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Advancements in additive manufacturing (AM) technology and three-dimensional (3D) modeling soft-
ware have enabled the fabrication of parts with combinations of properties that were impossible to
achieve with traditional manufacturing techniques. Porous designs such as truss-based and sheet-
based lattices have gained much attention in recent years due to their versatility. The multitude of lattice
design possibilities, coupled with a growing list of available 3D printing materials, has provided a vast
range of 3D printable structures that can be used to achieve desired performance. However, the process
of computationally or experimentally evaluating many combinations of base material and lattice design
for a given application is impractical. This research proposes a framework for quickly predicting key
mechanical properties of 3D printed gyroid lattices using information about the base material and poros-
ity of the structure. Experimental data was gathered to train a simple, interpretable, and accurate kernel
ridge regression machine learning model. The performance of the model was then compared to numerical
simulation data and demonstrated similar accuracy at a fraction of the computation time. Ultimately, the
model development serves as an advancement in ML-driven mechanical property prediction that can be
used to guide extension of current and future models.
� 2023 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY-NC-ND license
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1. Introduction

The bounds of what is possible with additive manufacturing
(AM) continue to be pushed by advancements in both three-
dimensional (3D) printing technology and 3D modeling software.
Methods such as designing porous geometries, tuning the compo-
sition of heterogeneous mixtures, and doping materials with par-
ticulates have been used to achieve 3D printed structures with
superior mechanical properties and tailored functionality [1–12].
These structures are used in applications where either a custom
fit is necessary or the design is unmanufacturable with traditional
methods. For example, 3D printed products can be seen used in
hospitals and surgeries as orthopedic implants for promoting bone
ingrowth and fitting the patient’s specific anatomy [13]. The innu-
merable possibilities enabled by these advancements motivate the
development of faster ways to assess structure performance and
determine optimal structure design and material composition for
a given requirement.

Cellular lattices have been widely incorporated into products
such as orthopedic devices, aerospace components, and heat
exchangers due to their high load-bearing strength, lightweight
capabilities, osseointegration, and thermal insulation properties
[14–18]. These lattices are often identified as having either
stochastic or periodic porosity. Porosity will be defined hereafter
as the percentage of the volume that is void space within the lat-
tice. Lattices with stochastic porosity contain randomly distributed
and sized pores, and those with periodic porosity contain repeated
unit cells of uniform pore size and distribution. Periodic lattice
designs have been shown to mechanically outperform stochastic
lattice designs, and the uniformity of their pore distribution allows
for precise tuning of geometric properties by adjusting the cell size,
wall thickness, and volume fraction of the lattice [19–25]. Due to
the intricate geometry of these lattices, traditional manufacturing
techniques such as machining and injection molding are impracti-
cal, and AM techniques have been adopted to achieve these desired
geometries [26–32]. Researchers have found success 3D printing
periodic lattices for varied materials, yet the process of modeling,
printing, and testing the wide array of designs is prohibitive when
many different variations of the lattice need to be explored
[1,3,5,20].

One method to expedite discovery of these structures is direct
numerical simulation such as finite element analysis (FEA). Using
FEA, a computerized 3D design can be subjected to simulated envi-
ronmental conditions, and the response of the design to the condi-
tions is then calculated. Calculating the theoretical stress–strain
curve of a design is a common objective of using FEA [33–36].
The design is spatially constrained and subjected to an external
force, and the deformation and internal stress of the part are calcu-
lated. However, FEA is computationally intensive for complex
designs [37] and can require a significant amount of time to pro-
duce results for each new design of interest. Furthermore, FEA is
often unable to account for the impact of imperfections that can
occur when 3D printing. These imperfections, such as post-
processing defects or printing defects, can lead to inaccurate sam-
ple geometry and expedited or inconsistent part failure, and are
crucial to consider with models of 3D printed objects [38–45].

Machine learning (ML) algorithms have become a popular
method for creating models to predict the mechanical performance
of structures [46–50]. Algorithms have been used to create models
that predict mechanical properties and even entire stress–strain
curves of periodic lattice structures, 2D composites, and phase-
separated structures [21,51–55]. Gu et al. [54] demonstrated the
ability to predict 2D composite designs that exhibit optimal
strength and toughness using deep learning (DL) and a trained
convolutional neural network (CNN). FEA simulation was used to
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create a dataset mapping the geometry of the composite structure
to its mechanical properties observed during tensile loading. The
2D composite designs used to train the model each consisted of a
random grid arrangement of squares representing either high or
low relative material stiffness. By learning the relationship
between grid arrangement and mechanical properties, the model
was able to generate an arrangement of grid components with
optimized strength and toughness. Yang et al. [55] built upon this
work to develop a model capable of predicting the entire stress–
strain behavior of such 2D composites using principal component
analysis (PCA) and CNN. The stress–strain data calculated for each
composite using FEA is transformed into a reduced order latent
space using PCA, and the CNNmodel then makes predictions in this
new space with a high degree of accuracy. Hassanin et al. [21] suc-
cessfully used DL to predict the stress–strain curve of a 3D printed
titanium diamond lattice structure. The structures were printed
and physically tested in compression to extract the stress–strain
data, and after training, the model was able to predict the stress–
strain curve of the structure based on solely the strut length, strut
diameter, and strut orientation angle of the diamond lattice. Wang
et al. [56] introduced a method for predicting the peak force, dis-
placement at peak force, mean crushing force, and effective com-
pression stroke of braided textile-reinforced tubular structures
consisting of carbon fiber bundles and an epoxy resin. These four
mechanical properties were predicted using a model trained with
a relatively small amount of experimentally gathered data, and
through a series of error analysis the accuracy and future potential
of the model was validated.

The models developed in these and other prominent studies of
similar nature encompass a variety of ML algorithms, dataset col-
lection methods, and applicable structure–material combinations
(Table 1). However, there is currently a lack of models that have
the capability of making predictions for datasets containing a wide
variety of both structural geometry and base material. Specifically,
most ML models that predict the mechanical performance of 3D
printed structures tend to be created for a range of geometries,
but only a specific material or composite of two specific materials
[46,47]. Due to the complexity of material-geometry interactions,
further model development and evaluation is necessary for models
that incorporate variations in both material and structure geome-
try. Additionally, models trained and evaluated using solely
numerical simulation data may not be reliable for making predic-
tions of 3D printed structures due to the potential impacts of
post-processing and printing defects on the geometric accuracy
and mechanical performance of these structures [57–60]. Thus,
incorporation of experimentally gathered data for model training
and evaluation is crucial when working with 3D printed structures.
Furthermore, both experimental and numerical collection of 3D
printed structure mechanical performance datasets can be time
consuming and costly. To obtain this data experimentally, samples
must be fabricated and physically tested, often with expensive
equipment and materials. Using numerical simulation to gather
the data from geometrically complex lattice structures requires
significant computational power that can increase both the time
and cost of the data collection. Consequently, the large dataset size
commonly required to sufficiently train deep learning models like
neural networks promotes investigation of simpler models such as
kernel regression or support vector machines for making predic-
tions of 3D printed structure mechanical performance.

The overarching purpose of this work was to demonstrate the
potential of a simple ML model and limited dataset size in making
mechanical performance predictions of 3D printed structures con-
structed from a wide range of both structural porosity and base
material. Kernel ridge regression (KRR) and experimentally gath-
ered data were used to develop a ML model capable of predicting



Table 1
Examples of current ML models that are used to predict mechanical properties of lattice or composite structures using a range of geometries or materials.

Ref. ML algorithm Data collection Dataset size Geometry/Material Model prediction

[21] ANN Exp. 15 LPBF printed diamond lattice/Ti6Al4V Strength, stiffness
[48] 3DCNN & RNN FEA 100,000 Solid/annealed austenitic stainless steel Stress–strain curve
[49] 2DCNN w/ PCA FEA 729 3D aorta models/aorta tissue Entire stress response field
[51] 3DCNN CGMD 480 Phase-separated copolymer/an elastomer Stress–strain curve
[52] 2DCNN FEA 35,960 2D porous grid/graphene Shear toughness
[53] GAN FEA 2000 2D composite grid/1 brittle & 1 soft material Entire stress response field
[54] 2DCNN FEA & Exp. 100.000 2D composite grid/Stratasys Vero & Tango+ Entire stress response field
[55] 2DCNN w/ PCA FEA 100,000 2D composite grid/1 brittle & 1 soft material Stress–strain curve
[56] ANN Exp. 160 Reinforced tube/epoxy resin & carbon fiber Force, displacement
[79] 2DCNN FEA & Exp. 1600 LPBF printed lattice/AlSi10Mg Stress–strain curve
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Young’s modulus, yield strength, fracture strength, and fracture
strain of periodic gyroid lattice structures manufactured using
vat photopolymerization (VPP) 3D printing. The gyroid structure
was selected among other TPMS and strut-based topologies due
to its demonstrated mechanical performance and proven versatil-
ity in multiple fields and applications [19,24,25,61–63]. Utilization
of a simple algorithm like KRR allowed for creation of a ML model
that is easily interpreted, easily modifiable, and capable of produc-
ing accurate predictions from training on a relatively small dataset.
This reduces the cost and time required to generate the training
dataset, as fewer printed samples are needed for physical testing
and less simulations are needed for numerical simulation. By
choosing to gather a small set of high-quality experimental data
for training the model, we can effectively analyze and capture
the effects of post-processing and printing defects and use these
observations to inform future model development.

We first describe the scope of the dataset and the data collec-
tion methods used. The framework of the ML model and the model
training process are then presented, followed by simulation
parameters used to gather FEA data for comparing to the model’s
predictions. Finally, model performance results are presented and
discussed.

2. Materials and methods

2.1. Material dataset curation

Mechanical properties of commercially available photopolymer
materials were reviewed and compiled into a database. The
mechanical properties published by the manufacturers of these
3D printing resins were plotted on Ashby plots to create relative
comparisons and visualize the spectrum of currently available
materials (Fig. 1). Out of 197 total materials in the database, six-
teen were selected to be used for training the ML model (hereafter
referred to as the ‘‘training set” of materials) and four were
selected to be used for evaluating the performance of the final,
fully trained model (hereafter referred to as the ‘‘evaluation set”
of materials). For material selection rationale and to understand
why evaluation set materials were picked to be the upper-right
most materials on Fig. 1, see Section 4.1. The brand names of the
sixteen materials in the training set and the four materials in the
evaluation set have been replaced by M1-M16 and M17-M20,
respectively, throughout the remainder of this paper for simplifica-
tion (Fig. 2A, B). For a list matching each M value to the corre-
sponding material, manufacturer, and printer used, see the
corresponding Data in Brief article [78].

2.2. Design and fabrication of samples

The samples were printed on three different machines, specifi-
cally a Formlabs Form2, ETEC Envision One, and Prusa SL1, due to
proprietary printing restrictions of some of the materials in the
3

dataset. The sample geometry consisted of a cylindrical region of
diameter 12 mm and height 17 mm and tabs on top and bottom
of the cylinder for interfacing with the grips of the mechanical test-
ing machine, and all samples were printed with their longest
dimension orthogonal to the build plate. While the unit cell of a
gyroid is cubic, there is an extensive amount of literature where
cylindrical samples have been used [3,64–66]. and with a D/u value
(diameter of the cylinder cross-section divided by unit cell size)
greater than or equal to 2, the boundary effects caused by a small
number of unit cells within the cylindrical structure are negligible
and demonstrate a convergence of mechanical properties such as
strength and stiffness for a given porosity [65]. The cylindrical
regions were populated with the ‘‘Gyroid” triply periodic minimal
surface (TPMS) lattice structure with unit cell size of 5x5x5mm and
porosity of 55% to 85% in 5% increments (Fig. 2C) altered by chang-
ing the wall thickness of the lattice. For all materialsM1-M20, three
duplicate samples for each of the seven designed porosities were
printed, which would create a total of 420 samples. Due to poten-
tial aspects of VPP 3D printing and post-processing, such as
trapped resin and other defects, there can be discrepancies in mea-
sured porosity among duplicate samples of the same designed
porosity [43–45] (Fig. 2C). These discrepancies created a spectrum
of measured or ‘‘as-printed” sample porosity values composed of a
unique porosity value for each of the printed samples. Thus, print-
ing three duplicate samples for each of the seven designed porosi-
ties resulted in 21 samples of unique measured porosity for each
material. This was an unintentional result, but ultimately it created
a larger dataset and inspired further analysis that is discussed in
Section 4.2. After occasional premature sample failure of some of
the fragile, higher-porosity samples during post-processing and
mechanical testing, a final count of 314 training set samples and
75 evaluation set samples was achieved. For further details regard-
ing sample design, printing procedure, sample handling, and
mechanical testing, see the corresponding Data in Brief article [78].

2.3. Sample porosity measurements

See the corresponding Data in Brief article [78] for the porosity
measurement procedure and measured porosity values for all
samples.

2.4. Mechanical testing and selecting properties

The stress–strain curve of each sample was recorded using an
MTS Criterion C43.504 test machine and following ASTM D638-
14 standards and guidelines. For details regarding data collection
and conversion of displacement and load data from the test
machine to strain and stress data, see the corresponding Data in
Brief article [78]. All samples failed within the lattice cylinder
region and were tested in tension at a rate of 5 mm/min. The focus
of this study was determining the capability of a singular machine
learning model in making mechanical performance predictions



Fig. 1. A plot showing the compiled database of 3D printable photopolymer materials. Larger black and white circles represent materials used in the ML model training set
and evaluation set, respectively. The 20 materials selected for this work possess mechanical properties that span a wide range of what is currently available from
manufacturers.

Fig. 2. Visualization of training and evaluation set material groupings and images of printed samples with demonstrated measured vs. designed porosity. (A) The samples
printed with each material M1-M20 are separated into training and evaluation sets. (B) A printed 0% porosity sample for each material is displayed to help with visualization
of data separation. (C) Examples of printed lattice structures are shown along with the CADmodel of a representative sample. The three duplicate samples each have a unique
measured porosity, slightly different from the designed value, and thus are all included in the input dataset as unique samples.
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from a range of both porosity and material, and thus the testing
method was kept constant by performing solely tensile testing.
Tensile testing was selected over compressive testing due to the
clearly defined failure point that occurs when pulling a sample in
tension. A custom MATLAB script (see the corresponding Data in
Brief article [78]) was used to import the data from the testing
machine and extract mechanical properties from the stress–strain
curve. Young’s modulus ðEMðpÞÞ, yield strength ðrM

Y ðpÞÞ, fracture
strength ðrM

F ðpÞÞ, and fracture strain ð�MF ðpÞÞ for each material M
and measured porosity p were extracted from the stress–strain
curves (Fig. 3). These four extracted properties would later be used
as targets for training the ML model.

2.5. Training the machine learning model

The open-source scikit-learn Python package was utilized for
training and evaluating the ML model. The process of training
the model included selecting the type of ML algorithm, identifying
the highest-performing kernel for this algorithm, and finally, tun-
ing the hyperparameters of the model to achieve higher predictive
performance. As mentioned in Section 1, KRR was selected as the
algorithm for training the model due to its ability to reduce over-
fitting, kernelize data for performing higher-dimensional regres-
sion, and provide an interpretable way to solve non-linear
problems by relying on a relatively simple framework and mini-
mization strategy. The model uses measured sample porosity p
and manufacturer-published mechanical properties of the material
M to predict the mechanical property targets of a lattice structure
with the given porosity p and printed out of the given material M
(Fig. 4). The ranges for the input and output parameters of the
model are listed in Table 2.

Using KRR for training the ML model involved attempting to
minimize the loss function:

F kð Þ ¼ kY � Xkk22 þ Ckkk22 ð1Þ
Fig. 3. Diagram showing the process of extracting properties from stress-strain curves.
(rM

F ðpÞ), and fracture strain (�MF ðpÞ) are extracted and used as targets for the ML model.
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where X are the inputs or features, Y are the outputs or targets, k
are the weights to be applied to features, C is the regularization
strength, and FðkÞ is the loss function to be minimized. The loss
function in Eq. (1) is further manipulated to allow for kernelization
of the input data by creating a matrix of inner products to get the
final loss function:

F rð Þ ¼ kY � Krk22 þ Chr;Kri ð2Þ
where K is the specific kernel operator used and k ¼ Xr.

The feature and target arrays compiled using the MATLAB script
noted in Section 2.4 were imported into a Python script to utilize
the scikit-learn package. A grid search was coupled with cross-
validation (CV) to determine the highest-performing kernel. The
folds used for CV were created using a ‘‘leave one out” method to
reduce overfitting of the model, where each fold corresponded to
the set of samples printed from one of the materials. All models
created in the grid search were fitted using the current training
fold and evaluated for performance on the current validation set.
The Laplacian kernel proved to be the highest-performing kernel
on average. The performance of each generated model was deter-
mined using the square of the regression coefficient (R2) defined
in Section 2.7.

After selecting the Laplacian kernel, a more exhaustive hyper-
parameter grid search was created to finely tune the hyperparam-
eters. The Laplacian kernel has the form:

K X1;X2ð Þ ¼ eckX1�X2k1 ð3Þ
which has as a tunable hyperparameter only gamma (cÞ. Inserting
the Laplacian kernel of Eq. (3) into Eq. (2), we see that the tunable
hyperparameters for this model are alpha (C inEq:2Þ and gamma.
To optimize the alpha and gamma hyperparameters, the second
grid search was performed, now with a fixed Laplacian kernel and
larger set of values for each hyperparameter. Ultimately, an alpha
value of 0.0092 and gamma value of 0.001 created the highest-
performing model and were used in the final model training.
For each sample, Young’s Modulus (EMðpÞ), yield strength (rM
Y ðpÞ), fracture strength



Fig. 4. Visualization of what the ML model accepts as input features and is trained to produce as output. During model training, measured porosities p and published
mechanical properties for all materials M are used as input. The corresponding output targets are the lattice structure mechanical properties extracted from a sample printed
with the input material M and porosity p. For example, EM is read as ‘‘the ultimate strength of material M” and pM is read as ‘‘the porosity p assigned to material M”, while
EMðpÞ is read as ‘‘the Young’s modulus for a lattice sample of porosity p printed using material M”.

Table 2
Units and range of data for each input and output parameter of the ML model.

Input parameter
‘‘Feature”

Unit Data range Output parameter
‘‘Target”

Unit Data range

Porosity (p) % 23.1–92.6 Young’s modulus of printed structure (EMðpÞÞ MPa 0.32–408.89

Young’s modulus of material (EMÞ MPa 4.6–4100 Yield strength of printed structure (rM
Y pð ÞÞ MPa 0.11–14.31

Ultimate strength of material (rM
UTSÞ MPa 8.9–73 Fracture strength of printed structure (rM

F pð ÞÞ MPa 0.14–15.75

Fracture strain of material (�MF ) % 4–173 Fracture strain of printed structure (�MF pð ÞÞ % 1.38–121.95
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After fully training the model, samples from the evaluation set
of materials M17-M20 were used to evaluate the model’s perfor-
mance. The features of the evaluation set materials were input into
the model, and the model’s predictions of mechanical properties
for the input material and porosity were compared to the experi-
mentally gathered target values. Evaluation metrics are listed in
Section 2.7, and the accuracy and overall performance of the model
is presented in Sections 3.2 and 3.3.
2.6. Finite element analysis (FEA)

The CAD designs for evaluation set material samples with 55,
70, and 85 % porosity values were used for FEA simulation, creating
12 simulations in total. The selected samples span all the evalua-
tion set materials and the lowest, middle, and highest porosity val-
ues. The accuracy of ML model predictions was validated against
experimental results, so these simulations were used solely to
compare the speed of FEA simulations to ML model predictions.
Simulations were carried out using the Abaqus software suite from
Dassault Systèmes. Abaqus/Standard was chosen over Abaqus/
Explicit due to the relatively slow test rate used in earlier physical
testing, as described in Section 2.4, and the resulting lack of high-
speed dynamic events. Due to the geometric complexity of the
designs and the challenges of FEA modeling for plastic deforma-
tion, the simulation was run only until a total displacement of
2 mm or approximately 8% strain (Fig. 5C). After the tensile tests
were simulated, output data from the simulation was converted
into a readable stress–strain curve using a custom script written
for Abaqus, and Young’s modulus and yield strength were
6

extracted using the MATLAB script mentioned in Section 2.4. For
more details regarding FEA parameters, computational resources,
and setup, see the corresponding Data in Brief article [78].

2.7. Model evaluation metrics

Various evaluation metrics were used in hyperparameter opti-
mization and performance evaluation. Optimization of hyperpa-
rameters during model training was completed using the square
of the regression coefficient (R2) to compare model performance:

R2 ¼ 1�
PN

i¼1 yi � pið Þ2
PN

i¼1 yi � y
�� �2 ð4Þ

where N is the number of samples, y is a vector of target values, y is
the average of all target values, p is a vector of the corresponding
predicted values, and a value of R2 closer to 1 indicates a higher
degree of accuracy. Additionally, the root mean squared error
(RMSE) and mean absolute percentage error (MAPE) were used
with R2 to make further quantifications and analysis of model per-
formance using the evaluation set:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

yi � pið Þ2

N

vuuut
ð5Þ

MAPE ¼ 1
N

�
XN
i¼1

yi � pið Þ2
yi

ð6Þ



Fig. 5. Visualization of FEA simulation process. (A) 3D computer model of the sample is restrained and subjected to an applied axial force FZ . (B) The result of the applied force
is simulated and displayed with a colormap to indicate stress levels. (C) A custom script is used to extract the stress–strain curve from the Abaqus FEA simulation.
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3. Results

3.1. Measured lattice structure porosity

Although the designed porosity range of 55% to 85% was consis-
tent for all evaluation materials, the measured porosity of samples
varied from material to material (Fig. 6). Materials M18 and M19
produced printed structures with porosity as low as approximately
25%, far exceeding the lowest of the designed porosities of 55%.
Material M17 produced samples with measured porosity in the
range of 45% to 80%, while material M20 produced porosity in
the range of 60% to 88%. It is apparent that the measured porosity
of the samples is not consistently greater or less than the designed
porosity, but instead varies from material to material. Causes and
consequences of this observation are discussed in Section 4.2.
3.2. Mechanical property predictions

The mechanical property predictions made by the model were
separated by evaluation material and mechanical property to gain
a qualitative understanding of model performance for each evalu-
ation set material M17-M20 (Fig. 6). For a quantitative analysis, see
Section 3.3. The predictions for modulus and strength values fol-
lowed the experimental values with a decrease in magnitude as
porosity increases, as expected [43,44,61], and with a high degree
of accuracy. Predictions for fracture strain appeared to be less accu-
rate, and it is apparent from the plots in Fig. 6 that the experimen-
tally gathered values have a higher degree of stochasticity than the
other predicted properties. Interestingly, by adding the values of
the three most similar materials from the training set relative to
each evaluation material and creating a moving average of the
added values across porosity, the nature of the fracture strain pre-
dictions became apparent. For each evaluation set material, these
three most similar materials were referred to as ‘‘nearest neigh-
bors” (NNBs), and they represented the materials with mechanical
properties most similar to the specific evaluation set materials.
KRR works by creating a weighted average of the outputs of NNBs,
and therefore it was logical that the predictions would approxi-
7

mately follow these weighted averages represented by the gray
dashed lines in each plot (Fig. 6).

3.3. Model performance

Model performance was evaluated quantitatively with R2,
RMSE, and MAPE (Table 3) using Equations (4), 5, and 6, respec-
tively. The model performed best at predicting Young’s modulus
of the samples, achieving an R2 of 0.956. The model performed
similarly when predicting yield strength and fracture strength val-
ues of the samples. R2 of 0.875 and 0.871 were achieved when pre-
dicting yield strength and fracture strength, respectively. The
model did not perform as well when predicting fracture strain,
achieving an R2 of 0.505. By examining the RMSE and MAPE, the
significance of this difference in R2 can be realized by the large
error of 43.0% for fracture strain. The model performed quite well
using the training set, achieving an average R2 of 0.970. A high
training accuracy compared to a lower evaluation accuracy indi-
cated that the model may have been overfitted.

Further investigation of model performance was conducted by
analyzing the correlation plots for each predicted property. The
predictions for modulus and strength showed a symmetric distri-
bution of data about the fitted trendline (Fig. 7A–C), indicating that
the model did not consistently predict values higher or lower than
the experimental values. For fracture strain (Fig. 7D), the model
consistently underpredicted for samples with fracture strain lower
than 20%, and then overpredicted for those with fracture strain
higher than 20%. This sudden change in the relation between
experimental and predicted fracture strain indicates that there is
a threshold where the model begins to change from underpredict-
ing to overpredicting values of fracture strain, and potential causes
are discussed in Section 4.2.

3.4. Feature importance

The dependency of each of the four predicted properties on the
four inputs was determined by computing the model reliance ratio
(MRR) of each input feature:



Fig. 6. Plots of predicted and experimentally measured mechanical properties vs. measured sample porosity. Plots are organized in columns by evaluation set material (M17-
M20), and in rows by mechanical property. Gray dots represent the measured lattice structure mechanical properties of the NNB from the setM1-M16 to the given evaluation
set material M17, M18, M19, or M20. The gray dashed line represents a moving average of the mechanical property measurements for the NNB predictions.

Table 3
ML model performance of all four target parameters for both the training and evaluation dataset. The metrics presented are root mean squared error (RMSE), mean absolute
percentage error (MAPE), and square of the correlational coefficient (R2).

Predicted parameter ‘‘Target” Dataset RMSE MAPE R2

Young’s modulus (EMðpÞÞ Train
Evaluation

10.666
13.962

16.0%
26.3%

0.982
0.956

Yield strength (rM
Y pð ÞÞ Train

Evaluation
0.509
0.958

13.5%
23.5%

0.969
0.875

Fracture strength (rM
F pð ÞÞ Train

Evaluation
0.524
1.021

10.0%
21.5%

0.971
0.871

Fracture strain (�MF pð ÞÞ Train
Evaluation

4.893
10.862

15.8%
43.0%

0.963
0.505
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MRR ¼ MSEscrambled

MSEnormal
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSEscrambled

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE

p ð7Þ

by randomizing the distribution of one of the input features and
comparing the calculated RMSE of the predictions with ‘‘scram-
bled” inputs to the original RMSE. The MRR values for each input
feature were normalized and compared graphically (Fig. 8). Pre-
dicted properties showed a heavy reliance on the porosity of the
structure and the Young’s modulus of the base material.
8

3.5. FEA results

Quantification of the FEA simulation performance was made
using RMSE and R2 and compared to the performance of the ML
model predictions using the 12 samples described in Section 2.6.
The FEA simulation performed slightly better when predicting
Young’s modulus, with an increase in R2 of 0.02 but performed
with a larger 0.11 increase over the ML model R2 for yield strength



Fig. 7. Model performance plots for all model predictions, separated by predicted property. On each plot, model predictions for the mechanical properties are plotted on the
vertical axis and the corresponding experimentally measured values are plotted on the horizontal axis. The mechanical property for each plot is identified by label: (A)
Young’s modulus, (B) yield strength, (C) fracture strength, (D) fracture strain.
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(Table 4). However, the setup time and average time per sample
prediction was drastically less when using the ML model. The ML
model, once trained, can make predictions almost instantaneously,
while the FEA simulation requires meshing and approximately
25 min for each prediction.
4. Discussion

4.1. Choice of print method and materials

Vat photopolymerization 3D printing was selected for creating
the dataset due to the growing popularity and increasing number
of available materials for this method. Additionally, the wide range
of achievable mechanical properties for this class of 3D printable
polymers makes VPP a compelling candidate for application of pre-
dictive ML models that can predict mechanical properties of 3D
printed lattice structures (Fig. 1). Materials M1-M20 were selected
from the database of photopolymer materials presented in Sec-
tion 2.1 based on material availability and the diversity of the
mechanical properties of the available materials. In Fig. 1, materi-
als with properties closest to the upper-right corner provide the
most favorable combinations of strength and ductility compared
to materials in the lower-left corner, which are both weak and brit-
9

tle. In solid mechanics and across many engineering disciplines,
strength and ductility are desired mechanical properties because
they give the material the ability to resist deformation in general
but also to deform plastically when deformation does occur
[67,68]. Out of the 20 materials selected for this study, the four
evaluation set materials M17-M20 were strategically picked to lie
outside of the bounds created by the training set materials and clo-
ser to this optimal upper-right corner. Thus, successful results
using these materials would demonstrate the model’s ability to
make predictions for materials slightly outside the training set that
may contain more desirable mechanical property combinations.

Further investigation into this observation was conducted by
making predictions for structures composed of polyetheretherke-
tone ‘‘PEEK”, a popular high-performance thermoplastic material
used in a variety of applications, and two theoretical ‘‘digital”
materials DM1 and DM2. All three of these materials contained
mechanical properties closer to the upper-right corner of Fig. 1,
creating combinations beyond those used in the evaluation set
(Table 5). Although samples were not printed and physically tested
for these materials, providing no way to assess accuracy of model
predictions, the model predictions provide further insight into
the effect of NNBs. In general, the model predictions for PEEK were
similar to M17, and the predictions for DM1 and DM2 were similar
to M18 and M19 (Figs. 6, 9). An interesting behavior occurred for



Fig. 8. Model reliance ratio (MRR) for each predicted property and input feature. The plots demonstrate the degree to which each input feature (Young’s modulus, ultimate
stress, and fracture strain of the base material, and porosity) affects predictions of (A) Young’s modulus, (B) yield stress, (C) fracture stress, and (D) fracture strain.

Table 4
The predictive performance of the ML model vs. FEA for Young’s modulus and yield strength. Model setup time and average time to predict each sample are included.

Method Young’s Modulus Yield Stress Setup Time Average Time per Sample

R2 RMSE R2 RMSE [min] [min]

KRR Prediction 0.91 17.32 0.77 0.93 97 4.22e-6
FEA Simulation 0.93 26.15 0.88 0.79 326 24.8

Table 5
Material property input values for materials PEEK, DM1, and DM2.

Material Young’s Modulus
[MPa]

Ultimate Tensile Strength
[MPa]

Fracture Strain
[%]

PEEK
DM1
DM2

2900
1250
1600

90
50
60

25
200
150
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fracture strain predictions of materials DM1 and DM2, where the
predicted fracture strain values are steadily increasing between
20% and 70% porosity, but then begin to decrease rather rapidly
(Fig. 9). Materials DM1 and DM2 had base material properties that
were most similar to materials M18 and M19, and it can be seen by
the shape of the moving average NNB prediction dotted line in
Fig. 6 that the same NNB samples of M18 and M19 are likely affect-
ing fracture strain predictions for DM1 and DM2. However, while
these similarities in fracture strain predictions exist, the effect of
10
altering the base material property inputs is evident. The higher
predicted modulus and strength values for PEEK and DM2
compared to M17 and M18/M19, respectively, demonstrate how,
for example, an increase in the Young’s modulus and ultimate
strength of the base material will change the weighting of the
NNBs and produce logical predictions. Thus, adding more data to
the training dataset over time will gradually increase the accuracy
of model predictions for materials closer to the upper-right corner
of the plot in Fig. 1.

Overall, the accuracy of model predictions for the evaluation set
(Fig. 7) coupled with the logical influence of NNBs on the PEEK and
DM predictions present a compelling case for the use of ML algo-
rithms such as KRR for training models that can predict property
outputs of structures with a wide range of materials and geome-
tries. The model can be trained with additional photopolymer
materials to increase model performance, and the results show
promise for creating similar models for other TPMS topologies such
as P and D shell lattices or ultimately developing a single model



Fig. 9. Plots of the predicted mechanical properties vs. theoretical sample porosity for added materials PEEK, DM1, and DM2.
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capable of making predictions for multiple TPMS topologies and
porosities.

4.2. Measured lattice structure parameters

When working with complex additive manufacturing processes
and geometries, training a ML model with experimental data, or
using it to verify samples from numerical simulation, is crucial.
Analyzing the dataset used in this research, measured porosity var-
ied greatly from designed values, and gyroid lattices made with
VPP experienced stochastic fracture strain (Figs. 2 and 6). The
implications of this stochastic nature on model performance are
discussed further in Section 4.3.

Porosity was chosen as the geometric descriptor of the lattice
structure due to its strong correlation with the mechanical proper-
ties of a 3D printed part, even among parts of different lattice
topology [7]. The designed porosity range for samples in this
experiment was 55% to 85% while measured porosity values
showed a much wider distribution from 25 to 88% (Fig. 6). This
indicated that there was, on average, more material than desired
within the structure, which is a finding consistent among pub-
lished work on printing gyroid and other lattice structures using
VPP, with reported error in measured porosity as high as 25%
and 39.7% by Vieira Magaldi et al. and Bochove et al., respectively
[44,45]. This extraneous material was likely due to either over-
polymerization or trapped resin during the green state of the part
(Fig. 10). Over-polymerization may have occurred when printing
the LOCTITE AMmaterials (see the corresponding Data in Brief arti-
cle [78]) on an open-source Prusa SL1 printer, where a cure test
was conducted to attempt to identify optimal curing parameters.
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At high porosity, print failure is more likely to occur due to thin-
walled parts that are fragile when in their green-state. Therefore,
the exposure time or intensity for a given material may have been
raised to a level necessary that was necessary for successful prints
at high porosity, but that also resulted in over-polymerization.
Another cause of over-polymerization could have been uncured
resin trapped within the lattice structure during the green state
of the part. If any uncured resin was not removed during the wash
cycle, then it would cure during the post-cure and result in a lower
porosity structure than designed.

Although stochastic fracture strain and inaccurate printed
porosity negatively affected model performance, identifying the
challenges they pose during experimental work was necessary to
guide future considerations for similar work and would have been
unaccounted for if solely numerical simulation data had been used.

4.3. Model performance and predictions

Fracture strain predictions were the least accurate (Fig. 7), and
this inaccuracy was likely caused by any post-processing defects or
printing defects present in the structures. These defects can signif-
icantly impact the geometry and performance of 3D printed struc-
tures, and can occur while the part is printing, during post-
processing, or at any point in the manufacturing process. Defects
such as trapped resin or over-polymerization of the polymer
decrease the measured porosity by adding extraneous material to
the structure (Fig. 10). Surface defects like delamination during
printing result in stress concentrations within the structure that
cause premature and stochastically occurring fracture (Fig. 10).
The random variability in defect severity and frequency among



Fig. 10. Microscope images of printed sample defects. Duplicate samples are cut in half and their cross-sections shown side-by-side in (A) and (B), with the cross-sectional
surfaces colored blue and black, respectively. The samples in A2 and B2 show extraneous material within the structure that has cured and become solid, changing the
measured porosity from the more accurately printed samples A1 and B1, respectively. Close-up images of surface cracks (C) and printing voids (D) highlight potential stress
concentrations in structures causing variability in fracture. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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printed parts creates a more stochastic relationship between
porosity and fracture strain, which is naturally much more difficult
for a ML model to predict. Additionally, due to the porous architec-
ture of lattice structures incremental failure can occur at different
locations, and thus two structures with the same number of defects
may fail at different locations, and at different times.

Predictions of Young’s modulus, yield strength, and fracture
strength, with R2 values of 0.956, 0.875, and 0.871, respectively,
demonstrate a high level of performance. The difference in accu-
racy for these predicted values versus fracture strain can be
explained through examination of an arbitrary stress–strain curve,
such as in Fig. 3. All samples failed within the plastic regime at
points along the curve to the right of yield. Although fracture strain
and fractures stress occur at the same point, the generally low
slope of the curve in the plastic regime would cause any premature
failure due to surface defects to have a much larger effect on the
fracture strain, whose axis is often parallel to the curve in the plas-
tic regime. Consistent failure in the plastic regime also means that
yield stress and Young’s modulus were relatively unaffected by
premature failure, though it should be noted that failure in the lin-
ear regime would affect both yield and fracture strength
predictions.

Interestingly, predictions for fracture strain were most sensitive
to the Young’s modulus input, and none of the predicted properties
were very sensitive to ultimate strength (Fig. 8). This would sug-
gest that perhaps the modulus of the base material plays a large
role in premature fracture of the porous structures. However, it
is unlikely that the ultimate strength of the base material would
have a low impact on the mechanical performance of these struc-
tures, and therefore future model development could include a lar-
ger weighting on the less impactful inputs of this study to
potentially increase model performance. Additionally, the rela-
tively high error for predicting the fracture strain of evaluation
set samples compared to training set samples indicates that the
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model may be overfit to the training set (Table 3). This is further
suggested by the proximity of fracture strain predictions in the
evaluation set materials to the respective moving average of NNB
values in the training set (Fig. 6). With a relatively small dataset
size for training the model and the impact of NNB values, it is likely
that increasing the training set size by adding materials closer in
nature to the evaluation set materials would lead to an increase
in performance of model predictions for the evaluation set. How-
ever, as stated in Section 4.1, one of the goals of this work was to
assess the model’s predictive ability for materials different in nat-
ure, namely with increased strength and ductility, from those used
in the training set.
4.4. Comparison to FEA

The similar performance between FEA simulation results and
model predictions for Young’s modulus and yield strength demon-
strates the potential of using ML to expedite the discovery of new
structures. The FEA simulation and ML model produced results
with similar accuracy for Young’s modulus and yield strength
(Table 4). This is more impactful when considering the differences
in setup time and time per sample prediction. FEA requires a mesh-
ing process when using a new geometry and then the simulation
itself, while ML can make predictions instantly once trained. For
the dataset described in Section 2.6, setup for FEA took three times
longer than ML, and the time per sample prediction for ML was a
fraction of the � 25 min FEA simulations.

Once trained, the ML model can make predictions for limitless
combinations of photopolymer material and porosity almost
instantaneously, and with little computational cost. Additionally,
through a cyclic process of new material exploration, experimental
validation, and model retraining, the performance of the ML model
will continuously improve. Thus, the ML model provides a starting
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point for narrowing the search of material and lattice design com-
binations for a given application.

It has been demonstrated that ML models can make accurate
predictions for mechanical properties of various structures using
FEA simulation results as the ‘‘ground truth” [55,69–71], and
extensive work has been done in the field of FEA for simulating
the mechanical response of 3D lattice structures [72–77]. Thus, a
natural next step is using machine learning to make mechanical
property predictions of 3D lattice structures from FEA simulation
data considered to be the ‘‘ground truth”. However, as demon-
strated in this work and others [43–45], creation of such lattices
using methods like VPP AM can introduce defects and variability
that are not well captured by FEA. Thus, utilization of experimental
and computational methods for gathering ML model training data
coupled with experimental data for validation of performance pre-
sents a promising combination for making mechanical property
predictions of 3D printed lattice structures in a range of materials
and geometries.

4.5. Future work

Future work based on this research includes investigation into
surface defects and their impact on 3D printed photopolymer
structure fracture strain. Capturing or accounting for the variability
of these defects with new or modified input parameters will
increase model performance. Additionally, we plan to use the
knowledge gained through this investigation to develop a method
of identifying how surface defects directly affect or alter the
mechanical behavior of these structures, and how this may be
incorporated to modify or adjust numerical simulation data to bet-
ter account for experimental factors. Finally, we will utilize the
knowledge gained from this research to extend predictive capabil-
ities to other lattice structures and ultimately other AM methods.
5. Conclusions

Machine learning has been used to predict mechanical proper-
ties of 3D printed lattice structures with a range of both geometry
and base material properties. Experimentally gathered data was
used with a KRR algorithm to develop a simple, interpretable
model capable of making accurate predictions for Young’s modu-
lus, yield strength, and fracture strength. The predictions of frac-
ture strain were highly sensitive to printing and processing
defects within the structures, such as divergence of measured lat-
tice porosity from designed values, and stochastically occurring
premature failure of the structures reduced the accuracy of frac-
ture strain predictions. The model was compared directly to FEA
simulation and produced results of similar accuracy at a fraction
of the time. Nearest neighbor weighting through the KRR training
process allows for extension of predictions to include structures
with base materials containing favorable mechanical properties
that lie outside the domain of the training set.

A) The model is capable of making predictions using a wide
range of materials within the realm of VPP materials, from
elastomers to brittle polymers, with high accuracy for pre-
dictions of Young’s modulus, yield strength, and fracture
strength.

B) The accuracy of model predictions in this study and the
strong influence of NNBs present a compelling case for using
simple models trained with algorithms like KRR to make
predictions of 3D printed lattice structure mechanical prop-
erties. Using a relatively small dataset, accurate predictions
can be made for a wide range of material and geometry
combinations.
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C) Premature fracture, resulting in stochastic distributions of
fracture strain for experimentally gathered data, reduces
model performance of fracture strain. Identifying causes of
premature fracture and accounting for their impact is vital
when working with experimental data and should not be
ignored when using numerical methods.

D) Measured porosity can vary drastically from designed values
for 3D printed lattice structures manufactured with VPP.
Accounting for such differences in geometry is crucial when
working with VPP, and similar attention should be paid to
geometry when using other AM methods, as well as numer-
ically gathered data, if accurate mechanical property predic-
tions are desired.

E) As new materials and printing methods are developed, a
combination of experimental data, numerical data, and ML
methods with relatively few inputs presents a promising
method for expediting discovery of structure–material-geo
metry relationship of 3D printed lattice structures.
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