it is, the more strict the evaluation becomes; there-
fore, the scores are lower. Considering details of properties 
such as units and conditions is especially critical in scien-
tific articles. There is a noticeable decrease after a thresh-
old of 0.6 as after the threshold is 0.66, we expect at least 
two of the three detail fields to be correct which makes the 
evaluation much stricter than the lower thresholds. Only the 
conditions field can take a range of values as there can be 
multiple conditions with a varying number of correct sub 
fields, whereas value and unit fields are binary. This will 

Table 4   F
1
 , precision, and recall scores of property name information extraction using image, OCR, and structured format as an input with their 

95% confidence intervals

The results for simple tables, including percent increases from hard to simple tables, are presented first followed by hard tables

Simple Tables

Input type Precision Recall F
1

% ↑ in P % ↑ in R % ↑ in F 
1

Image 0.932 ± 0.054 0.893 ± 0.078 0.905 ± 0.062 6.88% 13.61% 11.31%
OCR 0.815 ± 0.122 0.723 ± 0.148 0.745 ± 0.138 25.19% 33.89% 29.85%
Structured format
(With captions) 0.752 ± 0.186 0.687 ± 0.193 0.700 ± 0.189 3.44% 11.52% 9.03%
(Without captions) 0.595 ± 0.202 0.572 ± 0.207 0.579 ± 0.205 −10.39 % 6.32% 1.40%

Hard Tables

Input type Precision Recall F
1

Image 0.872 ± 0.157 0.786 ± 0.172 0.813 ± 0.162
OCR 0.651 ± 0.208 0.540 ± 0.207 0.573 ± 0.204
Structured format
(With captions) 0.727 ± 0.176 0.616 ± 0.173 0.642 ± 0.171
(Without captions) 0.664 ± 0.212 0.538 ± 0.190 0.571 ± 0.190

Fig. 6   F
1
 scores of property information considering value, type, and 

conditions for input types image, OCR, structured format (with cap-
tions), and structured format (without captions) based on different 
thresholds
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cause smaller changes in the score. The reported value is 
the average of the three fields: value, unit and conditions.

Interestingly, the structured format without captions 
performed better than with captions as seen in Fig. 6. We 
believe this result arises because predictions of more sam-
ples were missing when captions are included and usually 
details such as values, units and conditions of the properties 
are reported inside the table, not in captions. This under-
scores the need to carefully consider different evaluation 
strategies and their results, as this example illustrates a 
trade-off between increasing the information details con-
sidered and maximizing F1 score.

Challenges of Information Extraction from Tables

This study has highlighted a number of important challenges 
in all input types. The challenges we addressed, which 
included some brought forth by Hira et al. [51]: extracting 
the same properties measured under different conditions and 
understanding the meaning of the rows or columns even if 
they are abbreviated or semantically similar to one another. 
Detailed analysis identified several additional challenges 
which we report below based on where they occur: Compo-
sition information, properties and both composition informa-
tion and properties.

Composition Information

1.	 Differentiating between filler name and PST chemical 
name: Accurately identifying whether a chemical name 
refers to a filler material or a PST. This involves recog-
nizing the context and classification of each chemical 
listed as shown in Fig. 7. This was also a challenge for 
human annotators as in this example they also made a 
mistake considering the PST as filler names. “UN” and 
“VS” are used as abbreviations for untreated and vinyl 
silane treatment but this can be only understood by read-
ing the text of the article.

2.	 Handling extraneous information: Tables can contain 
additional information not relevant to the prompt, like 
processing methods. For example, processing methods 
“melt extrusion” and “SSSP” (solid-state shear pulveri-
zation) are mentioned in Fig. 8. At present, we are not 
requesting the model to extract processing information, 
and the model should ignore this text. However the 
model incorrectly attributed this extraneous informa-
tion to PST. Gupta et al. also reported this challenge of 
filtering irrelevant information in composition extraction 
from tables [20]. This issue can be mitigated by crafting 
more detailed prompts that cover all details or, in this 
case, by a broader extraction goal including capturing 
processing features.

3.	 Implicit matrix names for the not specified ones: Identi-
fying matrix names that are not explicitly mentioned but 
need to be inferred. (For example, matrix name “trith-
erm” is only mentioned in the unfilled sample in Fig. 9.) 
This complexity involves understanding the context.

Properties

1.	 Differentiating between property name and its condi-
tions: Distinguishing property names from the condi-
tions under which they are measured or reported. For 
example, in Fig. 10, property name is reported as “dc 
characteristic breakdown strength @ 25◦ C” instead of 
separating the temperature as a condition. Providing 
models with a predefined list of potential properties can 
enhance their accuracy in identifying property names.

2.	 Different ways to refer to a property: Recognizing that 
very different terms can refer to the same property, both 
“loss tangent” and “tan delta” can be used as a property 
name for “tan � ” in Fig. 11. (This loose nomenclature 
issue also poses an evaluation challenge.)

3.	 Missing properties in the parentheses: Extracting proper-
ties that are listed in parentheses within another property 
column, rather than in a separate column (as in Fig. 10, 
where the Weibull parameter is included parenthetically 
in a column for the breakdown strength value).

4.	 Ambiguity of conditions: In this example shown in 
Fig. 7, it is unclear without context whether the reported 
temperature is the condition under which the property 
measurement is conducted or if it is an environmental 
condition to which the samples are exposed. Analysis of 
text paragraphs associated with a table together with the 
table may lead to reduced ambiguity.

Composition Information and Properties

1.	 Complex/non-traditional table structures: tables with 
irregular cell spans or merged cells that do not follow 
a typical row-column format can be challenging to 
the models. For example, in Fig. 12, the frequency is 
reported as a new column where the other columns are 
properties. It is also not very clear by just looking at the 
table which property is associated with the reported fre-
quency. Upon careful inspection, we realized that both 
humans and LLMs labeled the frequency as a property 
name incorrectly. In Fig. 13, some of the elements in 
the table spans two rows. It is a complex task to associ-
ate the one element with multiple samples that are pre-
sented. Moreover, in Fig. 14, information about a single 
sample is spread across two rows, where each pair of 
rows reports properties under different temperature con-
ditions.
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2.	 Long sample list: tables with many samples reported 
(more than 5) are more likely to miss some samples in 
the output.

3.	 Unfilled samples can be missed by the model when 
table text is poorly constructed or overly abbreviated 
for space: Fig. 9 can be given as an example.

4.	 Understanding numerical values that are reported uncon-
ventionally: when unconventional formats are used for 
numerical values, such as scientific notation or mixed 
formats. For example, property value 1.9 x 10’8 in 
Fig. 11 is predicted to have a value of 1.9 when expected 
to be 1.9e8 and composition value 4–1/2 in Fig. 10 is 
predicted to be 4–1/2 when 4.5 is correct.

Advantages of Using LLMs

1.	 Understanding of property names: LLMs can compre-
hend the meaning of property names in tables, even 
when they are presented as abbreviations. This profi-
ciency is evident in the interpretation of properties like 
“dielectric constant” and “dielectric loss” as demon-
strated in Figs. 15 and 16.

2.	 Recognition of units of the properties: LLMs can rec-
ognize dimensionless nature without explicit mention 
in the table and correctly find the units mentioned in the 
table.

3.	 Expertise in complex properties: In cases involving 
complex properties that might fall outside the exper-
tise of human curators, LLMs are often more reliable. 
For example, they successfully interpret tables with 
unusual syntax or specialized terms that may be chal-
lenging for human experts. An instance of this can be 
seen in Fig. 17, which includes properties with complex 
descriptions like impulse strength voltage. Human anno-
tators mistakenly categorized this property as duration 
of the impulse strength.

4.	 Can be used as a validation: When the LLM result dis-
agrees with the human curator, it might be more cor-
rect. For example, in Fig. 18, silver NP content which 
is reported as approximate NP content is predicted cor-
rectly as the filler composition instead of the composi-
tion value which is included in the sample description 
in the first column. Identifying weight percentages that 
pertain to the composition of the sample versus other 
weight percentages can be complex when tables include 
various types of weight data. LLMs can help us catch 
these kinds of mistakes (Fig. 19).

Advantages of Our Approach

Focusing on the text only, without considering figures and 
tables, it is possible to capture the subset of all samples that 

have the best performance, or the worst performance. The 
“middle of the pack” samples are rarely called out explicitly 
in the written text. By focusing on the tables, we were able 
to extract a wider selection of samples for more comprehen-
sive data extraction. Incorporating numerical values, such as 
property values, lays the groundwork for future quantitative 
analysis.

Furthermore, it is important to note that extracting sam-
ple information from an experimental paper is a persistent 
challenge. Our flexible approach can be applied in sample 
extraction across various domains. This adaptability is 
achievable by modifying the template defined in the prompt 
and incorporating a few examples. It does not require a fully 
supervised dataset. While each domain might present its 
unique challenges, the general approach remains applicable 
throughout various realms within materials science.

The tables in our study encompass a diverse range of 
properties. This diversity poses challenges for evaluation. 
To navigate this complexity, we implemented an evalua-
tion approach which first matches the property names in 
the ground truth and the predictions, and then considers the 
details of the properties to count them as a correct match 
with varying thresholds. This approach provides a nuanced 
assessment of performance.

Limitations and Future Opportunities

While in this work we focused on few-shot prompting, 
we believe designing better prompts and using chain-of-
thought prompting may further improve performance. Future 
work could consider extending these approaches to extract 
sample information from figures. Future work could also 
explore including process details that could better guide 
materials design. However, a notable limitation in our cur-
rent approach is the separate evaluation of each table in an 
article. A more integrated method that merges information 
across all tables could offer a holistic view of each sample’s 
properties, leading to a more comprehensive understanding. 
Additionally, our current methodology does not include the 
extraction of variations in numerical property values. More-
over, we assume a direct match in the ordering of samples, 
implying that each sample’s position in the model output 
corresponds to the same position in the human-annotated 
dataset, an assumption that could be avoided in future work. 
Due to the highly detailed comparisons of ground truth and 
model prediction, a relatively small number of tables were 
examined. Armed with the methods and findings in this 
work, we believe we will be able to deploy the extraction 
and analysis on a larger set of tables.

We also acknowledge the challenges faced in property 
matching, particularly highlighted in cases such as not being 
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able to match “nitrogen content” and “element analysis 
nitrogen.” This underscores the need for a more sophisti-
cated evaluation approach, perhaps through the exploration 
of alternative similarity scores better suited for this nuanced 
task. The exploration of different similarity metrics could 
significantly enhance the precision of our matching algo-
rithms, reducing the margin of error and paving the way 
for more accurate data extraction. By addressing these chal-
lenges and exploring these new directions, we aim to push 
the boundaries of what is possible in information extraction 
from scientific tables.

Conclusion

Our work developed a rigorous method to compare different 
methodologies for materials science data extraction from 
tables using GPT-4 offering insights into the effectiveness 
and applicability of various techniques. We introduced an 
automated evaluation technique tailored to assess the accu-
racy and efficiency of these extraction methods, contributing 
to a nuanced understanding of their performance. We also 
compiled, annotated and analyzed a dataset of tables in the 
polymer composite domain, providing a resource for further 
research and application in this domain. Our results indicate 
that using GPT-4-Vision for table extraction with appropri-
ate prompting results in the best performance compared to 
structured and unstructured table input methods. Through 
prompt design, we captured essential sample composition 
and property details such as values, units, and conditions. 
This study also highlighted a number of detailed challenges 
that occur for tabular data extraction from typical materials 
science papers. These results underscore the complexities 

involved in information extraction and also pave the way for 
future research to address these issues.

Supplementary Information

Challenges of Different Inputs

•	 GPT-4-Vision on table image: We spent 80.752 tokens 
of which 51.453 are context tokens and 29.299 are gen-
erated tokens with a total of 1.39$. Out of 37 tables, all 
of them gave valid list of JSON outputs. When missing 
samples are excluded, the number of samples considered 
went down to 179.

•	 GPT-4 on unstructured OCR extraction from table 
image: We spent 78.728 tokens of which 46.246 are con-
text tokens and 32.482 are generated tokens with a total 
of 1.44$. Out of 37 tables, 34 of them had valid list of 
JSON outputs as predictions. When three of these tables 
and other missing samples are excluded the number of 
samples considered went down to 157.

•	 GPT-4 on structured table output from PDF files: We 
spent 100.523 tokens of which 59.585 are context tokens 
and 40.938 are generated tokens with a total of 1.82$. 
We found that when considering the structured format of 
JSON outputs, 32 tables yielded valid results with cap-
tions included, and 35 were valid with captions excluded. 
Initially, sample size was 182. Upon excluding non-valid 
JSON files and missing samples resulted in final sample 
counts of 159 (with captions) and 160 (without captions).
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Appendix A: Prompt
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Appendix B: Examples of Tables

See Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19.

Fig. 7   Example of two challenges: a differentiating between filler 
name and PST chemical name. “UN” and “VS” (red boxes) are used 
as abbreviations for untreated and vinyl silane treatment. However, 
they are labeled as filler names by both humans and LLMs across all 
input types. b ambiguity of conditions. Without context, it is unclear 
whether the reported temperature and humidity (blue box) are the 
conditions under which the property measurement is conducted or if 
they are environmental conditions to which the samples are exposed. 
Simulated table, after [41]

Fig. 8   Example of the challenge of having extra information. Process-
ing methods “melt extrusion” and “SSSP” which stands for solid-
state shear pulverization are mentioned in the table which are not 

relevant to the prompt. When image is used as an input, “melt extru-
sion” is incorrectly labeled as particle surface treatment. Reprinted 
with permission from [47]. © 2008, American Chemical Society

Fig. 9   Example of two challenges: a unfilled samples not included. 
The sample in the first row (highlighted in red) which does not con-
tain any fillers is omitted in the predictions. b matrix names are not 
specified, but implied to be the same as the first row, “tritherm,” for 
the unfilled sample. While humans knew that other filled samples 
have the same matrix name, LLMs across all input types failed to 
label it as a matrix name. Simulated table, after [36]
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Fig. 10   Example of three challenges: a differentiating between prop-
erty name and its conditions. The property “dc characteristic break-
down strength” is predicted, where “at 25◦ C” should be recognized 
as a condition, not part of the property’s name. b missing properties 
in the parentheses. The Weibull shape parameters, ideally requiring 
a distinct column, are instead embedded within the “characteristic 
breakdown strength” column. This leads to inconsistencies, such as 
these parameters being mistakenly categorized as conditions or omit-
ted in predictions. c understanding numerical values that are reported 
unconventionally. Composition value “4–1/2” is inaccurately pre-
dicted as “4–1/2” instead of the correct notation “4.5” across all input 
types. Reprinted with permission from reference [35]. © 2008, IEEE

Fig. 11   Example of the challenge of understanding numerical values 
that are reported unconventionally. Property value “1.9 x 10’8” is 
inaccurately predicted as “1.9” instead of the correct notation “1.9e8” 
when OCR and structured format are used as an input. Reprinted with 
permission from reference [33]. © 2003, Wiley

Fig. 12   Example of the challenge of complex/non-traditional table 
structures. Frequency is reported in a separate column, distinct from 
other property columns, leading to ambiguity regarding its asso-
ciation with specific properties. Despite careful review, both human 
evaluators and language models erroneously identified frequency 
as a property name. Reprinted with permission from reference [35].  
© 2008, IEEE

Fig. 13   Example of the challenge of complex/non-traditional table 
structures. The first and the forth row of the type of the sample col-
umn spans two rows as there are two types of each sample. This can 
be understood by looking at the other two columns. Reprinted with 
permission from reference [48]. © 2009, Elsevier
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Fig. 14   Example of the challenge of different rows need to be 
merged. Information pertaining to the same samples is spread across 
multiple rows (the control sample in rows 1 and 4 (red boxes), the 
5wt% sample in rows 2 and 5 (blue boxes), the 10 wt% sample in 
rows 3 and 6 (green boxes)), where each pair of rows reports proper-
ties under varying conditions. While the table contains data for three 
unique samples, structured format and image-based input method pre-
dicts six samples. Simulated table, after [36]

Fig. 15   This table lists the 
surface properties, where 
“ ΘH

2
O ” represents the water 

contact angle and “ �s ” denotes 
the surface tension components. 
Understanding the abbrevia-
tions requires domain-specific 
knowledge. Reproduced with 
permission from reference [37]. 
© 2006, Wiley

Fig. 16   This table lists the electrical properties of materials, where 
D

k
 represents the dielectric constant and tan � denotes the loss tan-

gent. Understanding the abbreviations requires domain-specific 

knowledge. Reprinted with permission from reference [46]. © 2014, 
American Chemical Society

Fig. 17   A table featuring “impulse strength voltage,” mistakenly 
identified by human curators as “impulse duration” due to the report-
ing in microseconds. Reprinted with permission from reference [35]. 
© 2008, IEEE
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